

University of Central Florida

Department of Electrical Engineering and Computer
Science

Dr. Lei Wei

Group 31: BreathaLock

Nam Ngo Nqn1001@knights.ucf.edu EE

Nicholas Fraser NFraser@knights.ucf.edu EE

Charles Taylor CharlesATaylor@knights.ucf.edu CpE

Date: 04/27/17

i

Contents
1. Executive Summary .. 1

2. Project Description ... 2

2.1 Project Motivation ... 2

2.2 Project Goals .. 3

2.3 Objectives .. 3

2.3.1 Alcohol Sensing ... 3

2.3.2 Biometric User Verification ... 4

2.3.3 Key FOB Integration .. 4

2.3.4 Bluetooth Communication ... 4

2.3.5 Cellular Device Application ... 5

2.4 Requirements Specifications ... 5

2.4.1 Physical Specifications .. 5

2.4.2 Power specifications ... 7

2.4.3 Performance specifications .. 7

2.5 Quality of House Analysis ... 8

3. Research related to Project Definition ... 10

3.1 Existing Similar Projects and Products .. 10

3.1.1 SAAB Alcokey ... 10

3.1.2 ALCOLOCK V3. ... 10

3.1.3 ALCOLOCK’s DRIVESAFE elan .. 11

3.1.4 BACtrack Mobile Pro ... 11

3.1.5 Daniel Andrade’s Arduino MQ-3 breathalyzer project ... 11

3.1.6 Nootropic design’s Arduino MQ-3 breathalyzer project .. 11

3.2 Relevant Technologies .. 11

3.2.1 Biometric fingerprint scanner ... 12

3.2.2 Gas sensors ... 13

3.2.3 Bluetooth .. 14

3.2.4 Battery ... 15

3.3 Strategic Components and Part Selections ... 15

3.3.1 Microcontroller ... 15

3.3.1.1 Arduino Uno ... 16

3.3.1.2 Arduino ProMicro.. 17

ii

3.3.1.3 Arduino Mini ... 17

3.3.1.4 Raspberry Pi 3 model B .. 18

3.3.1.5 MSP430G2211IN14.. 19

3.3.2 Bluetooth .. 20

3.3.2.1 Adafruit Bluefruit LE UART Friend ... 20

3.3.2.2 Phantom YoYo JY-MCU Arduino Bluetooth Wireless Serial 20

3.3.2.3 BLE Nano - nRF51822 .. 20

3.3.3 Fingerprint Scanner ... 21

3.3.4 Breathalyzer sensor .. 23

3.3.4.1 MQ-3 Sensor ... 23

3.3.4.2 MR513 Sensor .. 23

3.3.5 Power supply ... 24

3.3.5.1 Power option 1 ... 25

3.3.5.2 Power option 2 ... 25

3.3.6 Key remote ... 25

3.3.6.1 300-0247ES Universal Car Remote .. 25

3.3.6.2 KPT1306 key remote .. 25

3.3.6.3 K410 Car Remote Central Lock Locking Entry System 26

3.4 Architectures and Related Diagrams ... 26

3.4.1 Microcontroller Architecture ... 26

3.5 Parts Selection Summary .. 27

4. Related Standards and Realistic Design Constraints .. 29

4.1 Standards .. 29

4.1.1 Bluetooth Standard.. 29

4.1.1.1 Core System Architecture .. 30

4.1.1.2 Bluetooth Security .. 32

4.1.2 Health standard .. 33

4.1.3 Design impact of relevant standards .. 33

4.2 Realistic Design Constraints .. 33

4.2.1 Economic and Time constraints .. 34

4.2.2 Environmental, Social, and Political constraints ... 34

4.2.3 Ethical, Health, and Safety constraints .. 34

4.2.4 Manufacturability and Sustainability constraints .. 34

iii

5. Project Hardware and Software Design Details... 35

5.1 Initial Design Architectures and Related Diagrams ... 35

5.1.1 Project Hardware Components .. 35

5.1.2 Hardware Wiring ... 36

5.2 Bluetooth Subsystem ... 38

5.2.1. Bluefruit LE UART Friend (BLE) .. 38

5.2.2. Sensor Specific Operation .. 38

5.2.3 Subsystem Implementation ... 38

5.3 Biometric Subsystem ... 38

5.3.1 Sensor Overview .. 38

5.3.2 Sensor Specific Operation ... 39

5.3.3 Subsystem Implementation ... 39

5.4 Breathalyzer Subsystem ... 40

5.4.1 MQ-3 Alcohol Gas Sensor .. 40

5.4.2 Sensor Specific Operation ... 41

5.4.3 Subsystem implementation ... 41

5.5 Software Design ... 42

5.5.1 Programming Languages .. 42

5.5.1.1 Assembly .. 42

5.5.1.2 Python .. 43

5.5.1.3 Java (Android API).. 44

5.5.1.4 C .. 45

5.5.1.5 C++ (avr-g++ toolchain) ... 46

5.5.2 Integrated Development Environments ... 47

5.5.2.1 Eclipse ... 47

5.5.2.2 Arduino IDE .. 49

5.5.2.3 Android Studio .. 49

5.5.2.4 Databases ... 51

SQLite .. 51

5.5.3 Functional Requirements ... 51

5.5.3.1 Main Functionality .. 52

5.5.3.2 Technical Functionality ... 53

5.5.3.3 Software Requirements ... 55

iv

5.5.3.4 Interface Requirements ... 56

5.5.3.5 Data Requirements ... 57

5.6 Summary of Design .. 57

6. Project Prototype Construction and Coding .. 59

6.1 Integrated Schematics ... 59

6.2 Parts Acquisition ... 59

6.2.1 Adafruit ... 60

6.2.2 Sparkfun ... 60

6.2.3 Digi-Key .. 60

6.2.4 UCF .. 60

6.3 PCB Design ... 60

6.3.1 EAGLE ... 61

6.3.2 National Instruments Ultiboard .. 61

6.3.3 AutoCAD ... 61

6.4 PCB House .. 61

6.4.1 PCBWay .. 61

6.4.2 Elecrow ... 62

6.4.3 Seed Studio ... 62

6.5 Construction ... 62

6.5.1 Hand Soldering ... 62

6.5.2 Reflow Oven .. 62

6.5.3 Types of Mounting ... 63

6.5.4 TI Innovation Lab.. 63

6.6 Final Coding Plan PERT chart.. 63

7. Project Prototype Testing Plan .. 65

7.1 Hardware Test Environment ... 65

7.1.1 Power Supply .. 65

7.1.2 Car Access ... 65

7.1.3 Cellular Devices .. 65

7.2 Hardware Specific testing ... 65

7.2.1 MQ-3 Alcohol Sensor .. 66

7.2.2 Adafruit Fingerprint Sensor .. 67

7.2.3 Bluefruit UART Friend Bluetooth Module .. 68

v

7.2.4 Key FOB .. 69

7.2.5 Linear Voltage Regulator ... 70

7.3. Software Test Environment ... 71

7.4 Software Specific Testing ... 71

7.4.1 Introduction ... 71

7.4.2 Overall Objective for Software Test .. 71

7.4.3 Stopping Criteria & Testing Method .. 71

7.4.4 Description of Individual Test Cases .. 72

8. Demonstrations .. 76

8.1 Initial Activation and Setup ... 76

8.2 Standalone Operation .. 76

8.3 Bluetooth Pairing ... 76

8.4 Connected Operation ... 77

9. Final Design .. 78

9.1 Hardware .. 78

9.1.1 Schematic ... 78

9.1.2 Board layout .. 79

9.2 Software ... 79

10. Administrative content ... 83

10.1 Milestone Discussion ... 83

10.2 Budget and Finance Discussion ... 88

10.2.1 Finance option 1 ... 88

10.2.2 Finance option 2 ... 89

10.3 Group management .. 90

10.4 Personnel .. 92

10.5 Significant Accomplishments and Open Issues ... 92

10.5.1 Significant Accomplishments .. 92

10.5.2 Open Issues ... 93

Appendix A Copyright Permissions ... I

Citations .. I

Permissions .. IV

Appendix B Data-Sheets ... VIII

Appendix C List of Figures ... IX

vi

Appendix D List of Tables.. X

1

1. Executive Summary

The BreathaLock is a new device idea that is intended to take the place of a car key fob
and prevent drunk driving. With the help of this device we hope that car owners will not
only be stopped from being able to drive under the influence of alcohol but also be more
conscience of the dangers of driving drunk by the reminder of having to use the device
repeatedly. Our systems core features include ease of use, accuracy, and effectivity to
prevent drunk driving without being an inconvenience to car owners. It is intended that
this device will be cross platform, operational to multiple car manufacturers and with the
aid of Bluetooth available to connect to a cell phone to display additional information.
The BreathaLock with be fully contained inside of a handheld device that will not be
excessively large.

The BreathaLock with operate under the following sequence. First, the user when
approaching the vehicle will take out the BreathaLock and initialize the device to begin
scanning for a specific user. A biometric fingerprint sensor on the back of the
BreathaLock will take a reading to confirm the correct user is operating the device.
Once passed, the BreathaLock with prompt the user to blow into the alcohol sensor
located at the top of the device. In the event that the user is sober the BreathaLock will
allow the user to unlock the vehicle remotely. If the user does not pass such criteria,
then the BreathaLock will deny access until these tests are repeated yielding passing
behavior.

To successfully implement a device to meet these expectations requires considerable
amounts of research and design. We must effectively determine the most accurate way
to measure and decipher the blood alcohol level of a user through the use of an analog
alcohol sensor. This is extremely important when considering the consequences of any
chance of error, primarily allowing a user to drive under the influence of alcohol.
Secondly it is important that we investigate the speed and accuracy of the biometric
sensor and integrate it as a productive feature to ensure that the correct driver of the
vehicle is going to be tested for blood alcohol content. Finally, this device needs to
connect quickly and effortlessly to the user’s cell phone and also be extremely user
friendly. We intent to extend these features with additional options such as allowing the
user to add additional drivers through the app.

With the help of existing technologies and our own engineering the BreathaLock will be
a fully functioning device displaying the previously discussed features. This device could
have commercial opportunity for legal repercussions or could be a recreational device
used strictly for voluntary preventative care.

2

2. Project Description
Before getting into depth of what the BreathaLock system is, a brief overview is given
below of the overall motivation and specifications that come with this design. To create
a compelling and relevant device it is important to research and consider many factors,
both in design and consumer desires, which will go into this design.

2.1 Project Motivation
While pursuing a college degree and living in a college town every student encounters
many challenges inside and outside of the classroom. One of the primary challenges
that affect many students and adults around the country is driving under the influence of
alcohol. Most adults know that it is an unwise decision to get behind the wheel at an
impaired state but despite the fact that there are many consequences, both legal and
life altering, many adults and teens fail to avoid driving under the influence.

According to Mothers against Drunk Driving (MADD), on average two in three people
will be involved in a drunk driving crash in their lifetime. This means that the majority of
people will be affected by drunk driving personally without considering the effects of
loved ones and peers that may be affecting them as well. Drunk driving is a very serious
issue that needs to be addressed more effectively and possibly more aggressively.

When considering the legal consequences of getting a driving under the influence (DUI)
charge it is scary to see how drastic they can be. Best listed by dui.drivinglaws.org legal
punishment of DUI in the state of Florida can include vehicle impoundment, fines,
probation, community service, license suspension, ignition interlock devices, and even
jail time. As college students, we encounter many distractions and the last thing that we
need is legal consequences. Even more severe is that some universities will suspend
students or even expel students if the offence is campus related. It is our intention that
with the use of a BreathaLock system in a preventative way, less students will legal
consequences of DUI by preventing driving under the influence.

Even more important than preventing legal consequences from DUI we seek to prevent
the physical dangers that can result from driving at an impaired state. The National
institute on Alcohol Abuse and Alcoholism states that “About 1,825 college students
between the ages of 18 and 24 die from alcohol-related unintentional injuries, including
motor vehicle crashes.” It is tragic to see a fellow family member, classmate, or even
friend make the mistake of driving under the influence and getting injured or killed. It is
even more tragic to see someone that is sober and innocent be negatively affected by
the decisions of others under the influence.

Currently there are various ways to avoid this situation: carpooling with a sober driver,
using alternate transportation, or waiting till your body processes alcohol enough to be
within the legal limit. Some of these are costly, some are inconvenient, and some are
hard to measure. Although it may seem like an easily avoidable situation when under
the influence of alcohol bad decisions can be made. With the help of BreathaLock there
may be another method to prevent drunk driving more effectively.

To combat this ever present issue we propose to implement a device that is easy to use
and cost affective to help college students and adults around the county avoid driving

3

under the influence of alcohol. In our society and specifically in Orlando it is simply too
easy for a student to decide to drive under the influence with the option of getting in
their car in the driveway and making a regrettable decision. Our device is intended to
make the user take an additional step before making this decision and in the event of
failing to prove sobriety the user will be unable to make this regrettable decision.

2.2 Project Goals
The goal of BreathaLock is simple: to prevent drunk driving to all vehicle owners. We
intend to create a device that is so simple and user friendly that it could be accepted
and used by all vehicle owners. To do so we must investigate the most important
characteristics of a device that could be acceptable to the public. If the BreathaLock
exists in the hands of all vehicle owners, we could completely eliminate drunk driving
and consequently eliminate the negative affects the come along with it. Although this
may seem like a very large goal it is important to strive to create a device that is best
suited for the consumer in efforts to achieve a compelling product.

The technology and implementation of the components that will be incorporated into the
BreathaLock device have been available for quite some time. The only reason this
device has not been available yet is the lack of seamless implementation and price
point. With that said, we recognize that doing this affectively will not be an easy task
considering that vehicle owners are currently using very small key FOBs and will
probably not want to digress to a large bulky FOB. Additionally, to have this product
work cross platform there would have to be allowance from car manufactures to allow
the use of this device. Despite this obstacle, our team will be designing the densest and
size effective device possible with limited resources. In the implementation of the
BreathaLock it is not expected to match the size of a current key FOB but in efforts of
proof of concept we hope that it may spark further investigation to get to that size with
later revisions.

By the end of this project we hope to have a concept and working model of what a
professionally manufactured product could look like. We will be designing a custom fit
housing, PCB board, and all wiring which gives us the luxury of designing this product to
look and feel the way that we want it to. This device with the help of Bluetooth
technology and a cellular device will educate and inform vehicle owner how to avoid and
learn more about how they react to alcohol.

2.3 Objectives
In order to allow vehicle owners to appreciate and accept this product we will discuss
our core project objectives. These will highlight the most important features that will
make the BreathaLock a powerful and useful device. There are many features and
extensions to this project that we would like to achieve. The most important features to
the BreathaLock system are listed below.

2.3.1 Alcohol Sensing
Our main objective with the alcohol subsystem is to gather an extremely accurate and
reliable reading each time we sample. Throughout our implementation it is going to be
very important to research existing breathalyzer technology and what the best way to
get an accurate reading. Our alcohol sensor provides us with a simple analog reading of

4

the amount of alcohol based on the conductivity of a piece of tin oxide. This is a very
primitive sensor that is going to require testing and logic to create repeatability and
accurate readings. How long should we sample? Do we throw out the highest reading or
average all values taken per sample? These are some questions that we are going to
need to ask ourselves and investigate when creating a dependable breathalyzer
subsystem. It is imperative that we implement the breathalyzer subsystem to be just as
accurate as a police grade breathalyzer to demonstrate reliability.

2.3.2 Biometric User Verification
One of the main advantages of the BreathaLock as opposed to any other breathalyzer
on the market is that it offers user recognition to ensure the driver of the vehicle is
blowing into the breathalyzer. With that advantage in mind it is our main objective to
make sure that our fingerprint sensor work repeatedly and accurately as well. Some
research and testing will need to go into what precautions we will need to make to keep
our fingerprint sensor working well. Because we are using a prepackaged fingerprint
sensor that contains an internal DSP chip and processing capability we anticipate it
working well with our systems but it is still important to test all use cases for
repeatability. The objective of the fingerprint sensor is to read quickly and accurately to
determine if the user is the correct owner of the vehicle or not.

2.3.3 Key FOB Integration
Because our product is interfacing with a vehicle and security system that is out of our
control we will need to use the design and parts from the existing key remote access. It
is our intent that the BreathaLock interface to the vehicle locking system not be
hindered at all compared to working native key fob without being tampered with. Ideally
we hope to reverse engineer the key FOBs components, recreate the circuitry and then
simply de-solder the preprogrammed chip from the FOB and solder it onto our own
PCB. Currently we are investigating the complexity of this task and assessing whether
or not it is achievable. In the event that we cannot do we will resort to manually wiring to
the switches of the remote access control board and control it from there.

During the implementation phase of this project the group members concluded that the
best way to design, test, and implement this project would be by using a one-to-one RF
transmitter and RF receiver. This was done for two main reasons: to save cost and
reduce risk of damaging a personal vehicle, and secondly to make the development and
testing limited to the design lab provided by the University of Central Florida. As another
advantage, the one-to-one RF transmitter and receiver would make the demonstration
to the professors much more efficient and allow for it to be don’t in the confines of a
meeting room as opposed to outdoors.

2.3.4 Bluetooth Communication
The Bluetooth connection between the BreathaLock and cell phone needs to be
implemented in a simple easy to use way. When many people think of Bluetooth
connections they immediately think of the headache that sometimes comes with device
pairing conflicts. To avoid this problem, the BreathaLock must immediately search and
try to connect with the cell phone and, as long as the cell phone has paired previously
and has Bluetooth on, will connect automatically. With this model by the time the user
goes to use the biometric fingerprint sensor and breathalyzer it will already have

5

connected to the cellphone. Depending on how fast and effectively the implementation
of other features go we will decide on how many added features to the cell phone app.
Ideally we could have results post processing to give the user an idea of how soon they
will be under the legal limit of alcohol.

2.3.5 Cellular Device Application
In order to display more information on the status of the BreathaLock and the results of
the sensors we will be designing a cellular application for android platform. This addition
to the BreathaLock system will open the door to many added features and post
processing data. Although adding an extraordinary application to this device would be
great there is a large time constraint with this course and project. For this reason, we
will investigate several goals that we will strive to achieve to make a great app.

Level 1: At the very least, we intent to create a viewer on the device that will display real
time data and instruction on how and what to do on the BreathaLock handheld device.
This will include outputting the current blood alcohol content of the user at the time of
sample. This feature would allow for an easier experience in the event that the
fingerprint sensor does not recognize the user and would like to prompt for a second
reading or breathalyzer test is inconclusive

Level 2: The next available step to the BreathaLock application possible would be to
have data logging and the ability to inform the user information on how long to wait or
how much the user could approximately drink based on their age, weight, height, etc.
Under the data logging of the BreathaLock including how often the device was used,
who attempted to use the device, and whether or not the user passed given tests and
was enabled to use the vehicle.

Level 3: The final level possible if we are given ample time to implement to the
BreathaLock system would be calling other android applications from within the
BreathaLock app to do other functions. This could include calling for an alternate means
of transportation from a 3rd party app such as Uber or contacting a family member after
a certain amount of failures. These features would be great to have as a part of our app
but will need considerable amount of time to develop and therefor will be determined
based on how quickly we can implement the rest of the features.

2.4 Requirements Specifications
To ensure that this project is challenging and creates a positive learning environment for

the members of this group it is important to specify tight constraints. The constrains

include: physical specifications, power specifications, and device performance

specifications. These requirements are set as the minimal achievements of this project

and are set in place with the intent to exceed considerably.

2.4.1 Physical Specifications
The first requirement that will be addressed will be that concerning the physical

constraints associated with this device. The driving force to create realistic constraints

will be the need to create a device that could compete with existing products that it will

replace. This device is intended to contain and replace the users’ vehicle key FOB and

therefore will need to be close to if not the same size to be a compelling product.

6

Unfortunately, as we list and realize the complexity and size associated with certain

sensors and devices that will be contained in the Breathalock device we know that it will

be very challenging to create a device as small as existing key FOBs. Because of this

we will need to find a middle ground between size and functionality.

Figure 1: 3D Design of a possible BreathaLock housing.

To implement a compelling and attractive device it is important to consider the
appearance and size goals of the BreathaLock system. In efforts to create the most
concise and compact device possible we are creating the entire device no larger than
3”x3”x7”. This size must include the whole system including all wires, sensors, and
enclosure. Although it would be more desirable to implement this device much smaller
we are limited by the size of our designed PCB, native key FOB, and other sensors that
will take up much more space than a key FOB without added features that the
BreathaLock system will encompass.

Following size constraints, we will investigate construction materials. The bulk of the
device will come from the multiple sensors, PCB, and power supply, in this case an
interchangeable battery. Because we are limited to the prefabricated sensors, PCB
material, and battery the only options we have physically are whether or not to create a
custom case out of any material. The main options of materials are to have a plastic or
metal enclosure and physically to create a custom enclosure, or to retrofit a store
bought housing for our implementation. As far as metal enclosures are concerned the
main advantage would be rigidity and durability. Although these are important
characteristics, designing and implementing a metal enclosure will be much heavier and
costly. If we choose to use a plastic enclosure we will save money, weight, and open
the door to ease of custom enclosure design with 3D printing technology. Our team is

7

fully capable of a simple enclosure design and execution which makes a clear decision
to go with the custom 3D printed enclosure.

In addition, we intend to have a device that will be no heavier than 1lb and be able to
hang on a key ring. These added physical specifications are important to keep this
device relevant and comparable to exiting key FOBs. It is important that we not forget
the motivation and goals of the implementation of the BreathaLock system. We must do
our best to compete physically with the current devices we are replacing.

2.4.2 Power specifications
When addressing the BreathaLock power specifications the only power specification
noted is to be able to power the BreathaLock device within 4W of power. This should be
the peak power of the device. The intent is to have the device run at very low power
dissipation to increase the battery life of the device. In addition, the BreathaLock project
is a device that is meant to be comfortably portable, anything more than 4W with a 9v
supply would be cumbersome in batteries to achieve a long battery life. This power will
be measured in the lab by measuring the battery supply voltage and the current drain
and multiplying them together.

2.4.3 Performance specifications
Regarding Performance specifications, the device must operate within 4 watts of power.

This specification allows the device to be energy efficient which is desirable in any

portable electronics devices. Because of this specification, the amount of times to

change out the battery is reduced.

The device must be able to block the user to be able to send out an unlock signal if the

user blows a blood alcohol content of 0.08 or above. This specification is critical to the

BreathaLock project as it serve as the purpose of the project. In the state of Florida,

anyone who has a blood alcohol content of 0.08% or above is considered over the legal

limit for operating a motor vehicle. If the alcohol gas sensor reads a value below of

0.08% then the user should be able to send out an unlock signal to the motor vehicle.

For the project a RF receiver will act as the motor vehicle

Another performance specification for the project is that the device must be able to store

the fingerprints of the registered users. This specification is critical as it allows the

BreathaLock system to have a level of security. If the device were to get to the hands of

an unregistered user, then the unregister user will not be able to unlock the motor

vehicle. Once again, for the BreathaLock project a RF receiver will mimic a motor

vehicle.

The last performance specification is that the device must be able to detect if the user is

blowing into the alcohol gas sensor or not. This specification allows for device

authenticity. If the BreathaLock device doesn’t have breathe detection then the

intoxicated user may be able to fan clean air into the gas sensor and thus bypassing the

entire system.

8

Specification conclusions

• The system should be no larger than 3” x 3” x 7”.
• The system should be no heavier than 1lb.
• The system must be battery powered within 4W.
• The device must be able to detect if the user is blowing into the device or not
• The device must be able to store the fingerprint data of registered user.
• When a lock signal is sent, the automotive should be locked.

• When a blood alcohol content is at .08 or above, the device must not be able to
transmit an unlock signal.

2.5 Quality of House Analysis
In efforts to depict the relative importance and correlation between engineering
requirements and marketing requirements a quality of house analysis is provided below.
This is important because as engineers many times marketing requirements are
overlooked. In the particular case of a senior design product, particularly one that
addressed a personal device, the connection between engineering requirements and
engineering requirements is increasingly important.

Table 1: House of quality trade off table

To display the engineering and marketing requirements, the house of quality trade of
table above is used. By using the different shapes listed in the key we show the
correlation between the engineering and marketing requirements individually. First we
chose to focus on the power consumption and battery life. Specifically, for an everyday
handheld device it is extremely important to implement a device that is going to be
ready to use for long periods of time without changing batteries or charging the device.
Our goal power consumption for power consumption is 1W and battery life of 1 week to
ensure that the user will be able to go extended periods of time repeatedly using the

9

device without having to worry about changing a battery. Secondly we investigate the
size of the device. Currently most car owners have a small key FOB that allows them to
have on them at all times and is pocket size. We are shooting for something of
comparable size due to the fact that BreathaLock will be replacing the key FOB. The
BreathaLock must be a reasonably small size so the user can carry the device with
them at all time without being overly bulky. Finally, we analyze the cost of the device
cost. As a preventative device that is intended to be used for any and all adults it is
important to market to a low cost so that anyone can afford this product.

As far as marking requirements are concerned it is extremely important to implement a
device that is simple and can be used by anyone. The BreathaLock is intended to be a
head-ache free device that can be used with very little inconvenience to the user
because the user will have to use the device every time they enter their vehicle.

10

3. Research related to Project Definition
In efforts to create the most compelling and effective product we must research and

investigate existing products to make sure we do not make the same mistakes they may

have. For the product we are specifically aiming to create, there is not a product that

addressed the same problems entirely but there are some products and projects that

individually addresses some issues. In this section, we will give brief overviews and

highlight the most important aspects of their strengths and weaknesses.

3.1 Existing Similar Projects and Products
The first step to researching and choosing a topic is to research existing technologies to

ensure that the efforts we take in design and realization of a product provides more

value or different functionality than what already exists. It would be futile to create a

device that simply mirrors the functions that another device can provide. This also

includes the advantages of cost; by this we address the opportunity to create a

comparably device for a significantly lower cost.

3.1.1 SAAB Alcokey
In the mid-2000s SAAB, the automotive company from Sweden, was working on a
remote vehicle lock and doubles as a breathalyzer. The remote was named “Alcokey”
and it features breathalyzer mouthpiece at the end of the remote. When the remote
takes a sample of the user’s blood alcohol content it takes 3 second until the result are
shown. If the user is over the legal limit then a red LED light will appear on the remote
indicating that the engine cannot be started, however if a green light is indicated then
the engine’s electronic immobilizer is release and the vehicle can be started. In addition,
the breathalyzer sensor that is integrated within the key remote is semiconductor based
and therefore monitors the temperature of the breath sample in the case if the user tries
to bypass the device with say a balloon. The Alcokey also comes with a battery
indicator and flashes and amber LED when there’s twenty percent of the battery left, in
which the user much come to the SAAB dealership to replace the battery. In terms of
the range of the device, the key remote is operable at roughly ten meters or thirty-three
foot to the vehicle. If a sample is taken outside the vehicle’s range, then the vehicle
remote has a three to four second clearance process.

3.1.2 ALCOLOCK V3.
The ALCOLOCK V3 is an in breathalyzer device for private and commercial use. The
breathalyzer is interlocked based and is installed within the vehicle’s dashboard and
connected through the engine’s ignition system. In terms of operation, before the engine
is able to start a sample of the user’s must be taken. If the sample is over the legal limit
then engine will not start, however if the user passes the test then the engine can start.
Once the engine start’s, ALCOLOCK V3 can be programed to ask for user samples at
random times while the engine is running. The device features a tri-colour LRD display
to relay the information back to user. Also, the device’s breathalyzer sensor is
electrochemical based that allows the device to operate at twelve volts or twenty-four dc
volts.

11

3.1.3 ALCOLOCK’s DRIVESAFE elan
ALCCOLOCK’s DRIVE elan is a breathalyzer that connected through your android
device via USB cable. Once connected, the device communicates to an app on the
android market to display the user’s sample results. In addition, through the app, the
user can make phone calls or be able to tweet results. The breathalyzer sensor is
electrochemical based which gives the device a battery life a roughly one thousand
samples. In terms of operation, the user must give a continues and moderate sample in
which the device returns a result in less than 10 seconds.

3.1.4 BACtrack Mobile Pro
BACtrack mobile Pro is a police grade breathalyzer that communicates to an app on a
mobile device via Bluetooth. The breathalyzer utilizes a fuel cell based sensor that gives
higher level of accuracy. This technology is used by law enforcements, hospitals and
clinics. Furthermore, the physical device has a solenoid base air pump inside to ensure
the user’s breath sample gets to the sensor. In terms of the mobile app, the app can be
download on IOS or android. The app saves and stores all the blood alcohol content
results over time and also integrate with Uber to make calls for a ride. Further, the app
has an estimation feature that predicts when the user’s blood alcohol content will reach
zero percent. In terms of device operation, the device first be turned on for about 10
seconds to warm up. Lastly, the user blow time is around five seconds.

3.1.5 Daniel Andrade’s Arduino MQ-3 breathalyzer project
In 2010 Daniel Andrade built an Arduino based breathalyzer utilizing the MQ-3 gas
sensor. The project uses the Arduino Uno, a few red, green, and yellow LEDS, a
potentiometer, a few resistors and the MQ-3 sensor. The project had each individual
LED in series with a resistor, then each LED that in series with a resistor grounded at
one end and the other end connected to the digital pins two up until digital pin eleven on
the microcontroller. Once the potentiometer and the breathalyzer sensor was connected
to the analog and digital converter within the Arduino, the project is hooked up. The
project works by taking the user’s breath sample and outputting it to the LEDS. The
higher the blood alcohol content the more LEDS light up from green, then yellow, then
red.

3.1.6 Nootropic design’s Arduino MQ-3 breathalyzer project
Nootropic’s circuit utilizes an Arduino Uno, a resistor and a MQ-3 gas sensor. The
circuit is powered by the Arduino’s onboard 5V regulator and which is connected to the
Arduino’s ATmega328 analog pin0 that is in series with the resistor. To ensure the
breathalyzer got a uniform breath sample, the sensor was place in a small glass jar. In
terms of calibrating the device, the method of correlation was. Nootropic designs took
voltages readings from the Arduino analog pins at given blood alcohol content levels,
after enough samples was taken the device was calibrated. In terms of the output of the
project, the output was displayed on the computer using the Serial.print() function.

3.2 Relevant Technologies
Aside from entire project that already exist is it also important to investigate

technologies that already exist. This is important for two reasons: primarily to use

technologies as a resource to combine them into the features of this device, and

12

secondly to possibly provide an opportunity to advance a particular technology to

provide the user or other projects in the future.

3.2.1 Biometric fingerprint scanner
When talking about talking about biometrics, the term refers to the process in which a
person’s physical trait is detected processed via electronic device. In the case of
fingerprint scanners there is a universal two-step process that every sensor operates
on: storing the fingerprint pattern of a user and then detecting if a fingerprint pattern
matches with the one that was previously stored.

There are many ways a fingerprint scanner can detect and store fingerprint pattern. One
common way is optical in which the process involves digitizing finger patterns via visible
light. Commonly, an optical sensor is made up of a clear surface to place the finger on.
Underneath this clear surface there is a source of light that shines on to the finger in
which it is then reflected on to an imaging array which captures the visual image of the
fingerprint. Usually the imaging array is either a charge-coupled device (CCD) or a
CMOS based optical imager. For charge-coupled devices the imager is not low light
sensitive, in addition the fabrication process is much more complex and thus more
expensive. CMOS based optical imagers however, are more easily made thus making
the optical scanner much less expensive. The disadvantage of this type of sensor is that
when the clear surface is smudge or if the finger is dirty then the optical scanner cannot
properly process the image.

Figure 2: Optical Fingerprint Diagram “reprinted with permission #3”

Another common method a fingerprint scanner can detect and store a fingerprint pattern
is through capacitive touch. Capacitive touch fingerprint scanners are categorized in two
categories: passive and active. Passive touch scanner works by having each pixel of
the image processor acting as one side of a parallel plate capacitor and a user’s finger
as the other plate to the capacitor. Since the capacitive values between the image and
the dermal layer of the skin are known, the whole array of pixels can map out the
valleys and ridges of a user finger, thus making each finger distinguishable between
one another.

13

Figure 3: Passive capacitive touch Diagram “reprinted with permission #4”

Active capacitive touch finger print scanners work by a creating charge onto the skin
before sampling takes place. After the charging process, the effective capacitor is
charged thus creating an electric field between the finger and sensor that follows the
ridges and valleys of a user’s finger. On the discharging process, the voltage between
the skin and the sensor is measured and compared to the charged value as a reference
to computes the capacitance. After computing the capacitance, the scanner
mathematically calculates the distance between the finger and scanner. Upon applying
the charge and discharge process to an array, the valleys and ridges are mapped out
on a person’s finger.

Figure 4: Active capacitive touch Diagram “reprinted with permission #4”

After scanning for valleys and ridges, then the analog values are converted to a string of
binary values in which it is stored and compared to the next set binary values.

3.2.2 Gas sensors
In the case of a foreign gas there is a need for detection. There are many types of gas
detectors but through different types technology. Commonly gas sensors include
electrochemical and semiconductor.

When referring to electrochemical gas sensors, the structure of the device must be
clearly understood. Commonly, electrochemical gas sensors contain two or more
electrodes in contact with an electrolyte. The electrodes themselves are a high surface
area metal that is covered in a hydrophobic membrane. The sensor allows certain

14

gases to pass through the porous membrane in which it is then chemically oxidizes or
reduced. The amount of current generated is determined by the amount of gas that
passes through the membrane and oxidizes. Since the size of the membrane can be
manipulated during the fabrication process, then the type of gas the sensor can detect
can be tailored to the desired gas. One advantage of this technology is that the
membrane that surrounds the electrode acts as a physical barrier then this allows the
detector to be more stable thus requiring less maintenance over time. However, a
disadvantage of electrochemical gas sensors is that is susceptible to corrosion. Since
the device is subject to any gas to come in contact with the porous membrane, the
membrane is subject to contamination and deterioration.

The other common type of gas sensor is based on semiconductor technology. The
principle behind semiconductor based gas sensors is that when the desired gas of
detection comes into direct contact with the sensor itself a chemical reaction occurs.
Since a reaction occurs on the surface of the semiconductor itself, it is common for the
resistance through semiconductor to either drop or increase depending on the anatomy
of the semiconductor. When once the resistance has drop the change in electric current
the device is detected and analyzed from which the concertation of gas is recognized.

In addition to common sensor types, another important property of gas sensors that is
essential to the device itself is calibration. All gas sensors regardless of the type of
technology that it is based off needs to be calibrated routinely. If the gas sensor is more
mobile or exposed too many other elements upon taking samples, then the routine will
check to see if the device is calibrated properly is more frequent in contrast to a device
that stays in one place or only takes samples containing fewer elements. One of the
simplest way to calibrate any sensor is to expose the sensor to a known concentration
of the desired gas of detection. If the sensor isn’t reading the correct concentration, then
the difference between the output and the controlled sample can be taken and added or
subtracted to correctly offset the device. To improve the accuracy of the device, it is
quite common to repeat the sensor correction test, this will result in multiple values of
offset in which the average value can be taken and used. The more offset values the
more accurate the device is.

3.2.3 Bluetooth
One of the most common methods of device communication is Bluetooth connection.
Bluetooth is a global wireless communication standard that is implemented through
radio waves. Usually within the bandwidth of 2.4 GHz to 2.485 GHz, the radios wave
allows multiple devices to be connected at once, the master Bluetooth device can have
up to seven devices be connected all at once. In terms generations of Bluetooth that are
most commonly found in devices today, there are three: Bluetooth 3.0, Bluetooth 4.0,
and most recently Bluetooth 5. Of those three types of generations there are two
branches of types of Bluetooth: Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR)
and Bluetooth with low energy (LE). Typically, Bluetooth Basic Rate/Enhanced Data
Rate are found in stereo speakers, headsets, and computers, while Bluetooth with low
energy, as the name implies, are found in device that operate on low power such as
wearables and other IoT devices.

15

3.2.4 Battery
When talking about battery technology we must define what a battery does. A battery is
a device that has energy stored in the form of chemical energy and then converts it to
electrical energy. Every battery has two terminals: a positive terminal known at the
cathode and the negative terminal known as the anode. Separating the cathode and
anode is the electrolyte. The role of the electrolyte is to provide a means of a chemical
reaction to build up electron at the anode. Since there is a buildup of electrons at the
anode, there is a potential difference between the anode and the cathode thus when the
battery is under load there will be electron flow from anode to cathode.

There are two classifications of batteries rechargeable and non-rechargeable. Non-
rechargeable refers to the types of battery that cannot be reused over again. These
types of batteries aren’t rechargeable because the chemical reaction that is provided by
the electrolyte cannot be reversed. Typically, when a non-rechargeable is used, a brand
new one replaces it.

The other type of battery classification is the rechargeable battery. Rechargeable
batteries are able to recharge because the chemical reaction that is provided by the
electrolyte is able to reverse its process thus restoring the anode and cathode back to
its original state. This original state can again provide full power.

3.3 Strategic Components and Part Selections
Before blindly choosing components and parts we must outline the specs of each

component to make an educated decision. It is important that we define the components

and identify the important trade-offs associated with each. Once this is completed we

can compare and find the best suited components and part for the BreathaLock.

3.3.1 Microcontroller
When defining a microcontroller, a microcontroller is a computer system that typically
has memory, a processor, input/output ports, serial ports, timers, analog to digital
converters, and digital and analog converters to perform a task. Usually in the form of a
single integrated circuit, a microcontroller is much smaller than a computer as its main
uses are found embedded within a main system. However, the term “microcontroller”
can easily be confused with the term “microprocessor”. The microprocessor itself does
not have its memory and other peripherals contained on board with the chip, but rather
placed externally, leaving room for upgrades.

Before talking about comparing and strategically selecting microcontrollers, there are
categories that microcontrollers are divided into that needs to be defined: bits, memory,
instruction sets, architecture. When referring to the number of “bits” a microcontroller
can process at once, we are referring to most amounts of ones and zeros the processor
can read at one moment. Usually the processor’s bit numbers are 8bits, 16bits, 32bits,
and 64bits. The higher the bit number, the faster the processor can perform tasks. In
terms of memory, memory is used to store data and programs to fetch later on.
Typically, a microcontroller has a fixed amount of RAM and ROM or other flash
memories because the microcontroller itself comes in a single IC package. The
instruction set of a microcontroller is the communication between the microcontroller’s
software to hardware. Lastly, a feature of a microcontroller that needs to be noted is the

16

microcontroller’s architecture. Typical architectures found on most microcontrollers
today are the 8051, PIC, AVR, and ARM.

3.3.1.1 Arduino Uno
The Arduino Uno is a microcontroller assembly that is based on the through hole
version of the ATmega328P. The Uno operates at 5V with a maximum input tolerance
between 6-20V. In addition, the microcontroller has 28 pins of which there are 14 digital
pins, where 6 of those pins can be used for PWM; also there are 6 analog pins. In terms
of memory, the Arduino Uno has 2 Kilobytes of volatile SRAM memory, 1kilobyte of
nonvolatile EEPROM memory, and 32 kilobyte of nonvolatile flash memory of which 0.5
kilobytes is allocated for the bootloader.

Additionally, the ATmega328P features three timers/counters, internal and external
interrupts, a programmable USART, a 6 channel 10-Bit analog and digital converter, a
programmable watchdog timer, and five software selectable power saving modes

MODE Functionality

Idle mode Stops CPU, but keeps SRAM, Timers/counters,
USART,2-wire serial interface on

Power-down mode Save contents inside register and freezes everything
else until interrupt occurs

Power-save mode asynchronous timer stays on, everything else is off

Standby mode crystal oscillator is on, everything else is off

ADC Noise Reduction
mode

only asynchronous timer and ADC is on, everything
else is off

Table 2: Arduino Uno Low power mode table

The serial interface uses Universal Asynchronous Receiver / Transmitter (UART) where
the pins RX and TX in which UART typically has are connected through to a USB–
UART converter circuit. The ATmega328P also has Serial Peripheral Interface (SPI).
Besides using it as another option for serial interfacing, it can also be used to program
the microcontroller using a standalone programmer.

In terms of power, the Arduino Uno can be powered on either by USB or a DC power
jack. The Arduino Uno also has a regulated 5-volt power supply and a 3.3-volt power
supply that can supply up to 50mA. The 5V power supply comes from the
NCP1117ST50T3G regulator where the input voltage is from the DC power jack that is
then connected to a surface mount diode to provide circuit protection. The output of the
regulator is then connected to the rest of the 5V circuit where the user can access the
power and also to the input of the 3.3V voltage regulator: LP2985-33DBVR. If however,
the user decides to power on the Arduino Uno via the USB rather than the DC power
jack, then the 5V line of the USB is connected to the drain of the an FDN340P, a P-
channel MOSFET. Furthermore, the source terminal of the MOSFET is connected to the
5V network where the user can access the regulated power and the gate terminal of the

17

MOSFET is connected to an output of a LMV358 comparator. The comparator acts as a
switch to turn the MOSFET on and off.

Advantage Disadvantage

- removable microcontroller - Size

- Female Connectors - Video/audio peripherals

- Shield capability

- Pre-existing Female Pin
connectors

Table 3: Arduino Uno Advantage/Disadvantage table

3.3.1.2 Arduino ProMicro
When looking at the Arduino ProMicro, there are similar features to that of any
microcontroller to that of the Arduino family. The Arduino ProMicro is based on the
ATmega32U4 microcontroller. This microcontroller has 32 pins, of which 12 of those
pins are allocated for analog inputs while the other 27 pins are for digital input/output
channels. In terms of memory, the Arduino ProMicro has 2.5 kilobytes of SRAM,
1kilobyte of EEPROM, and 32 kilobytes of flash memory of which 4 kilobytes are used
by the bootloader. In terms of power, the Arduino ProMicro operates at 5V however, the
input tolerance limit is 5V-12V. Once again like most Arduino microcontrollers, the
device can be powered on through the USB or an external power supply. If the user is
using an external power supply, then connections must be made through the Vin and
Gnd pins since there are no other terminals for external power source.

In terms of device communications, the Arduino ProMicro has many ports for
communications. The device has TTL serial communication in which pins 0 and 1 are
used as RX and TX respectively to receive and transmit data. Also, there is TWI in
which pins 2 and pins 3 are used. Implementations can be done by using the Wire
library. Lastly, the Arduino ProMicro allows for CDC communication through USB where
the device act as an open com port to other software on the computer.

Advantage Disadvantage

- Size - nonremovable
microcontroller

- Extra Digital input pins - Not shield capable

- Extra analog input pins - Video/audio peripherals

 - No pre-existing connectors

Table 4: Arduino ProMicro Advantage/Disadvantage table

3.3.1.3 Arduino Mini
Lastly we take a look at the Arduino Mini. The Arduino Mini, similar to the Arduino Uno,
runs on the ATmega328. Since the two microcontroller have similar processor, the
peripherals will be similar as well. The Arduino Mini has 22 pins, of which 14 are used
for digital input/output, and of those 14 digital pins, 6 can be used for pulse width

18

modulations(PWM). In terms of device memory, the available memory is the exact same
as to that of the Arduino Uno.

The advantage to using the Arduino Mini comes from the size of the device. The device
itself is 30mm x 18mm. This allows the device to be portable, and easy to be stored
away in much tighter place compared to the previous Arduino Microcontrollers
mentioned before.

Advantage Disadvantage

- Size - Non-removable microcontroller

 - Video/audio peripherals

 - Not shield capable

 - Needs FTDI board to program

 - UART capability

 - No pre-existing connectors

Table 5: Arduino Mini Advantage/Disadvantage table

3.3.1.4 Raspberry Pi 3 model B
Raspberry Pi 3 model B is the third generation of Raspberry Pi. The Raspberry Pi tends
to be more of a mini-computer whereas the Arduino family is a microcontroller. For the
purpose of this paper, the Raspberry Pi family will be treated as a special kind of
microcontroller. The device runs on the 1.2 GHz 64-bit quad-core Armv8 processor with
1 gigabyte of RAM. In terms of peripherals, the device has:

• 40 General Purpose input/output pins (GPIO)
• 802.11n Wireless LAN
• Bluetooth Low Energy
• 4 USB ports
• 1 HDMI port
• 1 Ethernet port
• Camera interface
• Display interface
• MicroSD card slot
• 3.5mm Arduino port

The advantage to using the Raspberry Pi is through the video/audio capability readily
available peripheral the device has to offer compared to the Arduino.

Advantage Disadvantage

 - Video/audio peripherals - Non-removable microcontroller

- Number of GPIO

- Communication peripherals

Table 6: Raspberry Pi 3 Model B Advantage/Disadvantage table

19

3.3.1.5 MSP430G2211IN14
The MSP430 is a 16-bit microcontroller from Texas Instrument that follows RISC
architecture. In terms of powering on the device, the MSP430 operates between 1.8V to
3.6V. Furthermore, the MSP430 has 5 power saving mode in addition to a wakeup time
from standby mode of less than 1 µS. In terms of memory, the MSP430 features 128
kilobytes of RAM.

Advantage Disadvantage

 - Ultra Lower power - Not user friendly in group31

- Fast wake-up time

Table 7: MSP430 Advantage/Disadvantage table

Upon reviewing over the advantages and disadvantages of each microcontroller, a
decision table is made to furthermore strategically pick the right microcontroller for the
BreathaLock project. In the decision table, criterions were carefully picked and weighted
according to the project’s needs, from 1 being the lowest weight possible to 5 being the
highest weight. The criterion: Dimension refers to the physical dimensions of the
microcontroller package. The criterion: Programmability refers to the ability to access
the microcontroller and program the desired task. Maintainability refers to the
microcontroller’s ability to be replaced if any accidents should that should arise. Cost is
the cost of the microcontroller per unit, the higher the cost score the less expensive the
microcontroller is.

Decision Table Microcontroller scores

Criterion Value

Weight

U
n
o

T
o

ta
l

M
ic

ro

T
o

ta
l

M
in

i

T
o

ta
l

P
i

T
o

ta
l

M
S

P
4

3
0

T
o

ta
l

Dimensio
n

3 3 9 4 12 5 15 1 3 3 9

Program
mability

4 5 20 5 20 2 8 4 16 2 8

Maintaina
bility

5 5 25 1 5 1 5 1 5 2 10

Periphera
ls

2 2 4 2 4 2 4 5 10 3 6

Cost 2 5 10 2 4 2 4 1 2 5 10

Total 68 45 36 36 43

Table 8: Microcontroller Decision Table

20

3.3.2 Bluetooth
Choosing a Bluetooth module for our project was difficult. However, we were able to
limit our options to two choices.

3.3.2.1 Adafruit Bluefruit LE UART Friend
The Adafruit Bluefruit LE UART Friend has a ARM Cortex M0 core running at roughly
16MHz, has 256kb of memory 32kb of static RAM. The device includes voltage
regulation on board which is important for our needs. Adafruit’s board also utilizes a
UART transport scheme at a 9600 baud rate with hardware flow control such as
CTS+RTS a RS-232 standard which can be enabled if necessary. However, this feature
seems that it may not be useful. The particular module fits within our size and weight
specification at 21mm x 32mm x 5mm (WxLxH) and 3.4g. The module also uses
Bluetooth 4.0

Advantages

• Compatible with our logic board
• Very modifiable
• Well documented
• Small

Disadvantages

• Complex Driver
• Expensive cost wise

3.3.2.2 Phantom YoYo JY-MCU Arduino Bluetooth Wireless Serial

The Phantom JY-MCU Bluetooth module has similar specs to the Adafruit module;
however, with some key differences. The Bluetooth standard that is utilized is the older
2.0 EDR standard and the size is larger at 4.4 cm x 1.6 cm x 0.7 cm which poses
problems for our specification as we would like something smaller. The voltage
requirement of this device is 3.3V.

Advantages

• Simple pin layout
• Cheap cost

Disadvantages

• Poorly Documented
• Does not meet size specifications
• Old Bluetooth specification

3.3.2.3 BLE Nano - nRF51822
The BLE nano-nRF51822 features an ARM Cotex-M0 SoC. In addition, the nano-
nRF51822 uses Bluetooth 4.1 which is the latest technology in low power Bluetooth
communication. In addition, the BLE nano is only 18.5mm x 21.0mm, making it a good

21

candidate for Blue communication as portability is important in our BreathaLock project.
In terms of powering on the device the operating voltage is between 1.8V to 3.3V.

Advantages

• Size
• Cheap cost
• ultra Low power consumption
• Comes with headers
• Works with IOS and android

Disadvantages

• no onboard storage

In the decision table below, the highest weight possible for a criterion is 5 while 1 is the
lowest weight possible.

Decision Table Bluetooth Module scores

Criterion Value
(Weight)

Bluefruit
LE

Total YoYo
JY-MCU

Total BLE Nano Total

Dimension 3 4 12 3 9 4 12

On board
storage

4 4 16 0 0 0 0

Bluetooth
protocol

5 5 25 3 15 5 25

Cost 3 4 12 2 6 2 6

Total 65 30 43

Table 9: Decision Table

3.3.3 Fingerprint Scanner
When strategically selecting a biometric fingering print scanner, we needed to check the
variety and the availability of the standalone technology that’s on the market. It turns out
that even though fingerprint sensing is very common amongst technology today, the
standalone technology that is available on the market is very low. This is most likely due
to the fact that pre-existing fingerprint technology is uniquely designed by companies to
be coupled with their existing product. There are only two finger print scanner modules
that are available in the market: the TTL(GT-511C3) and Adafruit.com’s fingerprint
scanner (product ID:751).

22

The GT-511C3 features an ARM Cortex M3 Core CPU embedded into the package.
Additionally, the device can image a size of 202 x 258 pixels with a resolution of 450
dpi. The false acceptance rate is less than 0.001% and a false rejection rate is less than
0.1%. In terms of powering on the device, the operating voltage is between 3.3 to 6V
and the operating current is less than, 130mA. The baud rate for this device or rather
the maximum number of bits per second the serial port is capable of transferring is 9600
bits.

When we look at the fingerprint sensor found on Adruit.com, the sensor has the exact
same features and specifications as the GT-511C3 however the thing that differentiate it
from the GT-511C3 is the baud rate. The baud rate for optical fingerprint sensor found
on Adafruit.com is 9600, 19200, 28800, 38400, and 57600. This mean that the number
of bits second the serial port can transfer can be varied depending on the user.
Regardless, the device has a default baud rate of 57600 bits thus making it much faster
and much more efficient than the GT-511C3.

However, when comparing the two devices to strategically select the right fingerprint
scanner for the BreathaLock project, the baud rate is not an important criterion to
compare by but rather then dimensions of each device. Both devices are both optical
sensors, and by the nature of their technology the two devices are much larger than that
of capacitive touch fingerprint scanner. In our case, the smaller the device is, the better
suited the device is for the project. In the decision table below the maximum weight
possible is 5 and the lowest weight possible is 1

Decision Table Fingerprint scores

Criterion Value(Weight) GT-511C3 Total Adafruit.com’s
fingerprint
scanner

Total

Dimensions 5 3 15 4 20

Power 4 4 16 4 16

Data rate 1 3 3 4 4

False
acceptance
rate

3 5 15 5 15

False
rejection
rate

3 5 15 5 15

Total 64 70

Table 10: Fingerprint Scanner Decision Table

23

3.3.4 Breathalyzer sensor
Once again when strategically selecting a breathalyzer sensor, we needed to check the
variety and the availability of the standalone technology that is on the market. It turns
out that even though gas sensing technology is common, finding the right sensor for the
with the right sensitivity can be difficult. There are only two alcohol sensors available on
the market that can detect alcohol on a sensitive level: the MQ-3, and the MR513
alcohol sensor.

3.3.4.1 MQ-3 Sensor
The MQ-3 sensor is a semiconductor-based sensor that can detect concentrations of
alcohol within the scope of 25 to 550 parts per million(ppm). In terms of how this device
operates, the six terminal device has allocated two sets of pins to power on a heating
element, while the remaining four pins acts as 2 sets of leads to a resistor. The heating
element dries up the surrounding air to prepare the existence of alcohol gas. Upon the
presence of alcohol gas, there will be a differential in conductivity. Then the differential
will then be translated into an analog signal in which the analog signal can tell us the
amount of alcohol present in the air. One key thing to note on this device is that for the
first time using the device the sensor must be powered on for 48 hours. This ensures
the heating element can work properly over time.

To further detail on how the device can take the differential in conductivity and translate
it into an MR513 analog signal we must note the two sets of on the device (4 pins). One
set of pins act as one end of a variable resistor and the other set acts as the other end.
However, since the variable resistor is made up of tin dioxide(SnO2) which is a
semiconductor, the true conductivity of the device is unknown due to the temperature
dependency property of semiconductors. With that being said, the variable resistor can
be connected in series with a load in which the output is the voltage across the load.
Once alcohol gas comes into contact with the semiconductor a differential in
conductivity will occur across the variable resistor, this change can be measured by
measuring the voltage across the load before and after the presence of alcohol. Upon
measuring the change in voltage, the concentration of alcohol gas can be known.

Advantage Disadvantage

- low power - water sensitive

- Size - vibration sensitive

- Load resistance adjustable - break-in period

 - Susceptible to corrosion

Table 11: MQ-3 Advantage/Disadvantage table

3.3.4.2 MR513 Sensor
The MR513 Sensor is based on semiconductor technology. The MR513 consist of a
detection element and a compensation element placed in Wheatstone configuration.
When there is alcohol gas within the sensor, the voltage of the Wheatstone bridge will
be change thus telling us how much alcohol gas is present. The Sensitivity for this
device is 100 parts per million. In terms of powering on the device, the alcohol sensor
run on 3 volts with a working current or around 100 milliamps.

24

Advantage Disadvantage

- low power - only 1 datasheet

- Size - Data sheet isn’t detailed

- only 4 terminal device

Table 12: MR513 Advantage/Disadvantage table

Decision Table Gas Sensor scores

Criterion Value(Weight) MQ-3 Senor Total MR513

Total

Dimensions 2 3 6 3 6

Power 3 3 9 4 12

Documentation 5 4 20 2 10

Total 35 28

Table 13: Gas Sensor Decision Table

3.3.5 Power supply
In terms of powering on the project, we must understand how much power each
component needs to operate. From the table below we can see each component can
operate under 10V.

 Operating voltage Peak Current

Arduino Uno 7.0-12V DC -

Bluetooth 5V

Fingerprint scanner 3.6- 6.0 DC 150mA

Breathalyzer sensor 5.0V AC or DC 180 mA

Car remote 3V -

Table 14: Selected Component Operating voltage

Since the Arduino Uno has an onboard 5V and 3V regulator, we can power on the entire
BreathaLock project via 9 volts. To achieve this 9V there many options in which we go
about.

25

3.3.5.1 Power option 1
To achieve the desired 9V that powers the entire BreathaLock project, we can use a
standard rechargeable 9V battery. The advantage to using a standard rechargeable 9V
comes from the storage capacity of the battery and the recharge-ability of the battery.
Typically, a standard 9V can hold much power than that of a coin cell battery. The
disadvantage of the standard 9V battery is that the size of battery is big and bulky.

3.3.5.2 Power option 2
Power option 2 consists of using three 3V coin cell battery. When connecting batteries
in series, the overall voltage is equal to the sum of each individual voltage. In the case
of power option 2, three 3V coin cell battery adds up to 9V. The advantage to using
three smaller batteries is the amount of space the three-coin cell battery takes up when
compared to the size of the standard 9V battery. The disadvantage to from using three
3V coin cell battery is the amount power the batteries can hold compared to a standard
9V battery.

Decision Table Power Option Scores

Criterion Value(Weight) Option 1 Total Option 2

Total

Dimensions 5 2 10 4 20

Power
storage

3 3 9 4 12

Total 19 32

Table 15: Power Option Decision Table

3.3.6 Key remote
Before picking a motor key remote to use for the project we must identify the car that
will be used for the project. Nicholas Fraser volunteer his 2005 Ford F150 for the
project.

3.3.6.1 300-0247ES Universal Car Remote
The 300-0247ES universal car remote is a 6 button device that does have compatibility
for the 2005 Ford-FF150. The 6 buttons on the device are for lock, unlock, open trunk,
panic alarm, and two auxiliary buttons for vehicle functions. Vehicle functions include,
van door, remote start, convertible top etc. In terms of powering on the device, the
universal car remote found at Walmart operate using a standard lithium 3V coin cell
battery.

3.3.6.2 KPT1306 key remote
The KPT1306 key remote is compatible for the 2005 Ford-F150. The device features 3
buttons for lock, unlock, and panic. In terms of powering on the device once again the
device runs on a stand lithium 3V coin cell battery. In terms of programming the device,

26

the ignition must be turned from off to run 8 times within 10 seconds. After the 8th turn,
the user has 20 seconds, pressing any key on the keyless remote to enable the device
to be programmed. After that, the next button needs to be pressed again to confirm the
second programming. Lastly, turning the ignition to off will end the programming phase.

3.3.6.3 K410 Car Remote Central Lock Locking Entry System
Though this product comes with two double button key remotes, it also comes with the
remote receiver which is still relevant to consider for the BreathaLock project. In terms
of powering on the whole system the requires 12voltes where the max current draw is
15A. In the decision table below, the highest weight possible for a criterion is 5 while 1
is the lower weight possible.

Decision Table Keyless remote Scores

Criterion Value(Weight) 300-
0247ES

Total KPT1306 Total K410 Total

Simplicity 5 4 20 5 25 2 10

Power 3 3 9 3 9 2 6

Quantity 2 1 2 4 8 4 8

Total 31 42 24

Table 16: Power option Decision Table

3.4 Architectures and Related Diagrams
The following section will briefly identify the architecture of the Breathalock

microcontroller. We must understand the architecture to allow for the most efficient

implementation and to utilize the most computational power of the microcontroller.

3.4.1 Microcontroller Architecture
In terms of microcontroller architecture, we will be discussing the ATmega328P’s
architecture. The ATmega328P is an 8bit- AVR RISC-based microcontroller. The term
AVR RISC tells us that microcontroller follows a modified version of the Harvard
architecture with reduced instruction set computing. In terms the available register the
32 general purpose register that is all directly connected to the Arithmetic Logic Unit
(ALU). This direct connection allows for simultaneous access of each register upon an
execution of an instruction.

The Harvard architecture says that volatile and nonvolatile memories are treated as 2
separate systems, whereas the popular von Neumann architecture only has a single
memory system. One advantage of the Harvard architecture is that the ability to
simultaneously access the programs and data elements.

http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf

27

Figure 5: Harvard architecture “reprinted with permission #2”

Furthermore, the ATmega328P follows reduced instruction set computing. This means
that the instruction set for this device is simplified by cutting down on the complexity of
each available instruction. This allows the device to process down simple instructions at
every single clock cycle thus achieving a high throughput at around 1 MIPS per MHz. If
the device is however CISC, the exact opposite of RICS, the instruction set would have
a degree of complexity thus requiring more resources to process down each instruction.
The focus of CICS is to process down instructions with the fewest lines of code possible
at the cost more of time, however, the focus of RISC to process down instructions fast
at the cost of more lines of code.

3.5 Parts Selection Summary
When talking about the selection of parts, we must first look at the decision table for
each category of parts. For the microcontroller that will be governing the project, we
chose to pick the Arduino Uno with a few minor adjustments. For the BreathaLock
project we will be cloning our own Arduino Uno. This will give us the freedom to design
our project under one PCB package. Additionally, the microcontroller will have its USB
bridge removed to save power and board space since our project does not have any
use for that component to permanently be on the PCB. In terms of supplying the
regulated 5V and 3V, we will be using the LM7805 and the LT1761ES5-3 respectively.
Again, the reason why we’re building our own Arduino Uno is to be able to tailor our
design to be compact and lower power consumption.

In terms of why we chose the ATmega328P, we chose the microcontroller because of
its low-power capabilities as having 4 modes of low power is an asset to our
BreathaLock project. Furthermore, we chose the ATmega328P because its ability to be
place in a dip socket. This allows us to replace a broken microcontroller without
removing any circuit components if need be.

For the Bluetooth module, we chose the Bluefruit LE UART module. We chose this
component because of its size. The fact the entire module is 21mm x 32mm x 5mm
becomes an advantage to us when we are creating a device that is meant to be
portable. Additionally, we chose this component because of its low power capability as
the device conveniently run on 5V which makes it Arduino Uno friendly. Furthermore,

http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf

28

the device has 256kilobytes of flash memory. This allow use to have multiple profiles
save onto the device.

For the fingerprint scanner, we chose to go with the one found on Adafruit.com. We
chose this device because of the form fitting factor this device has to offer when
compared to the GT-511C3. The GT-511C3 has undesirable hinges protruding off to the
sides thus making the device itself awkward to make portable.

For the gas sensor we chose to use the MQ-3 alcohol gas sensor. We chose this device
over the MR513 because of the available documentation the MQ-3 has compared to the
MR513. The MR513 only has 1 available datasheet that isn’t detailed in how the device
operates. However, the MQ-3 has multiple documentations along with meeting the
required alcohol sensitivity for the project.

For the keyless car remote, we chose to use the KPT1306 key remote. We chose this
remote because it was the simplest keyless remote when compared to the other two
options. For the BreathaLock project, since we are only interested in the transmission of
the unlock signal and other device with more than two button will complicate the
process of modifying the remote. In addition, since we are using 2005 Ford-F150, there
is already a preinstalled remote receive on the vehicle thus using the K410 Car Remote
Central Lock Locking Entry System is not necessary.

Lastly, for powering on the entire device we chose to go with three 3V coin cell battery
(power option 2). We chose power option 2 because of the portability coin cells batteries
have to offer. In addition, carrying around a standard 9V battery would not promote
portability with the BreathaLock project.

Part selection summary

Part Selection Cost (before
tax and
shipping)

Microcontroller Arduino Uno $29.99

Bluetooth
module

Bluefruit LE
UART

$17.50

Alcohol gas
sensor

MQ-3 $4.95

Fingerprint
Sensor

Adafruit.com’s $49.95

Battery three 3V battery $10.00

Keyless Remote $7.95

Total $120.34

Table 17: Part selection summary Table

29

4. Related Standards and Realistic Design
Constraints
In any product development process, it is imperative to identify the related standards

and design constraints. No matter what the product or technology associated there are

inherent standards and expectations that are necessary to abide by. The following

section will go into detail which standards and design constraints

4.1 Standards
Although there are many components to this the BreathaLock design the only portion of

this project that has a relevant standard is the Bluetooth module. This is because it is a

public form of communication that can be used by the public.

4.1.1 Bluetooth Standard
The Bluetooth specification defines the technology that developers can use to create
the devices that communicate between other Bluetooth applicable devices. The
Bluetooth specification is overseen by a Special Interest Group (SIG) and is regularly
updated to meet new needs.

Summary

The Bluetooth standard specifies two “flavors” of Bluetooth are as follows:

• Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) - which is an older
standard adopted as version 2.0/2.1. The entire spectrum of the RF part of the
physical layer (see figure XX) operates in an unlicensed industrial, scientific and
medical (ISM) radio band at 2.4GHz. In order to tackle interference, the any
device may encounter Bluetooth employs a frequency-hop transceiver which
assists in identifying “good” frequency by avoiding “bad” frequencies that may be
in use, are experiencing selective fading, or perhaps those bands are being
actively jammed. BR/EDR includes two data rates Basic Data Rate and
Enhanced Data Rate. Basic Rate, supports a bit rate of 1MBps while Enhanced
Data Rate supports gross air bitrate of 2MBps. Making this an ideal standard for
relatively short-ranges, continuous wireless communications, which is ideal for
audio streaming.

• Bluetooth with Low Energy (BLE) - This is the newest standard also known as
4.0/4.1/4.2. This newer standard was developed with power-efficiency in mind.
Devices that utilize small or isolated power sources; such as, button cell batteries
or solar power. This platform is more heavily supported for every major operating
system and allows for seamless development for a board. Opposite of BR/EDR,
BLE offers short burst of long-range radio connections which is ideal for
applications in the field of Internet of Things or devices that do not require
continuous connection but depend on battery longevity. This version achieves
this energy efficient mode by having three modes Ultra-low peak, average and
idle mode. BLE offers several security enhancements versus its predecessors
such as, digital signing, key generation, encryption as is government-grade

30

security with 128-bit AES data encryption, etc. (see sec. 1.1.1.1.3. Bluetooth
Security below). These features make it ideal for variety of applications such as
security systems, portable devices, fitness monitors, proximity sensors, and
breathalyzers.

Each implementation has different use cases and each implementation uses a different
chipset to meet essential hardware requirements. dual-mode chipsets are available to
support single devices such as smartphones or tablets that need to connect to both
BR/EDR devices (such as audio headsets) and LE devices (such as wearables or retail
beacons)

4.1.1.1 Core System Architecture
While each implementation has specific requirements that are detailed in the Bluetooth
specification, the Bluetooth core system architecture has many consistent elements.
The system includes an RF transceiver, baseband and protocol stacks that enable
devices to connect and exchange a variety of classes of data.
Bluetooth devices exchange protocol signaling according to the Bluetooth specification.
Core system protocols are the radio (RF) protocol, link control (LC) protocol, link
manager (LM) protocol and logical link control and adaptation protocol (L2CAP), all of
which are fully defined in the Bluetooth specification.
The lowest three system layers—the radio, link control and link manager protocols—are
often grouped into a subsystem known as the Bluetooth controller. This is a common
implementation that uses an optional standard interface—the Host to Controller
Interface (HCI)—that enables two-way communication with the remainder of the
Bluetooth system, called the Bluetooth host.
The primary controller may be one of the following configurations, depending on use
case:

• BR/EDR controller including the radio, baseband, Link Manager and optionally
HCI

• LE controller including the LE PHY, Link Layer and optionally HCI
• Combined BR/EDR controller and LE controller, with one Bluetooth device

address shared by the combined controller

The Bluetooth specification enables interoperability between systems by defining the
protocol messages that are exchanged between equivalent layers. It also enables
interoperability between independent Bluetooth subsystems by defining the common
interface between Bluetooth controllers and Bluetooth hosts.

31

Figure 6: System Architecture

Physical (PHY) Layer:
Controls transmission/receiving of the 2.4 GHz radio with Bluetooth communication
channels. BR/EDR provides more channels with narrower bandwidth, while LE uses
fewer channels but broader bandwidth.

Link Layer:
Defines packet structure/channels, discovery/connection procedure and sends/receives
data.

Direct Test Mode:
Allows testers to instruct the PHY layer to transmit or receive a given sequence of
packets, submitting commands to it either via the HCI or via a 2-wire UART interface.

Host to Controller Interface (HCI):
Optional standard interface between the Bluetooth controller subsystem (bottom three
layers) and the Bluetooth host.

Logical Link Control and Adaptation Protocol (L2CAP) Layer:
A packet-based protocol that transmits packets to the HCI or directly to the Link
Manager in a hostless system. Supports higher-level protocol multiplexing, packet
segmentation and reassembly, and the conveying of quality of service information to
higher layers.

Attribute Protocol (ATT):
Defines the client/server protocol for data exchange once a connection is established.
Attributes are grouped together into meaningful services using the Generic Attribute
Profile (GATT). ATT is used in LE implementations and occasionally in BR/EDR
implementations.

32

Security Manager:
Defines the protocol and behavior that manages pairing integrity, authentication and
encryption between Bluetooth devices, and provides a toolbox of security functions that
other components use to support almost any level of security needed by diverse
applications.

Generic Attribute Profile (GATT):
Using the Attribute Protocol, GATT groups services that encapsulate the behavior of
part of a device and describes a use case, roles and general behaviors based on the
GATT functionality. Its service framework defines procedures and formats of services
and their characteristics, including discovering, reading, writing, notifying and indicating
characteristics, as well as configuring the broadcast of characteristics. GATT is used
only in Bluetooth LE implementations.

Generic Access Profile (GAP):
Works in conjunction with GATT in Bluetooth LE implementations to define the
procedures and roles related to the discovery of Bluetooth devices and sharing
information, and link management aspects of connecting to Bluetooth devices.

4.1.1.2 Bluetooth Security

To ensure communication via Bluetooth is secure, BLE achieves this by utilizing several
security features, the Bluetooth specification gives several features to cover the
encryption, trust, data integrity and privacy of the user’s data. The processes are
described as follows:

• Pairing - this mechanism is the process where devices involved in
communication exchange their identity information to set up trust and get the
encryption keys ready for future data exchange. Bluetooth has a few options in
regards to pairing. In version 4.0 and 4.1 of the specification, Bluetooth uses the
Secure Simple Pairing model (SSP) a form of public key cryptography this
promotes an effective mitigation strategy for Man-In-The-Middle (MITM) attacks.
The devices will often choose one method from the following: Just Works,
Passkey Entry, Numeric Comparison, and OOB.

• Key Generation - Keying BLE is performed by the Host on each device
independently. Key generation in BR/EDR is performed in the Controller. By
performing this on the Host, the key generation algorithms can be upgraded
without changing the device. The following keys are exchanged between primary
device and secondary device: Connection Signature Resolving Key (CSRK) for
authentication of data, and Identity Resolving Key (IRK) for the devices identity
and privacy. The two keys pub and priv key are generated in the host and a SSK
is generated by combining information from each device involved in
communication.

• Encryption - Bluetooth with LE uses AES-CCM cryptography. Both version of
Bluetooth perform some level of encryption. The LE Controller performs the

33

encryption function. LE generates 128-bit encrypted data from a 128-bit key and
plaintext data using the AES-128-bit block cypher
(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)

• Signed Data - This feature supports the ability to send authenticated data over
an unencrypted transport between two devices with a trusted relationship (see
pairing). In circumstances where the channel is not encrypted, the device could
still ensure the data authentication. To sign the data, BLE utilizes CSRK. The
sending device places a signature after the Data Protocol Data Unit (PDU). The
receiving side verifies the signature and, if the signature is verified, the PDU is
assumed to come from a trusted device. The signature is composed of a
Message Authentication Code generated by the signing algorithm and a counter.
The counter is used to protect against a replay attack and is incremented on
each signed Data PDU sent.

How Bluetooth Utilizes these Features to Protect Your Information The goal of the low
energy security mechanism is to protect communication between devices at different
levels of the stack. Below are commons types of attacks against various wireless
communication protocols, and how Bluetooth addresses them.

4.1.2 Health standard
While there are no standards for health that we are required to maintain, we would want
to be cautious considering our project is an indicator for overall health and capability of
the driver. So we must adhere to the given law of Blood Alcohol Content levels and
ensure those reported values are within a given tolerance. It must also be known that
those values are within that tolerance.

The BAC in Florida is 0.08 so in order to avoid errors in tolerance our implementation
should aim for a much lower value. By taking a “Better Safe Than Sorry” approach we
avoid any potential errors in regards to setting a tolerance. Our team has decided that
0.08 is an appropriate value as this will ensure the doors do not unlock and allow the
driver to do harm to property, himself, passengers, or pedestrians.

4.1.3 Design impact of relevant standards
The design impact of the Bluetooth standard affects us in some ways especially in
regards to the security. How Bluetooth Utilizes these Features to Protect Your
Information The goal of the low energy security mechanism is to protect communication
between devices at different levels of the stack. Below are commons types of attacks
against various wireless communication protocols, and how Bluetooth addresses them.

4.2 Realistic Design Constraints
These are constraints that we may encounter in the real world. We would need to
evaluate these domains before proceeding into our design phase. It is important the
project be an achievable idea, and it needs to be within the realistic constraints set by
these standards.

34

4.2.1 Economic and Time constraints
Obviously, we are limited by our budget and the time constraints placed on us from the
semester; however, we have also set completion milestones for ourselves. These would
be soft deadlines as we may encounter trouble with the development. Our team has
allocated slack time onto project milestones. Hard deadlines are unavoidable and must
be addressed.

4.2.2 Environmental, Social, and Political constraints
The social and political value of our product is enormous. Socially, receiving a DUI has
a tremendous impact on one's life. Many people have been arrested for DUI and with
very clean records the ramifications of receiving a DUI can stick around for years. Most
people are aware of the short term consequences of drinking and driving, which can
include a driver licenses suspension, very high fees and fines, and high insurance
premiums. However, there are also long term consequences associated such as, loss of
job opportunities, losing government clearance for jobs, loss of scholarship, or even
relationships. All of these can tailspin into a social nightmare.

That being said, while our product may be able save your social status long term and
short term. There are implications of utilizing the device without the need; such
questions may arise such as “why an individual would want to use this device?”, “does
this individual have a drinking problem?”, etc. We would like to constrain the device to
be unperceivable or at least latent.

4.2.3 Ethical, Health, and Safety constraints
As mentioned in our health standard we should be cautious with setting our limiting
value (BAC) too close to the legal limit. This very easily could cause harms to health
and safety. Our group also feels it has an ethical obligation to fulfil. If we can stop any
potential accidents from occurring, then we will have done a good job.

4.2.4 Manufacturability and Sustainability constraints
Most of the products we are working on are already heavily manufactured and are not
difficult to produce

35

5. Project Hardware and Software Design Details
In efforts to portray the complexity and intents of this project it the flowing section will

address the hardware and software components individually and how they must be

implemented to create a great product. This include brief explanations of the operation

of certain components and the interfacing between components. The software design

details will outline the sequencing and data considerations associated with each

component.

5.1 Initial Design Architectures and Related Diagrams
To implement the BreathaLock system most effectively we have chosen components
based on many factors listed previously. Below we have an image of all of the major
components and breakout boards that will make up the bulk of the BreathaLock system.
Of course in final implementation we will need many other small discrete components.

5.1.1 Project Hardware Components

Figure 7: All components by letter

Part
Letter

Component Purpose

A) Adafruit Fingerprint Sensor Biometric fingerprint sensor
subsystem

B) Elegoo Uno R3 (Arduino 3rd Party
Board)

Microcontroller for testing

C) MQ-3 Alcohol Sensor Alcohol sensor component

D) Sparkfun Alcohol Sensor
Breakout Board

Breakout board to allow for
bread boarding

E) Adafruit Bluefruit UART Friend Bluetooth component for
Bluetooth subsystem

Table 18: Component descriptions

36

In our final implementation many of these components will be included in PCB which will
allow us to create a more concise and dense device. In the above image we include the
Elegoo Uno R3. This is because it allows us to interface with the microcontroller that we
will be using in our final implementation. Note that we will be using the open source
design of Arduino PCB for our project PCB. This will also be the case for the Sparkfun
breakout board.

5.1.2 Hardware Wiring
While investigating what our overall hardware will look like we need to investigate how
to connect all sensor to the Arduino to interface with the microcontroller effectively.
Discussed late in the individual components section we see the wiring of each individual
component to the Arduino. To keep our diagrams consistent, we will make most
connection point the same to reduce interference with testing and wiring. This will also
make it easier for us to debug any problems that we may have with the components
later in the prototyping phase.

Figure 8: Breadboard testing of all components

37

Section Arduino Input Connection

Power
5V Breadboard Power Rail

GND Breadboard Ground Rail

Analog A0 Analog Output for MQ-3 Alcohol sensor

Digital

0 RX Fingerprint Sensor

1 TX Fingerprint Sensor

8 RTS Bluetooth Module

9 RXI Bluetooth Module

10 TXO Bluetooth Module

11 CTS Bluetooth Module

12 MOD Bluetooth Module
Table 19: Arduino Specific Connection

Figure 9: Fritzing wiring schematic

The above table and figure depict a clear representation of how we will interface our
microcontroller with the various components and sensors. It is important to test and
verify the amount of connection points that we will be using so that when we begin our
PCB design we will be able correctly interface. In the above diagrams and schematics,
we are making connections with female headers, breadboards, and raw wires. When we
get into the PCB design we will be able to eliminate these connection types and use the
PCB wire pours to make connections.

38

5.2 Bluetooth Subsystem
To assist the user in system feedback the Bluetooth connection to a custom app will be

implemented. The following section will outline how we intend to realize the Bluetooth

subsystem with the BreathaLock.

5.2.1. Bluefruit LE UART Friend (BLE)
For our Bluetooth component we choose to use a low cost Bluetooth module sold by
Adafruit. We chose this chip for a few reasons, it is cost effective, low energy, and
compact. The chip comes with EAGLE files and some instruction on how to test it which
will allow us to easily include its functionality onto our own PCB and ensure
functionality.

5.2.2. Sensor Specific Operation
The Adafruit Bluefruit UART Friends is a BT 4.0 and BT 4.1 stack which was specifically
designed for low energy use. We intend to use Bluetooth simply as a gateway to
communicate between the BreathaLock system and a cellular device. Specifically, in
hardware implementation we will be including these components into our PCB design
and will have the BreathaLock constantly attempting to connect to a cellular device.
Once connected the BreathaLock will be controlled with both the buttons on the
BreathaLock but also Bluetooth commands from the cellular device.

5.2.3 Subsystem Implementation
To include Bluetooth as an asset to the BreathaLock we will need to include it first into
our hardware realization. This will be done by including the components and
processing into our PCB. This should be done without much stress aside from the
connections to the MCU to transfer data and to bring power to the sensor. Because the
sensor operates comfortably with a 5v input we will be bringing power to the sensor
from the same output of the 5v voltage regulator.

5.3 Biometric Subsystem
To ensure the user is the correct vehicle owner and operator the BreathaLock system

will include a biometric subsystem. This biometric subsystem will be using fingerprint

technology as it is very non-invasive and simple to use. The following section will

address the sensor the BreathaLock with use to accomplish this task and the

considerations that come along with this product.

5.3.1 Sensor Overview
Adafruit Fingerprint Sensor

We chose a prepackaged fingerprint sensor simply because the focus of this design
project is to implement a device to ensure ease of use and accuracy to prevent drunk
driving, not to investigate image and digital signal processing of fingers. The Adafruit
fingerprint sensor has an onboard DSP chip and onboard flash memory to allow for
multiple finger prints to be stored.

39

Figure 10: Fingerprint sensor external image

Component Fingerprint Sensor

Supply voltage 3.6-6.0VDC

Operating Current 120mA max

Peak Current 120mA

Imaging time Less than 1 second

Interface TTL Serial

Dimension 56 x 20 x 21.5mm

Weight 20 grams
Table 20: Fingerprint sensor technical characteristics

5.3.2 Sensor Specific Operation
By understanding how our fingerprint sensor works we will be able to better implement
its full capabilities into the BreathaLock system. The fingerprint sensor operates in two
settings: enrolling and searching. Because the system has onboard processing and
memory it has the ability to read and save a fingerprint and register it into an onboard
database of users. Once the fingerprint is read and saved it will remain in memory until
deleted. Secondly the sensor can operate in the searching state. When the sensor
receives a search command it will read the finger on the sensor and cross reference it
to fingerprints already in the memory. The sensor will either confirm user with a
confidence score or fail the finger all together. These two operations combined with
come other logic can be very powerful.

5.3.3 Subsystem Implementation
To implement the fingerprint sensor successfully we will need to take some time
investigating the best way to save and read fingerprints for the application of drunk
driving prevention. The main operation is quite simple: read a fingerprint at the time the
user wants to get into their car and if the user is the correct owner then move onto the
BAC test. The main obstacle is regarding to when and how to enroll new users. We
cannot allow the BreathaLock to enroll new users at any time at ease because it would
leave a huge loop hole for users to enroll any user at the time they are drunk and need
access to their car. The best option would be to have to connect the BreathaLock to a
computer and enroll users as an administrative user. Another option would be possibly
to create an administrative password that can be entered into the android application to
allow for new user enrolling. Our final consideration would be if we want there to be

40

multiple users enrolled at a time or only 1. Either option would still result in user
enrolling to be performed at a time before trying to enter the car.

5.4 Breathalyzer Subsystem
As one of the most key functionalities of the BreathaLock being verifying sobriety this

device must contain a sensor to verify this. To accomplish this we will be using a alcohol

gas sensor. The largest advantage to this sensor type is the non-invasive aspect and

quick testing time. With this type of sensor the device can quickly and effectively verify

sobriety. The following section will outline the breathalyzer subsystem using a gas

sensor and the considerations taken to implement this sensor.

5.4.1 MQ-3 Alcohol Gas Sensor

Figure 11: MQ-3 sensor external image and pin reference

Component MQ-3

Sensor Type Semiconductor

Target Gas Type Alcohol

Detection Range 25-500ppm alcohol

Heater Voltage 5.0V

Output Voltage 2.5-4.0V

Table 21: MQ-3 sensor technical characteristics

We chose to use the MQ-3 alcohol sensor because of its simplicity, sensitivity, and fast
response time. This sensor provides an analog output that can be read and analyzed by
a microcontroller to decipher the sobriety of the user.

41

5.4.2 Sensor Specific Operation

Figure 12: Sensor operation schematic “reprinted with permission #1”

To implement a breathalyzer using the MQ-3 sensor it is important to fully understand
how the sensor operates. This sensor works by using a conductively sensitive material,
particularly SnO2 or tin dioxide. The tin dioxide changes conductivity with the presence
of alcohol in the air. When higher concentrations of alcohol exist in the air the
conductivity of the air gets higher and so does this sensitive material. By placing the tin
dioxide in series with a load resistor, the sensor is able to have an analog voltage read
across this load resistor that is dependent on the conductivity of the tin dioxide. After
calibrating what read values relate to blood alcohol levels we will have an accurate way
to measure blood alcohol concentration (BAC).

5.4.3 Subsystem implementation

Figure 13: Circuit analysis of sensor

𝑉𝑅𝐿 =
𝑉𝑐 ∗ 𝑅𝐿

𝑅𝐿 + 𝑅𝑇𝑖𝑛 𝐷𝑖𝑜𝑥𝑖𝑑𝑒

Equation 1: Output Voltage Analog read

To properly implement the breathalyzer subsystem, it is necessary to allocate some
time and effort into layout, placement and design to ensure we are reading accurate
data. First we need to make sure that we effectively power the sensor and choose the
correct resistor value to receive expected analog output and make sense of it. To power
the chip, we will need to bring 5 volts into pins 2, 4 and 6 in the figure x. This will be
taken from the output of a voltage regulator in the PCB design. Secondly we need to

42

include a load resistor of whichever value we choose to use. It is not important because
it will only affect the analog output which will need to be converted into a relative BAC
but for the purpose of early design we will choose RL = 10kΩ. The VRL pin from 1&3 to
ground will be connected to an analog read pin accessed by the microcontroller.

To read and make sense of this sensor we will need read an analog output that is
relative to the voltage across the load resistor. Unfortunately, because the conductivity
of the tin dioxide layer is unknown, due to variability among components and the
dependence on temperature, it would be impossible to calculate a perfect output based
on the equation above. With that said we will be able to see that our output will be
dependent on the resistor value chosen and that the value will be inversely proportional
to the amount of alcohol in the air. Our code should break this range of values into two
cases: more than 0.08 and less than 0.08 BAC. Depending on which case the sensor
reads will determine if the user is over the legal limit and must be denied access.

5.5 Software Design
Software is an important component to an embedded system. It is not only about the
hardware required but it is also heavily about the software decided. Choosing the right
software for different stages of the development is not easy. There are various phases
in a project that determine the software naturally. However, with our existing framework
we were presented with several options for that incorporate various design methods. If
we do not correctly choose the right software approach progress will be stalled, or the
team will have to re-evaluate our projects requirements.

5.5.1 Programming Languages
One of the most important parts of a software solution is choosing the programming
language. Each language has its own unique characteristics that may come with their
own pros and cons based on the goals of the project. Choosing a language takes
knowledge of your requirements and goals. Through this section we will cover various
languages that we have considered for usage in the final deliverable.

5.5.1.1 Assembly
Assembly language (ASM) is a low-level programming language (bare-metal) that used
for embedded devices, or other devices that can be programmable. It is comparable to
computer architecture machine code instruction sets. Different assembly languages
correspond to various computer architecture; for example, the ARM processors would
use the ARM assembly language which utilizes sixteen user registers. They are all 32-
bits wide. Only two are dedicate; the others are general purpose and are used to store
operands, results and pointers to memory. Of the two dedicated registers, only one of
these is permanently used for a special purpose (it is the PC). Although this is useful to
know for ARM these instruction sets vary widely by architecture. It is not uncommon to
encounter assembly especially in devices that require minimal code footprint
(processing and memory).

43

Advantages

• Performant
• Minimal (memory wise)

Disadvantages

• Lacks readability
• Machine dependent
• Long code for simple programs

Conclusion

We decided that we will not use assembly for our project. The platform we are utilizing
does not require we use something so low level! We also fear that the code would
become quite unmanageable.

5.5.1.2 Python
Python might be at its strongest when used as a communication middleman between
the user and the embedded system they're working with. Sending messages through
Python to or from an embedded system allows the user to automate testing. Python
scripts can put the system into different states, set configurations, and test all sorts of
real-world use cases. Python can also be used to receive embedded system data that
can be stored for analysis. Programmers can then use Python to develop parameters
and other methods of analyzing that data and may further be used as a tool to assist
developers.

Currently the main debate about the merits of Python comes down to what's more
important to your team: development speed or runtime speed.

In regards to the embedded libraries support for the embedded world is quite limited
python may still have some applicability in the world of scripting tools for development
purposes.

Advantages

• Readability
• Platform independent
• Multiparadigm and supports OO, procedural, and functional programming styles

Disadvantages

• Slow
• Limited embedded support
• Global Interpreter Lock (only one thread may access python data)

Conclusion

Python does not seem like a good fit for the final deliverable solution. However, there
may be room for helper scripts. Helper scripts may include test case scripts, installation,
building, compiling and various developer task.

44

5.5.1.3 Java (Android API)

While most Android applications are written in Java language, there is some
fundamental differences between the Java API and the Android API. Android does not
run java bytecode by the traditional JVM but by ART (android runtime). This code
compiles the code that ART runs to ELF (Executable and Linkable Format) executables
which contain the machine code. Java bytecode in JAR-files is not executed by the
Android operating system. Instead Java classes are compiled into bytecode which are
executed on top of the ART framework (see below)

Figure 14: Java ART framework

Dalvik has some specific characteristics that differentiate it from other standard VMs:
• The VM was designed to use less memory.
• The constant pool has been modified to use only 32-bit indexes to simplify the

interpreter.
• Standard Java bytecode executes 8-bit stack instructions. Local variables must

be copied to or from the operand stack by separate instructions. Dalvik instead
uses its own 16-bit instruction set that works directly on local variables. The local
variable is commonly picked by a 4-bit "virtual register" field.

45

Advantages

• Syntax is easy
• Readability
• Platform independent
• Garbage Collection via Memory Manager
• Only officially supported language for Android
• Very good documentation

Disadvantages

• Large memory footprint
• Slow (often slower by a factor of 20-50x compared to other languages)
• Consistently burdened with security issues in the JVM

Conclusion

Java will be utilized for our project as it is the go-to solution for any android application
engineers wish to build. There are a few stacks we will utilize for this project with
regards to the Java toolchain:

• Bluetooth
• Android API

5.5.1.4 C

C is a general-purpose, imperative (changes a program’s state) computer programming
language. By design, C provides constructs that map efficiently to typical machine
instructions, and it is the reason it is so heavily used right now. Developed by Dennis
Ritchie an engineer at Bell Labs during 1970’s, and used to re-implement the Unix
operating system. Then embedded C is a subset of the C language, and the embedded
C world requires a new set of libraries that vary across architecture similar to assembly.
However, the overlying syntax of the language remains and maintained the same and
introduces some more higher-level concepts as well. Such as, the main() function,
conditional statement, loops, strings, arrays, bit operations, etc. these operations remain
unspecific to the architecture. C is one of the most widely accepted and follows several
standards (see standards) such as C has been standardized by the American National
Standards Institute (see ANSI C) and subsequently by the International Organization for
Standardization (ISO). This ensures the language is portable.

C also has a wide variety of tools that can be used to build software around it. There are
many different support tools; such as, compilers and cross-compilers, IDE’s and
hardware.

Advantages

• Use standard C syntax
• Higher-level than assembly but close enough to hardware languages to be

efficient
• Portable
• No VM (like Java)

46

Disadvantages

• No garbage collection (possibly a positive if done correctly)
• Steep learning curve (similar to assembly)

Conclusion

For this project C will be use less frequently in the traditional sense. As we will be
primarily using C++ for the Arduino board (see next section x.x.x.5).

5.5.1.5 C++ (avr-g++ toolchain)
C++ in general is just “C with Classes” in the traditional sense following an object-
oriented paradigm. Created by Bjarne Stroustrup during his Ph.D thesis, Bjarne set out
to create a language that was C and supported features of objects, classes, inheritance
and subclasses.

The Arduino platform fortunately utilizes C++ with some domain specific libraries, that is
built with the avr-g++ toolchain. These add on various features such as functions that
allow you to map to specific features on the board. Without these functions the layers of
abstraction would need to be manually written with special registers.

Figure 15: C++ Flow Chart

47

Advantages

• Object Oriented
• Readability
• All the positives of C
• Garbage Collection (contributes to bigger footprint)

Disadvantages

• Bigger footprint than C
• Doesn’t provide strong type-checking. The codes are prone to errors.

Conclusion

Since out of the box Arduino supports the libraries that are based on C++ this will be our
primary workhorse for this project's logic. We will be heavily utilizing the Arduino avr-
g++ compiler. We also feel this is a good fit as C++ and Arduino are both documented
quite well.

5.5.2 Integrated Development Environments
An Integrated Development Environment (IDE) are designed to assist the developer by
increasing productivity, efficiency and accuracy. An IDE provide many components
often presented in the form of graphical user interface (GUI) where all development can
be accomplished. These environments often provide features such as, modifying,
compiling, deploying, debugging, code completion, code folding and much more. It was
integral our team chose a development environment that suited our needs so that we
could become an effective team of engineers and increase our productivity. Contrasting
this by using standard text editing software and using a compilers mentioned above with
long winded build systems that have many command line parameters to get the desired
results.

However, deciding on an IDE is not an easy task as there is a lot of noise on the market
for various ones; however, we managed to dwindle this down to two tools that will help
support us in our final deliverable.

5.5.2.1 Eclipse
Eclipse is one of the most versatile IDE’s that currently exist; albeit, old the IDE is still
one of the most used IDE’s for a wide variety of supported languages and fortunately for
us all of the languages mentioned in section 2.2.1 Programming Languages are
supported.

Eclipse has some very well thought out refactoring capabilities that work well, and great
documentation capabilities. The IDE has several features that makes it attractive to us
such as code completion, templating, integration with version control and build systems.
Its code formatting and cleanup tools are very well done. We also found that its build
system works well for our needs.

48

Eclipse has a few add-ons that we should be able to utilize for this project. They are the
Android ADT Plugin and the AVR-Eclipse plugin with both of these we will be able to
develop for both Java Android and Arduino.

AVR-Eclipse Plugin

The AVR-Eclipse plugin includes CDT which provides a fully functional C and C++
integrated development environment built on to Eclipse platform. The CDT plugin has
many of the same features that eclipse does; such as, project creation, managed build
for various toolchains, standard MAKE build, source navigation, call graphs, browser,
and macro definitions, code folding and hyperlink navigation, visual debugging tools like
memory, registers, and disassembly viewers.

The AVR plugin itself is a cross platform code builder. It nearly platform independent
and supports our platform so this is not a flaw. The AVR plugin includes the required
toolchains, debuggers, and frameworks that work on most popular platforms. Below is
an image of the Eclipse IDE utilizing the AVR plugin with code involved.

ADT Android Plugin

Android Studio is the official Integrated Development Environment (IDE) for android app
development, is for the eclipse IDE and provides. It was created to give developers a
one stop shop for a development environment in which to build Android applications. It
extends the current capabilities (listed above) and allows developers to build android
projects with a user interface. Developers can also add libraries from the ADT toolchain.
It extends the capabilities of Eclipse to let you quickly set up new Android projects, build
an app UI, debug your app, and export signed (or unsigned) app packages (APKs) for
distribution.

Advantages

• Cross Compatible
• Multiple Languages Supported
• Many Modern IDE Features

Disadvantages

• Documentation is lacking
• Preferences overload
• No out-of-the-box configuration
• Outdated
• Unsupported

Conclusion

The Eclipse IDE overall is great, however, it has been outdated for a while now
especially in regards to Android Development. Android Development has been usurped
by Android Studio created by Google built on top of IntelliJ IDE (discussed later)

49

5.5.2.2 Arduino IDE

The Arduino IDE contains a text editor for writing the codes, a text console, toolbar with
common methods and view details. It connects to the Arduino hardware in order to
upload and flash programs onto the board. The IDE can also simultaneously debug and
communicate with the platform.

Programs written in this IDE are called sketches. The developer composes these
sketches in the text editor and are saved as with the file extension.ino. The editor has
very basic features such as, cutting/pasting and for searching and replacing text. The
Message are connected with the Arduino platform and gives feedback regarding errors
and warnings. These error messages are also displayed in the console windows. This
all gives useful feedback for development.

Advantages

• Default Development Tool
• Simple to use

Disadvantages

• Limited to single sketch
• No project viewer

Conclusion

For most simple projects we will be probably utilize this it is a very light and easy to use
IDE. This would be ideal for debugging and testing small programs.

5.5.2.3 Android Studio

Android Studio is currently the official Integrated Development Environment (IDE) for
developing Android applications, the platform is built on IntelliJ IDEA. The IDE has
some very powerful features. The interface is one of the cleanest and most user friendly
IDE we have seen. The Android Studio IDE run very quickly and offers a responsive
interface. The IDE also offers a variety of analytical tools that help the developer with
analyzing code before delivery. The Android API, is included out of the box with the IDE
so there is little to no configuration in setup and installation. Android Studio also
highlights potential bugs you may experience in your code at runtime or compile-time.
This streamlines the development process.

1. View ToolBar can modify user experience
2. Setup Messages window
3. Navigation toolbar to browse Hierarchically
4. Menu toolbar - Includes things like undo redo copy etc.
5. Code window - Main editor windows

The Android studio has a very flexible means of prototyping with an emulator called

Android Virtual Device (AVD) this virtual device allows you to run your android app on a
variety of different android platforms such as android TV to android phones

50

Figure 16: AVD emulating an android device

The Android Virtual Device simulates a device and displays it on your development
environment. This allows the developer to quickly prototype, develop, and test Android
apps. This is done without the using a physical device. As mentioned above AVD
supports Android phones, wear, Android TV, and tablets. It comes with all the device
metadata required to begin rapidly prototyping. However, while this feature is useful it
does suffer from performance issues and is not comparable to the physical device
performance wise. Android Virtual Device also has a very slow startup time, this can be
mitigated by having the emulator running in the background and pushing your
development apps to the existing/running emulator.

Advantages

• Included Build System
• Feature Rich Emulator
• Unified environment where you can develop for all devices
• Develop and Prototype without the hardware device
• Out-Of-Box setup no configuration

51

Disadvantages

• Emulator is very slow

Conclusion

Android Studio is an ideal candidate in regards to developing for the Android platform. It
is not only the official Integrated Development Environment for Android it builds a very
strong case as the platform of choice with the included toolset that works out of the box
with little to no configuration.

5.5.2.4 Databases
Databases are simply a collected organized set of data. It is a collection of schemas
that refers to how the data is organized similar to a blueprint of how the data will be
constructed, tables a collection of structured data, queries which allow developers to
ask for the data to be returned in a viewable, readable, actionable way. Data is typically
organized in a way that models reality. Such as modeling a bank, which often would
include a person that would need to have an age, name, amount of money in the bank
account and such extensions that would include savings account, IRA, etc.

SQLite

SQLite is an open source database. SQLite supports standard relational database
features (mentioned above) such as queries, tables, and schemas. The database has a
very small memory footprint (roughly 250 KBytes)[x - https://sqlite.org/about.html] which
makes it an ideal candidate from being embedded into other runtimes; such as, Android.
SQLite is very bare bones it only supports three data types TEXT (string), INTEGER (int
or long), and REAL (float or double). All other types that a developer wishes to add must
derive from those types. SQLite does not validate if these types exist the developer
must define them for example, a developer can write an INTEGER inside a defined
TEXT. [CB6C7]

SQLite is embedded into every Android device by default. Therefore, out of the box
SQLite is supported and configured, the developer merely has to call the Sqlite API. A
developer only needs to define SQL statements for creating schemas and tables and
updating various parts of the database. There is a drawback to this however, because
SQL is merely a collection of files I/O rates are slower. This can be worked around by
performing the operations asynchronously. We as a team found that the SQLite
database will be most useful as it is natively supported, fast, reliable, and very simple to
use.

5.5.3 Functional Requirements
The following section will discuss the functionality requirements in the software to

achieve the product we desire. There are many different ways to implement this device

but it is important for us, as the designers, to attempt to create the most user friendly

sequence to reduce confusion and frustrations the user may experience.

52

5.5.3.1 Main Functionality

Figure 17: Handheld Device Functionality

53

Figure 18: Android Device Functionality

5.5.3.2 Technical Functionality

No: 1

Statement: The user should be able to connect to the Breathalyzer with their
phone

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 22: Technical Functionality 1

54

No: 2

Statement: The handheld Breathalyzer device should be able to toggle car
locks

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 23: Technical Functionality 2

No: 3

Statement: Android app will collect data from device and log it for personal or
liability use

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 24: Technical Functionality 3

55

No: 4

Statement: The breathalyzer register as pass based on +/- tolerance

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 25: Technical Functionality 4

No: 5

Statement: Placing the fingerprint give the user access to the device

Source: Team

Dependency: Two devices (breathalyzer and android)

Conflicts: None

Supporting Materials:

Evaluation Method: 3.2.4. Description of Individual Test Cases

Revision History:
C.Taylor (initial requirement)

Table 26: Technical Functionality 5

5.5.3.3 Software Requirements
During running of the Android application

• The user is prompted for more

• Data should be stored on the android device

• If the android application fails to connect to the BreathaLock device it should

During the running of the BreathaLock device
• The user must be able to toggle the car door locks

• Should be independent of the Android device in that it does not require an
android device in order to work it is merely supplementary

56

• A location must be provided and the location must either be a 5 numerical digit
zip code or in city, state/province, country form.

• If there are data integrity issues, we should prompt the user to retry

5.5.3.4 Interface Requirements
• The Android user interface should be simple to use

• The list of data should be displayed in a ListView (Figure XX)

• The queries asked of the users will be presented with Dialog boxes or module
windows (Figure XX)

• In order to maintain aesthetic appeal, we should utilize Google's Material Design
standards.

Figure 19: List View

Figure 20: Dialog window example

57

5.5.3.5 Data Requirements

Metadata

The metadata should be generated per use of the Breathalock device and sent to the
connected phone. Metadata should include location, logID, and the value of the BAC.
There are other considerations such as attempts that we may want to add.

Entity Relationship Diagram

Figure 21: Entity Relationship Diagram for our dataset

5.6 Summary of Design
The overall design summary includes the use of all sensors collaboratively to create the
decision of whether or not the correct user is sober enough to drive a vehicle in the legal
limit. To do so our microcontroller will first be taking readings from our fingerprint
subsystem and alcohol sensor subsystem. Once these two input are taken, using our
own code, we will determine what we will output to the user through the use of the
android device and also allow the ability to unlock the vehicle.

58

Figure 22: Flowchart of system hardware implementation

Overall implementation will follow the above designs and components connected as
shown. We intend to prototype and design this device seamlessly with little to no
complications.

59

6. Project Prototype Construction and Coding
As discussed in previous sections this device in both hardware and software will be

completely designed by the members of this team. This means all components

selection, connection and building the product will be done by the members of this

team. The main prototyping components will by the PCB, sensors, housing and many

revisions of code to fine tune the functionality.

6.1 Integrated Schematics

Figure 23: Eagle Schematic of Bluetooth Module

Figure 24: Eagle Schematic of alcohol sensor breakout board

6.2 Parts Acquisition
During the prototyping process it is necessary for us to have components to test and
verify our design is functional. Initially we will be working with mostly connection of
already working chips and manually connecting together to work as a system. Once our
initial breadboard tests are complete we will order our PCB and begin verifying that our
PCB works the same way by populating the board with all of the various components.

60

6.2.1 Adafruit
For many of our larger chips and components Adafruit will be very useful as they offer
components at a good price with full support including schematics and many time
tutorials and test designs. Adafruit is the supplier that we chose to order our fingerprint
sensor and also our Bluetooth chip from. We also value Adafruit because their name is
very large and therefor they many times have libraries, header files, and even
component diagrams for many programs that we will be using during our design. Aside
from electrical components Adafruit also offers tools to populate our boards and test
including soldering equipment, wires, wire strippers etc.

6.2.2 Sparkfun
Sparkfun is also another great option for larger components and build support. Sparkfun
is a very large seller that has everything from components to books and even a blog
section. The alcohol sensor that we chose to use is only sold by Sparkfun. They also
include test support, a break-out board add on, and some comments on other user’s
experience. Another great advantage to using Sparkfun is their inclusion in Fritzing
software. Fritzing has an entire library on components sold by Sparkfun that is very
useful for schematic creation.

6.2.3 Digi-Key
Digi-Key is the fourth largest electronic component distributer in North America and a
very organized marketplace for PCB and breadboard testing shopping. Digi-Key will
most likely by our largest supplier of surface mount and through-hole components to
populate our PCB and also do breadboard testing. Many other component companies
that sell surface mount components sell only very large quantities of particular
components whereas Digi-Key will allow us to purchase relatively low quantities for our
PCB population.

6.2.4 UCF
Our final resource for parts is our very own school. UCF has many labs on campus and
also has the TI innovation lab that carries many components. In addition to components
we will need to gather as we design the BreathaLock schematic there are many
components that we have already acquired throughout our courses with lab sections.
For example, we already have an LM7805 voltage regulator, some resistors, capacitors,
and various IC components that may prove to be useful in the breadboard prototyping
stage.

6.3 PCB Design
To create the densest and reliable device we will need to design and have a printed
circuit board made. Not only is this a requirement of this project but it displays full
competence and understanding of electrical components working together in a system.
Designing a printed circuit board is very time consuming and requires a lot of attention
to detail. One incorrect wire trace can leave a circuit open and leave part of your board
without use, on contrarily a short can burn and destroy components. To successfully
design a functional PCB we will use the help of a PCB board software that will give us
the best experience and best PCB design.

61

6.3.1 EAGLE
Eagle PCB design is a commercial software used for schematic creation and board
layout used by many PCB designers. It allows for an extensive list of features to assist
in prototyping and production level PCB boards. Fortunately, as students we are able to
use this great tool with a slightly limited student version for free. In addition to the cost
there are extensive video tutorials, workshops, and learning tools to get started with
Eagle. Finally, Eagle is our preferred platform because most all open source hardware
supplies Eagle schematics free of charge allowing us to combine many of the
component boards without having to reverse engineer to design our own circuits for
chips like out Bluetooth communication chip. In addition to PCB schematic and layout
editing EAGLE has recently added a feature that allow the designer to go through parts
included in the schematic and add them to a virtual shopping cart to then be linked to a
distributor.

6.3.2 National Instruments Ultiboard
Another PCB layout software considered is National instruments Ultiboard. One
advantage to Ultiboard is that at UCF NI Multisim is the preferred circuit analysis
software and therefor out team has extensive experience with Multisim. Together
Multisim and Ultiboard are a complete circuit design solution that would be capable of
PCB layout and routing for our project. For this particular project we find it to be
unattractive because although circuit design is very fluent for our team PCB design is
quite new and Ultiboard is not as user friendly and simple as we would life. In addition,
getting Multisim and Ultiboard is not free and even to get a student version would
require purchase of the student software.

6.3.3 AutoCAD
Our final consideration for PCB design software is to use AutoCAD. The primary
advantage of this option is that Autodesk is extremely generous with their software to
students. Once creating a student account, Autodesk offers a student limited version of
almost all of their software option including AutoCAD. In addition to the availability, there
are extensive tutorials on using AutoCAD which would make adapting to their platform
relatively easy. The largest drawback to this option is that AutoCAD is not the industry
standard for PCB design and may not allow us to design as complex and intricate PCB
layouts.

6.4 PCB House
Depending on the complexity of the PCB and the size we will need to find the most cost
effective and timely PCB house to implement the BreathaLock. It is important that we
plan to print multiple boards in case of print error or hardware testing and modifications.
Unfortunately, it is not likely for us to need more than 10-15 boards which is considered
low order quantity which forces us to pay a premium for each board. For our particular
design and hardware specifications we are considering PCBWay, Elecrow, and Seed
Studio as our primary PCB house options.

6.4.1 PCBWay
PCBWay is a Chinese manufacturer that seems to offer reasonable products at a very
low price point. This is good for us because we are trying to prototype and implement
this device as cost effectively as possible. In addition to a very low price point PCBWay

62

is most likely our fastest option to receive out PCBs from the time we submit an order.
Although some poor reviews in regards to sloppy silk screens and some sloppy vias
they seem to be a good low cost option.

6.4.2 Elecrow
Elecrow is also a Chinese manufacturer that is popular for PCB fabrication. Although
none of our team has experience testing products from Elecrow after some research
and past customer reviews we have concluded that Elecrow has good customer
support, and supplies a slightly higher quality product and a slightly higher cost.

6.4.3 Seed Studio
Seed Studio, although widely used for low price PCB fabrication, is our least attractive
PCB house due to its poor customer reviews and wait time to receive product after
order submission. We find Seed Studio to be not as impressive as Elecrow or PCBway
although further consideration will be taken once final PCB schematic and layout are
finalized.

6.5 Construction
Soldering is an extremely powerful tool that almost all engineering disciplines have
some experience with. As far as electrical engineering is concerned soldering is the
process of joining two or more pieces together with a filler metal composed of metals
with lower melting points than the components to create and electrical passage.

Following the design and receipt of etched PCB boards it will come time for us to
populate our board with our components. There are two primary methods that could be
used to populate our PCB board: manually hand soldering individual components one at
a time, or reflow oven. Both have they’re advantages and disadvantages so it is
important to investigate which option we choose to populate our PCB with.

6.5.1 Hand Soldering
The most straightforward and cheapest way for us to populate our boards is to manually
solder each individual component at a time using a soldering iron and the filler metal
previously mentioned commonly referred to as solder. This method is great because it
can be done anywhere that you have a standard wall outlet and a soldering iron, which
most members already own. We can work in pieces, take breaks and work at our own
pace. The drawback to this is that it is extremely time consuming since every
component requires its own attention. Also this process is quite messy and depending
on the experience of the person making solder joints can lead to variable error.
Although this method may not be used to populate the entire board it is a complete
necessity to be used when creating the BreathaLock in the event that we need to
change components or add features for hardware testing. Fortunately, our team has
some experience soldering and also has many tools to assist in soldering and
populating our PCB board.

6.5.2 Reflow Oven
Another option to populate a PCB board is with the use of a reflow oven. The
advantages of a reflow oven are that it is less time consuming and many times results in
a cleaner more professional looking solder joints. To effectively use a reflow oven the
PCB is laid out and components are placed onto desired pads with solder paste, a

63

mixture of solder and flux. Once the board has components placed correctly the entire
board and components are heated and once the optimal temperature is reached the
solder will melt creating electrical paths for all components. The largest downfall to this
method for populating the BreathaLock PCB is that we do not have access to a
professional solder oven and would most likely have to resort to hacking a toaster oven
and hoping that it works effectively. Although this may give us a more professional
appearance and might save time the risk of failure and additional parts required to
create an over and solder components make this option quite unattractive.

6.5.3 Types of Mounting
When considering how we plan on designing our layout and how we would like to
populate our PCB we need to decide as to whether we want to use through-hole
mounting or surface mount technology (SMT). Through-hole mounting was standard
until the 1980’s when SMT became the standard. The primary advantage to through-
hole mounting is durability for mechanical stress and reliability. Although BreathaLock
does not need to withstand very much mechanical stress we will most likely chose to
use through-hole mounting for any connectors and our power connections. As far as the
other small components (i.e. resistors, capacitors, LEDS) we will chose to use surface
mount to save time, space, and save cost in PCB manufacturing.

 Through-Hole Surface Mount

Strength Great Good

Assembling Speed Very Slow Fast

Fabrication Cost High Low

Size Large Small

Table 27: Component mounting comparison

In the final device and PCB the BreathaLock device used only through-hole components

due to the simplicity and easy prototyping and trouble shooting.

6.5.4 TI Innovation Lab
One great resource that UCF student have access to for the PCB construction in the
Texas Instruments innovation lab located on the first floor of Engineering II on UCF
main campus. This lab provides students with equipment to create prototype boards
such as a good soldering station, oscilloscopes, DMMs, various components and much
more. Not only does it offer various tangible goods that will assist in PCB construction
but professionals including professors and trained advisors also monitor it. This lab will
become increasingly important as we come to build and populate our PCB.

6.6 Final Coding Plan
PERT chart
As shown previously this was the agreed upon timeline

64

Spring 2017, EEL 4915L: Senior design 2

Date

1-9 to 1-20 Class begins, start building prototype

1-21 to 3-27 Test prototype

3-28 to 4-4 Order PCB

4-5 to 4-21 Troubleshoot and finalize design

4-22 to 5-02 Prepare final documentation and presentation

Table 28: Tentative Deadline for Spring 2017

Figure 25: Tentative Deadline for Spring 2017

65

7. Project Prototype Testing Plan
After researching and obtaining our desired devices it is important to test them
individually and as a final prototype before moving into the PCB design and final design
of the BreathaLock system.

7.1 Hardware Test Environment
Creating a hardware test environment with specific constraints and controls is
necessary to ensure repeatability and debug problems we may run into during the
testing process. We specify this environment based on our access to limited resources
and also on how strict and important a certain test it.

7.1.1 Power Supply
While testing individual components and systems working together it is extremely
important to have a controlled power supply and other controls to eliminate as much
error as possible. Our team will be designing our subsystems under certain conditions
to perform to each power level. For the purpose of hardware testing we will be using a
power supply provided by UCF labs for official data and will use batteries or USB power
for small scale testing at our homes.

7.1.2 Car Access
For the purpose of testing and demonstration we will be using an untampered Ford
F150 provided by a group member that will be tested regularly with a stock Ford key
FOB to ensure that the vehicle is performing as expected to native instruction. Due to
the fact that we don’t have access to any of the car computer or software we will need
to rely on simple pass/fail when commands are made by BreathaLock according to if the
door unlocks or not when signaled.

In addition to pass of fail or fail base on the entry of the vehicle we will also need to test
and make sure that the range of the key FOB is unaffected by our implementation. It is
expected that the only thing we will be tampering with is the power supply of the key
FOB itself and therefore we should not affect the range but we need to keep in mind
that we are trying to maintain the same quality of industry standards that are expected
by customers.

7.1.3 Cellular Devices
In efforts to avoid running into issues with our Bluetooth subsystem, as Bluetooth can
be quite tricky sometimes, we will also test the cellular devices before interfacing with
the BreathaLock system. Two of three group members use android phones which we
will be using for initial and also final testing. Before any testing with the BreathaLock
system we will be routinely connecting and disconnecting to other Bluetooth devices to
confirm that the cellular devices are working properly and will create a good connection
to the BreathaLock.

7.2 Hardware Specific testing
To create the best quality and functioning device we will need to verify and check that
all individual subsystems and components are functioning properly. To do so the
following section discussed how to connect each individual component to an Arduino
and test it for functionality.

66

7.2.1 MQ-3 Alcohol Sensor

Figure 26: Alcohol sensor test circuit

To successfully ensure that our alcohol sensor is functioning properly we will need a
specific test environment for the sensor alone. By connecting the MQ-3 to an Arduino
UNO board we can simply read values by printing to a serial monitor on the computer to
view the analog values discussed previously. Specifically, in the code provided below
we are interested in the analog read pin to the Arduino that we set to pin A0. This pin is
connected to the output of the alcohol sensor previously discussed that is a voltage
read on the load resister.

Figure 27: Alcohol sensor test code writing in Arduino IDE

The above image displays example code to test the alcohol sensor by viewing the
output in the serial monitor. Using Arduino IDE this simple set of code will read the
analog values coming into pin0 and print them into the serial plotter continuously. When
we introduce the presence of alcohol into the sensor we expect to see the values in the
serial plotter to decrease and increase again once the alcohol is removed. Attached
below is a screen capture of the serial plotter output of the alcohol sensor when alcohol
is introduced and taken away.

67

Figure 28: Alcohol sensor test output

7.2.2 Adafruit Fingerprint Sensor
Although the fingerprint sensor that we are using is prepackaged it is important to test
and verify expected functionality. There are two ways that we can test the fingerprint
sensor: via its native interface supplied by the manufacturer (SFG Demo), and
controlling the sensor with Arduino commands. To successfully test this sensor it will be
easier to fist ensure functionality with the native software and secondly manipulate the
sensor through the Arduino.

Figure 29: Fingerprint sensor test circuit

As previously mentioned in the description of the fingerprint sensor there are two ways
to interface with the Adafruit fingerprint sensor. To test the sensor for our application we
will be interfacing with it first with the native software provided by the manufacturer to
initially verify its functionality and secondly with Arduino code to verify its functionality
and customizability. We will ultimately be controlling the module without use of a

68

computer so the native application will not be user officially but it is the simplest way to
quickly check functionality.

SFG Demo:

SFG demo is the native windows application that allows interfacing with the fingerprint
sensor. This application is simple and nice to use. First we must connect the fingerprint
sensor to the Arduino as show in figure x above and tell the Arduino to use these pins
as communication directly to the computer through USB using the following code
sequence:

After bypassing the ATmega328P chip on the Arduino we can connect the Arduino to
the computer and launch the SFG Demo application to connect to the fingerprint sensor.
Once the application is open simply select open device and select the COM port the
Arduino is connected to (for this case COM 4).

Once confirmed SFG Demo should alert you with “Open Device Success”. The device is
now connected and interfacing with the desktop computer.

Once this is complete we can match, add, search, and delete users.

Arduino IDE:

After verifying that the fingerprint sensor can interface with the windows software, SFG
Demo, we will test that it can interface through the Arduino. Adafruit has example code
library and libraries written available and once we include them into the Arduino IDE we
can call them with ease. We first conned the fingerprint sensor as shown above. Once
we connect the Arduino we can open various sketches provided by Adafruit and run
them to verify the sensor is working. Attached are some images of the serial monitor
outputs:

Step 1: We first open the “enroll” sketch provided by Adafruit to verify that the sensor if
found and test to see if it can enroll a new fingerprint.

Step 2: We will enter the number 5 to test if the sensor will save a model.

Step 3: Once entered in the serial monitor we can place a finger on the sensor and wait
for the sensor to get a reading and save the input.

Step 4: If the sensor is working correctly the above output will be shown. The sensor
has now enrolled that fingerprint to model #5.

Step 5: Finally, we upload and run the “fingerprint” sketch to verify that the sensor can
read and reference a fingerprint.

7.2.3 Bluefruit UART Friend Bluetooth Module
An essential part of our project is the use of Bluetooth. Because it requires the
connection between two devices it is the most important device for us to test before
continuing with our design procedure and implementing it into our final PCB design. We
will need to apply slightly more focus and time into testing the Bluetooth component
because to confirm that it is working as intended we will need to power the device,
compile and run Arduino code, and then find and connect to the Arduino using an

69

additional device. The company that we purchased this device from supplies some
support and instruction on how to use and test this device. We intent do reference their
materials to make the process easier and more efficient keeping in mind that we don’t
want to waste time developing ways to test; we simply want to verify its functionality. We
choose the wiring diagram seen below and then specify which pins are to be considered
later in the Arduino code.

The Bluefruit UART Friend Bluetooth chips has a few different pin that need to be
connected to the Arduino to work properly described in depth previously in the
component section; here we are mostly interested in only the TX and RX pins. The TX
and RX allows for UART transmission and receipt between the Arduino and Bluetooth
component. We will define these in our test code as pins 9 and 10.

Test Procedure: Once wiring the Bluetooth breakout board we will first test it for basic
functionality to help us understand the operation of the chip and also verify that the
module is functioning properly. As previously discussed, Adafruit supplies support for
most all components and particularly this component. We will first load example code in
Arduino IDE and make sure that works before writing our own source code to have the
module do what we need for the BreathaLock.

7.2.4 Key FOB
Note: In the final BreathaLock device the RF transmitter was implemented using a one-

to-one transmitter and receiver for testing and design purposes. The below information

is still very relevant and will still work with the same BreathaLock device but it was not

the presentation or demonstration implementation.

Unfortunately, there is no open source hardware designs or many resources for how
and what the key FOB uses to unlock the car. We do instead have 3rd party working key
FOBs that we can attempt to reverse engineer to work for our project. We plan to
visually analyze the PCB, following traces and hoping that there are no hidden vias.
Once we can create a schematic with confidence we will program the FOB to the car,
de-solder the IC from the FOB and connect it to a breadboard with the schematic build
on it. If we can re-create this FOB we will include this schematic into our final PCB
design.

Figure 30: Image of internal PCB of key fob

70

As far as main functionality of the key FOB is concerned we will need to program the
FOBs that we will be testing with to the specific car that we will be using. Part of the
reason that we choose this remote and vehicle is because of its ability to be
programmed quickly and effectively. The test procedure below is provided to explain the
sequence to do so with this particular vehicle.

 Procedure

Step
1

Unlock all of the doors using the power lock switch.

Step
2

Cycle the ignition from OFF to RUN 8 times within a period of
10 seconds. The doors should lock at the end of the 8th cycle
to confirm programming mode

Step
3

In a period of 20 seconds press any button on each remote
that will be programmed. The door locks will cycle each time
to confirm.

Table 29: Procedure for programming key FOBs

After complementing the above sequence our key fobs will be programmed to work with
our test vehicle. We will now move forward with testing and designing the PCB to
function the same as this remote. Our main goal would be to replicate the PCB design
into our own PCB and then simple de-solder the IC from the remote and solder it to our
BreathaLock system which will be pre-programmed to the car.

7.2.5 Linear Voltage Regulator
To supply power to the overall BreathaLock system we will be using a 9v battery
because of its size and capacity. In order to power our processor and sensors we will
need to have an output voltage of 5v and also 3v. To do this we will be using a LM7805
linear voltage regulator, and LT1761ES5-3 linear voltage regulator. Before including
these components, it is important to test it to verify expected characteristics. To illustrate
specific testing, we will be using NI Multisim and also a physical test with a portable
digital multi-meter.

Figure 31: LM7805 linear voltage regulator test circuit

71

Figure 32: LT1761ES5-3 linear voltage regulator test circuit

7.3 Software Test Environment
Both the functionality of the hardware (Bluetooth, transceiver, and breathalyzer) and
software (Android OS, application, and underlying code for previously stated hardware)
will be included in testing. As we are not guaranteed ideal conditions with various forms
of communication. Our testing environment will include a vehicle (to test the unlock and
lock functionality) an Android device, and our BreathaLock and we will need to make
sure they work in various conditions of connectivity (outside, indoors, etc). The
engineers will handle the responsibility of testing the devices

7.4 Software Specific Testing
The following section will discuss in detail the software specific testing procedure and

expected results that will be employed by developing the BreathaLock device.

7.4.1 Introduction
It is imperative that we test the software for this device. Therefore, we have developed a
testing plan that we feel meets the needs for the rigor of this project. This section will
focus on the testing plan for the software side of our project BreathaLock. Our group felt
it was important to identify the overall objective of the testing environment, the stopping
conditions, and the individual test cases for BreathaLock.

7.4.2 Overall Objective for Software Test
We expect the test plan to allow the engineers to deliver a successful product that
works in various conditions of connectivity and provides a way of mitigating DUI’s and
traffic accidents that involve individuals being under the influence.

7.4.3 Stopping Criteria & Testing Method
If errors are determined during testing, these bugs will be noted in the developer’s
weekly activity log. If the developer is assigned to the component that failed, the
developer may fix the component immediately. Otherwise, the developer should inform,
in a timely manner, the developer(s) responsible for the component of the test
conditions and test results.

72

When testing functionality of a module test cases are written before the code itself; at
that point, they are impassable. Code is written specifically to pass a given test case.
When the written code successfully passes the test, the passing code is refactored into
a more elegant module – without introducing any new functional elements.

By using this Test Driven Development (TDD) strategy we can improve our iterative
build process in the following:

• It facilitates easy maintenance and helps alleviate scope creep

• Encourages granularity in testing; it is guaranteed that every standalone piece of
logic can be tested

• Since test cases are written first, other programmers can view the tests as usage
examples of how the code is intended to work

If a component is deemed complete, the developer(s) responsible for the component
should notify the project manager in a timely manner. If the project manager deems
necessary, a component may be sent back for further testing or development.

At the end of the project's lifecycle, all test cases will be run against the total code base
to verify the functionality of the app. Communication errors will take priority over any
cosmetic errors, these are more defined test cases, and the final project depends on full
functionality of communication. The Software should complete all of the test cases for
each module to ensure no functionality was loss by changes.

7.4.4 Description of Individual Test Cases

Test No. 1

Test Objective Connectivity (BreathaLock to Android)

Test Description Does the Bluetooth module (hardware) connect to the
android app

Test Conditions 1. Open app
2. Connect
3. Receive Bluetooth address

Expected
Results

Bluetooth module successfully communicates its 48 bit
address to the android device

Table 30: Description of Individual Test Case 1

73

Test No. 2

Test Objective Connectivity (BreathaLock to Car) (w/o fingerprint or breathalyzer)

Test Description Does the BreathaLock device communicate to the car and locks
the door

Test Conditions 1. Activate the device
2. False-Positive on BAC pass
3. Observe if door locks

Expected
Results

BreathaLock successfully toggles the car door locks.

Table 31: Description of Individual Test Case 2

Test No. 3

Test Objective Connectivity (BreathaLock to Car) (w/o fingerprint or breathalyzer)

Test Description Does the BreathaLock device communicate to the car and the
door unlocks

Test Conditions 1. Activate the device
2. False-Positive on passing BAC
3. Observe if door locks unlocks

Expected
Results

BreathaLock successfully unlocks the car door locks.

Table 32: Description of Individual Test Case 3

Test No. 4

Test Objective BreathaLock Breathalyzer Sensor (Passing) (w/o fingerprint)

Test Description Does the breathalyzer register as pass based on +/- tolerance

Test Conditions 1. Receive False-Positive for fingerprint
2. Blow into Breathalyzer
3. IF BAC is lower than acceptable value
4. Register a PASS

Expected Results This will be indicated on the device as a PASS

Table 33: Description of Individual Test Case 4

74

Test No. 5

Test Objective BreathaLock Breathalyzer Sensor (Failing) (w/o fingerprint)

Test Description Does the breathalyzer register as pass based on +/- tolerance

Test Conditions 1. Receive False-Positive for fingerprint
2. Blow into Breathalyzer
3. IF BAC is higher than acceptable value

5. Register a FAIL

Expected Results This will be indicated on the device as a FAIL

Table 34: Description of Individual Test Case 5

Test No. 6

Test Objective Fingerprint Access (passing)

Test Description Does placing the fingerprint give the user access to the device

Test Conditions 1. Add User fingerprint to memory as passing
2. User apply fingerprint to reader
3. Register a pass

Expected Results The device should allow the user to proceed to the next step
(breathalyzing)

Table 35: Description of Individual Test Case 6

Test No. 7

Test Objective Fingerprint Access (failure)

Test
Description

Does placing the fingerprint give the user access to the device

Test Conditions 1. Add user A to memory
2. Allow user B to apply finger to reader
3. Device should register as a failure.

Expected
Results

The device should NOT allow the user to proceed to the next step
(breathalyzing)

Table 36: Description of Individual Test Case 7

75

Test No. 8

Test Objective Collect statistics to android app

Test
Description

Android app will collect data from device and log it for personal or
liability use

Test Conditions 1. Commit an action on the device (fingerprint)
2. Send completed action to android device via Bluetooth
3. Check log on android phone

Expected
Results

The logs should accurately reflect the action committed by user.

Table 37: Description of Individual Test Case 8

Test No. 9

Test Objective More to be added

Test Description Android app will collect data from device and log it for personal or
liability use

Test Conditions 4. Commit an action on the device (fingerprint)
5. Send completed action to android device via bluetooth
6. Check log on android phone

Expected
Results

The logs should accurately reflect the action committed by user.

Table 38: Description of Individual Test Case 9

Test No. 10

Test Objective Connectivity (Android to Device)

Test
Description

To ensure the device is able to receive will the android app be able
to communicate to the device.

Test
Conditions

1. Connect the android and devices
2. Once connected the android device should send a signal
3. Turn on debug light to activate signal

Expected
Results

A debug light will turn on

Table 39: Description of Individual Test Case 10

76

8. Demonstrations
Following the design and testing phase, the BreathaLock system will go into a
demonstration phase. During this time, we will need to prove that our concept has come
to full realization and that specifications and design requirements have been met. As a
part of the University of Central Florida curriculum, every student in the ECE department
must pass senior design 1 & 2 which include demonstration of their project.

8.1 Initial Activation and Setup
The first demonstration that will be performed will be the initial activation and user setup
to the device. Because our device involves the biometric user verification, when the
users receive the device they will need to enroll themselves into the system so that the
BreathaLock can verify their identity during regular use. To make this demonstration we
will power on the device and put it into a calibration mode. In this mode the BreathaLock
will request that the user place their finger onto the fingerprint sensor screen using a red
background light. The system will request that the user places the same finger 2-3 times
to make sure a confident reading has been taken. Once compete the user will be
enrolled and saved into the fingerprints memory.

8.2 Standalone Operation
Following the initial activation and setup we will test the basic functionality of the
handheld device without the use of Bluetooth. To complete this demo, we will need to
turn on the BreathaLock device by button press. Once the device is on and responsive
we expect to have indicators to request for identity verification. As long as the users in
the demonstration have previously been enrolled, we should be able to simply light up
the red LED indicator on the fingerprint sensor and read the finger upon contact with the
sensor. Once this is complete the sensor will accept or deny the user. In the event that
the incorrect user is attempting to use the device it will continuously loop until the
correct finger is recognized. Once the correct user is verified the BreathaLock will
request a sample on the alcohol sensor to test for sobriety. Similar to the fingerprint
sensor, an LED will alert the user when to blow and the BreathaLock will take a reading
to verify the user is under the legal limit of alcohol. Once these two tests have been
passed an LED will blink alerting the user that they now have the option to unlock their
vehicle.

8.3 Bluetooth Pairing
An additional feature to the BreathaLock system is the ability to connect with a cellular
device over a Bluetooth connection to assist the process and also display additional
information. Before entering the unlock sequence we must demonstrate the
BreathaLock’s ability to pair to a cellular device. This will be done by holding down a
button on the BreathaLock to turn on and search for a Bluetooth link. Once on, the user
will open the application developed by our team and instruct the cellular device to pair to
the BreathaLock. The user will be confirmed that the BreathaLock is paired on the
android application.

77

8.4 Connected Operation
The final demonstration will be the operation of the BreathaLock device while it is
connected to an android device. During this demonstration the android application will
be the most prominent feature to focus on. The demonstration will mostly follow the
same procedure as the “standalone operation” but in this demonstration most of the
indicators and requests will be interactive and more visual through the application. The
user will first open the app and be confirmed that the BreathaLock is connected and
ready. Once confirmed the user will be prompted to place their finger onto the fingerprint
sensor for user verification. The application will walk the user through the process with
visual indicators as to whether they need to place the finger again or if they pass or fail.
Assuming the correct user is operating the device, the application will welcome the user
into the next operation of testing the blood alcohol content of the user. In this step the
application will indicate when to blow, how long, and when the BreathaLock has enough
sampling to decipher what the users BAC is. One main feature of the android
application is that we will be able to display the exact BAC of the user instead of an LED
indicator of whether or not above or below 0.08. Concluding the alcohol sensor testing
the application will display the exact BAC of the user and whether or not they can or
cannot drive. In the event that the user is above the legal limit the BreathaLock
application will advise the user to wait and blow again or to wait a long time and rest.
Finally, the last feature will be the ability for the BreathaLock to act as a general
breathalyzer to any user with the intent to inform other drivers on their sobriety.

78

9. Final Design
Following the prototype design phase which consist of hardware and software testing,

the finalized design is realized. The final design met all requirements of the project and

also features of a custom printed circuit board (PCB), custom enclosure.

9.1 Hardware
The Breathalock PCB board is designed to output 5 volts to both the heater and the tin

dioxide layer to provide the specified current necessary to operate this device

effectively.

9.1.1 Schematic

Figure 33: Final PCB Schematic

The schematic of the BreathaLock project is mainly comprised of the ATMEGA328-20P

that has ports connected for a Bluetooth module, fingerprint sensor, alcohol gas sensor,

and a MOSFETs switching circuit. In addition, there are ports for an FTDI breakout

board to easily flash programs onto the microcontroller. Furthermore, the microcontroller

has 3 status LEDs. One LED to show that the system is powered on and the other two

LED to be program to show the status of the sensors. For the integration of the RF

transmitter, there are four solder pads, of which a pair is connected to a lock push

button, the other pair of solder pads are connected to an unlock pushbutton.

79

9.1.2 Board layout

Figure 34: Final PCB Board Layout

The board layout for the project is kept to a minimal dimension of 35.56mm x 82.55mm.

The reason for a smaller board design is because it will ensure maximum portability as

the BreathaLock project is meant to be a portable device.

 In terms of component placement, the clock and its stabilizing capacitor are kept

as close to the microcontroller as possible to safeguard the system from clock delays if

there are any. For the sensor ports, the Bluetooth module, fingerprint sensor and FTDI

ports are placed to the far-right side of the board to allow for ease of access. As far as

the alcohol gas sensor goes, the ports are placed on the head of the board to mimic

modern E-cigarettes. This too allows familiarity while using the BreathaLock as E-cig

are becoming more and more popular. In addition, the lock and unlock push buttons on

the BreathaLock project are placed from top to bottom respectively. This allows the

BreathaLock to be used intuitively as all modern car key remoted are oriented in the

same fashion.

9.2 Software
The BreathaLock works in several phases: A startup phase to initiate a warm up phase

for the gas sensor this phase also locks the user out from using the BreathaLock until

they verify themselves with the fingerprint sensor, Locked phase, Idle phase which

80

allows the user to begin blowing into the BreathaLock. Lastly Evaluation phase which

will process the user’s breath.

9.2.1 Warm-up (locked)
The warm up phase is nearly a universal concept across any breathalyzer that utilizes

the MQ-3 gas sensor variety. This step is necessary since the tin dioxide must be

heated to provide the necessary work conditions for work of sensitive components. We

have found that by allowing roughly 15-30 seconds of warm-up time which gives the

heater enough time to warm itself. This phase also will remain in warmup (locked

phase) until the user verifies their fingerprint.

Figure 35: Warm Up Phase Process

9.2.2 Idle
The Idle phase is where the user will begin blowing this process is involves a few steps.

First, the device must be able to detect if the user is blowing we do this by checking if

air has passed over the gas sensor and detecting a delta predetermined by ourselves

usually 0.5 volts across the tin dioxide; however, this value can be adjusted if

necessary. Detecting if the user is blowing is an important check due to the ability of the

user to power the sensor on, then the user can clear the Warm-Up phase, and leave the

device this would be considered a pass. As the BAC of air passing over the gas sensor

would be 0.00. We feel this resolves this exploit.

Lastly, after we have established that the user has blown over the gas sensor, we then

can determine if that users’ breath consist of alcohol. This process looks like the

following:

81

Figure 36: Idle Phase checking for potential exploit and passing gas sensor value to evaluation phase

9.2.3 Evaluation
The evaluation phase will do the heavy lifting of checking the users BAC against the

voltage. If the user fails to pass this stage then the MOSFET gate will remain low

powered and the user will not be able to unlock their car. Without restarting the device

and trying again or waiting until enough time has passed so that alcohol has left their

system.

If the user passes this stage the MOSFET gate will receive power from the ATMEL chip

and the user will be able to unlock their car and gain entry to it.

Figure 37: Evaluation process demonstrating the unlocking phase that allows the user to use the button

82

The total flow of our software process is demonstrated below including the Android

application.

Figure 38: Software Flow Diagram including our android portion

83

10. Administrative content
The information provided below outlines the expected time frame and dates of

completion for carious portions of this project. These dates are tentative and are

designed to have some extra time if needed to work on tasks that may take more time

than expected.

10.1 Milestone Discussion
The milestone for the BreathaLock project is show in the figures below.

84

85

86

87

88

From the figures above we can see that the first five months of the project consist of
declaring a project idea. Once a project idea has been established, we research further
into the idea to start designing /develop a physical prototype. This design develop and
research must be documented for the Senior Design 1 paper. In addition, the first five
months consist of ordering parts. In our case, parts were ordered and breaded boarded
way before the milestone deadline thus the BreathaLock project is ahead of schedule.

The last five months of the project consist of troubleshooting our developed design.
Once troubleshooting is complete, we then design our PCB to order. Once PCB has
come in and populated, there is roughly 2 weeks allocated to make sure that the
populated PCB is working properly. Once everything is finalized, there is about a week
and a half to prepare for final presentation.

10.2 Budget and Finance Discussion
Since the BreathaLock project does not have any sponsorship there are two available
options to finance the project

10.2.1 Finance option 1
Finance option 1 consist being crowd funded. Crowd funding mediums such as
Kickstarter and Gofundme are a great place to get funded for any project. However,
there are some advantages and disadvantages to budget option 1.

89

Advantage Disadvantage

-No money out of personal funds - Can take a long time to reach
desired amount

 - Project needs awareness

 - Project may never reach
desired funding

Table 40: Finance Option 1 Advantage/Disadvantage table

10.2.2 Finance option 2
Finance option 2 consist of paying for the project ourselves. There are also advantages
and disadvantages from paying the project ourselves

Advantage Disadvantage

 - Project is paid for fast -money comes from person funds

- Freedom of when to buy

- Project is funding independent
of outside factors

Table 41: Finance Option 2 Advantage/Disadvantage table

We chose to go with Finance option 2. We chose to pay for the project ourselves
because we have decided as a team that the total cost of the project is not
unreasonable. Also, Finance option 2 allows the project to be paid for fast, rather than
wait on donations as we only have two semesters to finish the entire project.
Additionally, we have to decide to split the project cost between each member. This
ensures that each member will pay for the project equally. The table below shows the
maximum the BreathaLock project may cost. Extra quantities are considered to account
for broken parts during prototyping.

90

Estimated Cost

Part Quantity Cost Total

Microcontroller 2 $10-$20 $20-$40

Fingerprint Sensor 2 $30-$45 $60-$90

Bluetooth Module 2 $20-$35 $40-$50

Blood alcohol
Sensor

2 $30-$45 $60-$90

Battery 6 $3-$5 $6-$10

Remote Key 2 $20-$30 $40-$60

PCB 3 $20-$30 $60-$90

Estimated Total $376-$430

Table 42: Estimated Cost table

Actual Costs

Part Quantity Cost Total
Microcontroller 3 pieces $5 $15
9v Battery 4 $3.50 $14
Fingerprint Sensor 2 $45 $90
Bluetooth Module 1 $20 $20
Gas sensor 2 $5 $10
RF transmitter 3 $7 $21
RF receiver 1 $5 $5
FTDI board 1 $8 $8
Crystal Oscillators 10 $0.60 $6
N-channel MOSFET 7 pieces $1 $7
Dip Socket 10 pieces $0.70 $7
Total $203

Table 43: Actual Cost table

10.3 Group management
In terms of group management, Charles Taylor, the computer engineer, is in charge of
programing the microcontroller to process the data that are coming from all the sensors
and relaying that information to the mobile app. The microcontroller will need to be able
to process the right user fingerprint and reject users who aren’t register. In addition, the
microcontroller will need to be programmed to process the blood alcohol content data
and respond according if the data is above or below the legal limit.

91

Nam Ngo, the electrical engineer, is in charge of powering on the key remote, the
microcontroller, the alcohol gas sensor, the fingerprint sensor and interfacing the
Bluetooth communication module with the microcontroller. The key remote and the
microcontroller should be powered on by battery while the alcohol gas sensor,
fingerprint sensor, and the Bluetooth module should get its power through the regulated
power supply from the microcontroller.

Nicholas Fraser, the electrical engineer, is in charge of connecting the alcohol gas
sensor and the fingerprint sensor with the microcontroller. In addition, he is also in
charge of electrically interfacing the microcontroller to allow and block the unlock signal.
The key remotes unlock system should be electrically connected and controlled by the
microcontroller. If the microcontroller reads that the user is below legal limit, then the
unlock signal is able to be sent to the car. However, if the microcontroller reads that the
user is above the legal blood alcohol content then electrically, the key remote cannot
send out an unlock signal.

Though each member is assigned a task within the project, we as a group mutually
agreed that we work as a team thus if any group member is struggling with their
respective tasks then the roles of each members are subject to change accordingly. For
example, if Nicholas Fraser is having trouble connecting the sensors to the
microcontroller then Nam Ngo can take on that task in exchange for his contribution of
powering on the sensors.

Figure 39: Project management flowchart

92

10.4 Personnel

Nicholas Fraser – Electrical Engineer

Nicholas Fraser is an undergraduate Electrical Engineering student at the University of

Central Florida graduating in May 2017. During his undergraduate education, he held a

risk manager position and was an active member in the UCF kiteboarding club. He

completed two summer internships conducting tests and developing hardware for

Blackberry’s handset team in South Florida. Originally from South Florida, he sought out

work in that region and has accepted an electrical engineering position with Magic Leap

in Sunrise, Florida. Nicholas excels and enjoys many fields within electrical engineering

such as circuit analysis and design, signal processing, and some software development.

He hopes to become stronger in these fields and develop a greater understanding of

software development while working in the field. He may go on to receive further

education after working for some time.

Nam Ngo – Electrical Engineer

Nam Ngo is a senior is electrical engineering at the University of central Florida and
will be receiving his bachelors in May 2017. His main interest is system level integration
and analog signal processing. Furthermore, his extracurricular actives includes being a
member of the IEEE, and a member of the robotics club at the University of Central
Florida. In the future, Nam plans on receiving his professional engineering certification
and may go onto continuing education later in life.

Charles Taylor – Computer Engineer

Charles Taylor is a senior at University of Central Florida and will be graduating with a

Bachelor of Science in Computer Engineering (CpE) in May 2017. During his

undergraduate studies Charles worked in IT for Siemens until he accepted an internship

with NASA. In July 2017, he will begin a career in Houston, Texas working at NASA

Johnson Space Center in the Spacecraft Software Engineering Directorate developing

technologies such as Core Flight Software (CFS), and the Multi-Purpose Crew Vehicle

(MPCV).

10.5 Significant Accomplishments and Open Issues
The following section will address the largest accomplishments with the BreathaLock

device and some open issues that are associated with the device.

10.5.1 Significant Accomplishments
Through the completion of this device many accomplishments were made. Primarily the

implementation of the lock and unlock signal to keep the user from entering the vehicle

is huge. Many spectators are puzzled by the decision to lock the user out but as stated

in the motivation our goal was to address drunk driving and DUIs received from being in

physical control of the vehicle. This feature is exactly what we implemented. Aside from

the functionality of the device we also created a device that is very low cost. For us to

93

make one device it was around $200 including overhead of extra parts that we were

forced to purchase to create that project. We expect that with the same components if

we ordered in high quantities we would get to the device cost down to around 100$ and

if a cheaper fingerprint sensor and PCB with Bluetooth capabilities we may even be

able to get the product cost down to around $50. Finally, the device we created is very

affordable and versatile as far as battery power is concerned. We are using a 9v battery

that can be purchased at almost any electronics or home goods store. This means the

user has no need for unique chargers or expensive power supplies.

10.5.2 Open Issues
This project presents many societal issues. From a business perspective, this device

would need a significant amount of testing to make sure the alcohol sensor is extremely

accurate. If the BreathaLock was used as a government issued device to monitor a

recipient of a previous DUI it may even need to be used in conjunction with a video

camera or another device to make sure the person driving the vehicle is indeed the

person blowing and verifying their identity.

I

Appendix A Copyright Permissions
Citations
[1] K. Townsend. (2016, September 30). Introducing the Adafruit Bluefruit LE UART

Friend (1st ed.) [Online]. Available:
https://cdnlearn.adafruit.com/downloads/pdf/introducing-the-adafruit-bluefruit-le-
uart-friend.pdf

[2] L. Ada. (2015, May 4). Adafruit Optical Fingerprint Sensor [Online]. Available:
https://learn.adafruit.com/adafruit-optical-fingerprint-sensor/overview

[3] M. S. (2016, August 08). Getting Started with Arduino and Genuino UNO
[Online]. Available: https://www.arduino.cc/en/Guide/ArduinoUno

[4] H. Barragan. Power Regulator 5v: LM7805 [Online]. Available:
http://wiring.org.co/learning/topics/power5lm7805.html

[5] Sparkfun. Alcohol Gas Sensor - MQ-3 [Online]. Available:
https://www.sparkfun.com/products/8880

[6] Sparkfun. Gas Sensor Breakout Board [Online]. Available:
https://www.sparkfun.com/products/8891

[7] Digi-Key. Linear Technology LT1761ES5-3#TRMPBF [Online]. Available:
http://www.digikey.com/product-detail/en/linear-technology/LT1761ES5-3-
TRMPBF/LT1761ES5-3-TRMPBFCT-ND/1629845

[8] G. Aničić. (2014, July 25). Forgotten Project: Saab ‘Alcokey’-Breathalyser
[Online]. Available: http://www.saabplanet.com/forgotten-project-saab-alcokey-
breathalyser/

[9] ALCOLOCK. ALCOLOCK ™V3 [Online]. Available:
http://alcolockusa.com/shop/alcolock-v3

[10] ALCOLOCK. DRIVESAFE™ elan [Online]. Available:
http://alcolockusa.com/shop/drivesafe-elan

[11] BACtrack. BACtrack Mobile Pro [Online] Available:
https://www.bactrack.com/products/bactrack-mobile-smartphone-breathalyzer

[12] dansku. (2016, March 29). Building a Breathalyzer with MQ-3 and Arduino
[Online] Available: http://www.danielandrade.net/2010/03/07/building-an-
breathalyzer-with-mq-3-and-arduino/

[13] Michael (2010, September 17). Arduino Breathalyzer: Calibrating the MQ-3
Alcohol Sensor [Online]. Available:
http://nootropicdesign.com/projectlab/2010/09/17/arduino-breathalyzer/

[14] O. Derawi. Fingerprint [Online] Available:
http://biometrics.derawi.com/?page_id=48

http://www.saabplanet.com/author/goran-anicic/
http://www.danielandrade.net/author/dansku/

II

[15] Fingerprints. Sensors [Online] Available:
https://www.fingerprints.com/technology/sensors/

[16] Murco. Choosing the Right Gas Sensors for you Installation. [Online]. Available:
http://www.murcogasdetection.com/choosing-the-right-gas-sensors-for-your-
installation/

[17] Bluetooth. How It Works. [Online]. Available: https://www.bluetooth.com/what-is-
bluetooth-technology/how-it-works

[18] comsol. Does the current Flow Backwards Inside a Battery. [Online]. Available:
https://www.comsol.com/blogs/does-the-current-flow-backwards-inside-a-battery/

[19] Arduino. Arduino UNO & Genuino UNO [Online]. Available:
https://www.arduino.cc/en/Main/ArduinoBoardUno

[20] Arduino. Arduino MICRO & Genuino MICRO. [Online]. Available:
https://www.arduino.cc/en/Main/ArduinoBoardMicro

[21] Arduino. Arduino MINI [Online]. Available:
https://www.arduino.cc/en/Main/ArduinoBoardMini

[22] Raspberry Pi. RASPBERRY PI 3 MODEL B [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[23] Texas Instrument. MSP430G2x01, MSP430G2x11 Mixed Signal Microcontroller
[Online]. Available: http://www.ti.com/product/MSP430G2211

[24] Sparkfun. RedBearLab BLE Nano- nRF51822 [Online]. Available:
https://www.sparkfun.com/products/13729

[25] Sparkfun. Fingerprint Scanner- TTL (GT-511C3) [Online]. Available:
https://www.sparkfun.com/products/11792

[26] Winson. MR513 Hot-wire Gas Sensor. [Online]. Available: http://www.winsen-
sensor.com/products/hot-wire-gas-sensor/mr513.html

[27] Walmart. The Universal Car Remote [Online]. Available:
https://www.walmart.com/ip/The-Universal-Car-Remote/48175371

[28] Best—Price.info. 2 KeylessOption Replacement Keyless Entry Remote Control
Key Fob Clocker Transmitter 3 Button- Black [Online]. Available:
http://www.best--price.info/awsproduct/B00KTIUG5C

[29] Amazon. Docooler Car Remote Central Lock Locking Keyless Entry System with
Remote Controllers. [Online]. Available: https://www.amazon.com/Docooler-
Central-Locking-Keyless-Controllers/dp/B006QH9C5A

[30] SQLite Consortium. (2016, November 28th). About SQLite [Online]. Available:
https://sqlite.org/about.html

[31] Google Inc. Material design [Online]. Available: https://material.google.com/

III

[32] Bluetooth Sig. Bluetooth Core Specification [Online]. Available:
https://www.bluetooth.com/specifications/bluetooth-core-specification

[33] Bluetooth SIG. Generic Attributes (GATT) and the Generic Attribute

Profile [Online]. Available: https://www.bluetooth.com/specifications/generic-
attributes-overview

[34] Bluetooth SIG. Technical Considerations [Online]. Available:

https://www.bluetooth.com/specifications/bluetooth-core-specification/technical-
considerations

[35] Yoyo. JY-MCU specifications [Online]. Available:
http://www.dx.com/p/jy-mcu-arduino-bluetooth-wireless-serial-port-module-
104299

[36] MICROCHIP. Bytes vs. Words: How to Decode Program Memory Sizes for 8-Bit
Microcontrollers. [Online]. Available:
http://www.datasheetarchive.com/files/microchip/1010/edit/proceed/archive/9_17
0/index.htm

IV

Permissions
Permission #1:

V

Permission #2:

Permission #3:

.

VI

Permission #4:

VII

Permission #5:

VIII

Appendix B Data-Sheets
[1] Texas Instruments, “µA7800 Series Positive-Voltage Regulators” LM7805

datasheet, May. 1976 [Revised May. 2003].

[2] Linear Technology, “LT1761 Series 100mA, Low Noise, LDO Micropower
Regulators in TSOT-23” LT1761ES5-3 datasheet

[3] Adafruit. MDBT40 Datasheet [Online]. Available:
https://cdn-shop.adafruit.com/product-files/2267/MDBT40-P256R.pdf

IX

Appendix C List of Figures

Figure 1: 3D Design of a possible BreathaLock housing. .. 6

Figure 2: Optical Fingerprint Diagram “reprinted with permission #3” .. 12

Figure 3: Passive capacitive touch Diagram “reprinted with permission #4” 13

Figure 4: Active capacitive touch Diagram “reprinted with permission #4” 13

Figure 5: Harvard architecture “reprinted with permission #2” ... 27

Figure 6: System Architecture .. 31

Figure 7: All components by letter ... 35

Figure 8: Breadboard testing of all components .. 36

Figure 9: Fritzing wiring schematic .. 37

Figure 10: Fingerprint sensor external image .. 39

Figure 11: MQ-3 sensor external image and pin reference ... 40

Figure 12: Sensor operation schematic “reprinted with permission #1” 41

Figure 13: Circuit analysis of sensor ... 41

Figure 14: Java ART framework .. 44

Figure 15: C++ Flow Chart ... 46

Figure 16: AVD emulating an android device .. 50

Figure 17: Handheld Device Functionality .. 52

Figure 18: Android Device Functionality ... 53

Figure 19: List View ... 56

Figure 20: Dialog window example.. 56

Figure 21: Entity Relationship Diagram for our dataset ... 57

Figure 22: Flowchart of system hardware implementation .. 58

Figure 23: Eagle Schematic of Bluetooth Module ... 59

Figure 24: Eagle Schematic of alcohol sensor breakout board .. 59

Figure 25: Tentative Deadline for Spring 2017 .. 64

Figure 26: Alcohol sensor test circuit .. 66

Figure 27: Alcohol sensor test code writing in Arduino IDE... 66

Figure 28: Alcohol sensor test output.. 67

Figure 29: Fingerprint sensor test circuit .. 67

Figure 30: Image of internal PCB of key fob .. 69

Figure 31: LM7805 linear voltage regulator test circuit .. 70

Figure 32: LT1761ES5-3 linear voltage regulator test circuit .. 71

Figure 33: Final PCB Schematic .. 78

Figure 34: Final PCB Board Layout ... 79

Figure 35: Warm Up Phase Process .. 80

Figure 36: Idle Phase checking for potential exploit and passing gas sensor value to evaluation phase... 81

Figure 37: Evaluation process demonstrating the unlocking phase that allows the user to use the button

 .. 81

Figure 38: Software Flow Diagram including our android portion ... 82

Figure 39: Project management flowchart .. 91

Figure 40: Bluefruit LE UART Friend (BLE) external image Error! Bookmark not defined.

X

Appendix D List of Tables

Table 1: House of quality trade off table ... 8

Table 2: Arduino Uno Low power mode table .. 16

Table 3: Arduino Uno Advantage/Disadvantage table ... 17

Table 4: Arduino ProMicro Advantage/Disadvantage table ... 17

Table 5: Arduino Mini Advantage/Disadvantage table ... 18

Table 6: Raspberry Pi 3 Model B Advantage/Disadvantage table ... 18

Table 7: MSP430 Advantage/Disadvantage table .. 19

Table 8: Microcontroller Decision Table ... 19

Table 9: Decision Table ... 21

Table 10: Fingerprint Scanner Decision Table .. 22

Table 11: MQ-3 Advantage/Disadvantage table ... 23

Table 12: MR513 Advantage/Disadvantage table .. 24

Table 13: Gas Sensor Decision Table .. 24

Table 14: Selected Component Operating voltage ... 24

Table 15: Power Option Decision Table ... 25

Table 16: Power option Decision Table .. 26

Table 17: Part selection summary Table .. 28

Table 18: Component descriptions .. 35

Table 19: Arduino Specific Connection ... 37

Table 20: Fingerprint sensor technical characteristics ... 39

Table 21: MQ-3 sensor technical characteristics .. 40

Table 22: Technical Functionality 1 ... 53

Table 23: Technical Functionality 2 ... 54

Table 24: Technical Functionality 3 ... 54

Table 25: Technical Functionality 4 ... 55

Table 26: Technical Functionality 5 ... 55

Table 27: Component mounting comparison ... 63

Table 28: Tentative Deadline for Spring 2017 ... 64

Table 29: Procedure for programming key FOBs ... 70

Table 30: Description of Individual Test Case 1 .. 72

Table 31: Description of Individual Test Case 2 .. 73

Table 32: Description of Individual Test Case 3 .. 73

Table 33: Description of Individual Test Case 4 .. 73

Table 34: Description of Individual Test Case 5 .. 74

Table 35: Description of Individual Test Case 6 .. 74

Table 36: Description of Individual Test Case 7 .. 74

Table 37: Description of Individual Test Case 8 .. 75

Table 38: Description of Individual Test Case 9 .. 75

Table 39: Description of Individual Test Case 10 .. 75

Table 40: Finance Option 1 Advantage/Disadvantage table ... 89

Table 41: Finance Option 2 Advantage/Disadvantage table ... 89

XI

Table 42: Estimated Cost table .. 90

Table 43: Actual Cost table ... 90

Table 44: Bluefruit LE UART Specifications ... Error! Bookmark not defined.

