University of Central Florida

Department of Electrical Engineering and Computer Science

Dr. Lei Wei
Group 31
Nam Ngo ngnl1001@knights.ucf.edu EE
Nicholas Fraser NFraser@knights.ucf.edu EE

Charles Taylor CharlesATaylor@knights.ucf.edu CpE

Contents

1. EXECULIVE SUIMMIAIY ..oiiiiiiiiieieee ettt ettt et b e bt b e sttt e e e st e bt ebeneenes 1
2. ProjeCt DESCIIPTION ..couiiiiitietestet ettt b ettt b e b b sttt aeebesbe b e 2
P R e oYL= Toa a1V, o) AV 4 o] o [P RR 2
A A S A oYL= Toa A CTo - £ USRS P 3
PG T O oY T=To L1 SRS 4
2.3.1 AICONOI SENSING .ottt be e 4
2.3.2 Biometric USer VErifICAIONccoouivieiiieieireceseeeeee sttt 4
2.3.3 KeY FOB INtEOIAtION ..ocviceieiicteeieeetteeste ettt sttt et ae s ste e ra e e s beensenaeereenes 4
2.3.4 Bluetooth COMMUNICATION ...ccueiiiiiiiicieieeee et 5
2.3.5 Cellular Device APPHICATION ...oc.iiiiiieieeeee et 5
2.4 Requirements SPECITICATIONS ..ccuciiieiriierieieet ettt sttt sbe e 6
2.4.1 Physical SPECITICALIONSoouiriiriiiiieieieeeee ettt 6
2.4.2 POWET SPECITICALIONS ..ottt sttt st e st bt s te b e besreenes 7
2.4.3 Performance SPECIfICALIONScccieuieiiieeee et 7
2.5 Quality Of HOUSE ANAIYSIS ..coiiiiieiiieieeieseest ettt bttt sbe e 8
3. Research related to Project Definition ..o e 9
3.1 Existing Similar Projects and ProdUCEScccoveiieieiiiieeseceee et 9
311 SAAB AICOKEY ettt ettt sttt te et be e e teebeetenteeraens 9
3.1.2 ALCOLOCK V3. ettt ettt sttt ettt e s bt e bt s at e eat e et e e beesbeesaaesabesabeebeebeens 9
3.1.3 ALCOLOCK’S DRIVESAFE €lan............ccccccceeuiiiiiiiiiininininrnsss e 9
3.1.4 BACKIrack MoDil€ Pro.......cccocoiiiiciccceeece et 9
3.1.5 Daniel Andrade’s Arduino MQ-3 breathalyzer projectc.ccccocveveveieiececncnen. 10
3.1.6 Nootropic design’s Arduino MQ-3 breathalyzer project.......c.cccecevevevecerccnvnereennnn 10
3.2 Relevant TECHNOIOGIES ...ttt ettt ra et sae e be s beennas 10
3.2.1 Biometric fiNgerprint SCANNEocvecieieierieeete sttt st aeseeenes 10
3.2.2 GAS SEINSOIS .ottt bbbt 12
.23 BIUBTOOTN ..t 13

G T o T | =] YRS 13
3.3 Strategic Components and Part SEIECLIONScceeceveeieiiceeeseeere e 14
3.3.1 MICTOCONTIIOIIET .ot 14
3.3 1.1 ArAUING UNO ittt 15

3.3.1.2 ATAUINO PrOMICIO ettt ettt et e e e e e eeeeeteeeesssesesreeeeeeesssasseseeeeeessesanaenes 16

B33 ATAUINO NI ittt e e e e e et eeeeseeeae et eeeessaaasrereeeeesssasasseeeeeeesesanaenes 17

3.3.1.4 Raspberry Pi 3model B ... 17
3.3.1.5 MSPA30G22LTINLA....ceieeteeeeee ettt sttt ettt et sbe et b eaeenbesae e 18
3.3L2 BIUBTOOTN ettt 19
3.3.2.1. Adafruit Bluefruit LE UART Friend.......cccocooiriieiiinireseneseeeeeeeeeee e 19
3.3.2.2 Phantom YoYo JY-MCU Arduino Bluetooth Wireless Serial.........cccccocevenenene 20

3.3. 2.3 BLE NaN0 - NRFSL822........cooiiiiiieeete et 20

3. 3.3 FINQGEIPIINT SCANNENeiiietietecteeese ettt e b e s te et e st e s sa e aesbeensesteesaensesrnenes 21
3.3. 4 BreathalyZEer SENSOL ...ttt sttt e b e b e s teera e beseeenes 22
TG I o I Y (@ e ST = o 1= o] (OO PUSPUPRRRPON 22
3.3.4.2 MRSL3 SENSON ..ttt sttt s b e et e bt st e b s bt st e sbesbe et e sbeeneenbesaeenes 23
3.3, POWET SUPPIY ottt ettt ettt b et e s te et et e ste e b et e esaesesreenbesteenaebesanenes 24
3.3.5. L POWEE OPLION Lottt st st s estesbeesbesbeesaebeennenes 24
3.3.5.2 POWET OPLION 2.ttt ettt sttt sttt estesbeenbesbeenaebeernenes 25
B.3.6 KBY TRIMOTE ...ttt ettt s h b s bt et e s bt sae et e sb e et e st e eaeenbesreenee 25
3.3.6.1 300-0247ES Universal Car REMOLEccovuevierieieieireeeseseseeeieeeeee e 25
3.3.6.2 KPTL306 KEY FEMOLEcvieeeeiicteeeecteeete ettt sttt st te et et esteeraeaeereenes 25
3.3.6.3 K410 Car Remote Central Lock Locking Entry Systemcccoovevevevvevecieeneee 25

3.4 Architectures and Related DIiagramsScccieeeviiiecereseeie sttt sse e e ennes 26
3.4.1 Microcontroller ArChitECTUIe ... 26
3.5 Parts SEleCtioN SUMMAIYcccocciiiiiieierectestiet ettt et et e et estesreeaestesssesesseensesseenses 27
4. Related Standards and Realistic Design CoNnstraintS.......ccccccvveeeeveceece s, 29
B 1 SEANUAITUS ..ottt b bbbt st b ettt b et b et bt b et bt be et bt neenea 29
4.1.1 BlUEtoOth StANAArd........ccoeoiiiiiiiiiieiee e e 29
4.1.1.1 Core SYStem ArChITECIUIEoceeieeeee sttt 30
4.1.1.2 BIUBLOOTN SECUTILY .oveiiiiiiceececeee ettt ettt st et et sbe e b e sanenns 32
4.1.2 Health STtANArdccoooiiiiie ettt e 33
4.1.3 Design impact of relevant StandardsS........ccooeriierenenereeeeeeeee e 34
4.2 RealistiC DeSign CONSIIAINTS ...ccicieiecieiececteese ettt sa s ssaesaesreennas 34
4.2.1 Economic and Time CONSTIAINTSc..cceoeiriinieinicinceneeeee et 34
4.2.2 Environmental, Social, and Political CONSIraiNtS.......uivveiiieeeeeeeeeee ettt eeeeeieee 34
4.2.3 Ethical, Health, and Safety CONSTraintsocoviiieieneeeeeeee e 34
4.2.4 Manufacturability and Sustainability coOnsStraintS.........ccccceeveevevieceveceece e 34

5. Project Hardware and Software Design DetailS..........cocoeverereniiiininseeeceeeeeee e 35

5.1 Initial Design Architectures and Related Diagramscccoceeerereneneneneneeeesesesenens 35
5.1.1 Project Hardware COMPONENTSccooviiveecieieceetecteeteste ettt ste e b st saesane s reeanas 35
5.1.2 HArdWare WITINQ oottt sttt e et et ste e estesbaesaesbeessesesnnesesreennas 36

5.2 BIUBLOOTH SUDSYSTEIM ..ottt 38
5.2.1. Bluefruit LE UART Friend (BLE)......ccooieoiieeeeeeeeeneeeie e 38
5.2.2. SeNsor SPECIfiC OPEratioN.....ccccciceeiiieeececeee ettt sre s reeanas 38
5.2.3 Subsystem IMplementatioN........ccocveviiieciececeeeceeeee e 38

5.3 BIOMELNIC SUDSYSTEM ..ottt sttt st aa et e saeentesreennas 39
5.3.1 SENSOT OVEIVIBW .uiiiiiieieetieteet ettt sttt ettt ettt eb s bbb st b et et et e st e st eaeeneneennes 39
5.3.2 SeNSOr SPECITIC OPEIaAtiONcceiiieieieieeertert ettt see s 39
5.3.3 Subsystem IMplemeEntatioN ...t 40

5.4 BreathalyZer SUDSYSTEM ...ttt st st re e s et nnas 40
5.4.1 MQ-3 AICONOI GAS SEBNSOI.....uiitiiteicteeceee ettt ettt et et eteeetee s eveeeteeeteesseesaeeens 40
5.4.2 SeNSOr SPECITIC OPEIaAtIONcciiiieieieieieerert ettt sa e 41
5.4.3 Subsystem implementation 41

5.5 SOTIWAIE DESIGN ittt sttt et te et et e s as e besbeenbesteesaebesanentesreeneas 42
5.5.1 Programming LANQUAGEScceccveiieeieriiiieeiecteeeeeste e etesteseessesreessestesseessesteessessesssensessessnas 42

5.5.0. 1 ASSEMIDIY oo ettt et ne et s reenaeaeereenes 42
S TNt 2 =V 1 o o TSP 43
5.5.1.3 JAVA (ANATOIH AP oot eeeeee s e e s seses s eeees e e seseese s ess e seeeseees 44

ST T01 0 S OO OO TUOPTUP RO PPORUPRRPRTUPRRRPONt 45
5.5.1.5 C++ (AVr-g++ t0OICHAIN) ..c..iciiececeeeeee et e 46
5.5.2 Integrated Development ENVIFONMENTScccevieeeierieieiescee et 48
I I o T 11 = RSO 48
5.5.2.2 ArdUINO IDE ..ot 50
5.5.2.3 ANAIOId STUAIO w.cuveiiiiiiiieeeeee et 52
5.5.3 Functional ReQUITEMENTSc.ooiiieee ettt st 55
5.5.3.1 Main FUNCLIONAITYocueiiiiiceeceeeeeee ettt st 55
5.5.3.2 Technical FUNCLONAILYccceeviieeieceee e 56
5.5.3.3 Software ReQUITEMENTS ..ottt et 58
5.5.3.4 Interface ReQUITEMENTScccioiiiieeeeeee ettt ettt et 59
5.6 SUMMAIY Of DESIQN weeiiiiieeeeee sttt sttt e tesre e aestessaetesaeentesreennas 60

6. Project Prototype Construction and CoOdiNgcccccvvieienieieneceeeseeee e 61

6.1 Integrated SCREMALICSoeiiiireeeee et e 61
6.2 PArtS ACQUISITION .ooiieieiiceceeteeee ettt ettt sttt te et te s et e e aa e besbeestesteessebesseentessennnas 61
B.2. 1 AG@TITUIT ..ottt ettt 61
B.2.2 SPATKTUN .ottt nr e 62
B.2.3 DIGI-KBY .ttt bbbttt a et nenrens 62
B.2.4 UCK ...ttt bbbkttt 62
B.3 PCB DESION ..ottt ettt sttt et e sttt ste et e s be et e s teeta et e s te e s e beess e besbe e benteereentesreentenreenes 62
B.3. 1 EAGLE ...ttt sh et bbbttt beeatas 62
6.3.2 National Instruments UlItID0Ardccooioirinininiceeeeeeeeee s 63
B.3.3 AULOCAD ...ttt st ettt e s at e s it e st e s be e b e e b e e s beesheesat e e te e beesheesaaenas 63
6.4 PCB HOUSE ..ottt sr e s e s r e et n e sre e nn e 63
B.4.1 PCBWAY ..ottt sttt ettt b e s bt e sae e st e st e b e bt e s bt e sbeesateeabeenbeenbeesaeeeas 63
B.4.2 EIECTOW ..ttt bbbt b s 64
6.4.3 SEEU STUIO ..ottt b et b e bbbt e et e st eae e b e nes 64
6.5 CONSTIUCTION .ttt ettt ettt a e bt bt sb et et e b et et eseebesbenbenbentens 64
ORI o o Ta Yo IS o] [0 1= T AT o o [OOSR 64
6.5.2 REFIOW OVEIN ..ttt 64
6.5.3 TYPES OF MOUNTING c.veeiiiieieiicteeereee ettt s e e ere b e ste e st e aeesaesesneeneas 65
6.5.4 THINNOVALION LaAD.c..c.iiiiiiiiiiciciccce ettt 65
6.6 Final Coding Plan PERT CRAI ..ottt s 66
7. Project Prototype TESHING PlAN ...ttt sttt sttt st s beennens 68
7.1 Hardware TeSt ENVIFONMENT.......cooiiiieieecte ettt 68
A0 N o 1= G T] o o] YRS 68
T.0.2 CAr ACCESS ..ot 68
7. 1.3 CllUIAr DEVICES ...c.cviiiiieiieeieste ettt ese s 68
7.2 Hardware SPECITIC TESTING ...eiiuieieeeeieesee ettt ettt sttt et eesneeneas 69
7.2.1 MQ-3 AICONOI SENSOI .ottt srae s te e te e beesaeesraeens 69
7.2.2 Adafruit FINGErprint SENSOF ...cccuvcieieieceeese sttt te et be e esse e esesaeennas 70
7.2.3 Bluefruit UART Friend Bluetooth Module..........c.cccoiiniiiniiniinccccceee 74
T. 2.4 KEY FOB ...ttt b e sttt st e bt b e e bt e s bt e saeeeateebeeabeesaeesaeenas 75
7.2.5 Linear Voltage REQUIALOTcocuirieeee ettt st e 76
7.3. Software TeSt ENVIFONMENTccoviiiiiiciictencte ettt 76

7.4 SOftware SPECITIC TESTING «..eoiririeieete ettt nreas 77

T4 L INEFOTUCTION 1ottt b e bbb bbb s et seeaeebeneenes 77
7.4.2 Overall Objective for SOftWare TEST ... e 77
7.4.3 Stopping Criteria & Testing Method ... 77
7.4.4 Description of Individual TESt CASES.......ccciverererieieeeeere s 78

8. DEIMONSITALIONS ...ttt b bbbttt s e bt b e s b e b et e e et e e e st bt ebeneenen 82
8.1 Initial ACtiVatioN AN SEIUPcccveieieeeeeeeeee ettt ra et sre e reeanas 82
8.2 StandaloNe OPEIALIONcecviiicieieeeeese ettt sttt e e et e s be e besteeaaensesaeensesreennas 82
LSRG = VT o To) d a1 =TT a1 o Yo O SRORRSRR 82
8.4 CONNECTEU OPEIALIONeviiiiiitesteet ettt ettt ettt se et et eaeebesbesbenaens 83
9. AAMINISTIALIVE CONTENT ..ottt ettt sttt eae b e nes 84
9.1 MiIlEStONE DISCUSSION ...ttt sttt b e 84
9.2 Budget and FINANCE DISCUSSION ...c.eccuiiicieiieeetesteete ettt ste sttt eva b sea e e e reeanas 89
9.2.1 FINANCE OPLION Lottt ettt et st e s teebe e besbeess e besanetesreennas 89
9.2.2 FINANCE OPTION 2.ttt ettt ettt bt b ettt et ebe b neenes 90

9.3 GroUP MANAGEIMENTcoiiiitietitie ettt ettt ettt st e b s bt et e s bt saee bt sbeetesbeemee bt saeensenneennes 91

1. Executive Summary

The Breathalock is a new device idea that is intended to take the place of a car key fob
and prevent drunk driving. With the help of this device we hope that car owners will not
only be stopped from being able to drive under the influence of alcohol but also be more
conscience of the dangers of driving drunk by the reminder of having to use the device
repeatedly. Our systems core features include ease of use, accuracy, and effectivity to
prevent drunk driving without being an inconvenience to car owners. It is intended that
this device will be cross platform, operational to multiple car manufacturers and with the
aid of Bluetooth available to connect to a cell phone to display additional information. The
BreathaLock with be fully contained inside of a handheld device that will not be
excessively large.

The BreathalLock with operate under the following sequence. First, the user when
approaching the vehicle will take out the BreathalLock and initialize the device to begin
scanning for a specific user. A biometric fingerprint sensor on the back of the BreathalLock
will take a reading to confirm the correct user is operating the device. Once passed, the
BreathalLock with prompt the user to blow into the alcohol sensor located at the top of the
device. In the event that the user is sober the BreathalLock will allow the user to unlock
the vehicle remotely. If the user does not pass such criteria, then the BreathalLock will
deny access until these tests are repeated yielding passing behavior.

To successfully implement a device to meet these expectations requires considerable
amounts of research and design. We must effectively determine the most accurate way
to measure and decipher the blood alcohol level of a user through the use of an analog
alcohol sensor. This is extremely important when considering the consequences of any
chance of error, primarily allowing a user to drive under the influence of alcohol. Secondly
it is important that we investigate the speed and accuracy of the biometric sensor and
integrate it as a productive feature to ensure that the correct driver of the vehicle is going
to be tested for blood alcohol content. Finally, this device needs to connect quickly and
effortlessly to the user’s cell phone and also be extremely user friendly. We intent to
extend these features with additional options such as allowing the user to add additional
drivers through the app.

With the help of existing technologies and our own engineering the BreathalLock will be a
fully functioning device displaying the previously discussed features. This device could
have commercial opportunity for legal repercussions or could be a recreational device
used strictly for voluntary preventative care.

2. Project Description

Before getting into depth of what the BreathalLock system is, a brief overview is given
below of the overall motivation and specifications that come with this design. To create a
compelling and relevant device it is important to research and consider many factors, both
in design and consumer desires, which will go into this design.

2.1 Project Motivation

While pursuing a college degree and living in a college town every student encounters
many challenges inside and outside of the classroom. One of the primary challenges that
affect many students and adults around the country is driving under the influence of
alcohol. Most adults know that it is an unwise decision to get behind the wheel at an
impaired state but despite the fact that there are many consequences, both legal and life
altering, many adults and teens fail to avoid driving under the influence.

According to Mothers against Drunk Driving (MADD), on average two in three people will
be involved in a drunk driving crash in their lifetime. This means that the majority of people
will be affected by drunk driving personally without considering the effects of loved ones
and peers that may be affecting them as well. Drunk driving is a very serious issue that
needs to be addressed more effectively and possibly more aggressively.

When considering the legal consequences of getting a driving under the influence (DUI)
charge it is scary to see how drastic they can be. Best listed by dui.drivinglaws.org legal
punishment of DUI in the state of Florida can include vehicle impoundment, fines,
probation, community service, license suspension, ignition interlock devices, and even
jail time. As college students, we encounter many distractions and the last thing that we
need is legal consequences. Even more severe is that some universities will suspend
students or even expel students if the offence is campus related. It is our intention that
with the use of a BreathalLock system in a preventative way, less students will legal
consequences of DUI by preventing driving under the influence.

Even more important than preventing legal consequences from DUI we seek to prevent
the physical dangers that can result from driving at an impaired state. The National
institute on Alcohol Abuse and Alcoholism states that “About 1,825 college students
between the ages of 18 and 24 die from alcohol-related unintentional injuries, including
motor vehicle crashes.” It is tragic to see a fellow family member, classmate, or even
friend make the mistake of driving under the influence and getting injured or killed. It is
even more tragic to see someone that is sober and innocent be negatively affected by the
decisions of others under the influence.

Currently there are various ways to avoid this situation: carpooling with a sober driver,
using alternate transportation, or waiting till your body processes alcohol enough to be
within the legal limit. Some of these are costly, some are inconvenient, and some are
hard to measure. Although it may seem like an easily avoidable situation when under the

influence of alcohol bad decisions can be made. With the help of BreathaLock there may
be another method to prevent drunk driving more effectively.

To combat this ever present issue we propose to implement a device that is easy to use
and cost affective to help college students and adults around the county avoid driving
under the influence of alcohol. In our society and specifically in Orlando it is simply too
easy for a student to decide to drive under the influence with the option of getting in their
car in the driveway and making a regrettable decision. Our device is intended to make
the user take an additional step before making this decision and in the event of failing to
prove sobriety the user will be unable to make this regrettable decision.

2.2 Project Goals

The goal of BreathalLock is simple: to prevent drunk driving to all vehicle owners. We
intend to create a device that is so simple and user friendly that it could be accepted and
used by all vehicle owners. To do so we must investigate the most important
characteristics of a device that could be acceptable to the public. If the Breathalock exists
in the hands of all vehicle owners, we could completely eliminate drunk driving and
consequently eliminate the negative affects the come along with it. Although this may
seem like a very large goal it is important to strive to create a device that is best suited
for the consumer in efforts to achieve a compelling product.

The technology and implementation of the components that will be incorporated into the
BreathalLock device have been available for quite some time. The only reason this device
has not been available yet is the lack of seamless implementation and price point. With
that said, we recognize that doing this affectively will not be an easy task considering that
vehicle owners are currently using very small key FOBs and will probably not want to
digress to a large bulky FOB. Additionally, to have this product work cross platform there
would have to be allowance from car manufactures to allow the use of this device. Despite
this obstacle, our team will be designing the densest and size effective device possible
with limited resources. In the implementation of the BreathalLock it is not expected to
match the size of a current key FOB but in efforts of proof of concept we hope that it may
spark further investigation to get to that size with later revisions.

By the end of this project we hope to have a concept and working model of what a
professionally manufactured product could look like. We will be designing a custom fit
housing, PCB board, and all wiring which gives us the luxury of designing this product to
look and feel the way that we want it to. This device with the help of Bluetooth technology
and a cellular device will educate and inform vehicle owner how to avoid and learn more
about how they react to alcohol.

2.3 Objectives

In order to allow vehicle owners to appreciate and accept this product we will discuss our
core project objectives. These will highlight the most important features that will make the
BreathalLock a powerful and useful device. There are many features and extensions to
this project that we would like to achieve. The most important features to the BreathalLock
system are listed below.

2.3.1 Alcohol Sensing

Our main objective with the alcohol subsystem is to gather an extremely accurate and
reliable reading each time we sample. Throughout our implementation it is going to be
very important to research existing breathalyzer technology and what the best way to get
an accurate reading. Our alcohol sensor provides us with a simple analog reading of the
amount of alcohol based on the conductivity of a piece of tin oxide. This is a very primitive
sensor that is going to require testing and logic to create repeatability and accurate
readings. How long should we sample? Do we throw out the highest reading or average
all values taken per sample? These are some questions that we are going to need to ask
ourselves and investigate when creating a dependable breathalyzer subsystem. It is
imperative that we implement the breathalyzer subsystem to be just as accurate as a
police grade breathalyzer to demonstrate reliability.

2.3.2 Biometric User Verification

One of the main advantages of the Breathal.ock as opposed to any other breathalyzer on
the market is that it offers user recognition to ensure the driver of the vehicle is blowing
into the breathalyzer. With that advantage in mind it is our main objective to make sure
that our fingerprint sensor work repeatedly and accurately as well. Some research and
testing will need to go into what precautions we will need to make to keep our fingerprint
sensor working well. Because we are using a prepackaged fingerprint sensor that
contains an internal DSP chip and processing capability we anticipate it working well with
our systems but it is still important to test all use cases for repeatability. The objective of
the fingerprint sensor is to read quickly and accurately to determine if the user is the
correct owner of the vehicle or not.

2.3.3 Key FOB Integration

Because our product is interfacing with a vehicle and security system that is out of our
control we will need to use the design and parts from the existing key remote access. It
is our intent that the Breathalock interface to the vehicle locking system not be hindered
at all compared to working native key fob without being tampered with. Ideally we hope
to reverse engineer the key FOBs components, recreate the circuitry and then simply de-
solder the preprogrammed chip from the FOB and solder it onto our own PCB. Currently
we are investigating the complexity of this task and assessing whether or not it is
achievable. In the event that we cannot do we will resort to manually wiring to the switches
of the remote access control board and control it from there.

2.3.4 Bluetooth Communication

The Bluetooth connection between the BreathalLock and cell phone needs to be
implemented in a simple easy to use way. When many people think of Bluetooth
connections they immediately think of the headache that sometimes comes with device
pairing conflicts. To avoid this problem, the BreathaLock must immediately search and
try to connect with the cell phone and, as long as the cell phone has paired previously
and has Bluetooth on, will connect automatically. With this model by the time the user
goes to use the biometric fingerprint sensor and breathalyzer it will already have
connected to the cellphone. Depending on how fast and effectively the implementation of
other features go we will decide on how many added features to the cell phone app.
Ideally we could have results post processing to give the user an idea of how soon they
will be under the legal limit of alcohol.

2.3.5 Cellular Device Application

In order to display more information on the status of the BreathalLock and the results of
the sensors we will be designing a cellular application for android platform. This addition
to the Breathal ock system will open the door to many added features and post processing
data. Although adding an extraordinary application to this device would be great there is
a large time constraint with this course and project. For this reason, we will investigate
several goals that we will strive to achieve to make a great app.

Level 1: At the very least, we intent to create a viewer on the device that will display real
time data and instruction on how and what to do on the BreathaLock handheld device.
This will include outputting the current blood alcohol content of the user at the time of
sample. This feature would allow for an easier experience in the event that the fingerprint
sensor does not recognize the user and would like to prompt for a second reading or
breathalyzer test is inconclusive

Level 2: The next available step to the BreathalLock application possible would be to have
data logging and the ability to inform the user information on how long to wait or how
much the user could approximately drink based on their age, weight, height, etc. Under
the data logging of the Breathalock including how often the device was used, who
attempted to use the device, and whether or not the user passed given tests and was
enabled to use the vehicle.

Level 3: The final level possible if we are given ample time to implement to the
BreathalLock system would be calling other android applications from within the
Breathalock app to do other functions. This could include calling for an alternate means
of transportation from a 3™ party app such as Uber or contacting a family member after a
certain amount of failures. These features would be great to have as a part of our app but
will need considerable amount of time to develop and therefor will be determined based
on how quickly we can implement the rest of the features.

2.4 Requirements Specifications
2.4.1 Physical Specifications

Figure 1: 3D Wireframe model of BreathalLock

To implement a compelling and attractive device it is important to consider the
appearance and size goals of the BreathaLock system. In efforts to create the most
concise and compact device possible we are creating the entire device no larger than
3’x3”’x7”. This size must include the whole system including all wires, sensors, and
enclosure. Although it would be more desirable to implement this device much smaller
we are limited by the size of our designed PCB, native key FOB, and other sensors that
will take up much more space than a key FOB without added features that the
BreathalLock system will encompass.

Following size constraints, we will investigate construction materials. The bulk of the
device will come from the multiple sensors, PCB, and power supply, in this case an
interchangeable battery. Because we are limited to the prefabricated sensors, PCB
material, and battery the only options we have physically are whether or not to create a
custom case out of any material. The main options of materials are to have a plastic or
metal enclosure and physically to create a custom enclosure, or to retrofit a store bought
housing for our implementation. As far as metal enclosures are concerned the main
advantage would be rigidity and durability. Although these are important characteristics,
designing and implementing a metal enclosure will be much heavier and costly. If we
choose to use a plastic enclosure we will save money, weight, and open the door to ease
of custom enclosure design with 3D printing technology. Our team is fully capable of a
simple enclosure design and execution which makes a clear decision to go with the
custom 3D printed enclosure.

In addition, we intend to have a device that will be no heavier than 1lb and be able to
hang on a key ring. These added physical specifications are important to keep this device
relevant and comparable to exiting key FOBs. It is important that we not forget the
motivation and goals of the implementation of the BreathalLock system. We must do our
best to compete physically with the current devices we are replacing.

2.4.2 Power specifications

When talking about the BreathalLock power specifications the only power specification
noted is to able to power on the whole project within 20V. This 20 V should be sufficient
to power on a few sensor and a microcontroller. In addition, the BreathalLock project is a
device that is meant to be comfortably portable, anything more than 20V would be
cumbersome in batteries.

2.4.3 Performance specifications

When talking about the performance of the project, the BreathalLock project must operate
with a delay of less than ten seconds. The term “operate” implies that for each action the
BreathalLock is taking, there should be no delay of more than ten seconds. For example,
waking up from low-power mode should take no more than ten seconds. Taking an
alcohol sample then processing it should take no more than ten seconds. Reading the
user’s fingerprint then processing it correctly should take no more than ten seconds. This
ten-second rule ensures the user has a level of comfort in using the device.

The next performance specification involves user recognition. The BreathalLock device
must be able to store the fingerprint data of registered user. This specification ensures
the user who is using the BreathalLock system has a level of security. If the device were
to get in the hands of someone else then the person who is not registered will not be able
to unlock the car, however the lock signal is unmodified. Anybody can send out a lock
signal.

The last performance specification involves the alcohol gas sensor. When a blood alcohol
content is .08 or above, the device must not be able to send an unlock signal. In the state
of Florida, anyone who is has a blood alcohol content of 0.08% or above is considered
over the legal limit for operating a motor vehicle. If the gas sensor reads a blood alcohol
content of below 0.08% then the user is able to send out an unlock signal to the motor
vehicle.

Specification conclusions

e The system should be no larger than 3" x 3" x 7”.

e The system should be no heavier than 1lb.

e Both sensors must operate with a delay of less than 10 seconds.

e The system must be battery powered within 20V.

e The system must be able to hang onto a key ring.

e The device must be able to store the fingerprint data of registered user.

e The device must incorporate a sanitary breathalyzer.

« When a lock signal is sent, the automotive should be locked.

e When a blood alcohol content is at .08 or above, the device must not be able to

transmit an unlock signal.

2.5 Quality of House Analysis

(+/-) Direction of Improvement
Engineering Requirements
5
Ke o
- g
® Strong 3
Medium Z P
9 =
A Weak ; > g‘
Q@ L
8 2 : g
a [[<s] <
Polarity - + +
w0 E 1) Ease of Use +
c
5 g _.|2) Reliability + ®) A
g 3 |3)Accuracy + A A @ o
L
& |4)Cost - o [
1IW |3"x3"x7"| 1 Week | 25% 605

Table 1: House of quality trade off table

To display the engineering and marketing requirements, the house of quality trade of table
above is used. By using the different shapes listed in the key we show the correlation
between the engineering and marketing requirements individually. First we chose to focus
on the power consumption and battery life. Specifically, for an everyday handheld device
it is extremely important to implement a device that is going to be ready to use for long
periods of time without changing batteries or charging the device. Our goal power
consumption for power consumption is 1W and battery life of 1 week to ensure that the
user will be able to go extended periods of time repeatedly using the device without having
to worry about changing a battery. Secondly we investigate the size of the device.
Currently most car owners have a small key FOB that allows them to have on them at all
times and is pocket size. We are shooting for something of comparable size due to the
fact that BreathaLock will be replacing the key FOB. The BreathaLock must be a
reasonably small size so the user can carry the device with them at all time without being
overly bulky. Finally, we analyze the cost of the device cost. As a preventative device that
is intended to be used for any and all adults it is important to market to a low cost so that
anyone can afford this product.

As far as marking requirements are concerned it is extremely important to implement a
device that is simple and can be used by anyone. The Breathalock is intended to be a
head-ache free device that can be used with very little inconvenience to the user because
the user will have to use the device every time they enter their vehicle.

3. Research related to Project Definition

3.1 Existing Similar Projects and Products

3.1.1 SAAB Alcokey

In the mid-2000s SAAB , the automotive company from Sweden, was working on a remote
vehicle lock and doubles as a breathalyzer. The remote was named “Alcokey” and it
features breathalyzer mouthpiece at the end of the remote. When the remote takes a
sample of the user’s blood alcohol content it takes 3 second until the result are shown. If
the user is over the legal limit then a red LED light will appear on the remote indicating
that the engine cannot be started, however if a green light is indicated then the engine’s
electronic immobilizer is release and the vehicle can be started. In addition, the
breathalyzer sensor that is integrated within the key remote is semiconductor based and
therefore monitors the temperature of the breath sample in the case if the user tries to
bypass the device with say a balloon. The Alcokey also comes with a battery indicator
and flashes and amber LED when there’s twenty percent of the battery left, in which the
user much come to the SAAB dealership to replace the battery. In terms of the range of
the device, the key remote is operable at roughly ten meters or thirty-three foot to the
vehicle. If a sample is taken outside the vehicle’s range, then the vehicle remote has a
three to four second clearance process.

3.1.2 ALCOLOCK V3.

The ALCOLOCK V3 is an in breathalyzer device for private and commercial use. The
breathalyzer is interlocked based and is installed within the vehicle’s dashboard and
connected through the engine’s ignition system. In terms of operation, before the engine
is able to start a sample of the user's must be taken. If the sample is over the legal limit
then engine will not start, however if the user passes the test then the engine can start.
Once the engine start’'s, ALCOLOCK V3 can be programed to ask for user samples at
random times while the engine is running. The device features a tri-colour LRD display to
relay the information back to user. Also, the device’s breathalyzer sensor is
electrochemical based that allows the device to operate at twelve volts or twenty-four dc
volts.

3.1.3 ALCOLOCK’s DRIVESAFE elan

ALCCOLOCK’s DRIVE elan is a breathalyzer that connected through your android device
via USB cable. Once connected, the device communicates to an app on the android
market to display the user’'s sample results. In addition, through the app, the user can
make phone calls or be able to tweet results. The breathalyzer sensor is electrochemical
based which gives the device a battery life a roughly one thousand samples. In terms of
operation, the user must give a continues and moderate sample in which the device
returns a result in less than 10 seconds.

3.1.4 BACKtrack Mobile Pro
BACtrack mobile Pro is a police grade breathalyzer that communicates to an app on a
mobile device via Bluetooth. The breathalyzer utilizes a fuel cell based sensor that gives

higher level of accuracy. This technology is used by law enforcements, hospitals and
clinics. Furthermore, the physical device has a solenoid base air pump inside to ensure
the user’s breath sample gets to the sensor. In terms of the mobile app, the app can be
download on I0S or android. The app saves and stores all the blood alcohol content
results over time and also integrate with Uber to make calls for a ride. Further, the app
has an estimation feature that predicts when the user’s blood alcohol content will reach
zero percent. In terms of device operation, the device first be turned on for about 10
seconds to warm up. Lastly, the user blow time is around five seconds.

3.1.5 Daniel Andrade’s Arduino MQ-3 breathalyzer project

In 2010 Daniel Andrade built an Arduino based breathalyzer utilizing the MQ-3 gas
sensor. The project uses the Arduino Uno, a few red, green, and yellow LEDS, a
potentiometer, a few resistors and the MQ-3 sensor. The project had each individual LED
in series with a resistor, then each LED that in series with a resistor grounded at one end
and the other end connected to the digital pins two up until digital pin eleven on the
microcontroller. Once the potentiometer and the breathalyzer sensor was connected to
the analog and digital converter within the Arduino, the project is hooked up. The project
works by taking the user’s breath sample and outputting it to the LEDS. The higher the
blood alcohol content the more LEDS light up from green, then yellow, then red.

3.1.6 Nootropic design’s Arduino MQ-3 breathalyzer project

Nootropic’s circuit utilizes an Arduino Uno, a resistor and a MQ-3 gas sensor. The circuit
is powered by the Arduino’s onboard 5V regulator and which is connected to the Arduino’s
ATmega328 analog pin0 that is in series with the resistor. To ensure the breathalyzer got
a uniform breath sample, the sensor was place in a small glass jar. In terms of calibrating
the device, the method of correlation was. Nootropic designs took voltages readings from
the Arduino analog pins at given blood alcohol content levels, after enough samples was
taken the device was calibrated. In terms of the output of the project, the output was
displayed on the computer using the Serial.print() function.

3.2 Relevant Technologies

3.2.1 Biometric fingerprint scanner

When talking about talking about biometrics, the term refers to the process in which a
person’s physical trait is detected processed via electronic device. In the case of
fingerprint scanners there is a universal two-step process that every sensor operates on:
storing the fingerprint pattern of a user and then detecting if a fingerprint pattern matches
with the one that was previously stored.

There are many ways a fingerprint scanner can detect and store fingerprint pattern. One
common way is optical in which the process involves digitizing finger patterns via visible
light. Commonly, an optical sensor is made up of a clear surface to place the finger on.
Underneath this clear surface there is a source of light that shines on to the finger in which
it is then reflected on to an imaging array which captures the visual image of the
fingerprint. Usually the imaging array is either a charge-coupled device (CCD) or a CMOS

10

based optical imager. For charge-coupled devices the imager is not low light sensitive, in
addition the fabrication process is much more complex and thus more expensive. CMOS
based optical imagers however, are more easily made thus making the optical scanner
much less expensive. The disadvantage of this type of sensor is that when the clear
surface is smudge or if the finger is dirty then the optical scanner cannot properly process
the image.

Water

\ Particles
N DN

Finger ridge pattern

=1

Light

CCD
Figure 2: Optical Fingerprint Diagram

Another common method a fingerprint scanner can detect and store a fingerprint pattern
is through capacitive touch. Capacitive touch fingerprint scanners are categorized in two
categories: passive and active. Passive touch scanner works by having each pixel of
the image processor acting as one side of a parallel plate capacitor and a user’s finger
as the other plate to the capacitor. Since the capacitive values between the image and
the dermal layer of the skin are known, the whole array of pixels can map out the
valleys and ridges of a user finger, thus making each finger distinguishable between
one another.

DIRECT CAFACITIVE MEASUREMENT

Ridge

Finger

Valley : ...-'-"' i : :

Protective
|.1|::1i|'|l!_| Response
signal

Figure 3: Passive capacitive touch Diagram

Active capacitive touch finger print scanners work by a creating charge onto the skin
before sampling takes place. After the charging process, the effective capacitor is

11

charged thus creating an electric field between the finger and sensor that follows the
ridges and valleys of a user’s finger. On the discharging process, the voltage between the
skin and the sensor is measured and compared to the charged value as a reference to
computes the capacitance. After computing the capacitance, the scanner mathematically
calculates the distance between the finger and scanner. Upon applying the charge and
discharge process to an array, the valleys and ridges are mapped out on a person’s finger.

ACTIVE CAPACITIVE MEASUREMENT

Finger

- - — «

R4
R Y Ol

Signal Protective Response Signal
coating signal

Figure 4: Active capacitive touch Diagram

After scanning for valleys and ridges, then the analog values are converted to a string of
binary values in which it is stored and compared to the next set binary values.

3.2.2 Gas sensors

In the case of a foreign gas there is a need for detection. There are many types of gas
detectors but through different types technology. Commonly gas sensors include
electrochemical and semiconductor.

When referring to electrochemical gas sensors, the structure of the device must be clearly
understood. Commonly, electrochemical gas sensors contain two or more electrodes in
contact with an electrolyte. The electrodes themselves are a high surface area metal that
is covered in a hydrophobic membrane. The sensor allows certain gases to pass through
the porous membrane in which it is then chemically oxidizes or reduced. The amount of
current generated is determined by the amount of gas that passes through the membrane
and oxidizes. Since the size of the membrane can be manipulated during the fabrication
process, then the type of gas the sensor can detect can be tailored to the desired gas.
One advantage of this technology is that the membrane that surrounds the electrode acts
as a physical barrier then this allows the detector to be more stable thus requiring less
maintenance over time. However, a disadvantage of electrochemical gas sensors is that
is susceptible to corrosion. Since the device is subject to any gas to come in contact with
the porous membrane, the membrane is subject to contamination and deterioration.

The other common type of gas sensor is based on semiconductor technology. The
principle behind semiconductor based gas sensors is that when the desired gas of
detection comes into direct contact with the sensor itself a chemical reaction occurs.

12

Since a reaction occurs on the surface of the semiconductor itself, it is common for the
resistance through semiconductor to either drop or increase depending on the anatomy
of the semiconductor. When once the resistance has drop the change in electric current
the device is detected and analyzed from which the concertation of gas is recognized.

In addition to common sensor types, another important property of gas sensors that is
essential to the device itself is calibration. All gas sensors regardless of the type of
technology that it is based off needs to be calibrated routinely. If the gas sensor is more
mobile or exposed to many other elements upon taking samples, then the routine will
check to see if the device is calibrated properly is more frequent in contrast to a device
that stays in one place or only takes samples containing fewer elements. One of the
simplest way to calibrate any sensor is to expose the sensor to a known concentration of
the desired gas of detection. If the sensor isn’t reading the correct concentration, then the
difference between the output and the controlled sample can be taken and added or
subtracted to correctly offset the device. To improve the accuracy of the device, it is quite
common to repeat the sensor correction test, this will result in multiple values of offset in
which the average value can be taken and used. The more offset values the more
accurate the device is.

3.2.3 Bluetooth

One of the most common methods of device communication is Bluetooth connection.
Bluetooth is a global wireless communication standard that is implemented through radio
waves. Usually within the bandwidth of 2.4 GHz to 2.485 GHz, the radios wave allows
multiple devices to be connected at once, the master Bluetooth device can have up to
seven devices be connected all at once. In terms generations of Bluetooth that are most
commonly found in devices today, there are three: Bluetooth 3.0, Bluetooth 4.0, and most
recently Bluetooth 5. Of those three types of generations there are two branches of types
of Bluetooth: Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) and Bluetooth with
low energy (LE). Typically, Bluetooth Basic Rate/Enhanced Data Rate are found in stereo
speakers, headsets, and computers, while Bluetooth with low energy, as the name
implies, are found in device that operate on low power such as wearables and other 0T
devices.

3.2.4 Battery

When talking about battery technology we must define what a battery does. A battery is
a device that has energy stored in the form of chemical energy and then converts it to
electrical energy. Every battery has two terminals: a positive terminal known at the
cathode and the negative terminal known as the anode. Separating the cathode and
anode is the electrolyte. The role of the electrolyte is to provide a means of a chemical
reaction to build up electron at the anode. Since there is a buildup of electrons at the
anode, there is a potential difference between the anode and the cathode thus when the
battery is under load there will be electron flow from anode to cathode.

There are two classifications of batteries rechargeable and non-rechargeable. Non-
rechargeable refers to the types of battery that cannot be reused over again. These types

13

of batteries aren’t rechargeable because the chemical reaction that is provided by the
electrolyte cannot be reversed. Typically, when a non-rechargeable is used, a brand new
one replaces it.

The other type of battery classification is the rechargeable battery. Rechargeable
batteries are able to recharge because the chemical reaction that is provided by the
electrolyte is able to reverse its process thus restoring the anode and cathode back to its
original state. This original state can again provide full power.

‘//ﬁ
Megative Electrolyta Positive
electrods electrods=

Figure 5: Battery Diagram

3.3 Strategic Components and Part Selections

3.3.1 Microcontroller

When defining a microcontroller, a microcontroller is a computer system that typically has
memory, a processor, input/output ports, serial ports, timers, analog to digital converters,
and digital and analog converters to perform a task. Usually in the form of a single
integrated circuit, a microcontroller is much smaller than a computer as its main uses are
found embedded within a main system. However, the term "microcontroller” can easily be
confused with the term “microprocessor”. The microprocessor itself does not have its
memory and other peripherals contained on board with the chip, but rather placed
externally, leaving room for upgrades.

Before talking about comparing and strategically selecting microcontrollers, there are
categories that microcontrollers are divided into that needs to be defined: bits, memory,
instruction sets, architecture. When referring to the number of “bits” a microcontroller can
process at once, we are referring to most amounts of ones and zeros the processor can
read at one moment. Usually the processor’s bit numbers are 8bits, 16bits, 32bits, and
64bits. The higher the bit number, the faster the processor can perform tasks. In terms of
memory, memory is used to store data and programs to fetch later on. Typically, a
microcontroller has a fixed amount of RAM and ROM or other flash memories because
the microcontroller itself comes in a single IC package. The instruction set of a
microcontroller is the communication between the microcontroller’s software to hardware.
Lastly, a feature of a microcontroller that needs to be noted is the microcontroller’s

14

architecture. Typical architectures found on most microcontrollers today are the 8051,
PIC, AVR, and ARM.

3.3.1.1 Arduino Uno

The Arduino Uno is a microcontroller assembly that is based on the through hole version
of the ATmega328P. The Uno operates at 5V with a maximum input tolerance between
6-20V. In addition, the microcontroller has 28 pins of which there are 14 digital pins, where
6 of those pins can be used for PWM,; also there are 6 analog pins. In terms of memory,
the Arduino Uno has 2 Kilobytes of volatle SRAM memory, 1kilobyte of nonvolatile
EEPROM memory, and 32 kilobyte of nonvolatile flash memory of which 0.5 kilobytes is
allocated for the bootloader.

Additionally, the ATmega328P features three timers/counters, internal and external
interrupts, a programmable USART, a 6 channel 10-Bit analog and digital converter, a
programmable watchdog timer, and five software selectable power saving modes

MODE Functionality

Idle mode Stops CPU, but keeps SRAM, Timers/counters,
USART,2-wire serial interface on

Power-down mode Save contents inside register and freezes everything
else until interrupt occurs

Power-save mode asynchronous timer stays on, everything else is off

Standby mode crystal oscillator is on, everything else is off

ADC Noise Reduction only asynchronous timer and ADC is on, everything else

mode is off

Table 2: Arduino Uno Low power mode table

The serial interface uses Universal Asynchronous Receiver / Transmitter (UART) where
the pins RX and TX in which UART typically has are connected through to a USB-UART
converter circuit. The ATmega328P also has Serial Peripheral Interface(SPI). Besides
using it as another option for serial interfacing, it can also be used to program the
microcontroller using a standalone programmer.

In terms of power, the Arduino Uno can be powered on either by USB or a DC power jack.
The Arduino Uno also has a regulated 5-volt power supply and a 3.3-volt power supply
that can supply up to 50mA. The 5V power supply comes from the NCP1117ST50T3G
regulator where the input voltage is from the DC power jack that is then connected to a
surface mount diode to provide circuit protection. The output of the regulator is then
connected to the rest of the 5V circuit where the user can access the power and also to
the input of the 3.3V voltage regulator: LP2985-33DBVR. If however, the user decides to
power on the Arduino Uno via the USB rather than the DC power jack, then the 5V line of

15

the USB is connected to the drain of the an FDN340P, a P-channel MOSFET.
Furthermore, the source terminal of the MOSFET is connected to the 5V network where
the user can access the regulated power and the gate terminal of the MOSFET is
connected to an output of a LMV358 comparator. The comparator acts as a switch to turn
the MOSFET on and off.

Advantage Disadvantage
- removable microcontroller - Size
- Female Connectors - Video/audio peripherals

- Shield capability

- Pre-existing Female Pin

connectors
Table 3: Arduino Uno Advantage/Disadvantage table

3.3.1.2 Arduino ProMicro

When looking at the Arduino ProMicro, there are similar features to that of any
microcontroller to that of the Arduino family. The Arduino ProMicro is based on the
ATmega32U4 microcontroller. This microcontroller has 32 pins, of which 12 of those pins
are allocated for analog inputs while the other 27 pins are for digital input/output channels.
In terms of memory, the Arduino ProMicro has 2.5 kilobytes of SRAM, 1kilobyte of
EEPROM, and 32 kilobytes of flash memory of which 4 kilobytes are used by the
bootloader. In terms of power, the Arduino ProMicro operates at 5V however, the input
tolerance limit is 5V-12V. Once again like most Arduino microcontrollers, the device can
be powered on through the USB or an external power supply. If the user is using an
external power supply then connections must be made through the Vin and Gnd pins
since there are no other terminals for external power source.

In terms of device communications, the Arduino ProMicro has many ports for
communications. The device has TTL serial communication in which pins 0 and 1 are
used as RX and TX respectively to receive and transmit data. Also, there is TWI in which
pins 2 and pins 3 are used. Implementations can be done by using the Wire library. Lastly,
the Ardruino ProMicro allows for CDC communication through USB where the device act
as an open com port to other software on the computer.

Advantage Disadvantage
- Size - nonremovable
microcontroller
- Extra Digital input pins - Not shield capable
- Extra analog input pins - Video/audio peripherals
- No pre-existing connectors

Table 4: Arduino ProMicro Advantage/Disadvantage table

16

3.3.1.3 Arduino Mini

Lastly we take a look at the Arduino Mini. The Arduino Mini, similar to the Arduino Uno,
runs on the ATmega328. Since the two microcontroller have similar processor, the
peripherals will be similar as well. The Arduino Mini has 22 pins, of which 14 are used for
digital input/output, and of those 14 digital pins, 6 can be used for pulse width
modulations(PWM). In terms of device memory, the available memory is the exact same
as to that of the Arduino Uno.

The advantage to using the Arduino Mini comes from the size of the device. The device
itself is 30mm x 18mm. This allows the device to be portable, and easy to be stored away
in much tighter place compared to the previous Arduino Microcontrollers mentioned
before.

Advantage Disadvantage

- Size - Non-removable
microcontroller
- Video/audio peripherals

- Not shield capable

- Needs FTDI board to
program

- UART capability

- No pre-existing connectors

Table 5: Arduino Mini Advantage/Disadvantage table

3.3.1.4 Raspberry Pi 3 model B

Raspberry Pi 3 model B is the third generation of Raspberry Pi. The Raspberry Pi tends
to be more of a mini-computer whereas the Arduino family is a microcontroller. For the
purpose of this paper, the Raspberry Pi family will be treated as a special kind of
microcontroller. The device runs on the 1.2 GHz 64-bit quad-core Armv8 processor with
1 gigabyte of RAM. In terms of peripherals, the device has:

e 40 General Purpose input/output pins (GPIO)
e 802.11n Wireless LAN

o Bluetooth Low Energy

e 4 USB ports

e 1 HDMI port

e 1 Ethernet port

e Camera interface

« Display interface

e MicroSD card slot

e 3.5mm Arduino port

17

The advantage to using the Raspberry Pi is through the video/audio capability readily
available peripheral the device has to offer compared to the of the Arduino.

Advantage Disadvantage

- Video/audio peripherals - Non-removable microcontroller

- Number of GPIO

- Communication peripherals

Table 6: Raspberry Pi 3 Model B Advantage/Disadvantage table

3.3.1.5 MSP430G2211IN14

The MSP430 is a 16-bit microcontroller from Texas Instrument that follows RISC
architecture. In terms of powering on the device, the MSP430 operates between 1.8V to
3.6V. Furthermore, the MSP430 has 5 power saving mode in addition to a wakeup time
from standby mode of less than 1 uS. In terms of memory, the MSP430 features 128
kilobytes of RAM.

Advantage Disadvantage

- Ultra Lower power - Not user friendly in group31

- Fast wake-up time

Table 7: MSP430 Advantage/Disadvantage table

Upon reviewing over the advantages and disadvantages of each microcontroller, a
decision table is made to furthermore strategically pick the right microcontroller for the
BreathalLock project. In the decision table, criterions were carefully picked and weighted
according to the project’s needs, from 1 being the lowest weight possible to 5 being the
highest weight. The criterion: Dimension refers to the physical dimensions of the
microcontroller package. The criterion: Programmability refers to the ability to access the
microcontroller and program the desired task. Maintainability refers to the
microcontroller’s ability to be replaced if any accidents should that should arise. Cost is
the cost of the microcontroller per unit, the higher the cost score the less expensive the
microcontroller is.

18

Decision Table Microcontroller scores
Criterion | Value c a % a % a T a (% g
Weight | © | 2| 3 = 2 2 9|2
w
o
Dimensi 3 3 9 4 12 | 5 15 1 3 3 19
on
Program 4 5 20 | 5 20 | 2 8 4 16 2 8
mability
Maintain 5 5 25| 1 5 1 5 1 5 2 |10
ability
Peripher 2 2 4 2 4 2 4 5 10 3 6
als
Cost 2 5 10| 2 4 2 4 1 2 5 |10
Total 68 45 36 36 43

Table 8: Microcontroller Decision Table

3.3.2 Bluetooth
Choosing a Bluetooth module for our project was difficult. However, we were able to limit
our options to two choices.

3.3.2.1 Adafruit Bluefruit LE UART Friend

The Adafruit Bluefruit LE UART Friend has a ARM Cortex MO core running at roughly
16MHz, has 256kb of memory 32kb of static RAM. The device includes voltage regulation
on board which is important for our needs. Adafruit’s board also utilizes a UART transport
scheme at a 9600 baud rate with hardware flow control such as CTS+RTS a RS-232
standard which can be enabled if necessary. However, this feature seems that it may not
be useful. The particular module fits within our size and weight specification at 21mm x
32mm x 5mm (WxLxH) and 3.4g. The module also uses Bluetooth 4.0

Advantages

e Compatible with our logic board
« Very modifiable

e Well documented

e« Small

Disadvantages

e Complex Driver
o Expensive cost wise

19

3.3.2.2 Phantom YoYo JY-MCU Arduino Bluetooth Wireless Serial

The Phantom JY-MCU Bluetooth module has similar specs to the Adafruit module;
however, with some key differences. The Bluetooth standard that is utilized is the older
2.0 EDR standard and the size is larger at 4.4 cm x 1.6 cm x 0.7 cm which poses problems
for our specification as we would like something smaller. The voltage requirement of this
device is 3.3V.

Advantages

e Simple pin layout
o Cheap cost

Disadvantages

e Poorly Documented
o Does not meet size specifications
« Old Bluetooth specification

3.3.2.3 BLE Nano - nRF51822

The BLE nano-nRF51822 features an ARM Cotex-M0O SoC. In addition, the nano-
NRF51822 uses Bluetooth 4.1 which is the latest technology in low power Bluetooth
communication. In addition, the BLE nano is only 18.5mm x 21.0mm, making it a good
candidate for Blue communication as portability is important in our BreathalLock project.
In terms of powering on the device the operating voltage is between 1.8V to 3.3V.

Advantages

Size

Cheap cost

ultra Low power consumption
Comes with headers

Works with 10S and android

Disadvantages
e no onboard storage

In the decision table below, the highest weight possible for a criterion is 5 while 1 is the
lower weight possible.

20

Decision Table Bluetooth Module scores
Criterion Value Bluefruit | Total YoYo Total BLE Nano Total
(Weight) | LE JY-MCU

Dimension 3 4 12 3 9 4 12

On board 4 4 16 0 0 0 0

storage

Bluetooth 5 5 25 3 15 5 25

protocol

Cost 3 4 12 2 6 2 6
Total 65 30 43

Table 9: Decision Table

3.3.3 Fingerprint Scanner

When strategically selecting a biometric fingering print scanner, we needed to check the
variety and the availability of the standalone technology that’s on the market. It turns out
that even though fingerprint sensing is very common amongst technology today, the
standalone technology that is available on the market is very low. This is most likely due
to the fact that pre-existing fingerprint technology is uniquely designed by companies to
be coupled with their existing product. There are only two finger print scanner modules
that are available in the market: the TTL(GT-511C3) and Adafruit.com’s fingerprint
scanner (product ID:751).

The GT-511C3 features an ARM Cortex M3 Core CPU embedded into the package.
Additionally, the device can image a size of 202 x 258 pixels with a resolution of 450 dpi.
The false acceptance rate is less than 0.001% and a false rejection rate is less than 0.1%.
In terms of powering on the device, the operating voltage is between 3.3 to 6V and the
operating current is less than, 130mA. The baud rate for this device or rather the
maximum amount of bits per second the serial port is capable of transferring is 9600 bits.

When we look at the fingerprint sensor found on Adruit.com, the sensor has the exact
same features and specifications as the GT-511C3 however the thing that differentiate it
from the GT-511C3 is the baud rate. The baud rate for optical fingerprint sensor found on
Adafruit.com is 9600, 19200, 28800, 38400, and 57600. This mean that the number of
bits second the serial port can transfer can be varied depending on the user. Regardless,
the device has a default baud rate of 57600 bits thus making it much faster and much
more efficient than the GT-511C3.

However, when comparing the two devices to strategically select the right fingerprint
scanner for the BreathalLock project, the baud rate is not an important criterion to compare
by but rather then dimensions of each device. Both devices are both optical sensors, and
by the nature of their technology the two devices are much larger than that of capacitive
touch fingerprint scanner. In our case, the smaller the device is, the better suited the

21

device is for the project. In the decision table below the maximum weight possible is 5
and the lowest weight possible is 1

Decision Table Fingerprint scores

Criterion Value(Weight) | GT-511C3 Total | Adafruit.com’s | Total
fingerprint
scanner

Dimensions 5 3 15 4 20

Power 4 4 16 4 16

Data rate 1 3 3 4 4

False 3 5 15 5 15

acceptance

rate

False 3 5 15 5 15

rejection

rate

Total 64 70

Table 10: Fingerprint Scanner Decision Table

3.3.4 Breathalyzer sensor

Once again when strategically selecting a breathalyzer sensor, we needed to check the
variety and the availability of the standalone technology that is on the market. It turns out
that even though gas sensing technology is common, finding the right sensor for the with
the right sensitivity can be difficult. There are only two alcohol sensors available on the
market that can detect alcohol on a sensitive level: the MQ-3, and the MR513 alcohol
sensor.

3.3.4.1 MQ-3 Sensor

The MQ-3 sensor is a semiconductor-based sensor that can detect concentrations of
alcohol within the scope of 25 to 550 parts per million(ppm). In terms of how this device
operates, the six terminal device has allocated two sets of pins to power on a heating
element, while the remaining four pins acts as 2 sets of leads to a resistor. The heating
element dries up the surrounding air to prepare the existence of alcohol gas. Upon the
presence of alcohol gas, there will be a differential in conductivity. Then the differential
will then be translated into an analog signal in which the analog signal can tell us the
amount of alcohol present in the air. One key thing to note on this device is that for the

22

first time using the device the sensor must be power d on for 48 hours. This ensures the
heating element can work properly over time.

To further detail on how the device can take the differential in conductivity and translate
it into an MR513 analog signal we must note the two sets of on the device (4 pins). One
set of pins act as one end of a variable resistor and the other set acts as the other end.
However, since the variable resistor is made up of tin dioxide(SnO2) which is a
semiconductor, the true conductivity of the device is unknown due to the temperature
dependency property of semiconductors. With that being said, the variable resistor can
be connected in series with a load in which the output is the voltage across the load. Once
alcohol gas comes into contact with the semiconductor a differential in conductivity will
occur across the variable resistor, this change can be measured by measuring the voltage
across the load before and after the presence of alcohol. Upon measuring the change in
voltage, the concentration of alcohol gas can be known.

Advantage

Disadvantage

low power

water sensitive

Size

vibration sensitive

Load resistance adjustable

break-in period

Susceptible to corrosion

Table 11: MQ-3 Advantage/Disadvantage table

3.3.4.2 MR513 Sensor

The MR513 Sensor is based on semiconductor technology. The MR513 consist of a
detection element and a compensation element placed in Wheatstone configuration.
When there is alcohol gas within the sensor, the voltage of the Wheatstone bridge will be
change thus telling us how much alcohol gas is present. The Sensitivity for this device is
100 parts per million. In terms of powering on the device, the alcohol sensor run on 3 volts
with a working current or around 100 milliamps.

Advantage

Disadvantage

low power

only 1 datasheet

Size

Data sheet isn’t detailed

- only 4 terminal device

Table 12: MR513 Advantage/Disadvantage table

23

Decision Table Gas Sensor scores

Criterion Value(Weight) | MQ-3 Senor Total MR513 Total

Dimensions 3 6 3 6

Power 3 9 4 12

Documentation 4 20 2 10
Total 35 28

Table 13: Gas Sensor Decision Table

3.3.5 Power supply
In terms of powering on the project, we must understand how much power each
component needs to operate. From the table below we can see each component can
operate under 10V.

Operating voltage Peak Current
Arduino Uno 7.0-12v DC -
Bluetooth 5V
Fingerprint 3.6-6.0 DC 150mA
scanner
Breathalyzer 5.0V ACor DC 180 mA
sensor
Car remote 3V -

Table 14: Selected Component Operating voltage

Since the Arduino Uno has an onboard 5V and 3V regulator, we can power on the entire
BreathalLock project via 9 volts. To achieve this 9V there many options in which we go
about.

3.3.5.1 Power option 1

To achieve the desired 9V that powers the entire BreathaLock project, we can use a
standard rechargeable 9V battery. The advantage to using a standard rechargeable 9V
comes from the storage capacity of the battery and the recharge-ability of the battery.
Typically, a standard 9V can hold much power than that of a coin cell battery. The
disadvantage of the standard 9V battery is that the size of battery is big and bulky.

24

3.3.5.2 Power option 2

Power option 2 consists of using three 3V coin cell battery. When connecting batteries in
series, the overall voltage is equal to the sum of each individual voltage. In the case of
power option 2, three 3V coin cell battery adds up to 9V. The advantage to using three
smaller batteries is the amount of space the three-coin cell battery takes up when
compared to the size of the standard 9V battery. The disadvantage to from using three
3V coin cell battery is the amount power the batteries can hold compared to a standard
9V battery.

Decision Table Power Option Scores
Criterion Value(Weight) Option 1 Total Option 2 Total
Dimensions 5 2 10 4 20
Power 3 3 9 4 12
storage

Total 19 32

Table 15: Power Option Decision Table

3.3.6 Key remote
Before picking a motor key remote to use for the project we must identify the car that will
be used for the project. Nicholas Fraser volunteer his 2005 Ford F150 for the project.

3.3.6.1 300-0247ES Universal Car Remote

The 300-0247ES universal car remote is a 6 button device that does have compatibility
for the 2005 Ford-FF150. The 6 buttons on the device are for lock, unlock, open trunk,
panic alarm, and two auxiliary buttons for vehicle functions. Vehicle functions include, van
door, remote start, convertible top etc. In terms of powering on the device, the universal
car remote found at Walmart operate using a standard lithium 3V coin cell battery.

3.3.6.2 KPT1306 key remote

The KPT1306 key remote is compatible for the 2005 Ford-F150. The device features 3
buttons for lock, unlock, and panic. In terms of powering on the device once again the
device runs on a stand lithium 3V coin cell battery. In terms of programming the device,
the ignition must be turned from off to run 8 times within 10 seconds. After the 8" turn,
the user has 20 seconds, pressing any key on the keyless remote to enable the device to
be programmed. After that, the next button needs to be pressed again to confirm the
second programming. Lastly, turning the ignition to off will end the programming phase.

3.3.6.3 K410 Car Remote Central Lock Locking Entry System
Though this product comes with two double button key remotes, it also comes with the
remote receiver which is still relevant to consider for the BreathalLock project. In terms

25

of powering on the whole system the requires 12voltes where the max current draw is
15A. In the decision table below, the highest weight possible for a criterion is 5 while 1
is the lower weight possible.

Decision Table Keyless remote Scores
Criterion Value(Weight) 300- Total | KPT1306 | Total | K410 | Total
0247ES
Simplicity 5 4 20 5 25 2 10
Power 3 3 9 3 9 2 6
Quantity 2 1 2 4 8 4 8
Total 31 42 24

Table 16: Power option Decision Table

3.4 Architectures and Related Diagrams

3.4.1 Microcontroller Architecture

In terms of microcontroller architecture, we will be discussing the ATmega328P’s
architecture. The ATmega328P is an 8bit- AVR RISC-based microcontroller. The term
AVR RISC tells us that microcontroller follows a modified version of the Harvard
architecture with reduced instruction set computing. In terms the available register the 32
general purpose register that is all directly connected to the Arithmetic Logic Unit (ALU).
This direct connection allows for simultaneous access of each register upon an execution
of an instruction.

The Harvard architecture says that volatile and nonvolatile memories are treated as 2
separate systems, whereas the popular von Neumann architecture only has a single
memory system. One advantage of the Harvard architecture is that the ability to
simultaneously access the programs and data elements.

Address Address
Bus Bus
Program CPU Data
Memory Memory
Data Bus Data Bus
— —

Figure 6: Harvard architecture

26

http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf

Furthermore, the ATmega328P follows reduced instruction set computing. This means
that the instruction set for this device is simplified by cutting down on the complexity of
each available instruction. This allows the device to process down simple instructions at
every single clock cycle thus achieving a high throughput at around 1 MIPS per MHz. If
the device is however CISC, the exact opposite of RICS, the instruction set would have
a degree of complexity thus requiring more resources to process down each instruction.
The focus of CICS is to process down instructions with the fewest lines of code possible
at the cost more of time, however, the focus of RISC to process down instructions fast at
the cost of more lines of code.

3.5 Parts Selection Summary

When talking about the selection of parts, we must first look at the decision table for each
category of parts. For the microcontroller that will be governing the project, we chose to
pick the Arduino Uno with a few minor adjustments. For the BreathalLock project we will
be cloning our own Arduino Uno. This will give us the freedom to design our project under
one PCB package. Additionally, the microcontroller will have its USB bridge removed to
save power and board space since our project does not have any use for that component
to permanently be on the PCB. In terms of supplying the regulated 5V and 3V, we will be
using the LM7805 and the LT1761ES5-3 respectively. Again, the reason why we'’re
building our own Arduino Uno is to be able to tailor our design to be compact and lower
power consumption.

In terms of why we chose the ATmega328P, we chose the microcontroller because of its
low-power capabilities as having 4 modes of low power is an asset to our BreathalLock
project. Furthermore, we chose the ATmega328P because its ability to be place in a dip
socket. This allows us to replace a broken microcontroller without removing any circuit
components if need be.

For the Bluetooth module, we chose the Bluefruit LE UART module. We chose this
component because of it size. The fact the entire module is 21mm x 32mm x 5mm
becomes an advantage to us when we are creating a device that is meant to be portable.
Additionally, we chose this component because of its low power capability as the device
conveniently run on 5V which makes it Arduino Uno friendly. Furthermore, the device has
256kilobytes of flash memory. This allow use to have multiple profiles save onto the
device.

For the fingerprint scanner, we chose to go with the one found on Adafruit.com. We chose
this device because of the form fitting factor this device has to offer when compared to
the GT-511C3. The GT-511C3 has undesirable hinges protruding off to the sides thus
making the device itself awkward to make portable.

For the gas sensor we chose to use the MQ-3 alcohol gas sensor. We chose this device
over the MR513 because of the available documentation the MQ-3 has compared to the
MR513. The MR513 only has 1 available datasheet that isn’t detailed in how the device

27

http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf

operates. However, the MQ-3 has multiple documentations along with meeting the
required alcohol sensitivity for the project.

For the keyless car remote, we chose to use the KPT1306 key remote. We chose this
remote because it was the simplest keyless remote when compared to the other two
options. For the Breathalock project, since we are only interested in the transmission of
the unlock signal and other device with more than two button will complicate the process
of modifying the remote. In addition, since we are using 2005 Ford-F150, there is already
a preinstalled remote receive on the vehicle thus using the K410 Car Remote Central
Lock Locking Entry System is not necessary.

Lastly, for powering on the entire device we chose to go with three 3V coin cell battery
(power option 2). We chose power option 2 because of the portability coin cells batteries
have to offer. In addition, carrying around a standard 9V battery would not promote
portability with the Breathalock project.

Part selection summary
Part Selection Cost (before
tax and
shipping)
Microcontroller | Arduino Uno $29.99
Bluetooth Bluefruit LE $17.50
module UART
Alcohol gas MQ-3 $4.95
sensor
Fingerprint Adafruit.com’s | $49.95
Sensor
Battery three 3V $10.00
battery
Keyless $7.95
Remote
Total $120.34

Table 17: Part selection summary Table

28

4. Related Standards and Realistic Design

Constraints

4.1 Standards

4.1.1 Bluetooth Standard

The Bluetooth specification defines the technology that developers can use to create the
devices that communicate between other Bluetooth applicable devices. The Bluetooth
specification is overseen by a Special Interest Group (SIG) and is regularly updated to
meet new needs.

Summary

The Bluetooth standard specifies two “flavors” of Bluetooth are as follows:

Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) - which is an older
standard adopted as version 2.0/2.1. The entire spectrum of the RF part of the
physical layer (see figure XX) operates in an unlicensed industrial, scientific and
medical (ISM) radio band at 2.4GHz. In order to tackle interference, the any device
may encounter Bluetooth employs a frequency-hop transceiver which assists in
identifying “good” frequency by avoiding “bad” frequencies that may be in use, are
experiencing selective fading, or perhaps those bands are being actively jammed.
BR/EDR includes two data rates Basic Data Rate and Enhanced Data Rate. Basic
Rate, supports a bit rate of LMBps while Enhanced Data Rate supports gross air
bitrate of 2MBps. Making this an ideal standard for relatively short-ranges,
continuous wireless communications, which is ideal for audio streaming.

Bluetooth with Low Energy (BLE) - This is the newest standard also known as
4.0/4.1/4.2. This newer standard was developed with power-efficiency in mind.
Devices that utilize small or isolated power sources; such as, button cell batteries
or solar power. This platform is more heavily supported for every major operating
system and allows for seamless development for a board. Opposite of BR/EDR,
BLE offers short burst of long-range radio connections which is ideal for
applications in the field of Internet of Things or devices that do not require
continuous connection but depend on battery longevity. This version achieves this
energy efficient mode by having three modes Ultra-low peak, average and idle
mode. BLE offers several security enhancements versus its predecessors such as,
digital signing, key generation, encryption as is government-grade security with
128-bit AES data encryption, etc. (see sec. 1.1.1.1.3. Bluetooth Security below).
These features make it ideal for variety of applications such as security systems,
portable devices, fithess monitors, proximity sensors, and breathalyzers.

Each implementation has different use cases and each implementation uses a different
chipset to meet essential hardware requirements. dual-mode chipsets are available to
support single devices such as smartphones or tablets that need to connect to both
BR/EDR devices (such as audio headsets) and LE devices (such as wearables or retail
beacons)

29

4.1.1.1 Core System Architecture

While each implementation has specific requirements that are detailed in the Bluetooth
specification, the Bluetooth core system architecture has many consistent elements. The
system includes an RF transceiver, baseband and protocol stacks that enable devices to
connect and exchange a variety of classes of data.

Bluetooth devices exchange protocol signaling according to the Bluetooth specification.
Core system protocols are the radio (RF) protocol, link control (LC) protocol, link manager
(LM) protocol and logical link control and adaptation protocol (L2CAP), all of which are
fully defined in the Bluetooth specification.

The lowest three system layers—the radio, link control and link manager protocols—are
often grouped into a subsystem known as the Bluetooth controller. This is a common
implementation that uses an optional standard interface—the Host to Controller Interface
(HCIl)—that enables two-way communication with the remainder of the Bluetooth system,
called the Bluetooth host.

The primary controller may be one of the following configurations, depending on use case:

o BRJ/EDR controller including the radio, baseband, Link Manager and optionally HCI

« LE controller including the LE PHY, Link Layer and optionally HCI

o Combined BR/EDR controller and LE controller, with one Bluetooth device address
shared by the combined controller

The Bluetooth specification enables interoperability between systems by defining the
protocol messages that are exchanged between equivalent layers. It also enables
interoperability between independent Bluetooth subsystems by defining the common
interface between Bluetooth controllers and Bluetooth hosts.

30

Applications

HOST

Generic Access Profile

Logical Link control & Adaption Protocol

Host Controller Interface

Direct Test Mode

Physical Layer

CONTROLLER

Figure 7: System Architecture

Physical (PHY) Layer:

Controls transmission/receiving of the 2.4Ghz radio with Bluetooth communication
channels. BR/EDR provides more channels with narrower bandwidth, while LE uses
fewer channels but broader bandwidth.

Link Layer:
Defines packet structure/channels, discovery/connection procedure and sends/receives
data.

Direct Test Mode:
Allows testers to instruct the PHY layer to transmit or receive a given sequence of
packets, submitting commands to it either via the HCI or via a 2-wire UART interface.

Host to Controller Interface (HCI):

Optional standard interface between the Bluetooth controller subsystem (bottom three
layers) and the Bluetooth host.

31

Logical Link Control and Adaptation Protocol (L2CAP) Layer:

A packet-based protocol that transmits packets to the HCI or directly to the Link Manager
in a hostless system. Supports higher-level protocol multiplexing, packet segmentation
and reassembly, and the conveying of quality of service information to higher layers.

Attribute Protocol (ATT):

Defines the client/server protocol for data exchange once a connection is established.
Attributes are grouped together into meaningful services using the Generic Attribute
Profile (GATT). ATT is used in LE implementations and occasionally in BR/EDR
implementations.

Security Manager:

Defines the protocol and behavior that manages pairing integrity, authentication and
encryption between Bluetooth devices, and provides a toolbox of security functions that
other components use to support almost any level of security needed by diverse
applications.

Generic Attribute Profile (GATT):

Using the Attribute Protocol, GATT groups services that encapsulate the behavior of part
of a device and describes a use case, roles and general behaviors based on the GATT
functionality. Its service framework defines procedures and formats of services and their
characteristics, including discovering, reading, writing, notifying and indicating
characteristics, as well as configuring the broadcast of characteristics. GATT is used only
in Bluetooth LE implementations.

Generic Access Profile (GAP):

Works in conjunction with GATT in Bluetooth LE implementations to define the
procedures and roles related to the discovery of Bluetooth devices and sharing
information, and link management aspects of connecting to Bluetooth devices.

4.1.1.2 Bluetooth Security

To ensure communication via Bluetooth is secure, BLE achieves this by utilizing several
security features, the Bluetooth specification gives several features to cover the
encryption, trust, data integrity and privacy of the user's data. The processes are
described as follows:

« Pairing - this mechanism is the process where devices involved in communication
exchange their identity information to set up trust and get the encryption keys ready
for future data exchange. Bluetooth has a few options in regards to pairing. In
version 4.0 and 4.1 of the specification, Bluetooth uses the Secure Simple Pairing
model (SSP) a form of public key cryptography this promotes an effective
mitigation strategy for Man-In-The-Middle (MITM) attacks. The devices will often
choose one method from the following: Just Works, Passkey Entry, Numeric
Comparison, and OOB.

32

« Key Generation - Keying BLE is performed by the Host on each device
independently. Key generation in BR/EDR is performed in the Controller. By
performing this on the Host, the key generation algorithms can be upgraded
without changing the device. The following keys are exchanged between primary
device and secondary device: Connection Signature Resolving Key (CSRK) for
authentication of data, and Identity Resolving Key (IRK) for the devices identity
and privacy. The two keys pub and priv key are generated in the host and a SSK
is generated by combining information from each device involved in
communication.

e Encryption - Bluetooth with LE uses AES-CCM cryptography. Both version of
Bluetooth perform some level of encryption. The LE Controller performs the
encryption function. LE generates 128-bit encrypted data from a 128-bit key and
plaintext data using the AES-128-bit block cypher
(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)

e Signed Data - This feature supports the ability to send authenticated data over an
unencrypted transport between two devices with a trusted relationship (see
pairing). In circumstances where the channel is not encrypted, the device could
still ensure the data authentication. To sign the data, BLE utilizes CSRK. The
sending device places a signature after the Data Protocol Data Unit (PDU). The
receiving side verifies the signature and, if the signature is verified, the PDU is
assumed to come from a trusted device. The signature is composed of a Message
Authentication Code generated by the signing algorithm and a counter. The
counter is used to protect against a replay attack and is incremented on each
signed Data PDU sent.

How Bluetooth Utilizes these Features to Protect Your Information The goal of the low
energy security mechanism is to protect communication between devices at different
levels of the stack. Below are commons types of attacks against various wireless
communication protocols, and how Bluetooth addresses them.

4.1.2 Health standard

While there are no standards for health that we are required to maintain, we would want
to be cautious considering our project is an indicator for overall health and capability of
the driver. So we must adhere to the given law of Blood Alcohol Content levels and ensure
those reported values are within a given tolerance. It must also be known that those
values are within that tolerance.

The BAC in Florida is 0.08 so in order to avoid errors in tolerance our implementation
should aim for a much lower value. By taking a “Better Safe Than Sorry” approach we
avoid any potential errors in regards to setting a tolerance. Our team has decided that
X. XX is an appropriate value as this will ensure the doors do not unlock and allow the
driver to do harm to property, himself, passengers, or pedestrians.

33

4.1.3 Design impact of relevant standards

The design impact of the Bluetooth standard affects us in some ways especially in regards
to the security.

How Bluetooth Utilizes these Features to Protect Your Information The goal of the low
energy security mechanism is to protect communication between devices at different
levels of the stack. Below are commons types of attacks against various wireless
communication protocols, and how Bluetooth addresses them.

4.2 Realistic Design Constraints

These are constraints that we may encounter in the real world. We would need to evaluate
these domains before proceeding into our design phase. It is important the project be an
achievable idea, and it needs to be within the realistic constraints set by these standards.

4.2.1 Economic and Time constraints

Obviously, we are limited by our budget and the time constraints placed on us from the
semester; however, we have also set completion milestones for ourselves. These would
be soft deadlines as we may encounter trouble with the development. Our team has
allocated slack time onto project milestones. Hard deadlines are unavoidable and must
be addressed.

4.2.2 Environmental, Social, and Political constraints

The social and political value of our product is enormous. Socially, receiving a DUI has
a tremendous impact on one's life. Many people have been arrested for DUI and with
very clean records the ramifications of receiving a DUI can stick around for years. Most
people are aware of the short term consequences of drinking and driving, which can
include a driver licenses suspension, very high fees and fines, and high insurance
premiums. However, there are also long term consequences associated such as, loss of
job opportunities, losing government clearance for jobs, loss of scholarship, or even
relationships. All of these can tailspin into a social nightmare.

That being said, while our product may be able save your social status long term and
short term. There are implications of utilizing the device without the need; such
questions may arise such as “why an individual would want to use this device?”, “does
this individual have a drinking problem?”, etc. We would like to constrain the device to
be unperceivable or at least latent.

4.2.3 Ethical, Health, and Safety constraints

As mentioned in our health standard we should be cautious with setting our limiting value
(BAC) too close to the legal limit. This very easily could cause harms to health and safety.
Our group also feels it has an ethical obligation to fulfil. If we can stop any potential
accidents from occurring, then we will have done a good job.

4.2.4 Manufacturability and Sustainability constraints

Most of the products we are working on are already heavily manufactured and are not
difficult to produce

34

5. Project Hardware and Software Design Details

5.1 Initial Design Architectures and Related Diagrams

To implement the BreathalLock system most effectively we have chosen components
based on many factors listed previously. Below we have an image of all of the major
components and breakout boards that will make up the bulk of the BreathalLock system.
Of course in final implementation we will need many other small discrete components.

5.1.1 Project Hardware Components

Figure 8: All components by letter

Part Component Purpose
Letter
A) Adafruit Fingerprint Sensor Biometric fingerprint sensor
subsystem
B) Elegoo Uno R3 (Arduino 3" Party | Microcontroller for testing
Board)
C) MQ-3 Alcohol Sensor Alcohol sensor component
D) Sparkfun Alcohol Sensor Breakout board to allow for
Breakout Board bread boarding
E) Adafruit Bluefruit UART Friend Bluetooth component for
Bluetooth subsystem

Table 18:Component descriptions

In our final implementation many of these components will be included in PCB which will
allow us to create a more concise and dense device. In the above image we include the
Elegoo Uno R3. This is because it allows us to interface with the microcontroller that we
will be using in our final implementation. Note that we will be using the open source design
of Arduino PCB for our project PCB. This will also be the case for the Sparkfun breakout
board.

35

5.1.2 Hardware Wiring

While investigating what our overall hardware will look like we need to investigate how to
connect all sensor to the Arduino to interface with the microcontroller effectively.
Discussed late in the individual components section we see the wiring of each individual
component to the Arduino. To keep our diagrams consistent, we will make most
connection point the same to reduce interference with testing and wiring. This will also
make it easier for us to debug any problems that we may have with the components later
in the prototyping phase.

Fingerprint Sensor

-) .
remm Arduinc

Figure 10: Breadboard testing of all components

36

Section Arduino Input | Connection
Power 5V Breadboard Power Rail.
GND Breadboard Ground Rail
Analog A0 Analog Output for MQ-3 Alcohol sensor
0 RX Fingerprint Sensor
1 TX Fingerprint Sensor
8 RTS Bluetooth Module
Digital 9 RXI Bluetooth Module
10 TXO Bluetooth Module
11 CTS Bluetooth Module
12 MOD Bluetooth Module

Table 19: Arduino Specific Connection

Regulatar
v

A
30w,

The above table and figure depict a clear representation of how we will interface our
microcontroller with the various components and sensors. It is important to test and verify
the amount of connection points that we will be using so that when we begin our PCB
design we will be able correctly interface. In the above diagrams and schematics, we are
making connections with female headers, breadboards, and raw wires. When we get into
the PCB design we will be able to eliminate these connection types and use the PCB wire

Micreontroller

Arduing
na

[T

LT

G
S
Brealoout

Red {833nm)

LED1

R2 |
1060

WA

Ri
L0k
i

= AN—

Boazrd —

Figure 11: Fritzing wiring schematic

pours to make connections.

37

5.2 Bluetooth Subsystem

5.2.1. Bluefruit LE UART Friend (BLE)

For our Bluetooth component we choose to use a low cost Bluetooth module sold by
Adafruit. We chose this chip for a few reasons, it is cost effective, low energy, and
compact. The chip comes with EAGLE files and some instruction on how to test it which
will allow us to easily include its functionality onto our own PCB and ensure functionality.

Figure 12: Bluefruit LE UART Friend (BLE) external image

Onboard Processing | ARM Cortex 16Mhz

Flash Memory 256KB

RAM 32KB SRAM

Baud Rate UART at 9600 Baud

Supply Voltage 5v-safe input with onboard voltage regulation
Dimensions 21 x 32 x 5mm

Weight 3.49

Table 20: Bluefruit LE UART Specifications

5.2.2. Sensor Specific Operation

The Adafruit Bluefruit UART Friends is a BT 4.0 and BT 4.1 stack which was specifically
designed for low energy use. We intend to use Bluetooth simply as a gateway to
communicate between the BreathalLock system and a cellular device. Specifically, in
hardware implementation we will be including these components into our PCB design and
will have the BreathalLock constantly attempting to connect to a cellular device. Once
connected the BreathalLock will be controlled with both the buttons on the Breathalock
but also Bluetooth commands from the cellular device.

5.2.3 Subsystem Implementation

To include Bluetooth as an asset to the BreathalLock we will need to include it first into
our hardware realization. This will be done by including the components and processing
into our PCB. This should be done without much stress aside from the connections to the
MCU to transfer data and to bring power to the sensor. Because the sensor operates
comfortably with a 5v input we will be bringing power to the sensor from the same output
of the 5v voltage regulator.

38

5.3 Biometric Subsystem

5.3.1 Sensor Overview
Adafruit Fingerprint Sensor

We chose a prepackaged fingerprint sensor simply because the focus of this design
project is to implement a device to ensure ease of use and accuracy to prevent drunk
driving, not to investigate image and digital signal processing of fingers. The Adafruit
fingerprint sensor has an onboard DSP chip and onboard flash memory to allow for
multiple finger prints to be stored.

Figure 13: Fingerprint sensor external image

Component Fingerprint Sensor
Supply voltage 3.6-6.0VDC
Operating Current | 120mA max

Peak Current 120mA

Imaging time Less than 1 second
Interface TTL Serial
Dimension 56 x 20 x 21.5mm
Weight 20 grams

Table 21: Fingerprint sensor technical characteristics

5.3.2 Sensor Specific Operation

By understanding how our fingerprint sensor works we will be able to better implement its
full capabilities into the BreathaLock system. The fingerprint sensor operates in two
settings: enrolling and searching. Because the system has onboard processing and
memory it has the ability to read and save a fingerprint and register it into an onboard
database of users. Once the fingerprint is read and saved it will remain in memory until
deleted. Secondly the sensor can operate in the searching state. When the sensor
receives a search command it will read the finger on the sensor and cross reference it to
fingerprints already in the memory. The sensor will either confirm user with a confidence
score or fail the finger all together. These two operations combined with come other logic
can be very powerful.

39

5.3.3 Subsystem Implementation

To implement the fingerprint sensor successfully we will need to take some time
investigating the best way to save and read fingerprints for the application of drunk driving
prevention. The main operation is quite simple: read a fingerprint at the time the user
wants to get into their car and if the user is the correct owner then move onto the BAC
test. The main obstacle is regarding to when and how to enroll new users. We cannot
allow the BreathalLock to enroll new users at any time at ease because it would leave a
huge loop hole for users to enroll any user at the time they are drunk and need access to
their car. The best option would be to have to connect the BreathalLock to a computer
and enroll users as an administrative user. Another option would be possibly to create an
administrative password that can be entered into the android application to allow for new
user enrolling. Our final consideration would be if we want there to be multiple users
enrolled at a time or only 1. Either option would still result in user enrolling to be performed
at a time before trying to enter the car.

5.4 Breathalyzer Subsystem
5.4.1 MQ-3 Alcohol Gas Sensor

Figure 14: MQ-3 sensor external image and pin reference

Component MQ-3

Sensor Type Semiconductor
Target Gas Type | Alcohol

Detection Range | 25-500ppm alcohol
Heater Voltage 5.0V

Output Voltage 2.5-4.0V
Table 22: MQ-3 sensor technical characteristics

We chose to use the MQ-3 alcohol sensor because of its simplicity, sensitivity, and fast
response time. This sensor provides an analog output that can be read and analyzed by
a microcontroller to decipher the sobriety of the user.

40

5.4.2 Sensor Specific Operation

|
Vi
AC or
DC 5V
0.1V

Figure 15: Sensor operation schematic

To implement a breathalyzer using the MQ-3 sensor it is important to fully understand
how the sensor operates. This sensor works by using a conductively sensitive material,
particularly ShO2 or tin dioxide. The tin dioxide changes conductivity with the presence of
alcohol in the air. When higher concentrations of alcohol exist in the air the conductivity
of the air gets higher and so does this sensitive material. By placing the tin dioxide in
series with a load resistor, the sensor is able to have an analog voltage read across this
load resistor that is dependent on the conductivity of the tin dioxide. After calibrating what
read values relate to blood alcohol levels we will have an accurate way to measure blood
alcohol concentration (BAC).

5.4.3 Subsystem implementation
VRL

% i{ Analog Read

Ve Tin_Dioxide RL
— 5y §1Ukﬂ

Figure 16: Circuit analysis of sensor

Ve xRy

Ve =
RL + RTin Dioxide

Equation 1: Output Voltage Analog read
To properly implement the breathalyzer subsystem, it is necessary to allocate some time
and effort into layout, placement and design to ensure we are reading accurate data. First

we need to make sure that we effectively power the sensor and choose the correct resistor
value to receive expected analog output and make sense of it. To power the chip, we will

41

need to bring 5 volts into pins 2, 4 and 6 in the figure x. This will be taken from the output
of a voltage regulator in the PCB design. Secondly we need to include a load resistor of
whichever value we choose to use. It is not important because it will only affect the analog
output which will need to be converted into a relative BAC but for the purpose of early
design we will choose RL = 10kQ. The VgL pin from 1&3 to ground will be connected to
an analog read pin accessed by the microcontroller.

To read and make sense of this sensor we will need read an analog output that is relative
to the voltage across the load resistor. Unfortunately, because the conductivity of the tin
dioxide layer is unknown, due to variability among components and the dependence on
temperature, it would be impossible to calculate a perfect output based on the equation
above. With that said we will be able to see that our output will be dependent on the
resistor value chosen and that the value will be inversely proportional to the amount of
alcohol in the air. Our code should break this range of values into two cases: more than
0.08 and less than 0.08 BAC. Depending on which case the sensor reads will determine
if the user is over the legal limit and must be denied access.

5.5 Software Design

Software is an important component to an embedded system. It is not only about the
hardware required but it is also heavily about the software decided. Choosing the right
software for different stages of the development is not easy. There are various phases in
a project that determine the software naturally. However, with our existing framework we
were presented with several options for that incorporate various design methods. If we
do not correctly choose the right software approach progress will be stalled, or the team
will have to re-evaluate our projects requirements.

5.5.1 Programming Languages

One of the most important parts of a software solution is choosing the programming
language. Each language has its own unique characteristics that may come with their
own pros and cons based on the goals of the project. Choosing a language takes
knowledge of your requirements and goals. Through this section we will cover various
languages that we have considered for usage in the final deliverable.

5.5.1.1 Assembly

Assembly language (ASM) is a low-level programming language (bare-metal) that used
for embedded devices, or other devices that can be programmable. It is comparable to
computer architecture machine code instruction sets. Different assembly languages
correspond to various computer architecture; for example, the ARM processors would
use the ARM assembly language which utilizes sixteen user registers. They are all 32-
bits wide. Only two are dedicate; the others are general purpose and are used to store
operands, results and pointers to memory. Of the two dedicated registers, only one of
these is permanently used for a special purpose (it is the PC). Although this is useful to
know for ARM these instruction sets vary widely by architecture. It is hot uncommon to
encounter assembly especially in devices that require minimal code footprint (processing
and memory).

42

Advantages

e Performant
e Minimal (memory wise)

Disadvantages

e Lacks readability
e Machine dependent
e Long code for simple programs

Conclusion

We decided that we will not use assembly for our project. The platform we are utilizing
does not require we use something so low level! We also fear that the code would become
quite unmanageable.

5.5.1.2 Python

Python might be at its strongest when used as a communication middleman between the
user and the embedded system they're working with. Sending messages through Python
to or from an embedded system allows the user to automate testing. Python scripts can
put the system into different states, set configurations, and test all sorts of real-world use
cases. Python can also be used to receive embedded system data that can be stored for
analysis. Programmers can then use Python to develop parameters and other methods
of analyzing that data and may further be used as a tool to assist developers.

Currently the main debate about the merits of Python comes down to what's more
important to your team: development speed or runtime speed.

In regards to the embedded libraries support for the embedded world is quite limited
python may still have some applicability in the world of scripting tools for development
purposes.

Advantages

« Readability
o Platform independent
e Multiparadigm and supports OO, procedural, and functional programming styles

Disadvantages

e Slow
e Limited embedded support
e Global Interpreter Lock (only one thread may access python data)

43

Conclusion

Python does not seem like a good fit for the final deliverable solution. However, there may
be room for helper scripts. Helper scripts may include test case scripts, installation,
building, compiling and various developer task.

5.5.1.3 Java (Android API)

While most Android applications are written in Java language, there is some fundamental
differences between the Java APl and the Android API. Android does not run java
bytecode by the traditional JVM but by ART (android runtime). This code compiles the
code that ART runs to ELF (Executable and Linkable Format) executables which contain
the machine code. Java bytecode in JAR-files is not executed by the Android operating
system. Instead Java classes are compiled into bytecode which are executed on top of
the ART framework (see below)

Resources &
Native Code

zip
Source — @ —»{mnu}—‘» APK

Resources &
Dex File H Notive Code

dexopt | ' dex2oat
S R

quickened dex 'a dex & native code

i Odex ELF File —=®

T I
I T

ART

-—

JIF

Dalvik

Figure 17: Java ART framework

Dalvik has some specific characteristics that differentiate it from other standard VMs:
« The VM was designed to use less memory.
e The constant pool has been modified to use only 32-bit indexes to simplify the
interpreter.

44

« Standard Java bytecode executes 8-bit stack instructions. Local variables must be
copied to or from the operand stack by separate instructions. Dalvik instead uses
its own 16-bit instruction set that works directly on local variables. The local
variable is commonly picked by a 4-bit "virtual register" field.

Advantages

e Syntax is easy

o Readability

o Platform independent

o Garbage Collection via Memory Manager

« Only officially supported language for Android
e Very good documentation

Disadvantages

« Large memory footprint
o Slow (often slower by a factor of 20-50x compared to other languages)
o Consistently burdened with security issues in the JVM

Conclusion

Java will be utilized for our project as it is the go-to solution for any android application
engineers wish to build. There are a few stacks we will utilize for this project with regards
to the Java toolchain:

« Bluetooth

e Android API

55.14C

C is a general-purpose, imperative (changes a program’s state) computer programming
language. By design, C provides constructs that map efficiently to typical machine
instructions, and it is the reason it is so heavily used right now. Developed by Dennis
Ritchie an engineer at Bell Labs during 1970’s, and used to re-implement the Unix
operating system. Then embedded C is a subset of the C language, and the embedded
C world requires a new set of libraries that vary across architecture similar to assembly.
However, the overlying syntax of the language remains and maintained the same and
introduces some more higher-level concepts as well. Such as, the main() function,
conditional statement, loops, strings, arrays, bit operations, etc. these operations remain
unspecific to the architecture. C is one of the most widely accepted and follows several
standards (see standards) such as C has been standardized by the American National
Standards Institute (see ANSI C) and subsequently by the International Organization for
Standardization (1ISO). This ensures the language is portable.

C also has a wide variety of tools that can be used to build software around it. There are

many different support tools; such as, compilers and cross-compilers, IDE’s and
hardware.

45

Advantages

e Use standard C syntax

« Higher-level than assembly but close enough to hardware languages to be efficient
« Portable

e No VM (like Java)

Disadvantages

« No garbage collection (possibly a positive if done correctly)
e Steep learning curve (similar to assembly)

Conclusion

For this project C will be use less frequently in the traditional sense. As we will be primarily
using C++ for the Arduino board (see next section x.x.x.5).

5.5.1.5 C++ (avr-g++ toolchain)

C++in general is just “C with Classes” in the traditional sense following a object-oriented
paradigm. Created by Bjarne Stroustrup during his Ph.D thesis, Bjarne set out to create
a language that was C and supported features of objects, classes, inheritance and
subclasses.

The Arduino platform fortunately utilizes C++ with some domain specific libraries, that is
built with the avr-g++ toolchain. These add on various features such as functions that
allow you to map to specific features on the board. Without these functions the layers of
abstraction would need to be manually written with special registers.

46

includes
C/C++ source code [f-aacf - oooooaoo
i
i
i

Arduino IDE

Preprocessing:

includes arduino.h

adds fonctions prototypes
adds main.c

AVR compiler
host PC (avr-gee) :
v v
ATaR\.rll—Tkoer < Arduina libraries

v

binary executable

v

AVR programmer
(avrdude)

: USB-to-Seria !
v (onthe Arduino &
] board)

TX/RX serial pins

Arduino board Arduino bootioader
(0.5 KB}

an-chip flash memaory

Arduino chip (e.g. ATmega)

Figure 18: C++ Flow Chart

Advantages
e Object Oriented
e Readability

e All the positives of C
« Garbage Collection (contributes to bigger footprint)

Disadvantages

« Bigger footprint than C
« Doesn’t provide strong type-checking. The codes are prone to errors.

47

Conclusion

Since out of the box Arduino supports the libraries that are based on C++ this will be our
primary workhorse for this project's logic. We will be heavily utilizing the Arduino avr-g++
compiler. We also feel this is a good fit as C++ and Arduino are both documented quite
well.

5.5.2 Integrated Development Environments

An Integrated Development Environment (IDE) are designed to assist the developer by
increasing productivity, efficiency and accuracy. An IDE provide many components often
presented in the form of graphical user interface (GUI) where all development can be
accomplished. These environments often provide features such as, modifying, compiling,
deploying, debugging, code completion, code folding and much more. It was integral our
team chose a development environment that suited our needs so that we could become
an effective team of engineers and increase our productivity. Contrasting this by using
standard text editing software and using a compilers mentioned above with long winded
build systems that have many command line parameters to get the desired results.

However, deciding on an IDE is not an easy task as there is a lot of noise on the market
for various ones; however, we managed to dwindle this down to two tools that will help
support us in our final deliverable.

5.5.2.1Eclipse

Eclipse is one of the most versatile IDE’s that currently exist; albeit, old the IDE is still one
of the most used IDE’s for a wide variety of supported languages and fortunately for us
all of the languages mentioned in section 2.2.1 Programming Languages are supported.

Eclipse has some very well thought out refactoring capabilities that work well, and great
documentation capabilities. The IDE has several features that makes it attractive to us
such as code completion, templating, integration with version control and build systems.
Its code formatting and cleanup tools are very well done. We also found that its build
system works well for our needs.

Eclipse has a few add-ons that we should be able to utilize for this project. They are the
Android ADT Plugin and the AVR-Eclipse plugin with both of these we will be able to
develop for both Java Android and Arduino.

AVR-Eclipse Plugin

The AVR-Eclipse plugin includes CDT which provides a fully functional C and C++
integrated development environment built on to Eclipse platform. The CDT plugin has
many of the same features that eclipse does; such as, project creation, managed build
for various toolchains, standard MAKE build, source navigation, call graphs, browser, and
macro definitions, code folding and hyperlink navigation, visual debugging tools like
memory, registers, and disassembly viewers.

48

The AVR plugin itself is a cross platform code builder. It nearly platform independent and
supports our platform so this is not a flaw. The AVR plugin includes the required
toolchains, debuggers, and frameworks that work on most popular platforms. Below is an
image of the Eclipse IDE utilizing the AVR plugin with code involved.

@® ® = CfC++ - wiring-blinkfsrc/main.cpp - Eclipse - jUsers/ikravets/Documents/workspace
Inl B By e R B S @it O Qe Gy i (B2 V] 4 ENLIEEE R T =R
{] J = |Ecc+
[projectExpl 52 = O 5= outline 32 Task List = 0
main.cpp 24 Arduino.h
=AM (s SRR ek o 7
i?j’)bw'lring-blink [origin develo| 2 * Blink ™ Arduino.h
¥ 3%, Binaries 3 * Turns on an LED on for one second, @ setup() : void
Plt&ﬂrmwarc.cn—[mspﬂc 4 * then off for one second, repeatedly. @ loop(} : void
» ¥ firmware.elf - [xtensafl 5 %

b ¥ firmware.elf - [arm/le]
¥ ¥ firmware.elf - [avr{le]
b [Arduino.h

#include "Arduino.h"

- void setup()

o1funcs.S 10 {

> ,sm"m.n 11 // initialize digital pin 13 as an output.
L E‘Hurdwamsarlal.n 12 pinMode(LED_BUILTIN, OUTPUT);

7)
» [hooks.c 13 }
b [& main.cpp 14 .
» E‘Dlns,amulra.n 152 void loop(d

; 16

[y
. %Et_’_ﬂa’"‘_ . 17 // turn the LED on (HIGH is the voltage level) (@ Make Target 53 =0

| wiring_cigital.c 18 digitalWrite(LED_BUILTIN, HIGH);
b (& wiring.c 16 /7 wnit fnm n carand [CEOR:S %

v [Archives B - " 5 wiring-blink
- ; platformio.ini
0 \!.nFrnmcworkArdu!no a ¥ (= .picenvs
b /[0 lisFrameworkArduine.a 1; Project Configuration File » (= Ipmsp430g2553
P[] lisFrameworkArduino.a 23 Docs: http://docs.platformio.org/en/latest/projectce » (= nodemeu
J
¥ [lioFramework ArduinoV: 3 P (= teensy31
A . 5
b [lioFramewerkArduinaV: ! [i""%“”"] . » & uno
- . 5 platform = atmelavr o
> lisFrameworkEnergia.a 2P N "
4 < 6 framework = arduino = settings
¥ [} Includes

7 board = uno (=~ data
> @F\Jscrsfikr:lvclsf platfor " B2 lib
8 5

b ([Usersfikravets/.platfor o [env:nodemcu] (= sre
| 2 @FUsersnkruvclsF platfor 10 platform = espressif (@) PlatformlO: Build
» @FUschIikruvclsf platfor 11 framework = arduino PlatiermiO: Clean
b (5! fUsers/ikravets/.platfor 12board = nodemcu
» (5 Users/ikravetsy piattor | 13 build_flags = -D LED_BUILTIN-BUILTIN_LED Platformi0: Upload

P PlatformlO: Upload SPIFFS image

14
» (1= jusersikravets/.platfor PlatformlO: Upload using Programm

. . 15 [env:teensy3l]
b (= fUsers/ikravets|.platfor L platform ~ teensy

b (= jUsersfikravets/platfor |- fromework - arduino
@FUsersfikr:welsF platfor 1% board = teensy3l

(= data 14
¥ & lib &= B R e = e]
ool sks o = . = [
Ej reacme.txt Pro Tasks & Console 53 Pr & |5 EEBE = L1
¥ [y sre CDT Build Console [wiring-blink]
» E-]mam cpp 2:37:23 **** Build of configuration Default for project wiring-blink ****
{#% platformia.ini latformio -f -c eclipse run

{7 README rst Sun Jan 3 02:37:23 2016] Processing uno (plotform: otmelavr, board: uno, framework: arduino)
vr-g++ -0 .ploenvs/uno/src/main.o -c -std=gnu++11 -frno-exceptions -fno-threadsafe-statics -g -(
vr-ar rcs .piloenvs/uno/libFrameworkArduinoVariant.a

wr-ranlib .pioenvs/uno/libFrameworkArduinoVariant.a

wr-g++ -o .pioenvs/uno/FrameworkArduino/CDC.0 -c -std=gnu++1l -fno-exceptions -fno-threadsafe-s
vr-g++ -0 .ploenvs/uno/FrameworkArduino/HardwareSerial.o -c -std=gnu++411 -frno-exceptions -fno-t
vr-g++ -0 .ploenvs/uno/FrameworkArduino/HardwareSerial®.o0 -¢ -std=gnu++ll -fno-exceptions -fno-
wr-g++ -0 .ploenvs/uno/FrameworkArduino/HardwareSeriall.o -c -std=gnu++ll -fno-exceptions -fno-
wr-g++ -0 .ploenvs/uno/FrameworkArduino/HardwareSerial2.o -c -std=gnu++ll -fno-exceptions -fno-
wr-g++ -o .pioenvs/uno/FrameworkArduino/HardwareSeriol3.o -c -std=gnu++1l -fno-exceptions -fno-
vr-g++ -0 .ploenvs/uno/FrameworkArduino/IPAddress.o -c -std=gnu4+11 -fno-exceptions -fno-threac

Writable Smart Insert 12:7

Figure 19: Eclipse IDE

ADT Android Plugin

Android Studio is the official Integrated Development Environment (IDE) for android app
development, is for the eclipse IDE and provides. It was created to give developers a one
stop shop for a development environment in which to build Android applications. It
extends the current capabilities (listed above) and allows developers to build android
projects with a user interface. Developers can also add libraries from the ADT toolchain.
It extends the capabilities of Eclipse to let you quickly set up new Android projects, build

49

an app Ul, debug your app, and export signed (or unsigned) app packages (APKs) for
distribution.

800 Java - FasTipjres flayout/activity_main.xml - Eclipse SDK - /Users/ptraeg/Documentsfworkspace)
i (BB s 3 O QB G e .| = Q Quick Access. J B [§%ava $5pebug @ooms
= s i ainx 83 activity_settin ! 2= SHCN |
&
@
p
=
=)
|
1Bill Amount
E Calculate Tip 3
. i
Tip Percentage
|
Tip Amount | 5 Properties BEREEE
| =
1 @-+id/calcTipButton =)
Total Amuunf e
Style butionStyle =]
Text @string/calculateTip (Calculate Tip) =
Hint =
Content Descriptiol =)
= TextView]
Text @string/ealeulataTip (Caleulate Tip) |
Hint =
Text Color ndroid:color/primary_text_h... =
Text Color Hint id:color hint_foregroun... [=|
Text =
Text size =
Typeface =
Text style =
Text Color Link B @android:color/holo_blue_light ||
Max Lines =
Max Height =
Lines =
Height =
Min Lines =
Min Height 4zdip [=]
Ma Fme. =

Figure 20: Eclipse ADT Plugin

Advantages
e Cross Compatible
e Multiple Languages Supported
e Many Modern IDE Features

Disadvantages
« Documentation is lacking
« Preferences overload
« No out-of-the-box configuration
o Outdated
e Unsupported

Conclusion

The Eclipse IDE overall is great, however, it has been outdated for a while now especially
in regards to Android Development. Android Development has been usurped by Android
Studio created by Google built on top of IntelliJ IDE (discussed later)

5.5.2.2 Arduino IDE

The Arduino IDE contains a text editor for writing the codes, a text console, toolbar with
common methods and view details. It connects to the Arduino hardware in order to upload
and flash programs onto the board. The IDE can also simultaneously debug and
communicate with the platform.

50

Programs written in this IDE are called sketches. The developer composes these
sketches in the text editor and are saved as with the file extension.ino. The editor has
very basic features such as, cutting/pasting and for searching and replacing text. The
Message are connected with the Arduino platform and gives feedback regarding errors
and warnings. These error messages are also displayed in the console windows. This all
gives useful feedback for development.

= o] Elink | Arduino 1.5.8

File Edit Sketch Tools Help

Blink 5

R [~]
context sensitiwe coloring demo
W

[>

#deTine something

#ifdeT something LS

A These constants won't change:

Const inT analogPin = A0;

const int TedCount = 10;

#else

A11 this is grawed out in eclipse as it i=s not part of the code.
Zendif

A< The setup Tunction runs once when »ou press reset or power The board
void setup(d) {

A dinitialize digital pin 12 as an output.

pinMode {13, OUTPUTD;

A4 the Toop function runs over and over again Forewer
woid Toopcy |

digitalWrite{la, HIGHI: S turn The LED on CHIGH s the woltage Tewell
delaw (10007 ; A wait for a second
digitalWrite(l3, LOWI; A turn the LED off by making the woltage LOKW
clel 2y {10007% ; A8 mait for a second

Figure 21: An opened sketch

Advantages
o Default Development Tool
e Simple to use

Disadvantages
e Limited to single sketch
« No project viewer

Conclusion

For most simple projects we will be probably utilize this it is a very light and easy to use
IDE. This would be ideal for debugging and testing small programs.

51

5.5.2.3 Android Studio

Android Studio is currently the official Integrated Development Environment (IDE) for

developing Android applications,

the platform is built on IntelliJ IDEA. The IDE has some

very powerful features. The interface is one of the cleanest and most user friendly IDE
we have seen. The Android Studio IDE run very quickly and offers a responsive interface.

The IDE also offers a variety of

analytical tools that help the developer with analyzing

code before delivery. The Android API, is included out of the box with the IDE so there is
little to no configuration in setup and installation. Android Studio also highlights potential
bugs you may experience in your code at runtime or compile-time. This streamlines the

development process.

'@ ®) MainActivity.java - MyApplication - [~/AndroidStudioProjects/MyApplication]
DHO ¢4 XD QR E>|Nmw- PEBLGE|L S @ L ?2Q
[MyApplication) [“2app » ["1src) [1main) []java) [£1 com example myapplication MainActivity
| & Android v @ = | ¥~ I~ | © MainActivity.java X [
2
a_? Czapp package com.example.myapplication; S
= [manifests) 2
® [java +/import ... i |
- com.example.myappli & public class MainActivity extends AppCompatActivity
E [com.example.myappli implements NavigationView.OnNavigationItemSelectedListener {
3 [com.example.myappli
s Cares @override
N — " of protected void onCreate(Bundle savedInstanceState) { savedInstan
Lo > Gradle Scripts super.onCreate(savedInstanceState); savedInstanceState: null
o_ * build.gradle (Project: My/ setContentView(R. layout.activity_main);
| /g (ol i e e
= y i D oolba wrt.v
3 [sil gradle-wrapper.propertie & bk
)? E| proguard-rules.pro (ProC FloatingActionButton fab = (FloatingActionButton) findViewByI
°< ©® Ei|grad|e_propenies (Project @ fab.setOnClickListener((OnClickListener) (view) - {
\ Debug app - L
= } Debugger [E]Console +* b= : & M M A g ¥ =
5 : :
>
| I IS Frames ~* = Variables - 7 Watches B
Al
*| -—Omaa 4 3 Y |> Ethis = {MainActivity@4567}
o onCreate'24 MalnAcvi = savedInstanceState = null &
2 . . = toolbar = {Toolbar@4570} "android.support.v7... View No watches 5
& performCreate:6237, Act 3
S callActivityOnCreate:110 g
% performLaunchActivity:2 og
(<) 1 e . .~ o
&l i.and]ejLﬂaur:chAc‘t1\.‘utY';j4 + — a v @ o
[0: Messages [@] Terminal i 6: Android Monitor P, 4:Run 4§ 5:Debug “2 TODO Event Log [] Gradle Consolg
e—g Can't bind to local 8700 for debugger (2 minutes ago) 24:1 LF# UTF-8% Context: <no context> a 8

Figure 22: Android Studio IDE

1. Toolbar

2. Navigation toolbar browse hierarchically

3. Main editor window

4. View toolbar can modify the user experience

5. Navigate various tools such as debugger or console

6. Status bar giving valuable information regarding startup

52

The Android studio has a very flexible means of prototyping with an emulator called
Android Virtual Device (AVD) this virtual device allows you to run your android app on a
variety of different android platforms such as android TV to android phones

| NON Select Deployment Target

No USB devices or running emulators detected Troubleshoot
Connected Devices

<none>

Available Virtual Devices

Android TV (1080p) API 23

[Nexus 5X API 23

[Nexus 9 API 23

[Nexus 5 API 22

[Nexus 5 APl 22 x86

Create New Virtual Device

Figure 23: Selection screen for Android devices

| Use same selection for future launches Cancel

5554:Nexus_S5X_APL 23

Figure 24: AVD emulating an android device

53

The Android Virtual Device simulates a device and displays it on your development
environment. This allows the developer to quickly prototype, develop, and test Android
apps. This is done without the using a physical device. As mentioned above AVD supports
Android phones, wear, Android TV, and tablets. It comes with all the device metadata
required to begin rapidly prototyping. However, while this feature is useful it does suffer
from performance issues and is not comparable to the physical device performance wise.
Android Virtual Device also has a very slow startup time, this can be mitigated by having
the emulator running in the background and pushing your development apps to the
existing/running emulator.

Advantages
e Included Build System
« Feature Rich Emulator
« Unified environment where you can develop for all devices
o Develop and Prototype without the hardware device
« Out-Of-Box setup no configuration

Disadvantages
o Emulator is very slow

Conclusion

Android Studio seems to fit our needs very well for our Android development purposes.

54

5.5.3 Functional Requirements
5.5.3.1 Main Functionality

Received BAC

Has this user

been Auth'd failureCounter =0

Yes

BACThreshold = 0.08

Is BAC <

Increment
failureCounter

Does
failureCounter
=37

Request Fingerprint

Yes

Display LCD
"Denied" OR
Flash LED Red

h 4

BACThreshold No

Display LCD "Pass”
OR

Flash LED Green

Send Unlock Signal

Success

Send Lock Signal

Figure 25: Handheld Device Functionality

55

Denial
Sequence

Open App

Attempt to

connect to
device

T

Yes

Is the user
connect to their
device?

No

v

Dialog: Ask
user if they
would like to
add a new log

Yes 2

Enter ready
to receive state

(

State =
ReadyToRecieve

(

No *
< State = Idle <
A 4
Display
Previous Log
Data

Figure 26: Android Device Functionality

5.5.3.2 Technical Functionality

No: 1

phone

Statement: The user should be able to connect to the Breathalyzer with their

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 23: Technical Functionality 1

56

No: 2

Statement: The handheld Breathalyzer device should be able to toggle car locks

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 24: Technical Functionality 2

No: 3

Statement: Android app will collect data from device and log it for personal or
liability use

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 25: Technical Functionality 3

57

No: 4

Statement: The breathalyzer register as pass based on +/- tolerance

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 26: Technical Functionality 4

No: 5

Statement: Placing the fingerprint give the user access to the device

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 27: Technical Functionality 5

5.5.3.3 Software Requirements
During running of the Android application
e The user is prompted for more
« Data should be stored on the android device
o If the android application fails to connect to the BreathalLock device it should

During the running of the BreathalLock device
e The user must be able to toggle the car door locks
e Should be independent of the Android device in that it does not require an android
device in order to work it is merely supplementary

58

e Alocation must be provided and the location must either be a 5 numerical digit zip
code or in city, state/province, country form.
« If there are data integrity issues we should prompt the user to retry

5.5.3.4 Interface Requirements
e The Android user interface should be simple to use
e The list of data should be displayed in a ListView (Figure XX)
e The queries asked of the users will be presented with Dialog boxes or module
windows (Figure XX)

« In order to maintain aesthetic appeal we should utilize Google's Material Design
standards.

V4l 1230

Q

¥ Janet Perkins

=

Mary Johnson

L. ,,.

Trevor Hansen

Peter Carlsson @

Figure 27: List View

Discard draft?

CANCEL DISCARD

Figure 28: Dialog window example

59

5.6 Summary of Design

The overall design summary includes the use of all sensors collaboratively to create the
decision of whether or not the correct user is sober enough to drive a vehicle in the legal
limit. To do so our microcontroller will first be taking readings from our fingerprint
subsystem and alcohol sensor subsystem. Once these two input are taken, using our own
code, we will determine what we will output to the user through the use of the android

device and also allow the ability to unlock the vehicle.

Alcohol Sensor

Fingerprint Sensor

~

.

Microcontroller

Bluetooth Module

Key Fob Remote

»
>

o
<

Cellular Device

Figure 29: Flowchart of system hardware implementation

Overall implementation will follow the above designs and components connected as
shown. We intend to prototype and design this device seamlessly with little to no

complications.

60

6. Project Prototype Construction and Coding
6.1 Integrated Schematics

uL

5D RFEAEEE Blostonth B0
GHO | ta Enermy foduls | DECZ
VDL LA - B PELZE
AUDDN L3 — 3. pEAG
ano oo 24 - A PEAE

Teapr -35 - 75°C PR
el SHCLK
ALDD SHOIO/MRESET
Eﬁm@“—h@ FE.21 PR.LE
PE.22 + PELLS
T VER =
JST ZPH UI
UN
Tw -
=] k1 5
I ouT
nebita ‘Lg EH + A
- GhD P4 -
WWCGEEE—G& I

ol fen o o
o
a
fa
5}
o
@
=
i
™
o0 wlglp-ly\:lw == [| = e
23

EFF

|

-
o
n]
PB.26 AN EL2 gz PELLL
PA.Z7ATNL LD o
PE.ze =

@
i
}
FEEEEEE
PE.ZS <
S
2

W
15
H
=
=
E
1
e
o] | oo

22|
FE
24
25

e e e L]

£T5 53U

RX0_3U

alailin v Y
FO0E 51" et MOOE _ 31

1uF
i %
2 E
=
w
5
=
&
5
T

a—
T Zau - H -
1 o
I+

5 1 +no
Ecaaae | PR

[x)

|
Lhilellk

Figure 30: Eagle Schematic of Bluetooth Module
Ul

— i =2 A 1 - o -

- U M C 1. R

GAS_SENSOR

Figure 31: Eagle Schematic of alcohol sensor breakout board

6.2 Parts Acquisition

During the prototyping process it is necessary for us to have components to test and verify
our design is functional. Initially we will be working with mostly connection of already
working chips and manually connecting together to work as a system. Once our initial
breadboard tests are complete we will order our PCB and begin verifying that our PCB
works the same way by populating the board with all of the various components.

6.2.1 Adafruit

For many of our larger chips and components Adafruit will be very useful as they offer
components at a good price with full support including schematics and many time tutorials
and test designs. Adafruit is the supplier that we chose to order our fingerprint sensor and
also our Bluetooth chip from. We also value Adafruit because their name is very large
and therefor they many times have libraries, header files, and even component diagrams

61

for many programs that we will be using during our design. Aside from electrical
components Adafruit also offers tools to populate our boards and test including soldering
equipment, wires, wire strippers etc.

6.2.2 Sparkfun

Sparkfun is also another great option for larger components and build support. Sparkfun
is a very large seller that has everything from components to books and even a blog
section. The alcohol sensor that we chose to use is only sold by Sparkfun. They also
include test support, a break-out board add on, and some comments on other user’s
experience. Another great advantage to using Sparkfun is their inclusion in Fritzing
software. Fritzing has an entire library on components sold by Sparkfun that is very useful
for schematic creation.

6.2.3 Digi-Key

Digi-Key is the fourth largest electronic component distributer in North America and a very
organized marketplace for PCB and breadboard testing shopping. Digi-Key will most likely
by our largest supplier of surface mount and through-hole components to populate our
PCB and also do breadboard testing. Many other component companies that sell surface
mount components sell only very large quantities of particular components whereas Digi-
Key will allow us to purchase relatively low quantities for our PCB population.

6.2.4 UCF

Our final resource for parts is our very own school. UCF has many labs on campus and
also has the Tl innovation lab that carries many components. In addition to components
we will need to gather as we design the BreathaLock schematic there are many
components that we have already acquired throughout our courses with lab sections. For
example, we already have an LM7805 voltage regulator, some resistors, capacitors, and
various IC components that may prove to be useful in the breadboard prototyping stage.

6.3 PCB Design

To create the densest and reliable device we will need to design and have a printed circuit
board made. Not only is this a requirement of this project but it displays full competence
and understanding of electrical components working together in a system. Designing a
printed circuit board is very time consuming and requires a lot of attention to detail. One
incorrect wire trace can leave a circuit open and leave part of your board without use, on
contrarily a short can burn and destroy components. To successfully design a functional
PCB we will use the help of a PCB board software that will give us the best experience
and best PCB design.

6.3.1 EAGLE

Eagle PCB design is a commercial software used for schematic creation and board layout
used by many PCB designers. It allows for an extensive list of features to assist in
prototyping and production level PCB boards. Fortunately, as students we are able to use
this great tool with a slightly limited student version for free. In addition to the cost there
are extensive video tutorials, workshops, and learning tools to get started with Eagle.

62

Finally, Eagle is our preferred platform because most all open source hardware supplies
Eagle schematics free of charge allowing us to combine many of the component boards
without having to reverse engineer to design our own circuits for chips like out Bluetooth
communication chip. In addition to PCB schematic and layout editing EAGLE has recently
added a feature that allow the designer to go through parts included in the schematic and
add them to a virtual shopping cart to then be linked to a distributor.

6.3.2 National Instruments Ultiboard

Another PCB layout software considered is National instruments Ultiboard. One
advantage to Ultiboard is that at UCF NI Multisim is the preferred circuit analysis software
and therefor out team has extensive experience with Multisim. Together Multisim and
Ultiboard are a complete circuit design solution that would be capable of PCB layout and
routing for our project. For this particular project we find it to be unattractive because
although circuit design is very fluent for our team PCB design is quite new and Ultiboard
is not as user friendly and simple as we would life. In addition, getting Multisim and
Ultiboard is not free and even to get a student version would require purchase of the
student software.

6.3.3 AutoCAD

Our final consideration for PCB design software is to use AutoCAD. The primary
advantage of this option is that Autodesk is extremely generous with their software to
students. Once creating a student account, Autodesk offers a student limited version of
almost all of their software option including AutoCAD. In addition to the availability, there
are extensive tutorials on using AutoCAD which would make adapting to their platform
relatively easy. The largest drawback to this option is that AutoCAD is not the industry
standard for PCB design and may not allow us to design as complex and intricate PCB
layouts.

6.4 PCB House

Depending on the complexity of the PCB and the size we will need to find the most cost
effective and timely PCB house to implement the BreathalLock. It is important that we plan
to print multiple boards in case of print error or hardware testing and modifications.
Unfortunately, it is not likely for us to need more than 10-15 boards which is considered
low order quantity which forces us to pay a premium for each board. For our particular
design and hardware specifications we are considering PCBWay, Elecrow, and Seed
Studio as our primary PCB house options.

6.4.1 PCBWay

PCBWay is a Chinese manufacturer that seems to offer reasonable products at a very
low price point. This is good for us because we are trying to prototype and implement this
device as cost effectively as possible. In addition to a very low price point PCBWay is
most likely our fastest option to receive out PCBs from the time we submit an order.
Although some poor reviews in regards to sloppy silk screens and some sloppy vias they
seem to be a good low cost option.

63

6.4.2 Elecrow

Elecrow is also a Chinese manufacturer that is popular for PCB fabrication. Although none
of our team has experience testing products from Elecrow after some research and past
customer reviews we have concluded that Elecrow has good customer support, and
supplies a slightly higher quality product and a slightly higher cost.

6.4.3 Seed Studio

Seed Studio, although widely used for low price PCB fabrication, is our least attractive
PCB house due to its poor customer reviews and wait time to receive product after order
submission. We find Seed Studio to be not as impressive as Elecrow or PCBway although
further consideration will be taken once final PCB schematic and layout are finalized.

6.5 Construction

Soldering is an extremely powerful tool that almost all engineering disciplines have some
experience with. As far as electrical engineering is concerned soldering is the process of
joining two or more pieces together with a filler metal composed of metals with lower
melting points than the components to create and electrical passage.

Following the design and receipt of etched PCB boards it will come time for us to populate
our board with our components. There are two primary methods that could be used to
populate our PCB board: manually hand soldering individual components one at a time,
or reflow oven. Both have they're advantages and disadvantages so it is important to
investigate which option we choose to populate our PCB with.

6.5.1 Hand Soldering

The most straightforward and cheapest way for us to populate our boards is to manually
solder each individual component at a time using a soldering iron and the filler metal
previously mentioned commonly referred to as solder. This method is great because it
can be done anywhere that you have a standard wall outlet and a soldering iron, which
most members already own. We can work in pieces, take breaks and work at our own
pace. The drawback to this is that it is extremely time consuming since every component
requires its own attention. Also this process is quite messy and depending on the
experience of the person making solder joints can lead to variable error. Although this
method may not be used to populate the entire board it is a complete necessity to be
used when creating the BreathalLock in the event that we need to change components or
add features for hardware testing. Fortunately, our team has some experience soldering
and also has many tools to assist in soldering and populating our PCB board.

6.5.2 Reflow Oven

Another option to populate a PCB board is with the use of a reflow oven. The advantages
of a reflow oven are that it is less time consuming and many times results in a cleaner
more professional looking solder joints. To effectively use a reflow oven the PCB is laid
out and components are placed onto desired pads with solder paste, a mixture of solder
and flux. Once the board has components placed correctly the entire board and
components are heated and once the optimal temperature is reached the solder will melt

64

creating electrical paths for all components. The largest downfall to this method for
populating the BreathalLock PCB is that we do not have access to a professional solder
oven and would most likely have to resort to hacking a toaster oven and hoping that it
works effectively. Although this may give us a more professional appearance and might
save time the risk of failure and additional parts required to create an over and solder
components make this option quite unattractive.

6.5.3 Types of Mounting

When considering how we plan on designing our layout and how we would like to populate
our PCB we need to decide as to whether we want to use through-hole mounting or
surface mount technology (SMT). Through-hole mounting was standard until the 1980’s
when SMT became the standard. The primary advantage to through-hole mounting is
durability for mechanical stress and reliability. Although BreathaLock does not need to
withstand very much mechanical stress we will most likely chose to use through-hole
mounting for any connectors and our power connections. As far as the other small
components (i.e. resistors, capacitors, LEDS) we will chose to use surface mount to save
time, space, and save cost in PCB manufacturing.

Through-Hole | Surface Mount
Strength Great Good
Assembling Speed Very Slow Fast
Fabrication Cost High Low
Size Large Small

Table 28: Component mounting comparison

6.5.4 Tl Innovation Lab

One great resource that UCF student have access to for the PCB construction in the
Texas Instruments innovation lab located on the first floor of Engineering Il on UCF main
campus. This lab provides students with equipment to create prototype boards such as a
good soldering station, oscilloscopes, DMMs, various components and much more. Not
only does it offer various tangible goods that will assist in PCB construction but
professionals including professors and trained advisors also monitor it. This lab will
become increasingly important as we come to build and populate our PCB.

65

6.6 Final Coding Plan

PERT chart

As shown previously this was the agreed upon timeline

Spring 2017, EEL 4915L: Senior design 2
Date
1-9to 1-20 Class begins, start building prototype
1-21 to 3-27 Test prototype
3-28to 4-4 Order PCB
4-5to 4-21 Troubleshoot and finalize design
4-22 to 5-02 Prepare final documentation and presentation

Table 29: Tentative Deadline for Spring 2017

66

Develop
Communication
Layer Between

Android and
Breathalock
(barebone)

Develap Basic

Functionality of

Unlocking and
Locking

Develop Android
App Logger

Protatype 2 Weeks

Add
Functionality
and Debug

3 Months

Feature
Complete

1 Month =———

Final

Deliverable

Figure 32: Tentative Deadline for Spring 2017

67

7. Project Prototype Testing Plan

After researching and obtaining our desired devices it is important to test them individually
and as a final prototype before moving into the PCB design and final design of the
BreathalLock system.

7.1 Hardware Test Environment

Creating a hardware test environment with specific constraints and controls is necessary
to ensure repeatability and debug problems we may run into during the testing process.
We specify this environment based on our access to limited resources and also on how
strict and important a certain test it.

7.1.1 Power Supply

While testing individual components and systems working together it is extremely
important to have a controlled power supply and other controls to eliminate as much error
as possible. Our team will be designing our subsystems under certain conditions to
perform to each power level. For the purpose of hardware testing we will be using a power
supply provided by UCF labs for official data and will use batteries or USB power for small
scale testing at our homes.

7.1.2 Car Access

For the purpose of testing and demonstration we will be using an untampered Ford F150
provided by a group member that will be tested regularly with a stock Ford key FOB to
ensure that the vehicle is performing as expected to native instruction. Due to the fact
that we don’t have access to any of the car computer or software we will need to rely on
simple pass/fail when commands are made by BreathalLock according to if the door
unlocks or not when signaled.

In addition to pass of fail or fail base on the entry of the vehicle we will also need to test
and make sure that the range of the key FOB is unaffected by our implementation. It is
expected that the only thing we will be tampering with is the power supply of the key FOB
itself and therefore we should not affect the range but we need to keep in mind that we
are trying to maintain the same quality of industry standards that are expected by
customers.

7.1.3 Cellular Devices

In efforts to avoid running into issues with our Bluetooth subsystem, as Bluetooth can be
quite tricky sometimes, we will also test the cellular devices before interfacing with the
BreathalLock system. Two of three group members use android phones which we will be
using for initial and also final testing. Before any testing with the BreathalLock system we
will be routinely connecting and disconnecting to other Bluetooth devices to confirm that
the cellular devices are working properly and will create a good connection to the
BreathalLock.

68

7.2 Hardware Specific testing

To create the best quality and functioning device we will need to verify and check that all
individual subsystems and components are functioning properly. To do so the following
section discussed how to connect each individual component to an Arduino and test it for
functionality.

7.2.1 MQ-3 Alcohol Sensor

LI LRI AR oo 0 0 ® e e 0o LI L
g e iniy invaieio DR A L e 0. L .'ooo LA A LI I e 0 e

rxmm Arduino”

Figure 33: Alcohol sensor test circuit

To successfully ensure that our alcohol sensor is functioning properly we will need a
specific test environment for the sensor alone. By connecting the MQ-3 to an Arduino
UNO board we can simply read values by printing to a serial monitor on the computer to
view the analog values discussed previously. Specifically, in the code provided below we
are interested in the analog read pin to the Arduino that we set to pin AO. This pin is
connected to the output of the alcohol sensor previously discussed that is a voltage read
on the load resister.

int analogPin = AO; // Set arduino read pin to A0
void setup() {
Serial .begin (9600); // Set serial baud rate to 9600 bps
1
void loop() {
int mg3 output = analogRead(analogPin);
Serial.println(mg3 output);
delay (200) ; //Set print delay time

Figure 34: Alcohol sensor test code writing in Arduino IDE

The above image displays example code to test the alcohol sensor by viewing the output
in the serial monitor. Using Arduino IDE this simple set of code will read the analog values

69

coming into pin0 and print them into the serial plotter continuously. When we introduce
the presence of alcohol into the sensor we expect to see the values in the serial plotter to
decrease and increase again once the alcohol is removed. Attached below is a screen
capture of the serial plotter output of the alcohol sensor when alcohol is introduced and

taken away.

1zoo.0

soo.o 4 | %

so0o.0

B800 baud, 1~

Figure 35: Alcohol sensor test output

7.2.2 Adafruit Fingerprint Sensor

Although the fingerprint sensor that we are using is prepackaged it is important to test
and verify expected functionality. There are two ways that we can test the fingerprint
sensor: via its native interface supplied by the manufacturer (SFG Demo), and controlling
the sensor with Arduino commands. To successfully test this sensor it will be easier to fist
ensure functionality with the native software and secondly manipulate the sensor through

the Arduino.

Figure 36: Fingerprint sensor test circuit

70

As previously mentioned in the description of the fingerprint sensor there are two ways to
interface with the Adafruit fingerprint sensor. To test the sensor for our application we will
be interfacing with it first with the native software provided by the manufacturer to initially
verify its functionality and secondly with Arduino code to verify its functionality and
customizability. We will ultimately be controlling the module without use of a computer so
the native application will not be user officially but it is the simplest way to quickly check
functionality.

SFG Demo:

SFG demo is the native windows application that allows interfacing with the fingerprint
sensor. This application is simple and nice to use. First we must connect the fingerprint
sensor to the Arduino as show in figure x above and tell the Arduino to use these pins as
communication directly to the computer through USB using the following code sequence:

// Uploading this code will bypass the Atmega chip
// and connect the sensor directly to USB/Serial
// Red ——> +5V

// Black --> Ground

// White --> Digital 0

// Green —-> Digital 1

void setup() {1}

void loop() {}

Figure 37: Arduino IDE code to bypass the Atmega328P Chip

After bypassing the ATmega328P chip on the Arduino we can connect the Arduino to the
computer and launch the SFG Demo application to connect to the fingerprint sensor.
Once the application is open simply select open device and select the COM port the
Arduino is connected to (for this case COM 4).

Open Device X

Select COM

COM:

OK Cancel

Figure 38: SFG Demo 1

Once confirmed SFG Demo should alert you with “Open Device Success”. The device is
now connected and interfacing with the desktop computer.

71

Open Device Success!

Cancel Operate Exit

Figure 39: SFG Demo 2

Once this is complete we can match, add, search, and delete users.

Image Preview

Please put your finger to sensor!

Cancel Operate Bxit

| | |
-Enroll
a3 __emon | _conemon |

Match Template Database

Image Manage

Address

' | e |

Find same finger! ID = 3,
Used:130 ms

Cancel Operate Exit

Figure 40: SFG Demo 3
Arduino IDE:

After verifying that the fingerprint sensor can interface with the windows software, SFG
Demo, we will test that it can interface through the Arduino. Adafruit has example code
library and libraries written available and once we include them into the Arduino IDE we
can call them with ease. We first conned the fingerprint sensor as shown above. Once
we connect the Arduino we can open various sketches provided by Adafruit and run
them to verify the sensor is working. Attached are some images of the serial monitor
outputs:

We first open the “enroll” sketch provided by Adafruit to verify that the sensor if found
and test to see if it can enroll a new fingerprint

&9 COM4 (Arduino/Genuino Una) - ad ¥

Ldafruit Fingerprint sensocr enrcllment
Found fingerprint sensor!
Ready to enrcll a fingerprint! Please Iype in the ID # you want to save this finger as...

Figure 41: Arduino IDE Output 1

72

We will enter the number 5 to test if the sensor will save a model

@' COM4 (Arduino/Genuino Uno)

Rdafruit Fingerprint sensor enrcllment
Found fingerprint sensor!

Ready to enrcll a fingerprint! Please Type in the ID # vou want to save this finger as...
Enrclling ID &5

Waiting for walid finger to enrcll as 5

Figure 42: Arduino IDE Output 2

Once entered in the serial monitor we can place a finger on the sensor and wait for the
sensor to get a reading and save the input.

Image taken

Image converted

Remove finger

ID 5

Place same finger again
................ Image taken
Image converted
Creating model for #5
Prints matched!

ID 5

Stored!

Beady to enrcll a fingerprint! Please Type in the ID # you want to save this finger as...

Figure 43: Arduino IDE Output 3

If the sensor is working correctly the above output will be shown. The sensor has now
enrolled that fingerprint to model #5.

Finally, we upload and run the “fingerprint” sketch to verify that the sensor can read and
reference a fingerprint.

@ COM4 (Arduino/Genuino Uno)

kdafruit finger detect test

Found fingerprint sensor!

Waiting for walid finger...

Found ID #5 with confidence of 143

Figure 44: Arduino IDE Output 4

The above image shows that the sensor read and confirmed that the fingerprint read is
indeed #5 and with a confidence level of 143.

73

7.2.3 Bluefruit UART Friend Bluetooth Module

An essential part of our project is the use of Bluetooth. Because it requires the connection
between two devices it is the most important device for us to test before continuing with
our design procedure and implementing it into our final PCB design. We will need to apply
slightly more focus and time into testing the Bluetooth component because to confirm that
it is working as intended we will need to power the device, compile and run Arduino code,
and then find and connect to the Arduino using an additional device. The company that
we purchased this device from supplies some support and instruction on how to use and
test this device. We intent do reference their materials to make the process easier and
more efficient keeping in mind that we don’t want to waste time developing ways to test;
we simply want to verify its functionality. We choose the wiring diagram seen below and
then specify which pins are to be considered later in the Arduino code.

Figure 45: Bluetooth component test circuit

The Bluefruit UART Friend Bluetooth chips has a few different pin that need to be
connected to the Arduino to work properly described in depth previously in the component
section; here we are mostly interested in only the TX and RX pins. The TX and RX allows
for UART transmission and receipt between the Arduino and Bluetooth component. We
will define these in our test code as pins 9 and 10.

Test Procedure: Once wiring the Bluetooth breakout board we will first test it for basic
functionality to help us understand the operation of the chip and also verify that the
module is functioning properly. As previously discussed, Adafruit supplies support for
most all components and particularly this component. We will first load example code in
Arduino IDE and make sure that works before writing our own source code to have the
module do what we need for the Breathal ock.

74

7.2.4 Key FOB

Unfortunately, there is no open source hardware designs or many resources for how and
what the key FOB uses to unlock the car. We do instead have 3" party working key FOBs
that we can attempt to reverse engineer to work for our project. We plan to visually
analyze the PCB, following traces and hoping that there are no hidden vias. Once we can
create a schematic with confidence we will program the FOB to the car, de-solder the IC
from the FOB and connect it to a breadboard with the schematic build on it. If we can re-
create this FOB we will include this schematic into our final PCB design.

Figure 46: Image of internal PCB of key fob

As far as main functionality of the key FOB is concerned we will need to program the
FOBs that we will be testing with to the specific car that we will be using. Part of the
reason that we choose this remote and vehicle is because of its ability to be programmed
quickly and effectively. The test procedure below is provided to explain the sequence to
do so with this particular vehicle.

Procedure
Step Unlock all of the doors using the power lock switch.
1
Step Cycle the ignition from OFF to RUN 8 times within a period of
2 10 seconds. The doors should lock at the end of the 8" cycle

to confirm programming mode

Step Inaperiod of 20 seconds press any button on each remote that
3 will be programmed. The door locks will cycle each time to
confirm.

Table 30: Procedure for programming key FOBs

After complementing the above sequence our key fobs will be programmed to work with
our test vehicle. We will now move forward with testing and designing the PCB to function
the same as this remote. Our main goal would be to replicate the PCB design into our
own PCB and then simple de-solder the IC from the remote and solder it to our
BreathalLock system which will be pre-programmed to the car.

75

7.2.5 Linear Voltage Regulator

To supply power to the overall BreathalLock system we will be using a 9v battery because
of its size and capacity. In order to power our processor and sensors we will need to have
an output voltage of 5v and also 3v. To do this we will be using a LM7805 linear voltage
regulator, and LT1761ES5-3 linear voltage regulator. Before including these components,
it is important to test it to verify expected characteristics. To illustrate specific testing, we
will be using NI Multisim and also a physical test with a portable digital multi-meter.

XMM1 - K
aell so2v |
LM7805CT ® % 2.002V
< < LINRE VREG 2~ 4 I
VOLTAGE A v Q dB
v lc1 J_CZ COMMON £C3 J‘Clt -
—9V ==100nF ==100pF 100pF_|_100nF 2 B
o i . EE
i

Figure 47: LM7805 linear voltage regulator test circuit

XMM1
7o T
LT1761ES5-3
IN ouT - P A 2 d8

vi | ¢ Jswon sio - c3 ~ =1
— GND 0.01LIF
— gv TH.IF T1OpF + == -

Figure 48: LT1761ES5-3 linear voltage regulator test circuit

7.3. Software Test Environment

Both the functionality of the hardware (Bluetooth, transceiver, and breathalyzer) and
software (Android OS, application, and underlying code for previously stated hardware)
will be included in testing. As we are not guaranteed ideal conditions with various forms
of communication. Our testing environment will include a vehicle (to test the unlock and
lock functionality) an Android device, and our BreathalLock and we will need to make sure
they work in various conditions of connectivity (outside, indoors, etc). The engineers will
handle the responsibility of testing the devices

76

7.4 Software Specific Testing

7.4.1 Introduction

It is imperative that we test the software for this device. Therefore, we have developed a
testing plan that we feel meets the needs for the rigor of this project. This section will
focus on the testing plan for the software side of our project BreathalLock. Our group felt
it was important to identify the overall objective of the testing environment, the stopping
conditions, and the individual test cases for Breathalock.

7.4.2 Overall Objective for Software Test

We expect the test plan to allow the engineers to deliver a successful product that works
in various conditions of connectivity and provides a way of mitigating DUI's and traffic
accidents that involve individuals being under the influence.

7.4.3 Stopping Criteria & Testing Method

If errors are determined during testing, these bugs will be noted in the developer’s weekly
activity log. If the developer is assigned to the component that failed, the developer may
fix the component immediately. Otherwise, the developer should inform, in a timely
manner, the developer(s) responsible for the component of the test conditions and test
results.

When testing functionality of a module test cases are written before the code itself; at that
point, they are impassable. Code is written specifically to pass a given test case. When
the written code successfully passes the test, the passing code is refactored into a more
elegant module — without introducing any new functional elements.

By using this Test Driven Development (TDD) strategy we can improve our iterative build
process in the following:

e |t facilitates easy maintenance and helps alleviate scope creep

e Encourages granularity in testing; it is guaranteed that every standalone piece of
logic can be tested

e Since test cases are written first, other programmers can view the tests as usage
examples of how the code is intended to work

If a component is deemed complete, the developer(s) responsible for the component
should notify the project manager in a timely manner. If the project manager deems
necessary, a component may be sent back for further testing or development.

At the end of the project's lifecycle, all test cases will be run against the total code base
to verify the functionality of the app. Communication errors will take priority over any
cosmetic errors, these are more defined test cases, and the final project depends on full
functionality of communication. The Software should complete all of the test cases for
each module to ensure no functionality was loss by changes.

77

7.4.4 Description of Individual Test Cases

Test Objective

Connectivity (BreathalLock to Android)

Test Description

Does the Bluetooth module (hardware) connect to the
android app

Test Conditions

1. Open app
2. Connect
3. Receive Bluetooth address

Expected
Results

Bluetooth module successfully communicates its 48 bit
address to the android device

Table 31: Description of Individual Test Case 1

Test Objective

Connectivity (Breathalock to Car) (w/o fingerprint or breathalyzer)

Test Description

Does the BreathalLock device communicate to the car and locks
the door

Test Conditions

1. Activate the device
2. False-Positive on BAC pass
3. Observe if door locks

Expected
Results

BreathalLock successfully toggles the car door locks.

Table 32: Description of Individual Test Case 2

Test Objective

Connectivity (BreathalLock to Car) (w/o fingerprint or breathalyzer)

Test Description

Does the BreathalLock device communicate to the car and the door
unlocks

Test Conditions

1. Activate the device
2. False-Positive on passing BAC
3. Observe if door locks unlocks

Expected
Results

BreathalLock successfully unlocks the car door locks.

Table 33: Description of Individual Test Case 3

Test Objective

BreathalLock Breathalyzer Sensor (Passing) (w/o fingerprint)

Test Description

Does the breathalyzer register as pass based on +/- tolerance

Test Conditions

1. Receive False-Positive for fingerprint
2. Blow into Breathalyzer

3. IF BAC is lower than acceptable value
4. Register a PASS

Expected Results

This will be indicated on the device as a PASS

Table 34: Description of Individual Test Case 4

Test Objective

BreathalLock Breathalyzer Sensor (Failing) (w/o fingerprint)

Test Description

Does the breathalyzer register as pass based on +/- tolerance

Test Conditions

1. Receive False-Positive for fingerprint

2. Blow into Breathalyzer

3. IF BAC is higher than acceptable value
5. Register a FAIL

Expected Results

This will be indicated on the device as a FAIL

Table 35: Description of Individual Test Case 5

Test Objective

Fingerprint Access (passing)

Test Description

Does placing the fingerprint give the user access to the device

Test Conditions

1. Add User fingerprint to memory as passing
2. User apply fingerprint to reader
3. Register a pass

Expected Results

The device should allow the user to proceed to the next step
(breathalyzing)

Table 36: Description of Individual Test Case 6

Test Objective

Fingerprint Access (failure)

Test
Description

Does placing the fingerprint give the user access to the device

Test Conditions

1. Add user A to memory
2. Allow user B to apply finger to reader
3. Device should register as a failure.

Expected
Results

The device should NOT allow the user to proceed to the next step
(breathalyzing)

Table 37: Description of Individual Test Case 7

Test Objective

Collect statistics to android app

Test Description

Android app will collect data from device and log it for personal or
liability use

Test Conditions

1. Commit an action on the device (fingerprint)
2. Send completed action to android device via Bluetooth
3. Check log on android phone

Expected
Results

The logs should accurately reflect the action committed by user.

Table 38: Description of Individual Test Case 8

Test Objective

More to be added

Test Description

Android app will collect data from device and log it for personal or
liability use

Test Conditions

4. Commit an action on the device (fingerprint)
5. Send completed action to android device via bluetooth
6. Check log on android phone

Expected
Results

The logs should accurately reflect the action committed by user.

Table 39: Description of Individual Test Case 9

Test Objective | Connectivity (Android to Device)

Test To ensure the device is able to receive will the android app be able
Description to communicate to the device.
Test 1. Connect the android and devices
Conditions 2. Once connected the android device should send a signal
3. Turn on debug light to activate signal
Expected A debug light will turn on
Results

Table 40: Description of Individual Test Case 10

81

8. Demonstrations

Following the design and testing phase, the BreathaLock system will go into a
demonstration phase. During this time, we will need to prove that our concept has come
to full realization and that specifications and design requirements have been met. As a
part of the University of Central Florida curriculum, every student in the ECE department
must pass senior design 1 & 2 which include demonstration of their project.

8.1 Initial Activation and Setup

The first demonstration that will be performed will be the initial activation and user setup
to the device. Because our device involves the biometric user verification, when the users
receive the device they will need to enroll themselves into the system so that the
BreathalLock can verify their identity during regular use. To make this demonstration we
will power on the device and put it into a calibration mode. In this mode the Breathal.ock
will request that the user place their finger onto the fingerprint sensor screen using a red
background light. The system will request that the user places the same finger 2-3 times
to make sure a confident reading has been taken. Once compete the user will be enrolled
and saved into the fingerprints memory.

8.2 Standalone Operation

Following the initial activation and setup we will test the basic functionality of the handheld
device without the use of Bluetooth. To complete this demo, we will need to turn on the
BreathalLock device by button press. Once the device is on and responsive we expect to
have indicators to request for identity verification. As long as the users in the
demonstration have previously been enrolled, we should be able to simply light up the
red LED indicator on the fingerprint sensor and read the finger upon contact with the
sensor. Once this is complete the sensor will accept or deny the user. In the event that
the incorrect user is attempting to use the device it will continuously loop until the correct
finger is recognized. Once the correct user is verified the BreathalLock will request a
sample on the alcohol sensor to test for sobriety. Similar to the fingerprint sensor, an LED
will alert the user when to blow and the BreathalLock will take a reading to verify the user
is under the legal limit of alcohol. Once these two tests have been passed an LED will
blink alerting the user that they now have the option to unlock their vehicle.

8.3 Bluetooth Pairing

An additional feature to the BreathalLock system is the ability to connect with a cellular
device over a Bluetooth connection to assist the process and also display additional
information. Before entering the unlock sequence we must demonstrate the
BreathalLock’s ability to pair to a cellular device. This will be done by holding down a
button on the BreathalLock to turn on and search for a Bluetooth link. Once on, the user
will open the application developed by our team and instruct the cellular device to pair to
the BreathalLock. The user will be confirmed that the BreathalLock is paired on the android
application.

82

8.4 Connected Operation

The final demonstration will be the operation of the BreathaLock device while it is
connected to an android device. During this demonstration the android application will be
the most prominent feature to focus on. The demonstration will mostly follow the same
procedure as the “standalone operation” but in this demonstration most of the indicators
and requests will be interactive and more visual through the application. The user will first
open the app and be confirmed that the BreathalLock is connected and ready. Once
confirmed the user will be prompted to place their finger onto the fingerprint sensor for
user verification. The application will walk the user through the process with visual
indicators as to whether they need to place the finger again or if they pass or fail.
Assuming the correct user is operating the device, the application will welcome the user
into the next operation of testing the blood alcohol content of the user. In this step the
application will indicate when to blow, how long, and when the BreathalLock has enough
sampling to decipher what the users BAC is. One main feature of the android application
is that we will be able to display the exact BAC of the user instead of an LED indicator of
whether or not above or below 0.08. Concluding the alcohol sensor testing the application
will display the exact BAC of the user and whether or not they can or cannot drive. In the
event that the user is above the legal limit the BreathalLock application will advise the user
to wait and blow again or to wait a long time and rest. Finally, the last feature will be the
ability for the BreathalLock to act as a general breathalyzer to any user with the intent to
inform other drivers on their sobriety.

83

9. Administrative content

9.1 Milestone Discussion
The milestone for the BreathalLock project is show in the figures below.

AUGUST 2016

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY

1 2 3 4 3 6 7

g 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 23 26 27 28

School Begines Seniors design

projectidea
assignment

29 30 31

NOTES:

84

SEPTEMBER 2016

MDY TUESDAY WEDRESDAY THURSDAY FRIOAY SATURDAY SUNDAY
1 2 1 4
5 -] B W 10 11
Imitial Project | Research design
document divide COTCRPLs and —_—_—
and Congaer Due Parts
12 13 14 15 14 17 18
19 et} Il Frs I3 4 Fi]
“, Write updated
i Divide and
Conquer paper
6 7 IR 9 30
by Updated Divide
Vo and Congquer
Paper Dus
NOTES:;
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY
1 2
Invidiual Ressarch
and prototype
development and
code desizn
3 4 3 & 7 g 9
10 11 12 13 14 13 16
17 18 19 20 21 22 23
24 25 28 27 28 29 30
Write table of
contents
3 MOTES:

85

NOVEMBER 2016

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY
1 2 3 4 5 6
Table of Write initial
Contents due draft
7 8 9 10 11 12 13
Initial Draft Due Finish
prototying and
code
14 13 16 17 18 19 20
21 22 23 24 25 26 27
28 20 30
Write final
% decumentaion
NOTES:

DECEMBER 2016

MIOBNDAY TUESDAY WEDNESOAY THURSOAY FRIDAY SATURDAY SUNDAY
1 2 3 4
El 6 7 B 9 i} 11
Final
decumentation
due . Order parts
12 13 14 15 15 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
NOTES:

Parts include, micrecontraller, ingerprint scanner , aleohol sensor, batteries, blustooth
mesdule

86

JANUARY 2017

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY
1
2 3 4 3 6 7 8
9 10 11 12 13 14 15
Class begins,
Start building
prototype
16 17 6 19 20 21 22
Test Prototype
23 24 25 26 27 28 29
30 i NOTES:
Prototype should be on breadbeard
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY
1 i 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 23 26
FAT} 28
NOTES:

Whole month of febuary is allocated to test the prototype

87

MARCH 2017

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY
1 2 3 4 5
] 7] 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 23 26
Design PCB
L e s
-
27 28 29 30 31
ORDER PCB
NOTES:
First half of March is for testing the prototype
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY
1 2
3 4] 6 7 8 9
Troubleshoot
and finalize
design
10 11 12 13 14 15 16
17 18 19 20 21 22 23
Prepare final
documentation
and presentation
24 25 26 27 28 29 30
NOTES:

88

From the figures above we can see that the first five months of the project consist of
declaring a project idea. Once a project idea has been established, we research further
into the idea to start designing /develop a physical prototype. This design develop and
research must be documented for the Senior Design 1 paper. In addition, the first five
months consist of ordering parts. In our case, parts were ordered and breaded boarded
way before the milestone deadline thus the Breathalock project is ahead of schedule.

The last five months of the project consist of troubleshooting our developed design. Once
troubleshooting is complete, we then design our PCB to order. Once PCB has come in
and populated, there is roughly 2 weeks allocated to make sure that the populated PCB
is working properly. Once everything is finalized, there is about a week and a half to
prepare for final presentation.

9.2 Budget and Finance Discussion

Since the Breathalock project does not have any sponsorship there are two available
options to finance the project

9.2.1 Finance option 1

Finance option 1 consist being crowd funded. Crowd funding mediums such as
Kickstarter and Gofundme are a great place to get funded for any project. However, there
are some advantages and disadvantages to budget option 1.

89

Advantage Disadvantage
-No money out of personal funds - Can take a long time to reach
desired amount

- Project needs awareness

- Project may never reach

desired funding
Table 41: Finance Option 1 Advantage/Disadvantage table

9.2.2 Finance option 2
Finance option 2 consist of paying for the project ourselves. There are also advantages
and disadvantages from paying the project ourselves

Advantage Disadvantage
- Project is paid for fast -money comes from person funds

- Freedom of when to buy

- Project is funding independent
of outside factors
Table 42: Finance Option 2 Advantage/Disadvantage table

We chose to go with Finance option 2. We chose to pay for the project ourselves because
we have decided as a team that the total cost of the project is not unreasonable. Also,
Finance option 2 allows the project to be paid for fast, rather than wait on donations as
we only have two semesters to finish the entire project. Additionally, we have to decide
to split the project cost between each member. This ensures that each member will pay
for the project equally. The table below shows the maximum the Breathal.ock project may
cost. Extra quantities are considered to account for broken parts during prototyping.

90

Part Quantity Cost Total

Microcontroller 2 $10-520 $20-540
Fingerprint Sensor 2 $30-545 $60-590
Bluetooth Module 2 $20-535 $40-550
Blood alcohol Sensor 2 $30-345 $60-590
Battery 6 $3-55 $6-510
Programmable Key fob | 2 $20-530 $40-560
PCB 3 $20-530 $60-590
Breathalyzer 1 520 $20
Estimated Grand $316-5450

Total

Table 43: Parts Cost table

9.3 Group management

In terms of group management, Charles Taylor, the computer engineer, is in charge of
programing the microcontroller to process the data that are coming from all the sensors
and relaying that information to the mobile app. The microcontroller will need to be able
to process the right user fingerprint and reject users who aren’t register. In addition, the
microcontroller will need to be programmed to process the blood alcohol content data and
respond according if the data is above or below the legal limit.

Nam Ngo, the electrical engineer, is in charge of powering on the key remote, the
microcontroller, the alcohol gas sensor, the fingerprint sensor and interfacing the
Bluetooth communication module with the microcontroller. The key remote and the
microcontroller should be powered on by battery while the alcohol gas sensor, fingerprint
sensor, and the Bluetooth module should get its power through the regulated power
supply from the microcontroller.

Nicholas Fraser, the electrical engineer, is in charge of connecting the alcohol gas sensor
and the fingerprint sensor with the microcontroller. In addition, he is also in charge of
electrically interfacing the microcontroller to allow and block the unlock signal. The key
remotes unlock system should be electrically connected and controlled by the
microcontroller. If the microcontroller reads that the user is below legal limit, then the
unlock signal is able to be sent to the car. However, if the microcontroller reads that the
user is above the legal blood alcohol content then electrically, the key remote cannot send
out an unlock signal.

Though each member is assigned a task within the project, we as a group mutually agreed
that we work as a team thus if any group member is struggling with their respective tasks

91

then the roles of each members are subject to change accordingly. For example, if
Nicholas Fraser is having trouble connecting the sensors to the microcontroller then Nam
Ngo can take on that task in exchange for his contribution of powering on the sensors.

Charles Taylor Nick Fraser Nam Ngo
CpE EE EE

Car

Lock signal Unlock signal
Battery Mobile App
A

Y

. Bluetooth
Switch “?Aﬁﬁgg;‘;;‘;’#?r Communication
(Bluefruit LE UART)

A A -~

) T = : 3
Breathalyzer Fingerprint
i (MQ-3 Gas sensor) sensor
Unlock signal) L (Adafrurt.coms'))

L3 A
s N [
Power
Reqgistered User ‘ Power ‘
Usefinput - I 4 .
Remote Key User input

User input

Figure 49: Project management flowchart

92

Appendix A List of Figures

Figure 1: 3D Wireframe model of BreathaLoCKccoovviiirinininicieeeeseseeeeeee e 6
Figure 2: Optical FINGerprint DIagramcccoviieeciieceeieeee ettt st e reesesreenes 11
Figure 3: Passive capacitive toUCH DIagram..........cceoveiririirinenienieieieeeeeie e seens 11
Figure 4: Active capacitive tOUCH Diagram.........ccccceiieieeiineeiiieeese sttt s sae e 12
Figure 5: Battery DIAgIaM......cc.co ettt ettt ettt st sbe s b e s et e e esesneeneneen 14
Figure 6: Harvard arChitECIUIEccuoieiriririsieieice sttt neen 26
FIQUre 7: SYSEM ANCNHITECIUIEc.ecviieeeeceetee ettt sttt e st e b e s re et e s teesaenbesrnenes 31
Figure 8: All COMPONENES DY TNoviiiiieeeeeeee et 35
Figure 9: Fritzing breadboard test Wiring diagramc.cceeveieeieneneesece e 36
Figure 10: Breadboard testing of all COMPONENLSccocouiiieiiiiieeeeeee e e 36
Figure 11: Fritzing WIiring SCREMALIC..........coeviriirieieieieeeies et 37
Figure 12: Bluefruit LE UART Friend (BLE) external image........cccoceeveveeeeieieeeeceseeie e 38
Figure 13: Fingerprint Sensor exXternal iMAgEcouveririrerinienieiee et 39
Figure 14: MQ-3 sensor external image and pin referencCe........c.cccooeeinenenenenicneeeeseseseeene 40
Figure 15: Sensor operation SChEMALICccvveeviiiiceeeeeee ettt s 41
Figure 16: Circuit analySiS Of SENSONcciviiiriirieieieeeeier ettt sre e 41
Figure 17: Java ART fTAMEWOIKoouveiiiiceee ettt sttt st e ra et sreenes 44
FIQUrE 18: CH+ FIOW CRAIT ...ttt et st sa e b et e s re et e s teesaebesrnenes 47
FIGUIE 19: ECHPSE IDE ...ttt sttt ettt sa bttt et se bbbt 49
Figure 20: ECHPSE ADT PIUGINocueiiececteeee ettt ettt ettt e sa et s b e s be et e s teeraebesaeenes 50
Figure 21: An 0Pened SKEICHceoiiiieite ettt neen 51
Figure 22: Android STUIO IDEc.cooiiiriiinieieeeeee sttt sttt be e 52
Figure 23: Selection screen for ANAroid AEVICES.........cuoiieeecieiieeeeceeeece et s 53
Figure 24: AVD emulating an android EVICEccocveeerieeereiieeseseee st sae e 53
Figure 25: Handheld Device FUNCHONAILY...........cccoieiiieiiieeeeceeece ettt s 55
Figure 26: Android Device FUNCHONANLYcceceeeeiieecceeeeeeee ettt s 56
FIGUIE 27 LISE VIBW .ttt ettt ettt te sttt e s ee et st et estesseesaesteessesseesaensesseensestenseensessennes 59
Figure 28: Dialog WINAOW EXAMPIE........ccoiuieieiiiieieceeteste ettt s te et st esreebesteereenbesreenes 59
Figure 29: Flowchart of system hardware implementationc.ceceeeiieeecenieceseseee e 60
Figure 30: Eagle Schematic of Bluetooth MOAUIE..............cceevvrieienecieeceeee e s 61
Figure 31: Eagle Schematic of alcohol sensor breakout boardcccooeeeeiieieiiiiece e 61
Figure 32: Tentative Deadline for SPring 2017c.ccveoeiieeerereeeseeeere ettt s 67
Figure 33: AlCOhOl SENSOI tESE CIFCUILccuieieieceecececeee ettt e be s re e 69
Figure 34: Alcohol sensor test code writing in Arduino IDE...........ccooieiiiiieenieeeeee e 69
Figure 35: AlCONOI SENSOr tESE OULPUL.......ccueeieiiciecieseeeee ettt sttt e re b e sreenes 70
Figure 36: FiINgerprint SENSOF tEST CIMCUILcciveeierieiere ettt st 70
Figure 37: Arduino IDE code to bypass the Atmega328P Chip......ccccecvvvercieriecieneceee e 71
FIGUIE 38: SFG DEIMO L.ttt sttt sttt e st et e b e s teess e beesaestesneensesteessansesrnanes 71
FIGUIE 39: SFG DEIMO 2 ...ttt ettt st a et e s te et e st e s ae et e s e ene et e eneentesaeeneansesneenes 72
T 8RR L S o C T D =T o T S 72
Figure 41: ArduinO IDE OUIPUL L ...co.oieiiieeeiee ettt sttt et e s e sae et e steeneensesaeenes 72
Figure 42: ArduinO IDE OUIPUL 2oouieieeeieeeeeie ettt sttt e e sneeeeseeeneenaesaeenes 73

Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49

. Arduino IDE Output 3
: Arduino IDE Output 4

: Bluetooth cCOMPONENE tESE CIFCUIL........ceeiviiieeiesieceee ettt raens
: Image of internal PCB of KeY fODocuvoiieeeeee e
: LM7805 linear voltage regulator teSt CIFCUILccevvereeieieireresereeeeeeeee e

: LT1761ES5-3 linear voltage re
: Project management flowchart

gulator test CIrCUIL.......ccecveeerieeeeceee e,

Appendix B List of Tables

Table 1: House of quality trade Off table.............cooiiiiii e 8
Table 2: Arduino Uno Low power Mode table..........c.ooveiiiiecicieceeeceeesee et 15
Table 3: Arduino Uno Advantage/Disadvantage table ... 16
Table 4: Arduino ProMicro Advantage/Disadvantage table...........cccocevevievevineececeeeece e 16
Table 5: Arduino Mini Advantage/Disadvantage table ... 17
Table 6: Raspberry Pi 3 Model B Advantage/Disadvantage tablecccocooineiiiininnincnenn 18
Table 7: MSP430 Advantage/Disadvantage tableccoeceeeeieviceeceseeee e 18
Table 8: Microcontroller DeciSion TabIeccoieiieeeee s 19
Table 9: DECISION TaDIE......coiiieeee ettt st sttt sttt seebeste b s 21
Table 10: Fingerprint Scanner DeciSion TabIe ..o 22
Table 11: MQ-3 Advantage/Disadvantage tableccooiviiiririniiieeeeee e 23
Table 12: MR513 Advantage/Disadvantage tableooocecieieiiceciieeece et 23
Table 13: Gas Sensor DECISION TaDIEc.cooiiieieieese et s 24
Table 14: Selected Component Operating VOILAGEccvvererererieieieieeseseseseeeeee e 24
Table 15: Power Option DeCISIoN TabIecc.ooioiiiicieeceeee e 25
Table 16: Power option DecCiSioN TabIe ..o e 26
Table 17: Part selection sSUummary Table ..ot 28
Table 18:Component dESCIIPLIONSccueiieieeceetee ettt be et st esteeraesbesasensesreennas 35
Table 19: Arduino SPECIfIiC CONNECTION.........cciiiriiieieieeeteee sttt 37
Table 20: Bluefruit LE UART SPECIfICALIONScccveiiieieiecieeece ettt et 38
Table 21: Fingerprint sensor technical CharaCteristiCscuveverereeieirinesereeee e 39
Table 22: MQ-3 sensor technical CharaCteriStiCScevvveeeeririeeeeeeee e 40
Table 23: Technical FUNCHONANLY L.......c.ccoooiiiiiieieececeeeee ettt st st 56
Table 24: Technical FUNCHONAILY 2.......c.ccveieiieieeieeseseee ettt eneas 57
Table 25: Technical FUNCHONAILY 3.......c.coiiiiiieeeecece ettt sttt et 57
Table 26: Technical FUNCHONANLY 4c.coveueiiiieeeeeeese ettt st st s s eanas 58
Table 27: Technical FUNCHONAILY 5......cccooieiiiieieeeeere ettt 58
Table 28: Component Mounting COMPATISONcc.ecieierieiieieeteeeerte e este e e stesreeaesteeaesbesrsessesseensas 65
Table 29: Tentative Deadline for SPring 2017ocveeeveiieeereeeee et enees 66
Table 30: Procedure for programming KeY FOBSc.coovviecerieieiceeeseeeeste e 75
Table 31: Description of Individual TESt CASE L.....cceeieiiiirieeiecteete ettt ettt 78
Table 32: Description of INdividual TESt CASE 2.....ccueeceevieieieeieceeeeeee et 78
Table 33: Description of Individual TESt CASE 3.....ccuioieiieieeeteeeete ettt sae e eanas 78
Table 34: Description of INdividual TESt CASE 4.....cueeieiieieeeeee ettt e 79
Table 35: Description of Individual TESt CaSE 5.....ccveeeiiiiieeeceeeeeeere et 79
Table 36: Description of INdividual TESt CASE B.....ccueeueeiieriieieieeieeeeee e 79
Table 37: Description oOf INdiVidUAl TEST CASE 7....eovueeeeiirieeeeeeete ettt 80
Table 38: Description of Individual TESt CASE 8.....ccecvevieieieeeceeieeee e 80
Table 39: Description of Individual TESt CaSE 9....cocuieieiieieeeeee e 80
Table 40: Description of Individual TESt CasSe 10.......cceviiiecerieceeiceeere et 81
Table 41: Finance Option 1 Advantage/Disadvantage table............ccoooovieiiiinieiinnieeee, 90
Table 42: Finance Option 2 Advantage/Disadvantage table.............ccoocovieiiiiiinncieeee, 90

Table 43: Parts Cost table

Appendix C Citations and Permissions

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Citations

K. Townsend. (2016, September 30). Introducing the Adafruit Bluefruit LE UART
Friend (1%t ed.) [Online]. Available:
https://cdnlearn.adafruit.com/downloads/pdf/introducing-the-adafruit-bluefruit-le-
uart-friend.pdf

L. Ada. (2015, May 4). Adafruit Optical Fingerprint Sensor [Online]. Available:
https://learn.adafruit.com/adafruit-optical-fingerprint-sensor/overview

M. S. (2016, August 08). Getting Started with Arduino and Genuino UNO
[Online]. Available: https://www.arduino.cc/en/Guide/ArduinoUno

H. Barragan. Power Regulator 5v: LM7805 [Online]. Available:
http://wiring.org.co/learning/topics/power5Im7805.html

Sparkfun. Alcohol Gas Sensor - MQ-3 [Online]. Available:
https://www.sparkfun.com/products/8880

Sparkfun. Gas Sensor Breakout Board [Online]. Available:
https://www.sparkfun.com/products/8891

Digi-Key. Linear Technology LT1761ES5-3#TRMPBF [Online]. Available:
http://www.digikey.com/product-detail/en/linear-technology/LT1761ES5-3-
TRMPBF/LT1761ES5-3-TRMPBFCT-ND/1629845

Datasheets:

[8]

[9]

Texas Instruments, “wA7800 Series Positive-Voltage Regulators” LM7805
datasheet, May. 1976 [Revised May. 2003].

Linear Technology, “LT1761 Series 100mA, Low Noise, LDO Micropower
Regulators in TSOT-23" LT1761ES5-3 datasheet

Permissions

Nicholas Fraser & Replyall | v
13 PM

cales@winsensor.com ¥

Today, 7:

Va

AC or
DGV
E2N L

wov |])
t0. v

Download Save to OneDrive - University of Central Florida - UCF
To whom this may concern,

I"'m writing to request permission to use an image from a datasheet that you have created. | am specifically
interested in Fig2 from "MQ-3 ver1.3 - Manual.pdf". | am an electrical engineering student at the University of
Central Florida and would like to use this image as a part of a senior design paper that | am working on. The
datash eet will be cited and the paper will give your company all credit for this image. Please let me know if
there is any further guestions or information you would need to grant me permission. I've attached the image
for ease of reference.

Thank you for your time,

Nichalas Fraser

MQ-3 Ver1.3 Datasheet Permission a
Alyssa Rong <sales@winsensor.com> & 5 Replyall |v
Today, 1215 AM

Nicholas Fraser ¥

Dear Nicholas,

Thanks for kind inguiry.
It is okay for you te use the figure, but pls kindly mark the source. Many thanks!

Best regards,
Alyssa Rong

Zhengzhou Winsen Electronics Technalogy Co., Ltd

N0.299, Jinsuo Road, Mational Hi-Tech Zone, Zhengzhou 450001, China
Tel: +86-371-67169097

Fax: +86-371-60932988

Skype: Alyssa Rong

Email: sales@winsensor.com

