
SigSent: An Intelligent,
Multi-Terrain, Hexapod

Sentinel
Joshua Lee Franco, John Millner,

Jeff Strange Jr., Richard Wales

Dept. of Electrical and Computer Engineering,
University of Central Florida,
Orlando, Florida, 32816-2450

Security guards routinely work in situations best described
by the “three Ds of robotics”—dull, dirty, and dangerous.
Sentinel robots can multiply the presence of security guards,
and by doing so, reduce the costs and risks associated with a
conventional security strategy. With the ability to either walk
as a hexapod or skid-steer drive with four wheels, SigSent can
traverse across varied terrain (e.g., sand, grass, etc.). SigSent’s
walking gait can be refined through a genetic algorithm.
SigSent features multiple human-robotic interaction capabil-
ities including automated pedestrian detection, voice com-
mand, and teleoperation with a joystick controller. SigSent can
also operate autonomously by following predefined surveil-
lance routines with GPS waypoint navigation and local path
planning. Additionally, the appropriate mode of locomotion
is suggested to operators through terrain classification using
the NeuroEvolution of Augmenting Topologies framework.

Index Terms—Intelligent robots, Artificial neural networks,
Genetic algorithms, Human-robot interaction, Security man-
agement.

I. INTRODUCTION

The goal of SigSent is to enable security professionals to
patrol outdoor areas remotely, reducing the risk of harm to
human sentries. SigSent should also encourage proactive
security policies by freeing security professionals from
repetitive tasks.

By learning to work in a mixed terrain environment, the
robot can effectively perform its job as a sentinel regardless
of its surrounding landscape.

Operators can either directly control the robot’s actions
through teleoperation or indirectly manage the robot using
an autonomous sentry mode. The SigSent bot streams a
video feed of its first-person perspective, enabling remote
surveillance. With multiple SigSent units, a single operator
alone could surveil a much larger area. While patrolling,
SigSent also alerts the operator upon detecting human
activity. This can reduce the cognitive demand on security
professionals arising from constant simultaneous supervi-
sion of multiple locations.

SigSent is designed to interact with people it encounters.
The robot is designed such that it can pursue an intruder

Fig. 1: SigSent in Walking Mode

Fig. 2: SigSent in Driving Mode

if deemed necessary by its operator. Through Sigsent’s on-
board speaker, an operator can relay vocal instructions to
an encountered pedestrian. By strobing its lightbar, SigSent
can disorient trespassers. SigSent’s camera can be used to
record video of events for later action by law enforcement.

SigSent is able to fulfill many of the time-intensive duties
of security guards, enabling guards to perform higher-level
tasks with less occupational hazard.

II. MECHANICAL DESIGN

SigSent’s design is an extension of the conventional
hexapod robot. It possesses 6 legs, with 3 degrees of free-
dom (DOF) controlled by Dynamixel AX-12A servomo-
tors, which sets it apart from other known implementations
that may feature only 1 degree of freedom for each leg
[1]. In addition, SigSent features four motorized wheels
attached to its front and rear legs. Each wheel is driven by
an AX-4114C brushless DC outrunner motor and controlled
by a Favourite LittleBee electronic speed controller. The
ESCs were flashed with BLHeli S firmware to enable
bidirectional operation. This allows SigSent to either walk
on six legs across rough terrain as a hexapod or drive



Fig. 3: Testing Platform of a Turtlebot 2 with the SigSent
Sensor Array

over smoother surfaces efficiently in a four-wheeled vehicle
configuration, as illustrated by Figures 1 and 2 respectively.

SigSent is designed to support a tripod gait with its
weight only supported by three of its legs on the ground.
It is also designed to drive at speed with its middle legs
lifted off the ground.

SigSent’s chassis was designed with SolidWorks and
manufactured by a combination of laser cutting and 3D
printing in the Texas Instruments Innovation Lab.

In order to better parallelize our team’s tasks, a test
platform was used to prototype the high level goals of
the vehicle while the SigSent platform was designed and
constructed. This platform, a ClearPath Robotics TurtleBot
2, on loan from the Robotics Club at UCF was modified
to include SigSent’s modular sensor array to allow for easy
switching between the two platforms as seen in Figure 3.

III. ELECTRICAL DESIGN

A. Printed Circuit Boards (PCBs)

SigSent incorporates 5 custom-designed PCBs which
host its motion-controlling microcontroller, fuel gauge,
inertial measurement unit, Raspberry Pi microcomputer in-
tegration, and servomotor voltage regulation. All the PCBs
feature double-sided construction. The boards’ components

Fig. 4: MCU board layout in Diptrace and fully assembled

were primarily surface mounted with the use of reflow
soldering. PCBs were designed with the use of Diptrace
and were manufactured by either OSH park or JLCPCB
depending on the board. The PCB design in Diptrace, and
the fully assembled board for SigSent’s motion-controlling
microcontroller board is shown in Figure 4

B. Power System

SigSent is powered by an attached Turnigy Multistar 4
cell, 10Ah LiPo battery. Overcurrent protection is provided
by a 60A fuse off the battery. Current, charge, and voltage
is monitored by an LTC2943 fuel gauge and 300 µΩ sense
resistor to be output to the robot’s microcomputer. High
current or out-of-bounds voltages are highlighted to the
robot’s operator through the basestation’s GUI. Power is
distributed through a set of busbars. Each of SigSent’s legs
have an associated custom-designed board which provides
12V regulated power to the 3 respective servos. The servo
regulator boards were designed with the use of Texas
Instruments’s WEBENCH Power Architect tool [2]. A
Mini-Box M3-ATX picoPSU powers SigSent’s sensors and
on-board computers.

C. Sensors

SigSent is able to observe its surrounding environment
through the use of a Sony PlayStation Eye. The Eye
incorporates both a 480p RGB camera sensor with a 60 hz
frame rate and a quadrophonic microphone array [3]. The
camera sensor is used to provide the robot’s perspective
for teleoperation. The microphone is used to relay the
sounds of the robot’s environment to the operator through
headphones attached to the basestation. The Eye interfaces
with the Raspberry Pi through USB 2.0.

In order to determine the distance to objects in the
surrounding environment and map its surroundings, SigSent
utilizes a Hokuyo UTM-30LX 2D LIDAR (from the
Robotics Club at UCF). This LIDAR features long range
detection up to 30m with a 270◦field of view. The UTM-
30LX utilizes a 905nm wavelength semiconductor laser
diode, which enables outdoor operation. The LIDAR scans
at 40 hz and possesses a resolution of 5 cm at 30m [4]. It
also interfaces with the Pi through USB 2.0.



SigSent localizes itself globally through the use of an
integrated GPS module. The module, a SparkFun board
incorporating a Venus638FLPx IC, is attached to an active
omnidirectional GPS antenna through an SMA connector.
The module can update at up to 20 hz, possesses a
2.5m accuracy, supports WAAS, and maintains a -168dBm
sensitivity. [5] The module interfaces with the Pi over its
I2C bus.

Additional motion feedback and detection is provided by
the inertial measurement unit (IMU) mounted to SigSent’s
abdomen. The IMU is a custom-designed board incorporat-
ing an InvenSense MPU-9250 which communicates with
the Pi over its I2C bus. The MPU-9250 comprises a 16-
bit resolution 3-axis gyroscope, a 16-bit resolution 3-axis
accelerometer, and a 14-bit resolution 3-axis magnetometer.
Additionally, the MPU-9250 possesses a proprietary motion
processing engine which fuses sensor data to produce a
pose quaternion [6].

IV. SOFTWARE DESIGN

SigSent’s microcomputer, a Raspbery Pi 3 Model B+,
utilizes the Ubuntu MATE 16.04 LTS Xenial Xerus oper-
ating system . A majority of its code base is implemented
through the Robot Operating System (ROS), and its intelli-
gence training system runs independently in Python scripts
as needed.

A. Robot Operating System

The Robot Operating System (ROS), originally devel-
oped by Willow Garage and currently managed by the Open
Source Robotics Foundation, was used to accelerate the
development of SigSent. ROS is a system that manages
programs and their interactions with each other. With
ROS, transferring data from one program to another is
standardized into pre-agreed messages through a TCP/IP
network that allows for modular and maintainable code,
different sensors and actuators, and distributed computing.
These standardized messages and the open source commu-
nity behind ROS have allowed for many algorithms and
procedures to be genericized, which enabled the SigSent
team to quickly develop a working robot without redundant
development of well-defined concepts. For this project,
ROS used the version Kinetic Kame, the up-to-date LTS
version of ROS over the more recent Lunar Loggerhead, or
the new ROS2.0 release since documentation and stability
was prioritized over bleeding edge functionality.

1) Odometry
SigSent is able to know its pose (its position and

orientation) in the world by implementing an Unscented
Kalman Filter(UKF) that fuses GPS, IMU, and estimated
position of the legs (while in walk mode) or the es-
timated RPM of the wheels (while in drive mode). A

UKF was implemented over the more traditional Extended
Kalman Filter(EKF) to ensure a more stable output af-
ter comparing the two. The UKF provided by the ROS
package robot_localization allowed for significant
customization. Through experimentation, parameters were
tuned to achieve more stable poses for path planning.

Fig. 5: An occupancy grid created with SLAM [7]

2) Localization and Mapping
SLAM or Simultaneous Localization And Mapping re-

ceives radial distance data gathered by a laser scan of
the Hokuyo UTM-30LX LIDAR sensor and creates an
interpreted map in the format of a 2D occupancy grid. This
map is used to inform almost every part of the path planning
algorithm. An example is shown in Figure 5. SigSent
implements SLAM through the ROS package gmapping,
an implementation of a Rao-Blackwellized particle filter
developed by the OpenSLAM community.

Being a 2D LIDAR, the UTM-30LX can only scan
radial distances at a single inclination. Due to this, objects
such as chairs and tables often go undetected. Modern
3D LIDARs provide a much more informative perspective
of the world and enable more detailed maps, but are
prohibitively expensive.

3) Path Planning
Path Planning is achieved through the implementation

of local and global path planning routines and utilization
of the ROS package move_base first developed by Eitan
Marder-Eppstein and David V. Lu in 2009. move_base
manages the local and global path planners as well as the
costmaps that the path planners use.

SigSent uses NavFN, an implementation of Dijkstra’s
algorithm, as its global path planner. Other algorithms and
heuristics such as A* and D* lite were considered but
were difficult to implement and tune compared to NavFN.
The global planner is primarily in control of the “global
path”, which is the main path followed from the robot’s



initial position to its end goal. The global path describes
macroscopic poses for the robot to reach its goal.

The local planner determines and describes how the
robot will achieve the paths set by the global planner.
SigSent utilizes the DWA_local_planner ROS pack-
age, an implementation of the Dynamic Window Ap-
proach. DWA_local_planner accounts for the robot’s
footprints, trajectories, and motion by simulating potential
poses in the future and determining the optimal outcome.
DWA_local_planner is highly configurable and signif-
icant time was spent tuning its various parameters to ensure
that SigSent was able to safely and efficiently navigate in
both open spaces and tight, highly dynamic ones (e.g., a
classroom filled with students).

Costmaps denote the “cost” for a robot to enter areas of
the map, where a lower cost denotes the robot being safer
or more efficient to move there over another area of the
map. Costmaps for SigSent are generated through a layer
plug-in approach used by the ROS package costmap_2d
which uses 4 layers of plug-ins to determine the vary-
ing costs of the local and global costmaps. The obstacle
layer detects potential obstacles (including walls) and other
things that the robot could not enter without impacting. The
inflation layer places an exponentially decaying cost around
obstacles in order to dissuade the robot from getting near
obstacles unless it must to avoid other, closer obstacles.
The third and fourth layers in combination provide human
detection and movement prediction. Developed by David
V. Lu, the social_proxemic_layer identifies people
by detecting the legs of a walking or stationary person.
The layer places a Gaussian distribution around identified
people depending on their predicted vector. The second
layer, social_passing_layer, creates a much higher
cost in the predicted path of a human in order to keep the
robot out of their way. The robot can move around detected
humans without stopping and recalculating its overall path.

4) GPS Waypoint Manager
The GPS Waypoint Manager is a custom node created

for ROS which receives commands from the GUI or a
script and directs the robot to patrol a sequence of GPS
waypoints continuously until stopped. The program first
sets up the GPS_goal node created by Daniel Snider
which translates “global” GPS messages to coordinates of
the local map created by gmapping. From there, the GPS
Waypoint Manager loops through a given ROS message of
GPS waypoints and sends the waypoints to the gps_goal
node. After a goal has been sent, the node then monitors
move_base’s status until it has confirmed that SigSent has
reached its immediate goal. Once confirmed, gps_goal
sends the next goal. If SigSent fails to reach its goals
after some number of attempts designated by the waypoint
manager, or if a diagnostic warning is received, gps_goal

raises a flag, prompting human intervention.

Fig. 6: An example ROS topic graph [8]

5) System Monitoring
Several systems were implemented to improve monitor-

ing of SigSent and to diagnose any issues encountered.
Monitoring and diagnosing problems is made significantly
easier by ROS’s built-in info logging features. Different
levels of importance such as “info”, “warning”, “error”,
and “fatal” help filter errors and more clearly indicate their
relative importance. ROS provides easy viewing of these
through rqt_console.
rqt_graph and rqt_tf_tree are used to visualize

the system’s structure and its transforms. These tools help
users better understand how nodes and messages are inter-
acting throughout the system. Analyzing these visuals helps
ensure proper system connectivity and communication. An
example rqt_graph visualization is shown in Figure [8].

In order to properly visualize sensor data, path planning,
and costmaps, RVIZ (ROS Visualization) was integrated
with a custom configuration file illustrating SigSent’s LI-
DAR data, global and local path planning, global and
local costmaps, camera feeds, pose, and odometry. The
CLI command rostopic echo /[topic] is used for
quick and insightful diagnosis of problems that occur
during development or in the field.

Battery voltage and current are monitored to ensure
that SigSent’s battery is never drained excessively deep or
dangerously overdrawn in the field.

B. Genetic Algorithms

1) NEAT
SigSent features basic terrain classification through a

trained artificial neural network (ANN) output from the
NeuroEvolution of Augmenting Topologies (NEAT) frame-
work [9]. IMU data can be gathered while driving and
walking over various terrains. The data is then labeled with
the respective mode of locomotion and whether the terrain
was rough or smooth. NEAT then uses this training set to
evolve a neural network that would correctly classify what
kind of terrain the robot is traveling over.



NEAT uses a genetic algorithm (GA) to perform the
neuroevolution. An initial set of ANNs, called the popula-
tion, is created with randomly generated individuals. These
neural nets have 31 inputs: linear acceleration and angular
velocity in three dimensions from the five most recent IMU
readings, and a binary input specifying what movement
mode the robot is currently in. The singular output on the
net is a boolean detailing whether the terrain is smooth
or not. These individuals are evaluated and given a fitness
value that measures their performance. For our purposes,
the fitness would be increased whenever the ANN correctly
classifies an IMU data point given to it.

The population’s ANNs are modified to search for the
best-fit individual. The genetic operators that perform this
action are aptly named mutation and crossover. Mutations
occur with a relatively small probability and directly change
something about an individual. In the case of the neural
network, it could add or remove nodes and connections
between them. Crossover serves as the main operator to
explore the search space. The genomes of two parent
networks are combined to form a child network that now
contains all disjoint and excess nodes between them.

Each iteration of this process is known as a generation.
After training, the ANN is exported to a file to be loaded
by its respective ROS node at runtime. The classifier then
subscribes to the IMU data topic and calculates what terrain
type it believes to be traveling over.

2) Gait Optimization
A unique GA was written in Python to optimize

SigSent’s walking gait. The same GA process described
above was used with specialized functions to perform the
genetic operations on the population. The algorithms for
the operators followed the procedures outlined in work by
Manglik et al [10].

Mutation and crossover are restricted to only produce
individuals whose fitness evaluation scores higher than
their parents. Also, mutation and crossover get repeated
on the individual if the generated offspring is not stable.
Manglik’s paper describes stability as having the robot’s
center of gravity lie within a defined polygon encompassing
its abdominal structure [10]. To mimic this process, we
would check if any of the servos have an angle too extreme
to keep stable.

Mutation has a probability of occurring on a specific indi-
vidual and also has a probability of modifying a servo’s an-
gle state. If while iterating through the individual’s servos,
none are selected, a servo at random is chosen to ensure at
least one gets modified. This yields an expected number of
mutated servos, Em, where Em = P × p(m) × S × p(s)
where P , p(m), S, and p(s) is the population, probability
of mutation, number of servo states per gait, and probability
of servo selection respectively.

In crossover, selected parents have a probability to swap
state values of randomly chosen legs at steps in the gait.
Individuals are chosen for crossover using tournament
selection, a greedy method where k number of random
individuals are chosen from the population and the best
individual in the random pool is returned. The Cartesian
product of the two gaits’ sets of legs is iterated over so
that all pairwise combinations of the legs are candidates
for swapping state values. Crossover’s expected value is
similar to mutation’s, given as Ec = P × p(c) × L × p(l)
where p(c) is the probability of crossover, L is the number
of legs, and p(l) is the probability of a leg being selected.

V. EMBEDDED SYSTEM

To reduce the computational load on the Raspberry
Pi and provide real-time control of locomotion, an AT-
mega2560 microcontroller unit (MCU) was integrated into
SigSent. The Pi handles the high-level information such
as the direction to travel, the method of locomotion, and
the speed to travel. The microcontroller translates that
abstraction into coordinated movement amongst the six
limbs and four wheels.

Data is transferred from the Pi to the MCU over a Serial
Peripheral Interface (SPI) bus. Depending on the data to be
sent, a header is generated informing the MCU on how to
parse the messages that follow. Bitmasks are defined on the
two devices that signify message types and preset constants.
Figure 7 displays the bit encoding structure constituting a
specific message header.

Fig. 7: Components of an 8-bit header message

High-level functions in Python turn message encoding
into a few abstracted method calls where the program
simply provides booleans on what items are enabled. The
bitstring is then encoded with the specified components.
The header consists of a single byte. Every command
requires an additional byte then to encode its command
data. The driving move command requires a third byte
signifying magnitude as it is the only movement that has a
speed parameter.

Packets are then sent synchronously to the MCU. Ini-
tially, a message header is expected, so the first byte
received by the MCU is parsed as one. From there, booleans
are set so that next time the SPI interrupt is called, the data
byte is parsed for the correct information that it contains. If
a byte ever fails to be parsed, the MCU aborts the current



message type it had expected and falls back to wait for a
correct header to arrive instead. After successfully parsing a
message, the relevant functions are called with the packets
data and the SPI interrupt is set to expect a header next
again.

Bitmasks were designed to maximize the hamming dis-
tance (HD) of the code set so that errors could be more
easily detected. With a minimum HD of four among the
command codes that are expected by the parser at the
same time, an error of three flipped bits can be detected
and ignored. This is important for SigSent as incorrect
commands could easily lead to destructive movements.
Redundant bits and code words with large distances reduce
the probability that an incorrectly parsed message will be
used [11].

SigSent’s walking gait is hard-coded in memory on the
MCU. The motors’ electronic speed controllers (ESCs) are
set in a brake mode to restrict the wheels from spinning
while walking. When a walking command is received, the
gait is iterated through. During teleoperation, SigSent’s
walking gait will continue to be stepped through as long
as a new movement command has been received from the
users joystick. If the operator decides to rotate the robot,
SigSent will enter its neutral standing pose and turn. The
neutral pose acts as a state that SigSent can enter before
any type of change to its movement that does not follow
the programmed gait sequence. By always returning to a
defined pose, transitions out of the gait are guaranteed to
succeed as the intermediary leg movements have already
been verified to work.

In drive mode, the robot can receive messages that relay
a direction and speed for the ESCs. Tank drive controls are
used to skid-steer the robot by providing different speed
messages to each side of the robot such that SigSent is
propelled more toward one direction over the other.

VI. HUMAN-ROBOT INTERACTION

SigSent can be controlled through a variety of interfaces.
Primary interaction is facilitated by the basestation’s GUI.
Additionally, simple voice commands can be issued to
SigSent.

A. GUI

Interaction between the operator and robot is facilitated
by a custom-designed graphical user interface (GUI), cre-
ated using Python language bindings for the Qt framework.
The GUI’s embedded widgets each showcase a unique
feature of SigSent. The GUI is shown in Figure 8.

The live camera feed reads in images from SigSent and
analyzes them with a basic pedestrian detection classifier
from OpenCV. Pedestrians are overlaid with rectangles on
the image view to illustrate their presence. The Histogram

Fig. 8: Qt GUI running in a Ubuntu VM, launched with
Python

of Oriented Gradients method is used to capture human-
like shapes on a normalized image to account for light
differences in the RGB channels [12]. A text label is
highlighted in red when there are no pedestrians detected
in the current frame. The label is set to green to alert the
operator of a pedestrian being observed.

Teleoperation can be activated through a simple check-
box that begins sending joystick axis data to a ROS node
that converts it into a geometry message which is then
consumed by SigSent, causing motion. In walking mode,
the joystick will only allow forward linear motion as well
as angular velocity to the left or right. Drive mode includes
a reverse capability. Both modes use “tank” controls where
the robot must be stationary to enact a rotational turn,
rather than strafing while moving forward/backward. This
simplifies movement and is a safer alternative to prevent
harmful rolls on the vehicle. While walking, the force on
the joystick has no effect on the speed of travel. The speed
is affected while driving however.

The integrated lightbar can be toggled on or off via a
checkbox on the GUI. A strobe button is also provided
to allow for a quick, sequential flashing of the light. This
is intended to visually alert pedestrians or temporarily
disorient trespassers.

A battery meter and accompanying text labels display the
remaining capacity and recent readings on voltage, current,
and temperature measured by the integrated fuel gauge.

Google Maps was integrated into the GUI to provide an
intuitive interface to monitor the location of SigSent and
place GPS waypoints for the robot to patrol. Qt is able to
interact with the Javascript in the web view through linked
Python code within the widget. With this, Google Maps was
a natural choice due to its rich API. Extending it to provide
map marker placements and retrieving GPS coordinate
values along those points required marginal changes to the
code. A Qt table view displays latitude and longitude values



for all of the placed waypoints. The user can then send the
goals to a ROS topic as a packaged message containing an
array of GPS waypoint objects, an included message type
in ROS. The list can also be cleared at any time with a
separate button to reset into a new path. In Figure 9, the
blue markers signify locations with the given coordinates
in the table below the map.

Fig. 9: GPS waypoints spread along UCF’s outer ring with
associated coordinate values

The interface provides a label displaying the binary
output from the NEAT terrain classifier. The label states
whether the terrain being traversed has been classified as
smooth or rough. This will alert the operator to alter the
robot’s chosen mobility mode This mobility change is not
automatic to ensure that the robot does not begin changing
poses while it is not safe to do so, in the case of an unsafe
position over the terrain or an incorrect classification.

B. Voice Command

SigSent can be directed to perform simple actions upon
voice command issued by the operator through the basesta-
tion’s microphone. Speech recognition is achieved by uti-
lizing Pocketsphinx, an embedded version of CMU Sphinx,
to perform keyword spotting [13]. Pocketsphinx is loaded
with the collection of words to be used in commands and
their pronunciations. These pronunciations are standardized
for Sphinx and are pulled from the CMU Pronouncing

Dictionary using the CMU Lexicon Tool [14]. Pocketsphinx
is then loaded with commands to be recognized which are
composed of the previously loaded words. Individual recog-
nition thresholds are necessary for every desired command.
In order to tune these thresholds for sufficient detection
rate with minimal false positives, a tool created by Pankaj
Baranwal was utilized which automated the process [15].

Voice commands were developed to operate SigSent’s
integrated lightbar and to switch modes of locomotion.
Command phrases were designed to be short and pho-
netically dissimilar from one another to maximize the
command detection rate and minimize incorrect command
detection.

VII. CONCLUSION

Robust robotic systems are desirable in any application
where autonomy can remove the need for human interven-
tion. In the case of a security sentinel, SigSent is able to
traverse various potentially dangerous environments in lieu
of its operators, keeping security personnel safe inside their
base of operations.

With more time, SigSent could be sleeker, lighter, and
better performing. Our limited budget necessitated design
compromises, including lower power servos and heavier
structural materials. The computational resources used were
low-cost and commensurately lacking in computational
power. Our microcomputer could be supplemented with a
GPU board to aid in the computer vision bottlenecks that
we ran into, and to meet the computational demands of the
intelligence system addition. We were able to work around
much of these deficiencies by offloading computation to
another server, however, this prevents the SigSent robot
from operating independently of a basestation.

The AX-12A servos also did not meet our demands
despite their advertised specifications. Servos that can exert
a greater torque than the 1.5 Joules of the AX-12A are
necessary to keep SigSent standing at its current weight of
5.8kg.

The intelligence platform was also not able to be imple-
mented into SigSent’s final design. Due to the robot not
being able to currently support its weight, data could not
be gathered to train the NEAT networks or optimize its
walking gait.

Despite these challenges, SigSent was able to effectively
complete its overall goal of an autonomous sentinel and
patrol robot by successfully patrolling and pathing known
and unknown GPS waypoint paths, interacting and de-
tecting pedestrians and provided telecommunication and
aversion tools for its operator to interact with suspects, as
well as designing a valid platform for mixed walk/drive
functionality.



SigSent’s multimodality function is a potentially useful
form of robotics that has not yet been fully explored.
With this proof of concept project, we have found that
it could have uses for military Intelligence, Surveillance,
Reconnaissance (ISR), Search and Rescue, and medical
delivery roles. With a larger budget and more time, SigSent
could become a powerful tool for many organizations.

Additionally, more research should be placed into the
human-robot interaction of this robot to determine how to
best reduce cognitive load and stress for the humans in the
loop.

ACKNOWLEDGMENT

SigSent would not have been possible without the con-
siderable funding support provided by Vision Land Service
located in Winter Park, Florida. We are very grateful for
their generosity and appreciate their motivation to apply
robotics to solve novel problems in unique fields.

Additionally, the team is dearly grateful for the support
of the Robotics Club at UCF and UCF’s Texas Instruments
Innovation Lab who shared countless resources and facili-
ties for our team to work with.

REFERENCES

[1] U. Saranli, M. Buehler, and D. E. Koditschek, “Design, modeling
and preliminary control of a compliant hexapod robot,” in Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE International
Conference on, vol. 3. IEEE, 2000, pp. 2589–2596.

[2] “Webench power architect.” [Online]. Available: http://www.ti.com/
design-tools/webench-power-design/power-architect.html

[3] “News press releases,” Apr 2007. [Online]. Avail-
able: https://web.archive.org/web/20070429055410/http://www.us.
playstation.com/News/PressReleases/396

[4] “Utm-30lx.” [Online]. Available: https://www.hokuyo-aut.jp/search/
single.php?serial=169

[5] “Sparkfun venus gps with sma connector.” [Online]. Available:
https://www.sparkfun.com/products/11058

[6] “Mpu-9250 datasheet.” [Online]. Available: https://www.invensense.
com/download-pdf/mpu-9250-datasheet/

[7] “Gmapping and rplidar.” [Online]. Available: http://www.geduino.
org/site/archives/35

[8] “Use of simulators in robotics on the example of simulator of
gazebo and the darwin-op robot playing soccer,” Jun 2015. [Online].
Available: http://developers-club.com/posts/258911/

[9] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary computation, vol. 10,
no. 2, pp. 99–127, 2002.

[10] A. Manglik, K. Gupta, and S. Bhanot, “Adaptive gait generation for
hexapod robot using genetic algorithm,” in Power Electronics, Intel-
ligent Control and Energy Systems (ICPEICES), IEEE International
Conference on. IEEE, 2016, pp. 1–6.

[11] R. W. Hamming, “Error detecting and error correcting codes,” Bell
Labs Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[12] Satya Mallick, “Histogram of oriented gradients,” https://www.
learnopencv.com/histogram-of-oriented-gradients/, 2016, [Online;
accessed 13-April-2018].

[13] “Pocketsphinx - sphinx for handhelds.” [Online]. Available:
http://www.speech.cs.cmu.edu/pocketsphinx/

[14] “Logios lexicon tool.” [Online]. Available: http://www.speech.cs.
cmu.edu/tools/lextool.html

[15] P. Baranwal, “Automatic tuning of keyword spot-
ting thresholds pankaj baranwal medium,” Jul
2017. [Online]. Available: https://medium.com/@PankajB96/
automatic-tuning-of-keyword-spotting-thresholds-a27256869d31

Joshua Lee Franco is a senior Electrical, Com-
puter, and Mechanical Engineering student at the
University of Central Florida. He is he currently
working as Lab Technician at the Texas Instru-
ments Innovation Lab. He will be joining a Guid-
ance, Navigation, and Controls group during the
Summer of 2018 at Lockheed Martin with its
Space System Company. He is also looking to
attend graduate school in the coming fall of 2018
for a degree in Robotics.

John Millner is a senior Electrical and Com-
puter Engineering student at the University of
Central Florida. He is currently working as an
undergraduate research assistant for UCF’s cen-
ter for microgravity research designing power
systems for SurfSat. John is a former President
of the Robotics Club at UCF. He has led its
AUVSI RoboSub Team, and has worked on its
Intelligent Ground Vehicle, International Aerial
Robotics Competition, and DemoBot teams for
the club.

Jeffrey Strange Jr. is a senior Electrical En-
gineering student at the University of Central
Florida, graduating with University Honors in
May of 2018. He will begin supporting the F-
35 program as a Systems Engineering Associate
with Lockheed Martin in Fort Worth, Texas in
June of 2018. Previously, Jeff participated in
the UCF Lockheed Martin College Work Experi-
ence Program, interned with Abacus Technology
Corporation, and worked in UCF’s Center for
Microgravity Research.

Richard Wales is a senior Computer Engineer-
ing student at the University of Central Florida,
graduating summa cum laude in Spring 2018.
He begins a Software Development Engineer
role in Seattle, Washington with Amazon in
August. He worked with Dr. Sean Szumlanski
as a teaching assistance for Computer Science
1 and is currently exploring research in cellular
automata based file compression under Dr. Annie
Wu.


