

University of Central Florida

Department of Electrical Engineering and Computer Science

Dr. Lei Wei

Group 31

Nam Ngo nqn1001@knights.ucf.edu EE

Nicholas Fraser NFraser@knights.ucf.edu EE

Charles Taylor CharlesATaylor@knights.ucf.edu CpE

Contents
1. Executive Summary .. 1

2. Project Description ... 2

2.1 Project Motivation ... 2

2.2 Project Goals .. 3

2.3 Objectives .. 4

2.3.1 Alcohol Sensing ... 4

2.3.2 Biometric User Verification ... 4

2.3.3 Key FOB Integration .. 4

2.3.4 Bluetooth Communication ... 5

2.3.5 Cellular Device Application ... 5

2.4 Requirements Specifications ... 6

2.4.1 Physical Specifications .. 6

2.4.2 Power specifications ... 7

2.4.3 Performance specifications .. 7

2.5 Quality of House Analysis ... 8

3. Research related to Project Definition ... 9

3.1 Existing Similar Projects and Products .. 9

3.1.1 SAAB Alcokey ... 9

3.1.2 ALCOLOCK V3. ... 9

3.1.3 ALCOLOCK’s DRIVESAFE elan .. 9

3.1.4 BACKtrack Mobile Pro .. 9

3.1.5 Daniel Andrade’s Arduino MQ-3 breathalyzer project ... 10

3.1.6 Nootropic design’s Arduino MQ-3 breathalyzer project .. 10

3.2 Relevant Technologies .. 10

3.2.1 Biometric fingerprint scanner ... 10

3.2.2 Gas sensors ... 12

3.2.3 Bluetooth .. 13

3.2.4 Battery ... 13

3.3 Strategic Components and Part Selections ... 14

3.3.1 Microcontroller ... 14

3.3.1.1 Arduino Uno ... 15

3.3.1.2 Arduino ProMicro.. 16

ii

3.3.1.3 Arduino Mini ... 17

3.3.1.4 Raspberry Pi 3 model B .. 17

3.3.1.5 MSP430G2211IN14.. 18

3.3.2 Bluetooth .. 19

3.3.2.1. Adafruit Bluefruit LE UART Friend .. 19

3.3.2.2 Phantom YoYo JY-MCU Arduino Bluetooth Wireless Serial 20

3.3.2.3 BLE Nano - nRF51822 .. 20

3.3.3 Fingerprint Scanner ... 21

3.3.4 Breathalyzer sensor .. 22

3.3.4.1 MQ-3 Sensor ... 22

3.3.4.2 MR513 Sensor .. 23

3.3.5 Power supply ... 24

3.3.5.1 Power option 1 ... 24

3.3.5.2 Power option 2 ... 25

3.3.6 Key remote ... 25

3.3.6.1 300-0247ES Universal Car Remote .. 25

3.3.6.2 KPT1306 key remote .. 25

3.3.6.3 K410 Car Remote Central Lock Locking Entry System 25

3.4 Architectures and Related Diagrams ... 26

3.4.1 Microcontroller Architecture ... 26

3.5 Parts Selection Summary .. 27

4. Related Standards and Realistic Design Constraints .. 29

4.1 Standards .. 29

4.1.1 Bluetooth Standard.. 29

4.1.1.1 Core System Architecture .. 30

4.1.1.2 Bluetooth Security .. 32

4.1.2 Health standard .. 33

4.1.3 Design impact of relevant standards .. 34

4.2 Realistic Design Constraints .. 34

4.2.1 Economic and Time constraints .. 34

4.2.2 Environmental, Social, and Political constraints ... 34

4.2.3 Ethical, Health, and Safety constraints .. 34

4.2.4 Manufacturability and Sustainability constraints .. 34

iii

5. Project Hardware and Software Design Details... 35

5.1 Initial Design Architectures and Related Diagrams ... 35

5.1.1 Project Hardware Components .. 35

5.1.2 Hardware Wiring ... 36

5.2 Bluetooth Subsystem ... 38

5.2.1. Bluefruit LE UART Friend (BLE) .. 38

5.2.2. Sensor Specific Operation .. 38

5.2.3 Subsystem Implementation ... 38

5.3 Biometric Subsystem ... 39

5.3.1 Sensor Overview .. 39

5.3.2 Sensor Specific Operation ... 39

5.3.3 Subsystem Implementation ... 40

5.4 Breathalyzer Subsystem ... 40

5.4.1 MQ-3 Alcohol Gas Sensor .. 40

5.4.2 Sensor Specific Operation ... 41

5.4.3 Subsystem implementation ... 41

5.5 Software Design ... 42

5.5.1 Programming Languages .. 42

5.5.1.1 Assembly .. 42

5.5.1.2 Python .. 43

5.5.1.3 Java (Android API).. 44

5.5.1.4. C ... 45

5.5.1.5 C++ (avr-g++ toolchain) ... 46

5.5.2 Integrated Development Environments ... 48

5.5.2.1Eclipse .. 48

5.5.2.2 Arduino IDE .. 50

5.5.2.3 Android Studio .. 52

5.5.3 Functional Requirements ... 55

5.5.3.1 Main Functionality .. 55

5.5.3.2 Technical Functionality ... 56

5.5.3.3 Software Requirements ... 58

5.5.3.4 Interface Requirements ... 59

5.6 Summary of Design .. 60

iv

6. Project Prototype Construction and Coding .. 61

6.1 Integrated Schematics ... 61

6.2 Parts Acquisition ... 61

6.2.1 Adafruit ... 61

6.2.2 Sparkfun ... 62

6.2.3 Digi-Key .. 62

6.2.4 UCF .. 62

6.3 PCB Design ... 62

6.3.1 EAGLE ... 62

6.3.2 National Instruments Ultiboard .. 63

6.3.3 AutoCAD ... 63

6.4 PCB House .. 63

6.4.1 PCBWay .. 63

6.4.2 Elecrow ... 64

6.4.3 Seed Studio ... 64

6.5 Construction ... 64

6.5.1 Hand Soldering ... 64

6.5.2 Reflow Oven .. 64

6.5.3 Types of Mounting ... 65

6.5.4 TI Innovation Lab.. 65

6.6 Final Coding Plan PERT chart.. 66

7. Project Prototype Testing Plan .. 68

7.1 Hardware Test Environment ... 68

7.1.1 Power Supply .. 68

7.1.2 Car Access ... 68

7.1.3 Cellular Devices .. 68

7.2 Hardware Specific testing ... 69

7.2.1 MQ-3 Alcohol Sensor .. 69

7.2.2 Adafruit Fingerprint Sensor .. 70

7.2.3 Bluefruit UART Friend Bluetooth Module .. 74

7.2.4 Key FOB .. 75

7.2.5 Linear Voltage Regulator ... 76

7.3. Software Test Environment ... 76

v

7.4 Software Specific Testing ... 77

7.4.1 Introduction ... 77

7.4.2 Overall Objective for Software Test .. 77

7.4.3 Stopping Criteria & Testing Method .. 77

7.4.4 Description of Individual Test Cases .. 78

8. Demonstrations .. 82

8.1 Initial Activation and Setup ... 82

8.2 Standalone Operation .. 82

8.3 Bluetooth Pairing ... 82

8.4 Connected Operation ... 83

9. Administrative content ... 84

9.1 Milestone Discussion ... 84

9.2 Budget and Finance Discussion ... 89

9.2.1 Finance option 1 ... 89

9.2.2 Finance option 2 ... 90

9.3 Group management .. 91

1

1. Executive Summary

The BreathaLock is a new device idea that is intended to take the place of a car key fob

and prevent drunk driving. With the help of this device we hope that car owners will not

only be stopped from being able to drive under the influence of alcohol but also be more

conscience of the dangers of driving drunk by the reminder of having to use the device

repeatedly. Our systems core features include ease of use, accuracy, and effectivity to

prevent drunk driving without being an inconvenience to car owners. It is intended that

this device will be cross platform, operational to multiple car manufacturers and with the

aid of Bluetooth available to connect to a cell phone to display additional information. The

BreathaLock with be fully contained inside of a handheld device that will not be

excessively large.

The BreathaLock with operate under the following sequence. First, the user when

approaching the vehicle will take out the BreathaLock and initialize the device to begin

scanning for a specific user. A biometric fingerprint sensor on the back of the BreathaLock

will take a reading to confirm the correct user is operating the device. Once passed, the

BreathaLock with prompt the user to blow into the alcohol sensor located at the top of the

device. In the event that the user is sober the BreathaLock will allow the user to unlock

the vehicle remotely. If the user does not pass such criteria, then the BreathaLock will

deny access until these tests are repeated yielding passing behavior.

To successfully implement a device to meet these expectations requires considerable

amounts of research and design. We must effectively determine the most accurate way

to measure and decipher the blood alcohol level of a user through the use of an analog

alcohol sensor. This is extremely important when considering the consequences of any

chance of error, primarily allowing a user to drive under the influence of alcohol. Secondly

it is important that we investigate the speed and accuracy of the biometric sensor and

integrate it as a productive feature to ensure that the correct driver of the vehicle is going

to be tested for blood alcohol content. Finally, this device needs to connect quickly and

effortlessly to the user’s cell phone and also be extremely user friendly. We intent to

extend these features with additional options such as allowing the user to add additional

drivers through the app.

With the help of existing technologies and our own engineering the BreathaLock will be a

fully functioning device displaying the previously discussed features. This device could

have commercial opportunity for legal repercussions or could be a recreational device

used strictly for voluntary preventative care.

2

2. Project Description
Before getting into depth of what the BreathaLock system is, a brief overview is given

below of the overall motivation and specifications that come with this design. To create a

compelling and relevant device it is important to research and consider many factors, both

in design and consumer desires, which will go into this design.

2.1 Project Motivation
While pursuing a college degree and living in a college town every student encounters

many challenges inside and outside of the classroom. One of the primary challenges that

affect many students and adults around the country is driving under the influence of

alcohol. Most adults know that it is an unwise decision to get behind the wheel at an

impaired state but despite the fact that there are many consequences, both legal and life

altering, many adults and teens fail to avoid driving under the influence.

According to Mothers against Drunk Driving (MADD), on average two in three people will

be involved in a drunk driving crash in their lifetime. This means that the majority of people

will be affected by drunk driving personally without considering the effects of loved ones

and peers that may be affecting them as well. Drunk driving is a very serious issue that

needs to be addressed more effectively and possibly more aggressively.

When considering the legal consequences of getting a driving under the influence (DUI)

charge it is scary to see how drastic they can be. Best listed by dui.drivinglaws.org legal

punishment of DUI in the state of Florida can include vehicle impoundment, fines,

probation, community service, license suspension, ignition interlock devices, and even

jail time. As college students, we encounter many distractions and the last thing that we

need is legal consequences. Even more severe is that some universities will suspend

students or even expel students if the offence is campus related. It is our intention that

with the use of a BreathaLock system in a preventative way, less students will legal

consequences of DUI by preventing driving under the influence.

Even more important than preventing legal consequences from DUI we seek to prevent

the physical dangers that can result from driving at an impaired state. The National

institute on Alcohol Abuse and Alcoholism states that “About 1,825 college students

between the ages of 18 and 24 die from alcohol-related unintentional injuries, including

motor vehicle crashes.” It is tragic to see a fellow family member, classmate, or even

friend make the mistake of driving under the influence and getting injured or killed. It is

even more tragic to see someone that is sober and innocent be negatively affected by the

decisions of others under the influence.

Currently there are various ways to avoid this situation: carpooling with a sober driver,

using alternate transportation, or waiting till your body processes alcohol enough to be

within the legal limit. Some of these are costly, some are inconvenient, and some are

hard to measure. Although it may seem like an easily avoidable situation when under the

3

influence of alcohol bad decisions can be made. With the help of BreathaLock there may

be another method to prevent drunk driving more effectively.

To combat this ever present issue we propose to implement a device that is easy to use

and cost affective to help college students and adults around the county avoid driving

under the influence of alcohol. In our society and specifically in Orlando it is simply too

easy for a student to decide to drive under the influence with the option of getting in their

car in the driveway and making a regrettable decision. Our device is intended to make

the user take an additional step before making this decision and in the event of failing to

prove sobriety the user will be unable to make this regrettable decision.

2.2 Project Goals
The goal of BreathaLock is simple: to prevent drunk driving to all vehicle owners. We

intend to create a device that is so simple and user friendly that it could be accepted and

used by all vehicle owners. To do so we must investigate the most important

characteristics of a device that could be acceptable to the public. If the BreathaLock exists

in the hands of all vehicle owners, we could completely eliminate drunk driving and

consequently eliminate the negative affects the come along with it. Although this may

seem like a very large goal it is important to strive to create a device that is best suited

for the consumer in efforts to achieve a compelling product.

The technology and implementation of the components that will be incorporated into the

BreathaLock device have been available for quite some time. The only reason this device

has not been available yet is the lack of seamless implementation and price point. With

that said, we recognize that doing this affectively will not be an easy task considering that

vehicle owners are currently using very small key FOBs and will probably not want to

digress to a large bulky FOB. Additionally, to have this product work cross platform there

would have to be allowance from car manufactures to allow the use of this device. Despite

this obstacle, our team will be designing the densest and size effective device possible

with limited resources. In the implementation of the BreathaLock it is not expected to

match the size of a current key FOB but in efforts of proof of concept we hope that it may

spark further investigation to get to that size with later revisions.

By the end of this project we hope to have a concept and working model of what a

professionally manufactured product could look like. We will be designing a custom fit

housing, PCB board, and all wiring which gives us the luxury of designing this product to

look and feel the way that we want it to. This device with the help of Bluetooth technology

and a cellular device will educate and inform vehicle owner how to avoid and learn more

about how they react to alcohol.

4

2.3 Objectives
In order to allow vehicle owners to appreciate and accept this product we will discuss our

core project objectives. These will highlight the most important features that will make the

BreathaLock a powerful and useful device. There are many features and extensions to

this project that we would like to achieve. The most important features to the BreathaLock

system are listed below.

2.3.1 Alcohol Sensing

Our main objective with the alcohol subsystem is to gather an extremely accurate and

reliable reading each time we sample. Throughout our implementation it is going to be

very important to research existing breathalyzer technology and what the best way to get

an accurate reading. Our alcohol sensor provides us with a simple analog reading of the

amount of alcohol based on the conductivity of a piece of tin oxide. This is a very primitive

sensor that is going to require testing and logic to create repeatability and accurate

readings. How long should we sample? Do we throw out the highest reading or average

all values taken per sample? These are some questions that we are going to need to ask

ourselves and investigate when creating a dependable breathalyzer subsystem. It is

imperative that we implement the breathalyzer subsystem to be just as accurate as a

police grade breathalyzer to demonstrate reliability.

2.3.2 Biometric User Verification

One of the main advantages of the BreathaLock as opposed to any other breathalyzer on

the market is that it offers user recognition to ensure the driver of the vehicle is blowing

into the breathalyzer. With that advantage in mind it is our main objective to make sure

that our fingerprint sensor work repeatedly and accurately as well. Some research and

testing will need to go into what precautions we will need to make to keep our fingerprint

sensor working well. Because we are using a prepackaged fingerprint sensor that

contains an internal DSP chip and processing capability we anticipate it working well with

our systems but it is still important to test all use cases for repeatability. The objective of

the fingerprint sensor is to read quickly and accurately to determine if the user is the

correct owner of the vehicle or not.

2.3.3 Key FOB Integration

Because our product is interfacing with a vehicle and security system that is out of our

control we will need to use the design and parts from the existing key remote access. It

is our intent that the BreathaLock interface to the vehicle locking system not be hindered

at all compared to working native key fob without being tampered with. Ideally we hope

to reverse engineer the key FOBs components, recreate the circuitry and then simply de-

solder the preprogrammed chip from the FOB and solder it onto our own PCB. Currently

we are investigating the complexity of this task and assessing whether or not it is

achievable. In the event that we cannot do we will resort to manually wiring to the switches

of the remote access control board and control it from there.

5

2.3.4 Bluetooth Communication

The Bluetooth connection between the BreathaLock and cell phone needs to be

implemented in a simple easy to use way. When many people think of Bluetooth

connections they immediately think of the headache that sometimes comes with device

pairing conflicts. To avoid this problem, the BreathaLock must immediately search and

try to connect with the cell phone and, as long as the cell phone has paired previously

and has Bluetooth on, will connect automatically. With this model by the time the user

goes to use the biometric fingerprint sensor and breathalyzer it will already have

connected to the cellphone. Depending on how fast and effectively the implementation of

other features go we will decide on how many added features to the cell phone app.

Ideally we could have results post processing to give the user an idea of how soon they

will be under the legal limit of alcohol.

2.3.5 Cellular Device Application

In order to display more information on the status of the BreathaLock and the results of

the sensors we will be designing a cellular application for android platform. This addition

to the BreathaLock system will open the door to many added features and post processing

data. Although adding an extraordinary application to this device would be great there is

a large time constraint with this course and project. For this reason, we will investigate

several goals that we will strive to achieve to make a great app.

Level 1: At the very least, we intent to create a viewer on the device that will display real

time data and instruction on how and what to do on the BreathaLock handheld device.

This will include outputting the current blood alcohol content of the user at the time of

sample. This feature would allow for an easier experience in the event that the fingerprint

sensor does not recognize the user and would like to prompt for a second reading or

breathalyzer test is inconclusive

Level 2: The next available step to the BreathaLock application possible would be to have

data logging and the ability to inform the user information on how long to wait or how

much the user could approximately drink based on their age, weight, height, etc. Under

the data logging of the BreathaLock including how often the device was used, who

attempted to use the device, and whether or not the user passed given tests and was

enabled to use the vehicle.

Level 3: The final level possible if we are given ample time to implement to the

BreathaLock system would be calling other android applications from within the

BreathaLock app to do other functions. This could include calling for an alternate means

of transportation from a 3rd party app such as Uber or contacting a family member after a

certain amount of failures. These features would be great to have as a part of our app but

will need considerable amount of time to develop and therefor will be determined based

on how quickly we can implement the rest of the features.

6

2.4 Requirements Specifications
2.4.1 Physical Specifications

Figure 1: 3D Wireframe model of BreathaLock

To implement a compelling and attractive device it is important to consider the

appearance and size goals of the BreathaLock system. In efforts to create the most

concise and compact device possible we are creating the entire device no larger than

3”x3”x7”. This size must include the whole system including all wires, sensors, and

enclosure. Although it would be more desirable to implement this device much smaller

we are limited by the size of our designed PCB, native key FOB, and other sensors that

will take up much more space than a key FOB without added features that the

BreathaLock system will encompass.

Following size constraints, we will investigate construction materials. The bulk of the

device will come from the multiple sensors, PCB, and power supply, in this case an

interchangeable battery. Because we are limited to the prefabricated sensors, PCB

material, and battery the only options we have physically are whether or not to create a

custom case out of any material. The main options of materials are to have a plastic or

metal enclosure and physically to create a custom enclosure, or to retrofit a store bought

housing for our implementation. As far as metal enclosures are concerned the main

advantage would be rigidity and durability. Although these are important characteristics,

designing and implementing a metal enclosure will be much heavier and costly. If we

choose to use a plastic enclosure we will save money, weight, and open the door to ease

of custom enclosure design with 3D printing technology. Our team is fully capable of a

simple enclosure design and execution which makes a clear decision to go with the

custom 3D printed enclosure.

In addition, we intend to have a device that will be no heavier than 1lb and be able to

hang on a key ring. These added physical specifications are important to keep this device

relevant and comparable to exiting key FOBs. It is important that we not forget the

motivation and goals of the implementation of the BreathaLock system. We must do our

best to compete physically with the current devices we are replacing.

7

2.4.2 Power specifications

When talking about the BreathaLock power specifications the only power specification

noted is to able to power on the whole project within 20V. This 20 V should be sufficient

to power on a few sensor and a microcontroller. In addition, the BreathaLock project is a

device that is meant to be comfortably portable, anything more than 20V would be

cumbersome in batteries.

2.4.3 Performance specifications

When talking about the performance of the project, the BreathaLock project must operate

with a delay of less than ten seconds. The term “operate” implies that for each action the

BreathaLock is taking, there should be no delay of more than ten seconds. For example,

waking up from low-power mode should take no more than ten seconds. Taking an

alcohol sample then processing it should take no more than ten seconds. Reading the

user’s fingerprint then processing it correctly should take no more than ten seconds. This

ten-second rule ensures the user has a level of comfort in using the device.

The next performance specification involves user recognition. The BreathaLock device

must be able to store the fingerprint data of registered user. This specification ensures

the user who is using the BreathaLock system has a level of security. If the device were

to get in the hands of someone else then the person who is not registered will not be able

to unlock the car, however the lock signal is unmodified. Anybody can send out a lock

signal.

The last performance specification involves the alcohol gas sensor. When a blood alcohol

content is .08 or above, the device must not be able to send an unlock signal. In the state

of Florida, anyone who is has a blood alcohol content of 0.08% or above is considered

over the legal limit for operating a motor vehicle. If the gas sensor reads a blood alcohol

content of below 0.08% then the user is able to send out an unlock signal to the motor

vehicle.

Specification conclusions

• The system should be no larger than 3” x 3” x 7”.
• The system should be no heavier than 1lb.
• Both sensors must operate with a delay of less than 10 seconds.
• The system must be battery powered within 20V.
• The system must be able to hang onto a key ring.
• The device must be able to store the fingerprint data of registered user.
• The device must incorporate a sanitary breathalyzer.
• When a lock signal is sent, the automotive should be locked.

• When a blood alcohol content is at .08 or above, the device must not be able to

transmit an unlock signal.

8

2.5 Quality of House Analysis

Table 1: House of quality trade off table

To display the engineering and marketing requirements, the house of quality trade of table

above is used. By using the different shapes listed in the key we show the correlation

between the engineering and marketing requirements individually. First we chose to focus

on the power consumption and battery life. Specifically, for an everyday handheld device

it is extremely important to implement a device that is going to be ready to use for long

periods of time without changing batteries or charging the device. Our goal power

consumption for power consumption is 1W and battery life of 1 week to ensure that the

user will be able to go extended periods of time repeatedly using the device without having

to worry about changing a battery. Secondly we investigate the size of the device.

Currently most car owners have a small key FOB that allows them to have on them at all

times and is pocket size. We are shooting for something of comparable size due to the

fact that BreathaLock will be replacing the key FOB. The BreathaLock must be a

reasonably small size so the user can carry the device with them at all time without being

overly bulky. Finally, we analyze the cost of the device cost. As a preventative device that

is intended to be used for any and all adults it is important to market to a low cost so that

anyone can afford this product.

As far as marking requirements are concerned it is extremely important to implement a

device that is simple and can be used by anyone. The BreathaLock is intended to be a

head-ache free device that can be used with very little inconvenience to the user because

the user will have to use the device every time they enter their vehicle.

9

3. Research related to Project Definition
3.1 Existing Similar Projects and Products
3.1.1 SAAB Alcokey

In the mid-2000s SAAB , the automotive company from Sweden, was working on a remote

vehicle lock and doubles as a breathalyzer. The remote was named “Alcokey” and it

features breathalyzer mouthpiece at the end of the remote. When the remote takes a

sample of the user’s blood alcohol content it takes 3 second until the result are shown. If

the user is over the legal limit then a red LED light will appear on the remote indicating

that the engine cannot be started, however if a green light is indicated then the engine’s

electronic immobilizer is release and the vehicle can be started. In addition, the

breathalyzer sensor that is integrated within the key remote is semiconductor based and

therefore monitors the temperature of the breath sample in the case if the user tries to

bypass the device with say a balloon. The Alcokey also comes with a battery indicator

and flashes and amber LED when there’s twenty percent of the battery left, in which the

user much come to the SAAB dealership to replace the battery. In terms of the range of

the device, the key remote is operable at roughly ten meters or thirty-three foot to the

vehicle. If a sample is taken outside the vehicle’s range, then the vehicle remote has a

three to four second clearance process.

3.1.2 ALCOLOCK V3.

The ALCOLOCK V3 is an in breathalyzer device for private and commercial use. The

breathalyzer is interlocked based and is installed within the vehicle’s dashboard and

connected through the engine’s ignition system. In terms of operation, before the engine

is able to start a sample of the user’s must be taken. If the sample is over the legal limit

then engine will not start, however if the user passes the test then the engine can start.

Once the engine start’s, ALCOLOCK V3 can be programed to ask for user samples at

random times while the engine is running. The device features a tri-colour LRD display to

relay the information back to user. Also, the device’s breathalyzer sensor is

electrochemical based that allows the device to operate at twelve volts or twenty-four dc

volts.

3.1.3 ALCOLOCK’s DRIVESAFE elan

ALCCOLOCK’s DRIVE elan is a breathalyzer that connected through your android device

via USB cable. Once connected, the device communicates to an app on the android

market to display the user’s sample results. In addition, through the app, the user can

make phone calls or be able to tweet results. The breathalyzer sensor is electrochemical

based which gives the device a battery life a roughly one thousand samples. In terms of

operation, the user must give a continues and moderate sample in which the device

returns a result in less than 10 seconds.

3.1.4 BACKtrack Mobile Pro

BACtrack mobile Pro is a police grade breathalyzer that communicates to an app on a

mobile device via Bluetooth. The breathalyzer utilizes a fuel cell based sensor that gives

10

higher level of accuracy. This technology is used by law enforcements, hospitals and

clinics. Furthermore, the physical device has a solenoid base air pump inside to ensure

the user’s breath sample gets to the sensor. In terms of the mobile app, the app can be

download on IOS or android. The app saves and stores all the blood alcohol content

results over time and also integrate with Uber to make calls for a ride. Further, the app

has an estimation feature that predicts when the user’s blood alcohol content will reach

zero percent. In terms of device operation, the device first be turned on for about 10

seconds to warm up. Lastly, the user blow time is around five seconds.

3.1.5 Daniel Andrade’s Arduino MQ-3 breathalyzer project

In 2010 Daniel Andrade built an Arduino based breathalyzer utilizing the MQ-3 gas

sensor. The project uses the Arduino Uno, a few red, green, and yellow LEDS, a

potentiometer, a few resistors and the MQ-3 sensor. The project had each individual LED

in series with a resistor, then each LED that in series with a resistor grounded at one end

and the other end connected to the digital pins two up until digital pin eleven on the

microcontroller. Once the potentiometer and the breathalyzer sensor was connected to

the analog and digital converter within the Arduino, the project is hooked up. The project

works by taking the user’s breath sample and outputting it to the LEDS. The higher the

blood alcohol content the more LEDS light up from green, then yellow, then red.

3.1.6 Nootropic design’s Arduino MQ-3 breathalyzer project

Nootropic’s circuit utilizes an Arduino Uno, a resistor and a MQ-3 gas sensor. The circuit

is powered by the Arduino’s onboard 5V regulator and which is connected to the Arduino’s

ATmega328 analog pin0 that is in series with the resistor. To ensure the breathalyzer got

a uniform breath sample, the sensor was place in a small glass jar. In terms of calibrating

the device, the method of correlation was. Nootropic designs took voltages readings from

the Arduino analog pins at given blood alcohol content levels, after enough samples was

taken the device was calibrated. In terms of the output of the project, the output was

displayed on the computer using the Serial.print() function.

3.2 Relevant Technologies
3.2.1 Biometric fingerprint scanner

When talking about talking about biometrics, the term refers to the process in which a

person’s physical trait is detected processed via electronic device. In the case of

fingerprint scanners there is a universal two-step process that every sensor operates on:

storing the fingerprint pattern of a user and then detecting if a fingerprint pattern matches

with the one that was previously stored.

There are many ways a fingerprint scanner can detect and store fingerprint pattern. One

common way is optical in which the process involves digitizing finger patterns via visible

light. Commonly, an optical sensor is made up of a clear surface to place the finger on.

Underneath this clear surface there is a source of light that shines on to the finger in which

it is then reflected on to an imaging array which captures the visual image of the

fingerprint. Usually the imaging array is either a charge-coupled device (CCD) or a CMOS

11

based optical imager. For charge-coupled devices the imager is not low light sensitive, in

addition the fabrication process is much more complex and thus more expensive. CMOS

based optical imagers however, are more easily made thus making the optical scanner

much less expensive. The disadvantage of this type of sensor is that when the clear

surface is smudge or if the finger is dirty then the optical scanner cannot properly process

the image.

Figure 2: Optical Fingerprint Diagram

Another common method a fingerprint scanner can detect and store a fingerprint pattern
is through capacitive touch. Capacitive touch fingerprint scanners are categorized in two
categories: passive and active. Passive touch scanner works by having each pixel of
the image processor acting as one side of a parallel plate capacitor and a user’s finger
as the other plate to the capacitor. Since the capacitive values between the image and
the dermal layer of the skin are known, the whole array of pixels can map out the
valleys and ridges of a user finger, thus making each finger distinguishable between
one another.

Figure 3: Passive capacitive touch Diagram

Active capacitive touch finger print scanners work by a creating charge onto the skin

before sampling takes place. After the charging process, the effective capacitor is

12

charged thus creating an electric field between the finger and sensor that follows the

ridges and valleys of a user’s finger. On the discharging process, the voltage between the

skin and the sensor is measured and compared to the charged value as a reference to

computes the capacitance. After computing the capacitance, the scanner mathematically

calculates the distance between the finger and scanner. Upon applying the charge and

discharge process to an array, the valleys and ridges are mapped out on a person’s finger.

Figure 4: Active capacitive touch Diagram

After scanning for valleys and ridges, then the analog values are converted to a string of

binary values in which it is stored and compared to the next set binary values.

3.2.2 Gas sensors

In the case of a foreign gas there is a need for detection. There are many types of gas

detectors but through different types technology. Commonly gas sensors include

electrochemical and semiconductor.

When referring to electrochemical gas sensors, the structure of the device must be clearly

understood. Commonly, electrochemical gas sensors contain two or more electrodes in

contact with an electrolyte. The electrodes themselves are a high surface area metal that

is covered in a hydrophobic membrane. The sensor allows certain gases to pass through

the porous membrane in which it is then chemically oxidizes or reduced. The amount of

current generated is determined by the amount of gas that passes through the membrane

and oxidizes. Since the size of the membrane can be manipulated during the fabrication

process, then the type of gas the sensor can detect can be tailored to the desired gas.

One advantage of this technology is that the membrane that surrounds the electrode acts

as a physical barrier then this allows the detector to be more stable thus requiring less

maintenance over time. However, a disadvantage of electrochemical gas sensors is that

is susceptible to corrosion. Since the device is subject to any gas to come in contact with

the porous membrane, the membrane is subject to contamination and deterioration.

The other common type of gas sensor is based on semiconductor technology. The

principle behind semiconductor based gas sensors is that when the desired gas of

detection comes into direct contact with the sensor itself a chemical reaction occurs.

13

Since a reaction occurs on the surface of the semiconductor itself, it is common for the

resistance through semiconductor to either drop or increase depending on the anatomy

of the semiconductor. When once the resistance has drop the change in electric current

the device is detected and analyzed from which the concertation of gas is recognized.

In addition to common sensor types, another important property of gas sensors that is

essential to the device itself is calibration. All gas sensors regardless of the type of

technology that it is based off needs to be calibrated routinely. If the gas sensor is more

mobile or exposed to many other elements upon taking samples, then the routine will

check to see if the device is calibrated properly is more frequent in contrast to a device

that stays in one place or only takes samples containing fewer elements. One of the

simplest way to calibrate any sensor is to expose the sensor to a known concentration of

the desired gas of detection. If the sensor isn’t reading the correct concentration, then the

difference between the output and the controlled sample can be taken and added or

subtracted to correctly offset the device. To improve the accuracy of the device, it is quite

common to repeat the sensor correction test, this will result in multiple values of offset in

which the average value can be taken and used. The more offset values the more

accurate the device is.

3.2.3 Bluetooth

One of the most common methods of device communication is Bluetooth connection.

Bluetooth is a global wireless communication standard that is implemented through radio

waves. Usually within the bandwidth of 2.4 GHz to 2.485 GHz, the radios wave allows

multiple devices to be connected at once, the master Bluetooth device can have up to

seven devices be connected all at once. In terms generations of Bluetooth that are most

commonly found in devices today, there are three: Bluetooth 3.0, Bluetooth 4.0, and most

recently Bluetooth 5. Of those three types of generations there are two branches of types

of Bluetooth: Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) and Bluetooth with

low energy (LE). Typically, Bluetooth Basic Rate/Enhanced Data Rate are found in stereo

speakers, headsets, and computers, while Bluetooth with low energy, as the name

implies, are found in device that operate on low power such as wearables and other IoT

devices.

3.2.4 Battery

When talking about battery technology we must define what a battery does. A battery is

a device that has energy stored in the form of chemical energy and then converts it to

electrical energy. Every battery has two terminals: a positive terminal known at the

cathode and the negative terminal known as the anode. Separating the cathode and

anode is the electrolyte. The role of the electrolyte is to provide a means of a chemical

reaction to build up electron at the anode. Since there is a buildup of electrons at the

anode, there is a potential difference between the anode and the cathode thus when the

battery is under load there will be electron flow from anode to cathode.

There are two classifications of batteries rechargeable and non-rechargeable. Non-

rechargeable refers to the types of battery that cannot be reused over again. These types

14

of batteries aren’t rechargeable because the chemical reaction that is provided by the

electrolyte cannot be reversed. Typically, when a non-rechargeable is used, a brand new

one replaces it.

The other type of battery classification is the rechargeable battery. Rechargeable

batteries are able to recharge because the chemical reaction that is provided by the

electrolyte is able to reverse its process thus restoring the anode and cathode back to its

original state. This original state can again provide full power.

Figure 5: Battery Diagram

3.3 Strategic Components and Part Selections
3.3.1 Microcontroller

When defining a microcontroller, a microcontroller is a computer system that typically has

memory, a processor, input/output ports, serial ports, timers, analog to digital converters,

and digital and analog converters to perform a task. Usually in the form of a single

integrated circuit, a microcontroller is much smaller than a computer as its main uses are

found embedded within a main system. However, the term ”microcontroller” can easily be

confused with the term “microprocessor”. The microprocessor itself does not have its

memory and other peripherals contained on board with the chip, but rather placed

externally, leaving room for upgrades.

Before talking about comparing and strategically selecting microcontrollers, there are

categories that microcontrollers are divided into that needs to be defined: bits, memory,

instruction sets, architecture. When referring to the number of “bits” a microcontroller can

process at once, we are referring to most amounts of ones and zeros the processor can

read at one moment. Usually the processor’s bit numbers are 8bits, 16bits, 32bits, and

64bits. The higher the bit number, the faster the processor can perform tasks. In terms of

memory, memory is used to store data and programs to fetch later on. Typically, a

microcontroller has a fixed amount of RAM and ROM or other flash memories because

the microcontroller itself comes in a single IC package. The instruction set of a

microcontroller is the communication between the microcontroller’s software to hardware.

Lastly, a feature of a microcontroller that needs to be noted is the microcontroller’s

15

architecture. Typical architectures found on most microcontrollers today are the 8051,

PIC, AVR, and ARM.

3.3.1.1 Arduino Uno

The Arduino Uno is a microcontroller assembly that is based on the through hole version

of the ATmega328P. The Uno operates at 5V with a maximum input tolerance between

6-20V. In addition, the microcontroller has 28 pins of which there are 14 digital pins, where

6 of those pins can be used for PWM; also there are 6 analog pins. In terms of memory,

the Arduino Uno has 2 Kilobytes of volatile SRAM memory, 1kilobyte of nonvolatile

EEPROM memory, and 32 kilobyte of nonvolatile flash memory of which 0.5 kilobytes is

allocated for the bootloader.

Additionally, the ATmega328P features three timers/counters, internal and external

interrupts, a programmable USART, a 6 channel 10-Bit analog and digital converter, a

programmable watchdog timer, and five software selectable power saving modes

MODE Functionality

Idle mode Stops CPU, but keeps SRAM, Timers/counters,

USART,2-wire serial interface on

Power-down mode Save contents inside register and freezes everything

else until interrupt occurs

Power-save mode asynchronous timer stays on, everything else is off

Standby mode crystal oscillator is on, everything else is off

ADC Noise Reduction

mode

only asynchronous timer and ADC is on, everything else

is off

Table 2: Arduino Uno Low power mode table

The serial interface uses Universal Asynchronous Receiver / Transmitter (UART) where

the pins RX and TX in which UART typically has are connected through to a USB–UART

converter circuit. The ATmega328P also has Serial Peripheral Interface(SPI). Besides

using it as another option for serial interfacing, it can also be used to program the

microcontroller using a standalone programmer.

In terms of power, the Arduino Uno can be powered on either by USB or a DC power jack.

The Arduino Uno also has a regulated 5-volt power supply and a 3.3-volt power supply

that can supply up to 50mA. The 5V power supply comes from the NCP1117ST50T3G

regulator where the input voltage is from the DC power jack that is then connected to a

surface mount diode to provide circuit protection. The output of the regulator is then

connected to the rest of the 5V circuit where the user can access the power and also to

the input of the 3.3V voltage regulator: LP2985-33DBVR. If however, the user decides to

power on the Arduino Uno via the USB rather than the DC power jack, then the 5V line of

16

the USB is connected to the drain of the an FDN340P, a P-channel MOSFET.

Furthermore, the source terminal of the MOSFET is connected to the 5V network where

the user can access the regulated power and the gate terminal of the MOSFET is

connected to an output of a LMV358 comparator. The comparator acts as a switch to turn

the MOSFET on and off.

Advantage Disadvantage

- removable microcontroller - Size

- Female Connectors - Video/audio peripherals

- Shield capability

- Pre-existing Female Pin
connectors

Table 3: Arduino Uno Advantage/Disadvantage table

3.3.1.2 Arduino ProMicro

When looking at the Arduino ProMicro, there are similar features to that of any

microcontroller to that of the Arduino family. The Arduino ProMicro is based on the

ATmega32U4 microcontroller. This microcontroller has 32 pins, of which 12 of those pins

are allocated for analog inputs while the other 27 pins are for digital input/output channels.

In terms of memory, the Arduino ProMicro has 2.5 kilobytes of SRAM, 1kilobyte of

EEPROM, and 32 kilobytes of flash memory of which 4 kilobytes are used by the

bootloader. In terms of power, the Arduino ProMicro operates at 5V however, the input

tolerance limit is 5V-12V. Once again like most Arduino microcontrollers, the device can

be powered on through the USB or an external power supply. If the user is using an

external power supply then connections must be made through the Vin and Gnd pins

since there are no other terminals for external power source.

In terms of device communications, the Arduino ProMicro has many ports for

communications. The device has TTL serial communication in which pins 0 and 1 are

used as RX and TX respectively to receive and transmit data. Also, there is TWI in which

pins 2 and pins 3 are used. Implementations can be done by using the Wire library. Lastly,

the Ardruino ProMicro allows for CDC communication through USB where the device act

as an open com port to other software on the computer.

Advantage Disadvantage

- Size - nonremovable
microcontroller

- Extra Digital input pins - Not shield capable

- Extra analog input pins - Video/audio peripherals

 - No pre-existing connectors

Table 4: Arduino ProMicro Advantage/Disadvantage table

17

3.3.1.3 Arduino Mini

Lastly we take a look at the Arduino Mini. The Arduino Mini, similar to the Arduino Uno,

runs on the ATmega328. Since the two microcontroller have similar processor, the

peripherals will be similar as well. The Arduino Mini has 22 pins, of which 14 are used for

digital input/output, and of those 14 digital pins, 6 can be used for pulse width

modulations(PWM). In terms of device memory, the available memory is the exact same

as to that of the Arduino Uno.

The advantage to using the Arduino Mini comes from the size of the device. The device

itself is 30mm x 18mm. This allows the device to be portable, and easy to be stored away

in much tighter place compared to the previous Arduino Microcontrollers mentioned

before.

Advantage Disadvantage

- Size - Non-removable
microcontroller

 - Video/audio peripherals

 - Not shield capable

 - Needs FTDI board to
program

 - UART capability

 - No pre-existing connectors

Table 5: Arduino Mini Advantage/Disadvantage table

3.3.1.4 Raspberry Pi 3 model B

Raspberry Pi 3 model B is the third generation of Raspberry Pi. The Raspberry Pi tends

to be more of a mini-computer whereas the Arduino family is a microcontroller. For the

purpose of this paper, the Raspberry Pi family will be treated as a special kind of

microcontroller. The device runs on the 1.2 GHz 64-bit quad-core Armv8 processor with

1 gigabyte of RAM. In terms of peripherals, the device has:

• 40 General Purpose input/output pins (GPIO)

• 802.11n Wireless LAN

• Bluetooth Low Energy

• 4 USB ports

• 1 HDMI port

• 1 Ethernet port

• Camera interface

• Display interface

• MicroSD card slot

• 3.5mm Arduino port

18

The advantage to using the Raspberry Pi is through the video/audio capability readily

available peripheral the device has to offer compared to the of the Arduino.

Advantage Disadvantage

 - Video/audio peripherals - Non-removable microcontroller

- Number of GPIO

- Communication peripherals

Table 6: Raspberry Pi 3 Model B Advantage/Disadvantage table

3.3.1.5 MSP430G2211IN14

The MSP430 is a 16-bit microcontroller from Texas Instrument that follows RISC

architecture. In terms of powering on the device, the MSP430 operates between 1.8V to

3.6V. Furthermore, the MSP430 has 5 power saving mode in addition to a wakeup time

from standby mode of less than 1 µS. In terms of memory, the MSP430 features 128

kilobytes of RAM.

Advantage Disadvantage

 - Ultra Lower power - Not user friendly in group31

- Fast wake-up time

Table 7: MSP430 Advantage/Disadvantage table

Upon reviewing over the advantages and disadvantages of each microcontroller, a

decision table is made to furthermore strategically pick the right microcontroller for the

BreathaLock project. In the decision table, criterions were carefully picked and weighted

according to the project’s needs, from 1 being the lowest weight possible to 5 being the

highest weight. The criterion: Dimension refers to the physical dimensions of the

microcontroller package. The criterion: Programmability refers to the ability to access the

microcontroller and program the desired task. Maintainability refers to the

microcontroller’s ability to be replaced if any accidents should that should arise. Cost is

the cost of the microcontroller per unit, the higher the cost score the less expensive the

microcontroller is.

19

Decision Table Microcontroller scores

Criterion Value

Weight

U
n
o

T
o

ta
l

M
ic

ro

T
o

ta
l

M
in

i

T
o

ta
l

P
i

T
o

ta
l

M
S

P
4

3
0

T
o

ta
l

Dimensi

on

3 3 9 4 12 5 15 1 3 3 9

Program

mability

4 5 20 5 20 2 8 4 16 2 8

Maintain

ability

5 5 25 1 5 1 5 1 5 2 10

Peripher

als

2 2 4 2 4 2 4 5 10 3 6

Cost 2 5 10 2 4 2 4 1 2 5 10

Total 68 45 36 36 43

Table 8: Microcontroller Decision Table

3.3.2 Bluetooth

Choosing a Bluetooth module for our project was difficult. However, we were able to limit
our options to two choices.

3.3.2.1 Adafruit Bluefruit LE UART Friend

The Adafruit Bluefruit LE UART Friend has a ARM Cortex M0 core running at roughly
16MHz, has 256kb of memory 32kb of static RAM. The device includes voltage regulation
on board which is important for our needs. Adafruit’s board also utilizes a UART transport
scheme at a 9600 baud rate with hardware flow control such as CTS+RTS a RS-232
standard which can be enabled if necessary. However, this feature seems that it may not
be useful. The particular module fits within our size and weight specification at 21mm x
32mm x 5mm (WxLxH) and 3.4g. The module also uses Bluetooth 4.0

Advantages

• Compatible with our logic board
• Very modifiable
• Well documented
• Small

Disadvantages

• Complex Driver
• Expensive cost wise

20

3.3.2.2 Phantom YoYo JY-MCU Arduino Bluetooth Wireless Serial

The Phantom JY-MCU Bluetooth module has similar specs to the Adafruit module;
however, with some key differences. The Bluetooth standard that is utilized is the older
2.0 EDR standard and the size is larger at 4.4 cm x 1.6 cm x 0.7 cm which poses problems
for our specification as we would like something smaller. The voltage requirement of this
device is 3.3V.

Advantages

• Simple pin layout
• Cheap cost

Disadvantages

• Poorly Documented
• Does not meet size specifications
• Old Bluetooth specification

3.3.2.3 BLE Nano - nRF51822

The BLE nano-nRF51822 features an ARM Cotex-M0 SoC. In addition, the nano-

nRF51822 uses Bluetooth 4.1 which is the latest technology in low power Bluetooth

communication. In addition, the BLE nano is only 18.5mm x 21.0mm, making it a good

candidate for Blue communication as portability is important in our BreathaLock project.

In terms of powering on the device the operating voltage is between 1.8V to 3.3V.

Advantages

• Size
• Cheap cost
• ultra Low power consumption
• Comes with headers
• Works with IOS and android

Disadvantages

• no onboard storage

In the decision table below, the highest weight possible for a criterion is 5 while 1 is the

lower weight possible.

21

Decision Table Bluetooth Module scores

Criterion Value
(Weight)

Bluefruit
LE

Total YoYo
JY-MCU

Total BLE Nano Total

Dimension 3 4 12 3 9 4 12

On board
storage

4 4 16 0 0 0 0

Bluetooth
protocol

5 5 25 3 15 5 25

Cost 3 4 12 2 6 2 6

Total 65 30 43

Table 9: Decision Table

3.3.3 Fingerprint Scanner

When strategically selecting a biometric fingering print scanner, we needed to check the

variety and the availability of the standalone technology that’s on the market. It turns out

that even though fingerprint sensing is very common amongst technology today, the

standalone technology that is available on the market is very low. This is most likely due

to the fact that pre-existing fingerprint technology is uniquely designed by companies to

be coupled with their existing product. There are only two finger print scanner modules

that are available in the market: the TTL(GT-511C3) and Adafruit.com’s fingerprint

scanner (product ID:751).

The GT-511C3 features an ARM Cortex M3 Core CPU embedded into the package.

Additionally, the device can image a size of 202 x 258 pixels with a resolution of 450 dpi.

The false acceptance rate is less than 0.001% and a false rejection rate is less than 0.1%.

In terms of powering on the device, the operating voltage is between 3.3 to 6V and the

operating current is less than, 130mA. The baud rate for this device or rather the

maximum amount of bits per second the serial port is capable of transferring is 9600 bits.

When we look at the fingerprint sensor found on Adruit.com, the sensor has the exact

same features and specifications as the GT-511C3 however the thing that differentiate it

from the GT-511C3 is the baud rate. The baud rate for optical fingerprint sensor found on

Adafruit.com is 9600, 19200, 28800, 38400, and 57600. This mean that the number of

bits second the serial port can transfer can be varied depending on the user. Regardless,

the device has a default baud rate of 57600 bits thus making it much faster and much

more efficient than the GT-511C3.

However, when comparing the two devices to strategically select the right fingerprint

scanner for the BreathaLock project, the baud rate is not an important criterion to compare

by but rather then dimensions of each device. Both devices are both optical sensors, and

by the nature of their technology the two devices are much larger than that of capacitive

touch fingerprint scanner. In our case, the smaller the device is, the better suited the

22

device is for the project. In the decision table below the maximum weight possible is 5

and the lowest weight possible is 1

Decision Table Fingerprint scores

Criterion Value(Weight) GT-511C3 Total Adafruit.com’s

fingerprint

scanner

Total

Dimensions 5 3 15 4 20

Power 4 4 16 4 16

Data rate 1 3 3 4 4

False

acceptance

rate

3 5 15 5 15

False

rejection

rate

3 5 15 5 15

Total 64 70

Table 10: Fingerprint Scanner Decision Table

3.3.4 Breathalyzer sensor

Once again when strategically selecting a breathalyzer sensor, we needed to check the

variety and the availability of the standalone technology that is on the market. It turns out

that even though gas sensing technology is common, finding the right sensor for the with

the right sensitivity can be difficult. There are only two alcohol sensors available on the

market that can detect alcohol on a sensitive level: the MQ-3, and the MR513 alcohol

sensor.

3.3.4.1 MQ-3 Sensor

The MQ-3 sensor is a semiconductor-based sensor that can detect concentrations of

alcohol within the scope of 25 to 550 parts per million(ppm). In terms of how this device

operates, the six terminal device has allocated two sets of pins to power on a heating

element, while the remaining four pins acts as 2 sets of leads to a resistor. The heating

element dries up the surrounding air to prepare the existence of alcohol gas. Upon the

presence of alcohol gas, there will be a differential in conductivity. Then the differential

will then be translated into an analog signal in which the analog signal can tell us the

amount of alcohol present in the air. One key thing to note on this device is that for the

23

first time using the device the sensor must be power d on for 48 hours. This ensures the

heating element can work properly over time.

To further detail on how the device can take the differential in conductivity and translate

it into an MR513 analog signal we must note the two sets of on the device (4 pins). One

set of pins act as one end of a variable resistor and the other set acts as the other end.

However, since the variable resistor is made up of tin dioxide(SnO2) which is a

semiconductor, the true conductivity of the device is unknown due to the temperature

dependency property of semiconductors. With that being said, the variable resistor can

be connected in series with a load in which the output is the voltage across the load. Once

alcohol gas comes into contact with the semiconductor a differential in conductivity will

occur across the variable resistor, this change can be measured by measuring the voltage

across the load before and after the presence of alcohol. Upon measuring the change in

voltage, the concentration of alcohol gas can be known.

Advantage Disadvantage

- low power - water sensitive

- Size - vibration sensitive

- Load resistance adjustable - break-in period

 - Susceptible to corrosion

Table 11: MQ-3 Advantage/Disadvantage table

3.3.4.2 MR513 Sensor

The MR513 Sensor is based on semiconductor technology. The MR513 consist of a

detection element and a compensation element placed in Wheatstone configuration.

When there is alcohol gas within the sensor, the voltage of the Wheatstone bridge will be

change thus telling us how much alcohol gas is present. The Sensitivity for this device is

100 parts per million. In terms of powering on the device, the alcohol sensor run on 3 volts

with a working current or around 100 milliamps.

Advantage Disadvantage

- low power - only 1 datasheet

- Size - Data sheet isn’t detailed

- only 4 terminal device

Table 12: MR513 Advantage/Disadvantage table

24

Decision Table Gas Sensor scores

Criterion Value(Weight) MQ-3 Senor Total MR513

Total

Dimensions 2 3 6 3 6

Power 3 3 9 4 12

Documentation 5 4 20 2 10

Total 35 28

Table 13: Gas Sensor Decision Table

3.3.5 Power supply

In terms of powering on the project, we must understand how much power each

component needs to operate. From the table below we can see each component can

operate under 10V.

 Operating voltage Peak Current

Arduino Uno 7.0-12V DC -

Bluetooth 5V

Fingerprint

scanner

3.6- 6.0 DC 150mA

Breathalyzer

sensor

5.0V AC or DC 180 mA

Car remote 3V -

Table 14: Selected Component Operating voltage

Since the Arduino Uno has an onboard 5V and 3V regulator, we can power on the entire

BreathaLock project via 9 volts. To achieve this 9V there many options in which we go

about.

3.3.5.1 Power option 1

To achieve the desired 9V that powers the entire BreathaLock project, we can use a

standard rechargeable 9V battery. The advantage to using a standard rechargeable 9V

comes from the storage capacity of the battery and the recharge-ability of the battery.

Typically, a standard 9V can hold much power than that of a coin cell battery. The

disadvantage of the standard 9V battery is that the size of battery is big and bulky.

25

3.3.5.2 Power option 2

Power option 2 consists of using three 3V coin cell battery. When connecting batteries in

series, the overall voltage is equal to the sum of each individual voltage. In the case of

power option 2, three 3V coin cell battery adds up to 9V. The advantage to using three

smaller batteries is the amount of space the three-coin cell battery takes up when

compared to the size of the standard 9V battery. The disadvantage to from using three

3V coin cell battery is the amount power the batteries can hold compared to a standard

9V battery.

Decision Table Power Option Scores

Criterion Value(Weight) Option 1 Total Option 2

Total

Dimensions 5 2 10 4 20

Power

storage

3 3 9 4 12

Total 19 32

Table 15: Power Option Decision Table

3.3.6 Key remote

Before picking a motor key remote to use for the project we must identify the car that will

be used for the project. Nicholas Fraser volunteer his 2005 Ford F150 for the project.

3.3.6.1 300-0247ES Universal Car Remote

The 300-0247ES universal car remote is a 6 button device that does have compatibility

for the 2005 Ford-FF150. The 6 buttons on the device are for lock, unlock, open trunk,

panic alarm, and two auxiliary buttons for vehicle functions. Vehicle functions include, van

door, remote start, convertible top etc. In terms of powering on the device, the universal

car remote found at Walmart operate using a standard lithium 3V coin cell battery.

3.3.6.2 KPT1306 key remote

The KPT1306 key remote is compatible for the 2005 Ford-F150. The device features 3

buttons for lock, unlock, and panic. In terms of powering on the device once again the

device runs on a stand lithium 3V coin cell battery. In terms of programming the device,

the ignition must be turned from off to run 8 times within 10 seconds. After the 8th turn,

the user has 20 seconds, pressing any key on the keyless remote to enable the device to

be programmed. After that, the next button needs to be pressed again to confirm the

second programming. Lastly, turning the ignition to off will end the programming phase.

3.3.6.3 K410 Car Remote Central Lock Locking Entry System

Though this product comes with two double button key remotes, it also comes with the

remote receiver which is still relevant to consider for the BreathaLock project. In terms

26

of powering on the whole system the requires 12voltes where the max current draw is

15A. In the decision table below, the highest weight possible for a criterion is 5 while 1

is the lower weight possible.

Decision Table Keyless remote Scores

Criterion Value(Weight) 300-

0247ES

Total KPT1306 Total K410 Total

Simplicity 5 4 20 5 25 2 10

Power 3 3 9 3 9 2 6

Quantity 2 1 2 4 8 4 8

Total 31 42 24

Table 16: Power option Decision Table

3.4 Architectures and Related Diagrams
3.4.1 Microcontroller Architecture

In terms of microcontroller architecture, we will be discussing the ATmega328P’s

architecture. The ATmega328P is an 8bit- AVR RISC-based microcontroller. The term

AVR RISC tells us that microcontroller follows a modified version of the Harvard

architecture with reduced instruction set computing. In terms the available register the 32

general purpose register that is all directly connected to the Arithmetic Logic Unit (ALU).

This direct connection allows for simultaneous access of each register upon an execution

of an instruction.

The Harvard architecture says that volatile and nonvolatile memories are treated as 2

separate systems, whereas the popular von Neumann architecture only has a single

memory system. One advantage of the Harvard architecture is that the ability to

simultaneously access the programs and data elements.

Figure 6: Harvard architecture

http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf

27

Furthermore, the ATmega328P follows reduced instruction set computing. This means

that the instruction set for this device is simplified by cutting down on the complexity of

each available instruction. This allows the device to process down simple instructions at

every single clock cycle thus achieving a high throughput at around 1 MIPS per MHz. If

the device is however CISC, the exact opposite of RICS, the instruction set would have

a degree of complexity thus requiring more resources to process down each instruction.

The focus of CICS is to process down instructions with the fewest lines of code possible

at the cost more of time, however, the focus of RISC to process down instructions fast at

the cost of more lines of code.

3.5 Parts Selection Summary
When talking about the selection of parts, we must first look at the decision table for each

category of parts. For the microcontroller that will be governing the project, we chose to

pick the Arduino Uno with a few minor adjustments. For the BreathaLock project we will

be cloning our own Arduino Uno. This will give us the freedom to design our project under

one PCB package. Additionally, the microcontroller will have its USB bridge removed to

save power and board space since our project does not have any use for that component

to permanently be on the PCB. In terms of supplying the regulated 5V and 3V, we will be

using the LM7805 and the LT1761ES5-3 respectively. Again, the reason why we’re

building our own Arduino Uno is to be able to tailor our design to be compact and lower

power consumption.

In terms of why we chose the ATmega328P, we chose the microcontroller because of its

low-power capabilities as having 4 modes of low power is an asset to our BreathaLock

project. Furthermore, we chose the ATmega328P because its ability to be place in a dip

socket. This allows us to replace a broken microcontroller without removing any circuit

components if need be.

For the Bluetooth module, we chose the Bluefruit LE UART module. We chose this

component because of it size. The fact the entire module is 21mm x 32mm x 5mm

becomes an advantage to us when we are creating a device that is meant to be portable.

Additionally, we chose this component because of its low power capability as the device

conveniently run on 5V which makes it Arduino Uno friendly. Furthermore, the device has

256kilobytes of flash memory. This allow use to have multiple profiles save onto the

device.

For the fingerprint scanner, we chose to go with the one found on Adafruit.com. We chose

this device because of the form fitting factor this device has to offer when compared to

the GT-511C3. The GT-511C3 has undesirable hinges protruding off to the sides thus

making the device itself awkward to make portable.

For the gas sensor we chose to use the MQ-3 alcohol gas sensor. We chose this device

over the MR513 because of the available documentation the MQ-3 has compared to the

MR513. The MR513 only has 1 available datasheet that isn’t detailed in how the device

http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf

28

operates. However, the MQ-3 has multiple documentations along with meeting the

required alcohol sensitivity for the project.

For the keyless car remote, we chose to use the KPT1306 key remote. We chose this

remote because it was the simplest keyless remote when compared to the other two

options. For the BreathaLock project, since we are only interested in the transmission of

the unlock signal and other device with more than two button will complicate the process

of modifying the remote. In addition, since we are using 2005 Ford-F150, there is already

a preinstalled remote receive on the vehicle thus using the K410 Car Remote Central

Lock Locking Entry System is not necessary.

Lastly, for powering on the entire device we chose to go with three 3V coin cell battery

(power option 2). We chose power option 2 because of the portability coin cells batteries

have to offer. In addition, carrying around a standard 9V battery would not promote

portability with the BreathaLock project.

Part selection summary

Part Selection Cost (before

tax and

shipping)

Microcontroller Arduino Uno $29.99

Bluetooth

module

Bluefruit LE

UART

$17.50

Alcohol gas

sensor

MQ-3 $4.95

Fingerprint

Sensor

Adafruit.com’s $49.95

Battery three 3V

battery

$10.00

Keyless

Remote

 $7.95

Total $120.34

Table 17: Part selection summary Table

29

4. Related Standards and Realistic Design

Constraints

4.1 Standards
4.1.1 Bluetooth Standard
The Bluetooth specification defines the technology that developers can use to create the
devices that communicate between other Bluetooth applicable devices. The Bluetooth
specification is overseen by a Special Interest Group (SIG) and is regularly updated to
meet new needs.

Summary

The Bluetooth standard specifies two “flavors” of Bluetooth are as follows:

• Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) - which is an older
standard adopted as version 2.0/2.1. The entire spectrum of the RF part of the
physical layer (see figure XX) operates in an unlicensed industrial, scientific and
medical (ISM) radio band at 2.4GHz. In order to tackle interference, the any device
may encounter Bluetooth employs a frequency-hop transceiver which assists in
identifying “good” frequency by avoiding “bad” frequencies that may be in use, are
experiencing selective fading, or perhaps those bands are being actively jammed.
BR/EDR includes two data rates Basic Data Rate and Enhanced Data Rate. Basic
Rate, supports a bit rate of 1MBps while Enhanced Data Rate supports gross air
bitrate of 2MBps. Making this an ideal standard for relatively short-ranges,
continuous wireless communications, which is ideal for audio streaming.

• Bluetooth with Low Energy (BLE) - This is the newest standard also known as
4.0/4.1/4.2. This newer standard was developed with power-efficiency in mind.
Devices that utilize small or isolated power sources; such as, button cell batteries
or solar power. This platform is more heavily supported for every major operating
system and allows for seamless development for a board. Opposite of BR/EDR,
BLE offers short burst of long-range radio connections which is ideal for
applications in the field of Internet of Things or devices that do not require
continuous connection but depend on battery longevity. This version achieves this
energy efficient mode by having three modes Ultra-low peak, average and idle
mode. BLE offers several security enhancements versus its predecessors such as,
digital signing, key generation, encryption as is government-grade security with
128-bit AES data encryption, etc. (see sec. 1.1.1.1.3. Bluetooth Security below).
These features make it ideal for variety of applications such as security systems,
portable devices, fitness monitors, proximity sensors, and breathalyzers.

Each implementation has different use cases and each implementation uses a different
chipset to meet essential hardware requirements. dual-mode chipsets are available to
support single devices such as smartphones or tablets that need to connect to both
BR/EDR devices (such as audio headsets) and LE devices (such as wearables or retail
beacons)

30

4.1.1.1 Core System Architecture
While each implementation has specific requirements that are detailed in the Bluetooth
specification, the Bluetooth core system architecture has many consistent elements. The
system includes an RF transceiver, baseband and protocol stacks that enable devices to
connect and exchange a variety of classes of data.
Bluetooth devices exchange protocol signaling according to the Bluetooth specification.
Core system protocols are the radio (RF) protocol, link control (LC) protocol, link manager
(LM) protocol and logical link control and adaptation protocol (L2CAP), all of which are
fully defined in the Bluetooth specification.
The lowest three system layers—the radio, link control and link manager protocols—are
often grouped into a subsystem known as the Bluetooth controller. This is a common
implementation that uses an optional standard interface—the Host to Controller Interface
(HCI)—that enables two-way communication with the remainder of the Bluetooth system,
called the Bluetooth host.
The primary controller may be one of the following configurations, depending on use case:

• BR/EDR controller including the radio, baseband, Link Manager and optionally HCI
• LE controller including the LE PHY, Link Layer and optionally HCI
• Combined BR/EDR controller and LE controller, with one Bluetooth device address

shared by the combined controller

The Bluetooth specification enables interoperability between systems by defining the
protocol messages that are exchanged between equivalent layers. It also enables
interoperability between independent Bluetooth subsystems by defining the common
interface between Bluetooth controllers and Bluetooth hosts.

31

Figure 7: System Architecture

Physical (PHY) Layer:
Controls transmission/receiving of the 2.4Ghz radio with Bluetooth communication
channels. BR/EDR provides more channels with narrower bandwidth, while LE uses
fewer channels but broader bandwidth.

Link Layer:
Defines packet structure/channels, discovery/connection procedure and sends/receives
data.

Direct Test Mode:
Allows testers to instruct the PHY layer to transmit or receive a given sequence of
packets, submitting commands to it either via the HCI or via a 2-wire UART interface.

Host to Controller Interface (HCI):
Optional standard interface between the Bluetooth controller subsystem (bottom three
layers) and the Bluetooth host.

32

Logical Link Control and Adaptation Protocol (L2CAP) Layer:
A packet-based protocol that transmits packets to the HCI or directly to the Link Manager
in a hostless system. Supports higher-level protocol multiplexing, packet segmentation
and reassembly, and the conveying of quality of service information to higher layers.

Attribute Protocol (ATT):
Defines the client/server protocol for data exchange once a connection is established.
Attributes are grouped together into meaningful services using the Generic Attribute
Profile (GATT). ATT is used in LE implementations and occasionally in BR/EDR
implementations.

Security Manager:
Defines the protocol and behavior that manages pairing integrity, authentication and
encryption between Bluetooth devices, and provides a toolbox of security functions that
other components use to support almost any level of security needed by diverse
applications.

Generic Attribute Profile (GATT):
Using the Attribute Protocol, GATT groups services that encapsulate the behavior of part
of a device and describes a use case, roles and general behaviors based on the GATT
functionality. Its service framework defines procedures and formats of services and their
characteristics, including discovering, reading, writing, notifying and indicating
characteristics, as well as configuring the broadcast of characteristics. GATT is used only
in Bluetooth LE implementations.

Generic Access Profile (GAP):
Works in conjunction with GATT in Bluetooth LE implementations to define the
procedures and roles related to the discovery of Bluetooth devices and sharing
information, and link management aspects of connecting to Bluetooth devices.

4.1.1.2 Bluetooth Security

To ensure communication via Bluetooth is secure, BLE achieves this by utilizing several
security features, the Bluetooth specification gives several features to cover the
encryption, trust, data integrity and privacy of the user’s data. The processes are
described as follows:

• Pairing - this mechanism is the process where devices involved in communication
exchange their identity information to set up trust and get the encryption keys ready
for future data exchange. Bluetooth has a few options in regards to pairing. In
version 4.0 and 4.1 of the specification, Bluetooth uses the Secure Simple Pairing
model (SSP) a form of public key cryptography this promotes an effective
mitigation strategy for Man-In-The-Middle (MITM) attacks. The devices will often
choose one method from the following: Just Works, Passkey Entry, Numeric
Comparison, and OOB.

33

• Key Generation - Keying BLE is performed by the Host on each device
independently. Key generation in BR/EDR is performed in the Controller. By
performing this on the Host, the key generation algorithms can be upgraded
without changing the device. The following keys are exchanged between primary
device and secondary device: Connection Signature Resolving Key (CSRK) for
authentication of data, and Identity Resolving Key (IRK) for the devices identity
and privacy. The two keys pub and priv key are generated in the host and a SSK
is generated by combining information from each device involved in
communication.

• Encryption - Bluetooth with LE uses AES-CCM cryptography. Both version of
Bluetooth perform some level of encryption. The LE Controller performs the
encryption function. LE generates 128-bit encrypted data from a 128-bit key and
plaintext data using the AES-128-bit block cypher
(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)

• Signed Data - This feature supports the ability to send authenticated data over an
unencrypted transport between two devices with a trusted relationship (see
pairing). In circumstances where the channel is not encrypted, the device could
still ensure the data authentication. To sign the data, BLE utilizes CSRK. The
sending device places a signature after the Data Protocol Data Unit (PDU). The
receiving side verifies the signature and, if the signature is verified, the PDU is
assumed to come from a trusted device. The signature is composed of a Message
Authentication Code generated by the signing algorithm and a counter. The
counter is used to protect against a replay attack and is incremented on each
signed Data PDU sent.

How Bluetooth Utilizes these Features to Protect Your Information The goal of the low
energy security mechanism is to protect communication between devices at different
levels of the stack. Below are commons types of attacks against various wireless
communication protocols, and how Bluetooth addresses them.

4.1.2 Health standard
While there are no standards for health that we are required to maintain, we would want
to be cautious considering our project is an indicator for overall health and capability of
the driver. So we must adhere to the given law of Blood Alcohol Content levels and ensure
those reported values are within a given tolerance. It must also be known that those
values are within that tolerance.
The BAC in Florida is 0.08 so in order to avoid errors in tolerance our implementation
should aim for a much lower value. By taking a “Better Safe Than Sorry” approach we
avoid any potential errors in regards to setting a tolerance. Our team has decided that
X.XX is an appropriate value as this will ensure the doors do not unlock and allow the
driver to do harm to property, himself, passengers, or pedestrians.

34

4.1.3 Design impact of relevant standards
The design impact of the Bluetooth standard affects us in some ways especially in regards
to the security.
How Bluetooth Utilizes these Features to Protect Your Information The goal of the low
energy security mechanism is to protect communication between devices at different
levels of the stack. Below are commons types of attacks against various wireless
communication protocols, and how Bluetooth addresses them.

4.2 Realistic Design Constraints
These are constraints that we may encounter in the real world. We would need to evaluate

these domains before proceeding into our design phase. It is important the project be an

achievable idea, and it needs to be within the realistic constraints set by these standards.

4.2.1 Economic and Time constraints

Obviously, we are limited by our budget and the time constraints placed on us from the

semester; however, we have also set completion milestones for ourselves. These would

be soft deadlines as we may encounter trouble with the development. Our team has

allocated slack time onto project milestones. Hard deadlines are unavoidable and must

be addressed.

4.2.2 Environmental, Social, and Political constraints

The social and political value of our product is enormous. Socially, receiving a DUI has

a tremendous impact on one's life. Many people have been arrested for DUI and with

very clean records the ramifications of receiving a DUI can stick around for years. Most

people are aware of the short term consequences of drinking and driving, which can

include a driver licenses suspension, very high fees and fines, and high insurance

premiums. However, there are also long term consequences associated such as, loss of

job opportunities, losing government clearance for jobs, loss of scholarship, or even

relationships. All of these can tailspin into a social nightmare.

That being said, while our product may be able save your social status long term and

short term. There are implications of utilizing the device without the need; such

questions may arise such as “why an individual would want to use this device?”, “does

this individual have a drinking problem?”, etc. We would like to constrain the device to

be unperceivable or at least latent.

4.2.3 Ethical, Health, and Safety constraints
As mentioned in our health standard we should be cautious with setting our limiting value
(BAC) too close to the legal limit. This very easily could cause harms to health and safety.
Our group also feels it has an ethical obligation to fulfil. If we can stop any potential
accidents from occurring, then we will have done a good job.

4.2.4 Manufacturability and Sustainability constraints
Most of the products we are working on are already heavily manufactured and are not

difficult to produce

35

5. Project Hardware and Software Design Details
5.1 Initial Design Architectures and Related Diagrams
To implement the BreathaLock system most effectively we have chosen components

based on many factors listed previously. Below we have an image of all of the major

components and breakout boards that will make up the bulk of the BreathaLock system.

Of course in final implementation we will need many other small discrete components.

5.1.1 Project Hardware Components

Figure 8: All components by letter

Part
Letter

Component Purpose

A) Adafruit Fingerprint Sensor Biometric fingerprint sensor
subsystem

B) Elegoo Uno R3 (Arduino 3rd Party
Board)

Microcontroller for testing

C) MQ-3 Alcohol Sensor Alcohol sensor component

D) Sparkfun Alcohol Sensor
Breakout Board

Breakout board to allow for
bread boarding

E) Adafruit Bluefruit UART Friend Bluetooth component for
Bluetooth subsystem

Table 18:Component descriptions

In our final implementation many of these components will be included in PCB which will

allow us to create a more concise and dense device. In the above image we include the

Elegoo Uno R3. This is because it allows us to interface with the microcontroller that we

will be using in our final implementation. Note that we will be using the open source design

of Arduino PCB for our project PCB. This will also be the case for the Sparkfun breakout

board.

36

5.1.2 Hardware Wiring

While investigating what our overall hardware will look like we need to investigate how to

connect all sensor to the Arduino to interface with the microcontroller effectively.

Discussed late in the individual components section we see the wiring of each individual

component to the Arduino. To keep our diagrams consistent, we will make most

connection point the same to reduce interference with testing and wiring. This will also

make it easier for us to debug any problems that we may have with the components later

in the prototyping phase.

Figure 9: Fritzing breadboard test wiring diagram

Figure 10: Breadboard testing of all components

37

Section Arduino Input Connection

Power
5V Breadboard Power Rail

GND Breadboard Ground Rail

Analog A0 Analog Output for MQ-3 Alcohol sensor

Digital

0 RX Fingerprint Sensor

1 TX Fingerprint Sensor

8 RTS Bluetooth Module

9 RXI Bluetooth Module

10 TXO Bluetooth Module

11 CTS Bluetooth Module

12 MOD Bluetooth Module
Table 19: Arduino Specific Connection

Figure 11: Fritzing wiring schematic

The above table and figure depict a clear representation of how we will interface our

microcontroller with the various components and sensors. It is important to test and verify

the amount of connection points that we will be using so that when we begin our PCB

design we will be able correctly interface. In the above diagrams and schematics, we are

making connections with female headers, breadboards, and raw wires. When we get into

the PCB design we will be able to eliminate these connection types and use the PCB wire

pours to make connections.

38

5.2 Bluetooth Subsystem
5.2.1. Bluefruit LE UART Friend (BLE)

For our Bluetooth component we choose to use a low cost Bluetooth module sold by

Adafruit. We chose this chip for a few reasons, it is cost effective, low energy, and

compact. The chip comes with EAGLE files and some instruction on how to test it which

will allow us to easily include its functionality onto our own PCB and ensure functionality.

Figure 12: Bluefruit LE UART Friend (BLE) external image

Onboard Processing ARM Cortex 16Mhz

Flash Memory 256KB

RAM 32KB SRAM

Baud Rate UART at 9600 Baud

Supply Voltage 5v-safe input with onboard voltage regulation

Dimensions 21 x 32 x 5mm

Weight 3.4g
Table 20: Bluefruit LE UART Specifications

5.2.2. Sensor Specific Operation

The Adafruit Bluefruit UART Friends is a BT 4.0 and BT 4.1 stack which was specifically

designed for low energy use. We intend to use Bluetooth simply as a gateway to

communicate between the BreathaLock system and a cellular device. Specifically, in

hardware implementation we will be including these components into our PCB design and

will have the BreathaLock constantly attempting to connect to a cellular device. Once

connected the BreathaLock will be controlled with both the buttons on the BreathaLock

but also Bluetooth commands from the cellular device.

5.2.3 Subsystem Implementation

To include Bluetooth as an asset to the BreathaLock we will need to include it first into

our hardware realization. This will be done by including the components and processing

into our PCB. This should be done without much stress aside from the connections to the

MCU to transfer data and to bring power to the sensor. Because the sensor operates

comfortably with a 5v input we will be bringing power to the sensor from the same output

of the 5v voltage regulator.

39

5.3 Biometric Subsystem
5.3.1 Sensor Overview

Adafruit Fingerprint Sensor

We chose a prepackaged fingerprint sensor simply because the focus of this design

project is to implement a device to ensure ease of use and accuracy to prevent drunk

driving, not to investigate image and digital signal processing of fingers. The Adafruit

fingerprint sensor has an onboard DSP chip and onboard flash memory to allow for

multiple finger prints to be stored.

Figure 13: Fingerprint sensor external image

Component Fingerprint Sensor

Supply voltage 3.6-6.0VDC

Operating Current 120mA max

Peak Current 120mA

Imaging time Less than 1 second

Interface TTL Serial

Dimension 56 x 20 x 21.5mm

Weight 20 grams
Table 21: Fingerprint sensor technical characteristics

5.3.2 Sensor Specific Operation

By understanding how our fingerprint sensor works we will be able to better implement its

full capabilities into the BreathaLock system. The fingerprint sensor operates in two

settings: enrolling and searching. Because the system has onboard processing and

memory it has the ability to read and save a fingerprint and register it into an onboard

database of users. Once the fingerprint is read and saved it will remain in memory until

deleted. Secondly the sensor can operate in the searching state. When the sensor

receives a search command it will read the finger on the sensor and cross reference it to

fingerprints already in the memory. The sensor will either confirm user with a confidence

score or fail the finger all together. These two operations combined with come other logic

can be very powerful.

40

5.3.3 Subsystem Implementation

To implement the fingerprint sensor successfully we will need to take some time

investigating the best way to save and read fingerprints for the application of drunk driving

prevention. The main operation is quite simple: read a fingerprint at the time the user

wants to get into their car and if the user is the correct owner then move onto the BAC

test. The main obstacle is regarding to when and how to enroll new users. We cannot

allow the BreathaLock to enroll new users at any time at ease because it would leave a

huge loop hole for users to enroll any user at the time they are drunk and need access to

their car. The best option would be to have to connect the BreathaLock to a computer

and enroll users as an administrative user. Another option would be possibly to create an

administrative password that can be entered into the android application to allow for new

user enrolling. Our final consideration would be if we want there to be multiple users

enrolled at a time or only 1. Either option would still result in user enrolling to be performed

at a time before trying to enter the car.

5.4 Breathalyzer Subsystem
5.4.1 MQ-3 Alcohol Gas Sensor

Figure 14: MQ-3 sensor external image and pin reference

Component MQ-3

Sensor Type Semiconductor

Target Gas Type Alcohol

Detection Range 25-500ppm alcohol

Heater Voltage 5.0V

Output Voltage 2.5-4.0V
Table 22: MQ-3 sensor technical characteristics

We chose to use the MQ-3 alcohol sensor because of its simplicity, sensitivity, and fast

response time. This sensor provides an analog output that can be read and analyzed by

a microcontroller to decipher the sobriety of the user.

41

5.4.2 Sensor Specific Operation

Figure 15: Sensor operation schematic

To implement a breathalyzer using the MQ-3 sensor it is important to fully understand

how the sensor operates. This sensor works by using a conductively sensitive material,

particularly SnO2 or tin dioxide. The tin dioxide changes conductivity with the presence of

alcohol in the air. When higher concentrations of alcohol exist in the air the conductivity

of the air gets higher and so does this sensitive material. By placing the tin dioxide in

series with a load resistor, the sensor is able to have an analog voltage read across this

load resistor that is dependent on the conductivity of the tin dioxide. After calibrating what

read values relate to blood alcohol levels we will have an accurate way to measure blood

alcohol concentration (BAC).

5.4.3 Subsystem implementation

Figure 16: Circuit analysis of sensor

𝑉𝑅𝐿 =
𝑉𝑐 ∗ 𝑅𝐿

𝑅𝐿 + 𝑅𝑇𝑖𝑛 𝐷𝑖𝑜𝑥𝑖𝑑𝑒

Equation 1: Output Voltage Analog read

To properly implement the breathalyzer subsystem, it is necessary to allocate some time

and effort into layout, placement and design to ensure we are reading accurate data. First

we need to make sure that we effectively power the sensor and choose the correct resistor

value to receive expected analog output and make sense of it. To power the chip, we will

42

need to bring 5 volts into pins 2, 4 and 6 in the figure x. This will be taken from the output

of a voltage regulator in the PCB design. Secondly we need to include a load resistor of

whichever value we choose to use. It is not important because it will only affect the analog

output which will need to be converted into a relative BAC but for the purpose of early

design we will choose RL = 10kΩ. The VRL pin from 1&3 to ground will be connected to

an analog read pin accessed by the microcontroller.

To read and make sense of this sensor we will need read an analog output that is relative

to the voltage across the load resistor. Unfortunately, because the conductivity of the tin

dioxide layer is unknown, due to variability among components and the dependence on

temperature, it would be impossible to calculate a perfect output based on the equation

above. With that said we will be able to see that our output will be dependent on the

resistor value chosen and that the value will be inversely proportional to the amount of

alcohol in the air. Our code should break this range of values into two cases: more than

0.08 and less than 0.08 BAC. Depending on which case the sensor reads will determine

if the user is over the legal limit and must be denied access.

5.5 Software Design
Software is an important component to an embedded system. It is not only about the
hardware required but it is also heavily about the software decided. Choosing the right
software for different stages of the development is not easy. There are various phases in
a project that determine the software naturally. However, with our existing framework we
were presented with several options for that incorporate various design methods. If we
do not correctly choose the right software approach progress will be stalled, or the team
will have to re-evaluate our projects requirements.

5.5.1 Programming Languages

One of the most important parts of a software solution is choosing the programming
language. Each language has its own unique characteristics that may come with their
own pros and cons based on the goals of the project. Choosing a language takes
knowledge of your requirements and goals. Through this section we will cover various
languages that we have considered for usage in the final deliverable.

5.5.1.1 Assembly

Assembly language (ASM) is a low-level programming language (bare-metal) that used
for embedded devices, or other devices that can be programmable. It is comparable to
computer architecture machine code instruction sets. Different assembly languages
correspond to various computer architecture; for example, the ARM processors would
use the ARM assembly language which utilizes sixteen user registers. They are all 32-
bits wide. Only two are dedicate; the others are general purpose and are used to store
operands, results and pointers to memory. Of the two dedicated registers, only one of
these is permanently used for a special purpose (it is the PC). Although this is useful to
know for ARM these instruction sets vary widely by architecture. It is not uncommon to
encounter assembly especially in devices that require minimal code footprint (processing
and memory).

43

Advantages

• Performant
• Minimal (memory wise)

Disadvantages

• Lacks readability
• Machine dependent
• Long code for simple programs

Conclusion

We decided that we will not use assembly for our project. The platform we are utilizing
does not require we use something so low level! We also fear that the code would become
quite unmanageable.

5.5.1.2 Python

Python might be at its strongest when used as a communication middleman between the
user and the embedded system they're working with. Sending messages through Python
to or from an embedded system allows the user to automate testing. Python scripts can
put the system into different states, set configurations, and test all sorts of real-world use
cases. Python can also be used to receive embedded system data that can be stored for
analysis. Programmers can then use Python to develop parameters and other methods
of analyzing that data and may further be used as a tool to assist developers.

Currently the main debate about the merits of Python comes down to what's more
important to your team: development speed or runtime speed.

In regards to the embedded libraries support for the embedded world is quite limited
python may still have some applicability in the world of scripting tools for development
purposes.

Advantages

• Readability
• Platform independent
• Multiparadigm and supports OO, procedural, and functional programming styles

Disadvantages

• Slow
• Limited embedded support
• Global Interpreter Lock (only one thread may access python data)

44

Conclusion

Python does not seem like a good fit for the final deliverable solution. However, there may
be room for helper scripts. Helper scripts may include test case scripts, installation,
building, compiling and various developer task.

5.5.1.3 Java (Android API)

While most Android applications are written in Java language, there is some fundamental
differences between the Java API and the Android API. Android does not run java
bytecode by the traditional JVM but by ART (android runtime). This code compiles the
code that ART runs to ELF (Executable and Linkable Format) executables which contain
the machine code. Java bytecode in JAR-files is not executed by the Android operating
system. Instead Java classes are compiled into bytecode which are executed on top of
the ART framework (see below)

Figure 17: Java ART framework

Dalvik has some specific characteristics that differentiate it from other standard VMs:
• The VM was designed to use less memory.
• The constant pool has been modified to use only 32-bit indexes to simplify the

interpreter.

45

• Standard Java bytecode executes 8-bit stack instructions. Local variables must be
copied to or from the operand stack by separate instructions. Dalvik instead uses
its own 16-bit instruction set that works directly on local variables. The local
variable is commonly picked by a 4-bit "virtual register" field.

Advantages

• Syntax is easy
• Readability
• Platform independent
• Garbage Collection via Memory Manager
• Only officially supported language for Android
• Very good documentation

Disadvantages

• Large memory footprint
• Slow (often slower by a factor of 20-50x compared to other languages)
• Consistently burdened with security issues in the JVM

Conclusion

Java will be utilized for our project as it is the go-to solution for any android application
engineers wish to build. There are a few stacks we will utilize for this project with regards
to the Java toolchain:

• Bluetooth
• Android API

5.5.1.4 C

C is a general-purpose, imperative (changes a program’s state) computer programming
language. By design, C provides constructs that map efficiently to typical machine
instructions, and it is the reason it is so heavily used right now. Developed by Dennis
Ritchie an engineer at Bell Labs during 1970’s, and used to re-implement the Unix
operating system. Then embedded C is a subset of the C language, and the embedded
C world requires a new set of libraries that vary across architecture similar to assembly.
However, the overlying syntax of the language remains and maintained the same and
introduces some more higher-level concepts as well. Such as, the main() function,
conditional statement, loops, strings, arrays, bit operations, etc. these operations remain
unspecific to the architecture. C is one of the most widely accepted and follows several
standards (see standards) such as C has been standardized by the American National
Standards Institute (see ANSI C) and subsequently by the International Organization for
Standardization (ISO). This ensures the language is portable.

C also has a wide variety of tools that can be used to build software around it. There are
many different support tools; such as, compilers and cross-compilers, IDE’s and
hardware.

46

Advantages

• Use standard C syntax
• Higher-level than assembly but close enough to hardware languages to be efficient
• Portable
• No VM (like Java)

Disadvantages

• No garbage collection (possibly a positive if done correctly)
• Steep learning curve (similar to assembly)

Conclusion

For this project C will be use less frequently in the traditional sense. As we will be primarily
using C++ for the Arduino board (see next section x.x.x.5).

5.5.1.5 C++ (avr-g++ toolchain)

C++ in general is just “C with Classes” in the traditional sense following a object-oriented
paradigm. Created by Bjarne Stroustrup during his Ph.D thesis, Bjarne set out to create
a language that was C and supported features of objects, classes, inheritance and
subclasses.

The Arduino platform fortunately utilizes C++ with some domain specific libraries, that is
built with the avr-g++ toolchain. These add on various features such as functions that
allow you to map to specific features on the board. Without these functions the layers of
abstraction would need to be manually written with special registers.

47

Figure 18: C++ Flow Chart

Advantages

• Object Oriented
• Readability
• All the positives of C
• Garbage Collection (contributes to bigger footprint)

Disadvantages

• Bigger footprint than C
• Doesn’t provide strong type-checking. The codes are prone to errors.

48

Conclusion

Since out of the box Arduino supports the libraries that are based on C++ this will be our
primary workhorse for this project's logic. We will be heavily utilizing the Arduino avr-g++
compiler. We also feel this is a good fit as C++ and Arduino are both documented quite
well.

5.5.2 Integrated Development Environments

An Integrated Development Environment (IDE) are designed to assist the developer by
increasing productivity, efficiency and accuracy. An IDE provide many components often
presented in the form of graphical user interface (GUI) where all development can be
accomplished. These environments often provide features such as, modifying, compiling,
deploying, debugging, code completion, code folding and much more. It was integral our
team chose a development environment that suited our needs so that we could become
an effective team of engineers and increase our productivity. Contrasting this by using
standard text editing software and using a compilers mentioned above with long winded
build systems that have many command line parameters to get the desired results.

However, deciding on an IDE is not an easy task as there is a lot of noise on the market
for various ones; however, we managed to dwindle this down to two tools that will help
support us in our final deliverable.

5.5.2.1Eclipse

Eclipse is one of the most versatile IDE’s that currently exist; albeit, old the IDE is still one
of the most used IDE’s for a wide variety of supported languages and fortunately for us
all of the languages mentioned in section 2.2.1 Programming Languages are supported.

Eclipse has some very well thought out refactoring capabilities that work well, and great
documentation capabilities. The IDE has several features that makes it attractive to us
such as code completion, templating, integration with version control and build systems.
Its code formatting and cleanup tools are very well done. We also found that its build
system works well for our needs.

Eclipse has a few add-ons that we should be able to utilize for this project. They are the
Android ADT Plugin and the AVR-Eclipse plugin with both of these we will be able to
develop for both Java Android and Arduino.

AVR-Eclipse Plugin

The AVR-Eclipse plugin includes CDT which provides a fully functional C and C++
integrated development environment built on to Eclipse platform. The CDT plugin has
many of the same features that eclipse does; such as, project creation, managed build
for various toolchains, standard MAKE build, source navigation, call graphs, browser, and
macro definitions, code folding and hyperlink navigation, visual debugging tools like
memory, registers, and disassembly viewers.

49

The AVR plugin itself is a cross platform code builder. It nearly platform independent and
supports our platform so this is not a flaw. The AVR plugin includes the required
toolchains, debuggers, and frameworks that work on most popular platforms. Below is an
image of the Eclipse IDE utilizing the AVR plugin with code involved.

Figure 19: Eclipse IDE

ADT Android Plugin

Android Studio is the official Integrated Development Environment (IDE) for android app
development, is for the eclipse IDE and provides. It was created to give developers a one
stop shop for a development environment in which to build Android applications. It
extends the current capabilities (listed above) and allows developers to build android
projects with a user interface. Developers can also add libraries from the ADT toolchain.
It extends the capabilities of Eclipse to let you quickly set up new Android projects, build

50

an app UI, debug your app, and export signed (or unsigned) app packages (APKs) for
distribution.

Figure 20: Eclipse ADT Plugin

Advantages

• Cross Compatible
• Multiple Languages Supported
• Many Modern IDE Features

Disadvantages

• Documentation is lacking
• Preferences overload
• No out-of-the-box configuration
• Outdated
• Unsupported

Conclusion

The Eclipse IDE overall is great, however, it has been outdated for a while now especially
in regards to Android Development. Android Development has been usurped by Android
Studio created by Google built on top of IntelliJ IDE (discussed later)

5.5.2.2 Arduino IDE

The Arduino IDE contains a text editor for writing the codes, a text console, toolbar with
common methods and view details. It connects to the Arduino hardware in order to upload
and flash programs onto the board. The IDE can also simultaneously debug and
communicate with the platform.

51

Programs written in this IDE are called sketches. The developer composes these
sketches in the text editor and are saved as with the file extension.ino. The editor has
very basic features such as, cutting/pasting and for searching and replacing text. The
Message are connected with the Arduino platform and gives feedback regarding errors
and warnings. These error messages are also displayed in the console windows. This all
gives useful feedback for development.

Figure 21: An opened sketch

Advantages

• Default Development Tool
• Simple to use

Disadvantages

• Limited to single sketch
• No project viewer

Conclusion

For most simple projects we will be probably utilize this it is a very light and easy to use
IDE. This would be ideal for debugging and testing small programs.

52

5.5.2.3 Android Studio

Android Studio is currently the official Integrated Development Environment (IDE) for
developing Android applications, the platform is built on IntelliJ IDEA. The IDE has some
very powerful features. The interface is one of the cleanest and most user friendly IDE
we have seen. The Android Studio IDE run very quickly and offers a responsive interface.
The IDE also offers a variety of analytical tools that help the developer with analyzing
code before delivery. The Android API, is included out of the box with the IDE so there is
little to no configuration in setup and installation. Android Studio also highlights potential
bugs you may experience in your code at runtime or compile-time. This streamlines the
development process.

Figure 22: Android Studio IDE

1. Toolbar
2. Navigation toolbar browse hierarchically
3. Main editor window
4. View toolbar can modify the user experience
5. Navigate various tools such as debugger or console
6. Status bar giving valuable information regarding startup

53

The Android studio has a very flexible means of prototyping with an emulator called

Android Virtual Device (AVD) this virtual device allows you to run your android app on a
variety of different android platforms such as android TV to android phones

Figure 23: Selection screen for Android devices

Figure 24: AVD emulating an android device

54

The Android Virtual Device simulates a device and displays it on your development
environment. This allows the developer to quickly prototype, develop, and test Android
apps. This is done without the using a physical device. As mentioned above AVD supports
Android phones, wear, Android TV, and tablets. It comes with all the device metadata
required to begin rapidly prototyping. However, while this feature is useful it does suffer
from performance issues and is not comparable to the physical device performance wise.
Android Virtual Device also has a very slow startup time, this can be mitigated by having
the emulator running in the background and pushing your development apps to the
existing/running emulator.

Advantages

• Included Build System
• Feature Rich Emulator
• Unified environment where you can develop for all devices
• Develop and Prototype without the hardware device
• Out-Of-Box setup no configuration

Disadvantages

• Emulator is very slow

Conclusion

Android Studio seems to fit our needs very well for our Android development purposes.

55

5.5.3 Functional Requirements

5.5.3.1 Main Functionality

Figure 25: Handheld Device Functionality

56

Figure 26: Android Device Functionality

5.5.3.2 Technical Functionality

No: 1

Statement: The user should be able to connect to the Breathalyzer with their
phone

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 23: Technical Functionality 1

57

No: 2

Statement: The handheld Breathalyzer device should be able to toggle car locks

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 24: Technical Functionality 2

No: 3

Statement: Android app will collect data from device and log it for personal or
liability use

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 25: Technical Functionality 3

58

No: 4

Statement: The breathalyzer register as pass based on +/- tolerance

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 26: Technical Functionality 4

No: 5

Statement: Placing the fingerprint give the user access to the device

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 27: Technical Functionality 5

5.5.3.3 Software Requirements
During running of the Android application

• The user is prompted for more

• Data should be stored on the android device

• If the android application fails to connect to the BreathaLock device it should

During the running of the BreathaLock device
• The user must be able to toggle the car door locks

• Should be independent of the Android device in that it does not require an android
device in order to work it is merely supplementary

59

• A location must be provided and the location must either be a 5 numerical digit zip
code or in city, state/province, country form.

• If there are data integrity issues we should prompt the user to retry

5.5.3.4 Interface Requirements

• The Android user interface should be simple to use

• The list of data should be displayed in a ListView (Figure XX)

• The queries asked of the users will be presented with Dialog boxes or module
windows (Figure XX)

• In order to maintain aesthetic appeal we should utilize Google's Material Design
standards.

Figure 27: List View

Figure 28: Dialog window example

60

5.6 Summary of Design
The overall design summary includes the use of all sensors collaboratively to create the

decision of whether or not the correct user is sober enough to drive a vehicle in the legal

limit. To do so our microcontroller will first be taking readings from our fingerprint

subsystem and alcohol sensor subsystem. Once these two input are taken, using our own

code, we will determine what we will output to the user through the use of the android

device and also allow the ability to unlock the vehicle.

Figure 29: Flowchart of system hardware implementation

Overall implementation will follow the above designs and components connected as

shown. We intend to prototype and design this device seamlessly with little to no

complications.

61

6. Project Prototype Construction and Coding
6.1 Integrated Schematics

Figure 30: Eagle Schematic of Bluetooth Module

Figure 31: Eagle Schematic of alcohol sensor breakout board

6.2 Parts Acquisition
During the prototyping process it is necessary for us to have components to test and verify

our design is functional. Initially we will be working with mostly connection of already

working chips and manually connecting together to work as a system. Once our initial

breadboard tests are complete we will order our PCB and begin verifying that our PCB

works the same way by populating the board with all of the various components.

6.2.1 Adafruit

For many of our larger chips and components Adafruit will be very useful as they offer

components at a good price with full support including schematics and many time tutorials

and test designs. Adafruit is the supplier that we chose to order our fingerprint sensor and

also our Bluetooth chip from. We also value Adafruit because their name is very large

and therefor they many times have libraries, header files, and even component diagrams

62

for many programs that we will be using during our design. Aside from electrical

components Adafruit also offers tools to populate our boards and test including soldering

equipment, wires, wire strippers etc.

6.2.2 Sparkfun

Sparkfun is also another great option for larger components and build support. Sparkfun

is a very large seller that has everything from components to books and even a blog

section. The alcohol sensor that we chose to use is only sold by Sparkfun. They also

include test support, a break-out board add on, and some comments on other user’s

experience. Another great advantage to using Sparkfun is their inclusion in Fritzing

software. Fritzing has an entire library on components sold by Sparkfun that is very useful

for schematic creation.

6.2.3 Digi-Key

Digi-Key is the fourth largest electronic component distributer in North America and a very

organized marketplace for PCB and breadboard testing shopping. Digi-Key will most likely

by our largest supplier of surface mount and through-hole components to populate our

PCB and also do breadboard testing. Many other component companies that sell surface

mount components sell only very large quantities of particular components whereas Digi-

Key will allow us to purchase relatively low quantities for our PCB population.

6.2.4 UCF

Our final resource for parts is our very own school. UCF has many labs on campus and

also has the TI innovation lab that carries many components. In addition to components

we will need to gather as we design the BreathaLock schematic there are many

components that we have already acquired throughout our courses with lab sections. For

example, we already have an LM7805 voltage regulator, some resistors, capacitors, and

various IC components that may prove to be useful in the breadboard prototyping stage.

6.3 PCB Design
To create the densest and reliable device we will need to design and have a printed circuit

board made. Not only is this a requirement of this project but it displays full competence

and understanding of electrical components working together in a system. Designing a

printed circuit board is very time consuming and requires a lot of attention to detail. One

incorrect wire trace can leave a circuit open and leave part of your board without use, on

contrarily a short can burn and destroy components. To successfully design a functional

PCB we will use the help of a PCB board software that will give us the best experience

and best PCB design.

6.3.1 EAGLE

Eagle PCB design is a commercial software used for schematic creation and board layout

used by many PCB designers. It allows for an extensive list of features to assist in

prototyping and production level PCB boards. Fortunately, as students we are able to use

this great tool with a slightly limited student version for free. In addition to the cost there

are extensive video tutorials, workshops, and learning tools to get started with Eagle.

63

Finally, Eagle is our preferred platform because most all open source hardware supplies

Eagle schematics free of charge allowing us to combine many of the component boards

without having to reverse engineer to design our own circuits for chips like out Bluetooth

communication chip. In addition to PCB schematic and layout editing EAGLE has recently

added a feature that allow the designer to go through parts included in the schematic and

add them to a virtual shopping cart to then be linked to a distributor.

6.3.2 National Instruments Ultiboard

Another PCB layout software considered is National instruments Ultiboard. One

advantage to Ultiboard is that at UCF NI Multisim is the preferred circuit analysis software

and therefor out team has extensive experience with Multisim. Together Multisim and

Ultiboard are a complete circuit design solution that would be capable of PCB layout and

routing for our project. For this particular project we find it to be unattractive because

although circuit design is very fluent for our team PCB design is quite new and Ultiboard

is not as user friendly and simple as we would life. In addition, getting Multisim and

Ultiboard is not free and even to get a student version would require purchase of the

student software.

6.3.3 AutoCAD

Our final consideration for PCB design software is to use AutoCAD. The primary

advantage of this option is that Autodesk is extremely generous with their software to

students. Once creating a student account, Autodesk offers a student limited version of

almost all of their software option including AutoCAD. In addition to the availability, there

are extensive tutorials on using AutoCAD which would make adapting to their platform

relatively easy. The largest drawback to this option is that AutoCAD is not the industry

standard for PCB design and may not allow us to design as complex and intricate PCB

layouts.

6.4 PCB House
Depending on the complexity of the PCB and the size we will need to find the most cost

effective and timely PCB house to implement the BreathaLock. It is important that we plan

to print multiple boards in case of print error or hardware testing and modifications.

Unfortunately, it is not likely for us to need more than 10-15 boards which is considered

low order quantity which forces us to pay a premium for each board. For our particular

design and hardware specifications we are considering PCBWay, Elecrow, and Seed

Studio as our primary PCB house options.

6.4.1 PCBWay

PCBWay is a Chinese manufacturer that seems to offer reasonable products at a very

low price point. This is good for us because we are trying to prototype and implement this

device as cost effectively as possible. In addition to a very low price point PCBWay is

most likely our fastest option to receive out PCBs from the time we submit an order.

Although some poor reviews in regards to sloppy silk screens and some sloppy vias they

seem to be a good low cost option.

64

6.4.2 Elecrow

Elecrow is also a Chinese manufacturer that is popular for PCB fabrication. Although none

of our team has experience testing products from Elecrow after some research and past

customer reviews we have concluded that Elecrow has good customer support, and

supplies a slightly higher quality product and a slightly higher cost.

6.4.3 Seed Studio

Seed Studio, although widely used for low price PCB fabrication, is our least attractive

PCB house due to its poor customer reviews and wait time to receive product after order

submission. We find Seed Studio to be not as impressive as Elecrow or PCBway although

further consideration will be taken once final PCB schematic and layout are finalized.

6.5 Construction
Soldering is an extremely powerful tool that almost all engineering disciplines have some

experience with. As far as electrical engineering is concerned soldering is the process of

joining two or more pieces together with a filler metal composed of metals with lower

melting points than the components to create and electrical passage.

Following the design and receipt of etched PCB boards it will come time for us to populate

our board with our components. There are two primary methods that could be used to

populate our PCB board: manually hand soldering individual components one at a time,

or reflow oven. Both have they’re advantages and disadvantages so it is important to

investigate which option we choose to populate our PCB with.

6.5.1 Hand Soldering

The most straightforward and cheapest way for us to populate our boards is to manually

solder each individual component at a time using a soldering iron and the filler metal

previously mentioned commonly referred to as solder. This method is great because it

can be done anywhere that you have a standard wall outlet and a soldering iron, which

most members already own. We can work in pieces, take breaks and work at our own

pace. The drawback to this is that it is extremely time consuming since every component

requires its own attention. Also this process is quite messy and depending on the

experience of the person making solder joints can lead to variable error. Although this

method may not be used to populate the entire board it is a complete necessity to be

used when creating the BreathaLock in the event that we need to change components or

add features for hardware testing. Fortunately, our team has some experience soldering

and also has many tools to assist in soldering and populating our PCB board.

6.5.2 Reflow Oven

Another option to populate a PCB board is with the use of a reflow oven. The advantages

of a reflow oven are that it is less time consuming and many times results in a cleaner

more professional looking solder joints. To effectively use a reflow oven the PCB is laid

out and components are placed onto desired pads with solder paste, a mixture of solder

and flux. Once the board has components placed correctly the entire board and

components are heated and once the optimal temperature is reached the solder will melt

65

creating electrical paths for all components. The largest downfall to this method for

populating the BreathaLock PCB is that we do not have access to a professional solder

oven and would most likely have to resort to hacking a toaster oven and hoping that it

works effectively. Although this may give us a more professional appearance and might

save time the risk of failure and additional parts required to create an over and solder

components make this option quite unattractive.

6.5.3 Types of Mounting

When considering how we plan on designing our layout and how we would like to populate

our PCB we need to decide as to whether we want to use through-hole mounting or

surface mount technology (SMT). Through-hole mounting was standard until the 1980’s

when SMT became the standard. The primary advantage to through-hole mounting is

durability for mechanical stress and reliability. Although BreathaLock does not need to

withstand very much mechanical stress we will most likely chose to use through-hole

mounting for any connectors and our power connections. As far as the other small

components (i.e. resistors, capacitors, LEDS) we will chose to use surface mount to save

time, space, and save cost in PCB manufacturing.

 Through-Hole Surface Mount

Strength Great Good

Assembling Speed Very Slow Fast

Fabrication Cost High Low

Size Large Small
Table 28: Component mounting comparison

6.5.4 TI Innovation Lab

One great resource that UCF student have access to for the PCB construction in the

Texas Instruments innovation lab located on the first floor of Engineering II on UCF main

campus. This lab provides students with equipment to create prototype boards such as a

good soldering station, oscilloscopes, DMMs, various components and much more. Not

only does it offer various tangible goods that will assist in PCB construction but

professionals including professors and trained advisors also monitor it. This lab will

become increasingly important as we come to build and populate our PCB.

66

6.6 Final Coding Plan
PERT chart
As shown previously this was the agreed upon timeline

Spring 2017, EEL 4915L: Senior design 2

Date

1-9 to 1-20 Class begins, start building prototype

1-21 to 3-27 Test prototype

3-28 to 4-4 Order PCB

4-5 to 4-21 Troubleshoot and finalize design

4-22 to 5-02 Prepare final documentation and presentation

Table 29: Tentative Deadline for Spring 2017

67

Figure 32: Tentative Deadline for Spring 2017

68

7. Project Prototype Testing Plan
After researching and obtaining our desired devices it is important to test them individually

and as a final prototype before moving into the PCB design and final design of the

BreathaLock system.

7.1 Hardware Test Environment
Creating a hardware test environment with specific constraints and controls is necessary

to ensure repeatability and debug problems we may run into during the testing process.

We specify this environment based on our access to limited resources and also on how

strict and important a certain test it.

7.1.1 Power Supply

While testing individual components and systems working together it is extremely

important to have a controlled power supply and other controls to eliminate as much error

as possible. Our team will be designing our subsystems under certain conditions to

perform to each power level. For the purpose of hardware testing we will be using a power

supply provided by UCF labs for official data and will use batteries or USB power for small

scale testing at our homes.

7.1.2 Car Access

For the purpose of testing and demonstration we will be using an untampered Ford F150

provided by a group member that will be tested regularly with a stock Ford key FOB to

ensure that the vehicle is performing as expected to native instruction. Due to the fact

that we don’t have access to any of the car computer or software we will need to rely on

simple pass/fail when commands are made by BreathaLock according to if the door

unlocks or not when signaled.

In addition to pass of fail or fail base on the entry of the vehicle we will also need to test

and make sure that the range of the key FOB is unaffected by our implementation. It is

expected that the only thing we will be tampering with is the power supply of the key FOB

itself and therefore we should not affect the range but we need to keep in mind that we

are trying to maintain the same quality of industry standards that are expected by

customers.

7.1.3 Cellular Devices

In efforts to avoid running into issues with our Bluetooth subsystem, as Bluetooth can be

quite tricky sometimes, we will also test the cellular devices before interfacing with the

BreathaLock system. Two of three group members use android phones which we will be

using for initial and also final testing. Before any testing with the BreathaLock system we

will be routinely connecting and disconnecting to other Bluetooth devices to confirm that

the cellular devices are working properly and will create a good connection to the

BreathaLock.

69

7.2 Hardware Specific testing
To create the best quality and functioning device we will need to verify and check that all

individual subsystems and components are functioning properly. To do so the following

section discussed how to connect each individual component to an Arduino and test it for

functionality.

7.2.1 MQ-3 Alcohol Sensor

Figure 33: Alcohol sensor test circuit

To successfully ensure that our alcohol sensor is functioning properly we will need a

specific test environment for the sensor alone. By connecting the MQ-3 to an Arduino

UNO board we can simply read values by printing to a serial monitor on the computer to

view the analog values discussed previously. Specifically, in the code provided below we

are interested in the analog read pin to the Arduino that we set to pin A0. This pin is

connected to the output of the alcohol sensor previously discussed that is a voltage read

on the load resister.

Figure 34: Alcohol sensor test code writing in Arduino IDE

The above image displays example code to test the alcohol sensor by viewing the output

in the serial monitor. Using Arduino IDE this simple set of code will read the analog values

70

coming into pin0 and print them into the serial plotter continuously. When we introduce

the presence of alcohol into the sensor we expect to see the values in the serial plotter to

decrease and increase again once the alcohol is removed. Attached below is a screen

capture of the serial plotter output of the alcohol sensor when alcohol is introduced and

taken away.

Figure 35: Alcohol sensor test output

7.2.2 Adafruit Fingerprint Sensor

Although the fingerprint sensor that we are using is prepackaged it is important to test

and verify expected functionality. There are two ways that we can test the fingerprint

sensor: via its native interface supplied by the manufacturer (SFG Demo), and controlling

the sensor with Arduino commands. To successfully test this sensor it will be easier to fist

ensure functionality with the native software and secondly manipulate the sensor through

the Arduino.

Figure 36: Fingerprint sensor test circuit

71

As previously mentioned in the description of the fingerprint sensor there are two ways to

interface with the Adafruit fingerprint sensor. To test the sensor for our application we will

be interfacing with it first with the native software provided by the manufacturer to initially

verify its functionality and secondly with Arduino code to verify its functionality and

customizability. We will ultimately be controlling the module without use of a computer so

the native application will not be user officially but it is the simplest way to quickly check

functionality.

SFG Demo:

SFG demo is the native windows application that allows interfacing with the fingerprint

sensor. This application is simple and nice to use. First we must connect the fingerprint

sensor to the Arduino as show in figure x above and tell the Arduino to use these pins as

communication directly to the computer through USB using the following code sequence:

Figure 37: Arduino IDE code to bypass the Atmega328P Chip

After bypassing the ATmega328P chip on the Arduino we can connect the Arduino to the

computer and launch the SFG Demo application to connect to the fingerprint sensor.

Once the application is open simply select open device and select the COM port the

Arduino is connected to (for this case COM 4).

Figure 38: SFG Demo 1

Once confirmed SFG Demo should alert you with “Open Device Success”. The device is

now connected and interfacing with the desktop computer.

72

Figure 39: SFG Demo 2

Once this is complete we can match, add, search, and delete users.

Figure 40: SFG Demo 3

Arduino IDE:

After verifying that the fingerprint sensor can interface with the windows software, SFG

Demo, we will test that it can interface through the Arduino. Adafruit has example code

library and libraries written available and once we include them into the Arduino IDE we

can call them with ease. We first conned the fingerprint sensor as shown above. Once

we connect the Arduino we can open various sketches provided by Adafruit and run

them to verify the sensor is working. Attached are some images of the serial monitor

outputs:

We first open the “enroll” sketch provided by Adafruit to verify that the sensor if found

and test to see if it can enroll a new fingerprint

Figure 41: Arduino IDE Output 1

73

We will enter the number 5 to test if the sensor will save a model

Figure 42: Arduino IDE Output 2

Once entered in the serial monitor we can place a finger on the sensor and wait for the

sensor to get a reading and save the input.

Figure 43: Arduino IDE Output 3

If the sensor is working correctly the above output will be shown. The sensor has now

enrolled that fingerprint to model #5.

Finally, we upload and run the “fingerprint” sketch to verify that the sensor can read and

reference a fingerprint.

Figure 44: Arduino IDE Output 4

The above image shows that the sensor read and confirmed that the fingerprint read is

indeed #5 and with a confidence level of 143.

74

7.2.3 Bluefruit UART Friend Bluetooth Module

An essential part of our project is the use of Bluetooth. Because it requires the connection

between two devices it is the most important device for us to test before continuing with

our design procedure and implementing it into our final PCB design. We will need to apply

slightly more focus and time into testing the Bluetooth component because to confirm that

it is working as intended we will need to power the device, compile and run Arduino code,

and then find and connect to the Arduino using an additional device. The company that

we purchased this device from supplies some support and instruction on how to use and

test this device. We intent do reference their materials to make the process easier and

more efficient keeping in mind that we don’t want to waste time developing ways to test;

we simply want to verify its functionality. We choose the wiring diagram seen below and

then specify which pins are to be considered later in the Arduino code.

Figure 45: Bluetooth component test circuit

The Bluefruit UART Friend Bluetooth chips has a few different pin that need to be

connected to the Arduino to work properly described in depth previously in the component

section; here we are mostly interested in only the TX and RX pins. The TX and RX allows

for UART transmission and receipt between the Arduino and Bluetooth component. We

will define these in our test code as pins 9 and 10.

Test Procedure: Once wiring the Bluetooth breakout board we will first test it for basic

functionality to help us understand the operation of the chip and also verify that the

module is functioning properly. As previously discussed, Adafruit supplies support for

most all components and particularly this component. We will first load example code in

Arduino IDE and make sure that works before writing our own source code to have the

module do what we need for the BreathaLock.

75

7.2.4 Key FOB

Unfortunately, there is no open source hardware designs or many resources for how and

what the key FOB uses to unlock the car. We do instead have 3rd party working key FOBs

that we can attempt to reverse engineer to work for our project. We plan to visually

analyze the PCB, following traces and hoping that there are no hidden vias. Once we can

create a schematic with confidence we will program the FOB to the car, de-solder the IC

from the FOB and connect it to a breadboard with the schematic build on it. If we can re-

create this FOB we will include this schematic into our final PCB design.

Figure 46: Image of internal PCB of key fob

As far as main functionality of the key FOB is concerned we will need to program the

FOBs that we will be testing with to the specific car that we will be using. Part of the

reason that we choose this remote and vehicle is because of its ability to be programmed

quickly and effectively. The test procedure below is provided to explain the sequence to

do so with this particular vehicle.

 Procedure

Step
1

Unlock all of the doors using the power lock switch.

Step
2

Cycle the ignition from OFF to RUN 8 times within a period of
10 seconds. The doors should lock at the end of the 8th cycle
to confirm programming mode

Step
3

In a period of 20 seconds press any button on each remote that
will be programmed. The door locks will cycle each time to
confirm.

Table 30: Procedure for programming key FOBs

After complementing the above sequence our key fobs will be programmed to work with

our test vehicle. We will now move forward with testing and designing the PCB to function

the same as this remote. Our main goal would be to replicate the PCB design into our

own PCB and then simple de-solder the IC from the remote and solder it to our

BreathaLock system which will be pre-programmed to the car.

76

7.2.5 Linear Voltage Regulator

To supply power to the overall BreathaLock system we will be using a 9v battery because

of its size and capacity. In order to power our processor and sensors we will need to have

an output voltage of 5v and also 3v. To do this we will be using a LM7805 linear voltage

regulator, and LT1761ES5-3 linear voltage regulator. Before including these components,

it is important to test it to verify expected characteristics. To illustrate specific testing, we

will be using NI Multisim and also a physical test with a portable digital multi-meter.

Figure 47: LM7805 linear voltage regulator test circuit

Figure 48: LT1761ES5-3 linear voltage regulator test circuit

7.3. Software Test Environment

Both the functionality of the hardware (Bluetooth, transceiver, and breathalyzer) and
software (Android OS, application, and underlying code for previously stated hardware)
will be included in testing. As we are not guaranteed ideal conditions with various forms
of communication. Our testing environment will include a vehicle (to test the unlock and
lock functionality) an Android device, and our BreathaLock and we will need to make sure
they work in various conditions of connectivity (outside, indoors, etc). The engineers will
handle the responsibility of testing the devices

77

7.4 Software Specific Testing

7.4.1 Introduction

It is imperative that we test the software for this device. Therefore, we have developed a
testing plan that we feel meets the needs for the rigor of this project. This section will
focus on the testing plan for the software side of our project BreathaLock. Our group felt
it was important to identify the overall objective of the testing environment, the stopping
conditions, and the individual test cases for BreathaLock.

7.4.2 Overall Objective for Software Test
We expect the test plan to allow the engineers to deliver a successful product that works
in various conditions of connectivity and provides a way of mitigating DUI’s and traffic
accidents that involve individuals being under the influence.

7.4.3 Stopping Criteria & Testing Method
If errors are determined during testing, these bugs will be noted in the developer’s weekly
activity log. If the developer is assigned to the component that failed, the developer may
fix the component immediately. Otherwise, the developer should inform, in a timely
manner, the developer(s) responsible for the component of the test conditions and test
results.

When testing functionality of a module test cases are written before the code itself; at that
point, they are impassable. Code is written specifically to pass a given test case. When
the written code successfully passes the test, the passing code is refactored into a more
elegant module – without introducing any new functional elements.

By using this Test Driven Development (TDD) strategy we can improve our iterative build
process in the following:

• It facilitates easy maintenance and helps alleviate scope creep

• Encourages granularity in testing; it is guaranteed that every standalone piece of
logic can be tested

• Since test cases are written first, other programmers can view the tests as usage
examples of how the code is intended to work

If a component is deemed complete, the developer(s) responsible for the component
should notify the project manager in a timely manner. If the project manager deems
necessary, a component may be sent back for further testing or development.

At the end of the project's lifecycle, all test cases will be run against the total code base
to verify the functionality of the app. Communication errors will take priority over any
cosmetic errors, these are more defined test cases, and the final project depends on full
functionality of communication. The Software should complete all of the test cases for
each module to ensure no functionality was loss by changes.

78

7.4.4 Description of Individual Test Cases

Test No. 1

Test Objective Connectivity (BreathaLock to Android)

Test Description Does the Bluetooth module (hardware) connect to the
android app

Test Conditions 1. Open app
2. Connect
3. Receive Bluetooth address

Expected
Results

Bluetooth module successfully communicates its 48 bit
address to the android device

Table 31: Description of Individual Test Case 1

Test No. 2

Test Objective Connectivity (BreathaLock to Car) (w/o fingerprint or breathalyzer)

Test Description Does the BreathaLock device communicate to the car and locks
the door

Test Conditions 1. Activate the device
2. False-Positive on BAC pass
3. Observe if door locks

Expected
Results

BreathaLock successfully toggles the car door locks.

Table 32: Description of Individual Test Case 2

Test No. 3

Test Objective Connectivity (BreathaLock to Car) (w/o fingerprint or breathalyzer)

Test Description Does the BreathaLock device communicate to the car and the door
unlocks

Test Conditions 1. Activate the device
2. False-Positive on passing BAC
3. Observe if door locks unlocks

Expected
Results

BreathaLock successfully unlocks the car door locks.

Table 33: Description of Individual Test Case 3

79

Test No. 4

Test Objective BreathaLock Breathalyzer Sensor (Passing) (w/o fingerprint)

Test Description Does the breathalyzer register as pass based on +/- tolerance

Test Conditions 1. Receive False-Positive for fingerprint
2. Blow into Breathalyzer
3. IF BAC is lower than acceptable value
4. Register a PASS

Expected Results This will be indicated on the device as a PASS

Table 34: Description of Individual Test Case 4

Test No. 5

Test Objective BreathaLock Breathalyzer Sensor (Failing) (w/o fingerprint)

Test Description Does the breathalyzer register as pass based on +/- tolerance

Test Conditions 1. Receive False-Positive for fingerprint
2. Blow into Breathalyzer
3. IF BAC is higher than acceptable value

5. Register a FAIL

Expected Results This will be indicated on the device as a FAIL

Table 35: Description of Individual Test Case 5

Test No. 6

Test Objective Fingerprint Access (passing)

Test Description Does placing the fingerprint give the user access to the device

Test Conditions 1. Add User fingerprint to memory as passing
2. User apply fingerprint to reader
3. Register a pass

Expected Results The device should allow the user to proceed to the next step
(breathalyzing)

Table 36: Description of Individual Test Case 6

80

Test No. 7

Test Objective Fingerprint Access (failure)

Test
Description

Does placing the fingerprint give the user access to the device

Test Conditions 1. Add user A to memory
2. Allow user B to apply finger to reader
3. Device should register as a failure.

Expected
Results

The device should NOT allow the user to proceed to the next step
(breathalyzing)

Table 37: Description of Individual Test Case 7

Test No. 8

Test Objective Collect statistics to android app

Test Description Android app will collect data from device and log it for personal or
liability use

Test Conditions 1. Commit an action on the device (fingerprint)
2. Send completed action to android device via Bluetooth
3. Check log on android phone

Expected
Results

The logs should accurately reflect the action committed by user.

Table 38: Description of Individual Test Case 8

Test No. 9

Test Objective More to be added

Test Description Android app will collect data from device and log it for personal or
liability use

Test Conditions 4. Commit an action on the device (fingerprint)
5. Send completed action to android device via bluetooth
6. Check log on android phone

Expected
Results

The logs should accurately reflect the action committed by user.

Table 39: Description of Individual Test Case 9

81

Test No. 10

Test Objective Connectivity (Android to Device)

Test
Description

To ensure the device is able to receive will the android app be able
to communicate to the device.

Test
Conditions

1. Connect the android and devices
2. Once connected the android device should send a signal
3. Turn on debug light to activate signal

Expected
Results

A debug light will turn on

Table 40: Description of Individual Test Case 10

82

8. Demonstrations
Following the design and testing phase, the BreathaLock system will go into a

demonstration phase. During this time, we will need to prove that our concept has come

to full realization and that specifications and design requirements have been met. As a

part of the University of Central Florida curriculum, every student in the ECE department

must pass senior design 1 & 2 which include demonstration of their project.

8.1 Initial Activation and Setup
The first demonstration that will be performed will be the initial activation and user setup

to the device. Because our device involves the biometric user verification, when the users

receive the device they will need to enroll themselves into the system so that the

BreathaLock can verify their identity during regular use. To make this demonstration we

will power on the device and put it into a calibration mode. In this mode the BreathaLock

will request that the user place their finger onto the fingerprint sensor screen using a red

background light. The system will request that the user places the same finger 2-3 times

to make sure a confident reading has been taken. Once compete the user will be enrolled

and saved into the fingerprints memory.

8.2 Standalone Operation
Following the initial activation and setup we will test the basic functionality of the handheld

device without the use of Bluetooth. To complete this demo, we will need to turn on the

BreathaLock device by button press. Once the device is on and responsive we expect to

have indicators to request for identity verification. As long as the users in the

demonstration have previously been enrolled, we should be able to simply light up the

red LED indicator on the fingerprint sensor and read the finger upon contact with the

sensor. Once this is complete the sensor will accept or deny the user. In the event that

the incorrect user is attempting to use the device it will continuously loop until the correct

finger is recognized. Once the correct user is verified the BreathaLock will request a

sample on the alcohol sensor to test for sobriety. Similar to the fingerprint sensor, an LED

will alert the user when to blow and the BreathaLock will take a reading to verify the user

is under the legal limit of alcohol. Once these two tests have been passed an LED will

blink alerting the user that they now have the option to unlock their vehicle.

8.3 Bluetooth Pairing
An additional feature to the BreathaLock system is the ability to connect with a cellular

device over a Bluetooth connection to assist the process and also display additional

information. Before entering the unlock sequence we must demonstrate the

BreathaLock’s ability to pair to a cellular device. This will be done by holding down a

button on the BreathaLock to turn on and search for a Bluetooth link. Once on, the user

will open the application developed by our team and instruct the cellular device to pair to

the BreathaLock. The user will be confirmed that the BreathaLock is paired on the android

application.

83

8.4 Connected Operation
The final demonstration will be the operation of the BreathaLock device while it is

connected to an android device. During this demonstration the android application will be

the most prominent feature to focus on. The demonstration will mostly follow the same

procedure as the “standalone operation” but in this demonstration most of the indicators

and requests will be interactive and more visual through the application. The user will first

open the app and be confirmed that the BreathaLock is connected and ready. Once

confirmed the user will be prompted to place their finger onto the fingerprint sensor for

user verification. The application will walk the user through the process with visual

indicators as to whether they need to place the finger again or if they pass or fail.

Assuming the correct user is operating the device, the application will welcome the user

into the next operation of testing the blood alcohol content of the user. In this step the

application will indicate when to blow, how long, and when the BreathaLock has enough

sampling to decipher what the users BAC is. One main feature of the android application

is that we will be able to display the exact BAC of the user instead of an LED indicator of

whether or not above or below 0.08. Concluding the alcohol sensor testing the application

will display the exact BAC of the user and whether or not they can or cannot drive. In the

event that the user is above the legal limit the BreathaLock application will advise the user

to wait and blow again or to wait a long time and rest. Finally, the last feature will be the

ability for the BreathaLock to act as a general breathalyzer to any user with the intent to

inform other drivers on their sobriety.

84

9. Administrative content
9.1 Milestone Discussion
The milestone for the BreathaLock project is show in the figures below.

85

86

87

88

89

From the figures above we can see that the first five months of the project consist of

declaring a project idea. Once a project idea has been established, we research further

into the idea to start designing /develop a physical prototype. This design develop and

research must be documented for the Senior Design 1 paper. In addition, the first five

months consist of ordering parts. In our case, parts were ordered and breaded boarded

way before the milestone deadline thus the BreathaLock project is ahead of schedule.

The last five months of the project consist of troubleshooting our developed design. Once

troubleshooting is complete, we then design our PCB to order. Once PCB has come in

and populated, there is roughly 2 weeks allocated to make sure that the populated PCB

is working properly. Once everything is finalized, there is about a week and a half to

prepare for final presentation.

9.2 Budget and Finance Discussion
Since the BreathaLock project does not have any sponsorship there are two available

options to finance the project

9.2.1 Finance option 1

Finance option 1 consist being crowd funded. Crowd funding mediums such as

Kickstarter and Gofundme are a great place to get funded for any project. However, there

are some advantages and disadvantages to budget option 1.

90

Advantage Disadvantage

-No money out of personal funds - Can take a long time to reach
desired amount

 - Project needs awareness

 - Project may never reach
desired funding

Table 41: Finance Option 1 Advantage/Disadvantage table

9.2.2 Finance option 2

Finance option 2 consist of paying for the project ourselves. There are also advantages

and disadvantages from paying the project ourselves

Advantage Disadvantage

 - Project is paid for fast -money comes from person funds

- Freedom of when to buy

- Project is funding independent
of outside factors

Table 42: Finance Option 2 Advantage/Disadvantage table

We chose to go with Finance option 2. We chose to pay for the project ourselves because

we have decided as a team that the total cost of the project is not unreasonable. Also,

Finance option 2 allows the project to be paid for fast, rather than wait on donations as

we only have two semesters to finish the entire project. Additionally, we have to decide

to split the project cost between each member. This ensures that each member will pay

for the project equally. The table below shows the maximum the BreathaLock project may

cost. Extra quantities are considered to account for broken parts during prototyping.

91

Table 43: Parts Cost table

9.3 Group management
In terms of group management, Charles Taylor, the computer engineer, is in charge of

programing the microcontroller to process the data that are coming from all the sensors

and relaying that information to the mobile app. The microcontroller will need to be able

to process the right user fingerprint and reject users who aren’t register. In addition, the

microcontroller will need to be programmed to process the blood alcohol content data and

respond according if the data is above or below the legal limit.

Nam Ngo, the electrical engineer, is in charge of powering on the key remote, the

microcontroller, the alcohol gas sensor, the fingerprint sensor and interfacing the

Bluetooth communication module with the microcontroller. The key remote and the

microcontroller should be powered on by battery while the alcohol gas sensor, fingerprint

sensor, and the Bluetooth module should get its power through the regulated power

supply from the microcontroller.

Nicholas Fraser, the electrical engineer, is in charge of connecting the alcohol gas sensor

and the fingerprint sensor with the microcontroller. In addition, he is also in charge of

electrically interfacing the microcontroller to allow and block the unlock signal. The key

remotes unlock system should be electrically connected and controlled by the

microcontroller. If the microcontroller reads that the user is below legal limit, then the

unlock signal is able to be sent to the car. However, if the microcontroller reads that the

user is above the legal blood alcohol content then electrically, the key remote cannot send

out an unlock signal.

Though each member is assigned a task within the project, we as a group mutually agreed

that we work as a team thus if any group member is struggling with their respective tasks

92

then the roles of each members are subject to change accordingly. For example, if

Nicholas Fraser is having trouble connecting the sensors to the microcontroller then Nam

Ngo can take on that task in exchange for his contribution of powering on the sensors.

Figure 49: Project management flowchart

Appendix A List of Figures

Figure 1: 3D Wireframe model of BreathaLock ... 6

Figure 2: Optical Fingerprint Diagram ... 11

Figure 3: Passive capacitive touch Diagram .. 11

Figure 4: Active capacitive touch Diagram ... 12

Figure 5: Battery Diagram ... 14

Figure 6: Harvard architecture ... 26

Figure 7: System Architecture .. 31

Figure 8: All components by letter ... 35

Figure 9: Fritzing breadboard test wiring diagram .. 36

Figure 10: Breadboard testing of all components ... 36

Figure 11: Fritzing wiring schematic .. 37

Figure 12: Bluefruit LE UART Friend (BLE) external image .. 38

Figure 13: Fingerprint sensor external image .. 39

Figure 14: MQ-3 sensor external image and pin reference ... 40

Figure 15: Sensor operation schematic .. 41

Figure 16: Circuit analysis of sensor ... 41

Figure 17: Java ART framework .. 44

Figure 18: C++ Flow Chart ... 47

Figure 19: Eclipse IDE ... 49

Figure 20: Eclipse ADT Plugin ... 50

Figure 21: An opened sketch ... 51

Figure 22: Android Studio IDE ... 52

Figure 23: Selection screen for Android devices ... 53

Figure 24: AVD emulating an android device .. 53

Figure 25: Handheld Device Functionality .. 55

Figure 26: Android Device Functionality ... 56

Figure 27: List View ... 59

Figure 28: Dialog window example.. 59

Figure 29: Flowchart of system hardware implementation .. 60

Figure 30: Eagle Schematic of Bluetooth Module ... 61

Figure 31: Eagle Schematic of alcohol sensor breakout board .. 61

Figure 32: Tentative Deadline for Spring 2017 .. 67

Figure 33: Alcohol sensor test circuit .. 69

Figure 34: Alcohol sensor test code writing in Arduino IDE... 69

Figure 35: Alcohol sensor test output.. 70

Figure 36: Fingerprint sensor test circuit .. 70

Figure 37: Arduino IDE code to bypass the Atmega328P Chip .. 71

Figure 38: SFG Demo 1 .. 71

Figure 39: SFG Demo 2 .. 72

Figure 40: SFG Demo 3 .. 72

Figure 41: Arduino IDE Output 1 ... 72

Figure 42: Arduino IDE Output 2 .. 73

Figure 43: Arduino IDE Output 3 .. 73

Figure 44: Arduino IDE Output 4 .. 73

Figure 45: Bluetooth component test circuit ... 74

Figure 46: Image of internal PCB of key fob .. 75

Figure 47: LM7805 linear voltage regulator test circuit .. 76

Figure 48: LT1761ES5-3 linear voltage regulator test circuit .. 76

Figure 49: Project management flowchart .. 92

Appendix B List of Tables

Table 1: House of quality trade off table ... 8

Table 2: Arduino Uno Low power mode table .. 15

Table 3: Arduino Uno Advantage/Disadvantage table ... 16

Table 4: Arduino ProMicro Advantage/Disadvantage table ... 16

Table 5: Arduino Mini Advantage/Disadvantage table ... 17

Table 6: Raspberry Pi 3 Model B Advantage/Disadvantage table ... 18

Table 7: MSP430 Advantage/Disadvantage table .. 18

Table 8: Microcontroller Decision Table ... 19

Table 9: Decision Table ... 21

Table 10: Fingerprint Scanner Decision Table .. 22

Table 11: MQ-3 Advantage/Disadvantage table ... 23

Table 12: MR513 Advantage/Disadvantage table .. 23

Table 13: Gas Sensor Decision Table .. 24

Table 14: Selected Component Operating voltage ... 24

Table 15: Power Option Decision Table ... 25

Table 16: Power option Decision Table .. 26

Table 17: Part selection summary Table .. 28

Table 18:Component descriptions ... 35

Table 19: Arduino Specific Connection ... 37

Table 20: Bluefruit LE UART Specifications .. 38

Table 21: Fingerprint sensor technical characteristics ... 39

Table 22: MQ-3 sensor technical characteristics .. 40

Table 23: Technical Functionality 1 ... 56

Table 24: Technical Functionality 2 ... 57

Table 25: Technical Functionality 3 ... 57

Table 26: Technical Functionality 4 ... 58

Table 27: Technical Functionality 5 ... 58

Table 28: Component mounting comparison ... 65

Table 29: Tentative Deadline for Spring 2017 ... 66

Table 30: Procedure for programming key FOBs ... 75

Table 31: Description of Individual Test Case 1 .. 78

Table 32: Description of Individual Test Case 2 .. 78

Table 33: Description of Individual Test Case 3 .. 78

Table 34: Description of Individual Test Case 4 .. 79

Table 35: Description of Individual Test Case 5 .. 79

Table 36: Description of Individual Test Case 6 .. 79

Table 37: Description of Individual Test Case 7 .. 80

Table 38: Description of Individual Test Case 8 .. 80

Table 39: Description of Individual Test Case 9 .. 80

Table 40: Description of Individual Test Case 10 .. 81

Table 41: Finance Option 1 Advantage/Disadvantage table ... 90

Table 42: Finance Option 2 Advantage/Disadvantage table ... 90

Table 43: Parts Cost table .. 91

Appendix C Citations and Permissions

Citations

[1] K. Townsend. (2016, September 30). Introducing the Adafruit Bluefruit LE UART

Friend (1st ed.) [Online]. Available:

https://cdnlearn.adafruit.com/downloads/pdf/introducing-the-adafruit-bluefruit-le-

uart-friend.pdf

[2] L. Ada. (2015, May 4). Adafruit Optical Fingerprint Sensor [Online]. Available:

https://learn.adafruit.com/adafruit-optical-fingerprint-sensor/overview

[3] M. S. (2016, August 08). Getting Started with Arduino and Genuino UNO

[Online]. Available: https://www.arduino.cc/en/Guide/ArduinoUno

[4] H. Barragan. Power Regulator 5v: LM7805 [Online]. Available:

http://wiring.org.co/learning/topics/power5lm7805.html

[5] Sparkfun. Alcohol Gas Sensor - MQ-3 [Online]. Available:

https://www.sparkfun.com/products/8880

[6] Sparkfun. Gas Sensor Breakout Board [Online]. Available:

https://www.sparkfun.com/products/8891

[7] Digi-Key. Linear Technology LT1761ES5-3#TRMPBF [Online]. Available:

http://www.digikey.com/product-detail/en/linear-technology/LT1761ES5-3-

TRMPBF/LT1761ES5-3-TRMPBFCT-ND/1629845

Datasheets:

[8] Texas Instruments, “µA7800 Series Positive-Voltage Regulators” LM7805

datasheet, May. 1976 [Revised May. 2003].

[9] Linear Technology, “LT1761 Series 100mA, Low Noise, LDO Micropower

Regulators in TSOT-23” LT1761ES5-3 datasheet

Permissions

