
Portable Finish Line Data

Capture System for

Sprinters

Jamal McNab, Tyler Snell, Michael

Colucciello, and Argeny Batista

College of Engineering and Computer

Science, University of Central Florida,

Orlando, Florida, 32816 U.S.A.

Abstract — The goal of this project is to bring the

timing accuracy of digital capture systems to practice for

sprinters of all skill levels to improve timing accuracy

over analog methods during training, while keeping costs

low to be marketed towards sprinters of all skill levels.

The design is portable, lightweight, and consumes

minimal power, and can be communicated to via a mobile

android application through Wi-Fi. The design uses a

laser sensor connected to a microcontroller for timing,

which controls LEDs and speakers as well as times

sprints. An android application communicates with the

microcontroller in the main housing via a wireless

connection, sending data to tweak sprint settings, and

display times to the end user.

Index Terms — microcontroller, LDR sensor, 802.11n,

GUI, TCP, Socket

I. INTRODUCTION

 This project seeks to bring the accuracy of digital

timing used at higher level sprint competitions to the

practice routines of sprinters of all skill levels. Most

lower level sprinters rely on some form of analog

timing in practice to track improvement during

training, typically another person timing with a

stopwatch. Our goal is to remove the need for a second

person timing the sprint while also improving on

accuracy over this and other analog methods. Since

our target audience is sprinters of all skill levels, we

tailored the design as much as possible to

accommodate all sprinters as potential users of our

design. The design is lightweight as it’s meant to be

taken to and from a track, and housed in 2 pylons as to

have minimal components for the end user to have to

worry about when transporting the system. The design

includes a rechargeable battery system, and consumes

little power as to not require a recharge during a

practice session. LEDs and a speaker are used in the

design to simulate more realistic training

environments where the user can hear and see the “go”

signal. Within the design is a wireless-capable

microcontroller, which controls the LED and speaker,

reads from the LDR sensor, and times the user sprints.

The microcontroller is sent requests to begin a sprint

from the user’s Android smartphone, using an app

with ease of use in mind. The Android apps

functionality is to communicate with the

microcontroller when to begin a sprint and to receive

the finishing time after the conclusion of the sprint as

well as display to the user information relevant to their

sprint. Overall our design provides a more accurate

timing solution to all but the most expensive

competitors on the market to improve the practice

routines of sprinters.

II. SYSTEM COMPONENTS

A. Microcontroller

The microcontroller is considered to be the brains of

this product. It controls all the subsystems including

wireless communication (WI-FI), Trip sensors, LED

and Sound drivers for visual and audible cues. To keep

the cost down and integrate all of the separate

subsystems the ESP32 chip by Espressif was chosen.

This chip is fairly new and was released in early

November of 2016, because it is in its early infancy

and still in the development stage we have the

opportunity to be the first to jump into the market with

this specific chip. The Esp32 chip is recognized as one

of the most powerful chip on the market as of now.

This chip has two cores allowing us to run multiple

threads to do calculations, processing, Wi-Fi stacks

and run times. It has a high CPU clock speed in the

range of 160 to 240 Mega Hertz (MHZ). This high

clock speed allows the unit to keep a very precise

running time down to the 100th of sec. While most

controllers have a fixed memory/flash in the KB range

the ESP-32 chip has the ability to allow for

upgradeable flash up to 16MB, providing more than

enough storage for the program and possibilities to

expand on the code when needed. Apart from the chip

being relatively inexpensive it has WI-FI already

integrated into its small QFN package size of 6mm x

6mm. It has 32 GPIO pins and 12 ADC pins which

allows for a plethora of peripherals to connected and

controlled. The device is programmable in C++

language and will be using Eclipse and command

terminal to test and debug each system independently.

B. Trip Sensor (Beam Break circuit)

 To detect when a person crossing the finish line a

light source will be utilized to create a beam across the

finish line so when the runner breaks the beam a

detection circuit can recognize the break and send the

necessary information back to the user. This is a two-

part system that requires a transmitter being the light

source and the receiver being the microcontroller and

detection circuit. The Light source will be a laser

and/or IR LED to allow for range and easy setup. On

the receiver side a IR receiver and/or a LDR

(Photocell) will be used to detect the light source

completing the detection circuit.

Photocells can change their resistance on a molecular

level manipulating the flow of electrons. When light

rays emit a frequency of visible light on a photocell

the photons are absorbed by this semiconductor. This

absorption gives electrons the ability to break free

from its electron pair and enter the conduction band.

This free electron and hole that is left provides the

device with enough to reduce its resistivity and

conduct electricity.

 Looking at figure 3.3 you can see that Resistance vs

light sensitivity is not linear which makes it difficult

to use for accurate light readings. In our case

however, we only need to pass a certain threshold

measuring only extreme values e.g. Light present <

(threshold) || 0 = “Sensor has been tripped”. In order

to integrate this into the microcontroller to recognize

beam breaks a simple circuit divider will be used to

detect the analog voltage values. The formula for the

Voltage divider circuit is as follows

 R2 represents the LDR which acts like a variable

resistor based on how much light is present on the

sensor. The Vout is plugged into one of the 12 ESP-

32 Analog to Digital pins and uses an internal Op-

amp comparator circuit to compare its voltage divider

circuit with its REF voltage supplied by the power to

the microcontroller.

 IR is short for Infrared and can be defined as

infrared radiation in the electromagnetic spectrum

found between microwave and visual light raging

from 700nm to 100000nm in its wavelength. Typical

IR control systems work within the wavelength of

870nm and 950nm. In this part of the spectrum

Infrared is mainly invisible to human eyes. Thermal

radiation in room temperature gives of infrared light

that can only be seen through special camera’s that

come equipped with IR filters. Molecules that change

their rotational movement can either absorb or emit

infrared radiation of a certain frequency. These

Infrared systems are divided into two main categories

depending on the frequencies the light can produce or

receiver can pick up. The first and main category we

will use of IR’s are near infrared systems which has a

wavelength closest to the visible light spectrum

meaning the wavelength are very short compared to

the rest of the spectrum. These are your very

common IR that are inexpensive. One or more IR

sensors can be placed in pylon A and set our second

pylon B at a distance with a IR receiver inside to

create an invisible beam for our finish line. When a

runner passes by the two pylons it will disrupt or

break the beam notifying that someone has just

finished. These typically have a transmission range

of 1 to 3m. To increase the distance, we would need a

high power led light with very low angle of 10° and

use a photodiode with IR filter.

 During testing, we connected our LDR to the

Microcontroller and began to plot the points, varying

the different light levels hitting the sensor to see if it

was possible to get a readable data output. The results

are shown in graph above. This test was done in sun

light with sun at about 40 degrees above the horizon.

Light levels reaching the 4000 mark indicates that the

sensor is in complete darkness and light levels in the

0 range are saturated with full brightness from are

laser light source. From these results, we can see that

our average threshold is very low almost near 0 due

to the interference with the sun. The typical range is

from 300-800 without our light source. Two solutions

to help combat this problem and bring our threshold

up would be to first place our LDR sensor in a

enclosed tube and add an ir filter to help reduce the

suns exposure on the sensor. Second, it would be

beneficial duing the setup process before the race to

take the average reading from the sun with no laser

shining on it and a reading with the laser shining on it

to compare and create a new threshold before the race

is started.

C. Communications

 To allow for easy access for the user to receive

calculated vales such as race time and distance we

will use WIFI to wirelessly send information back to

the user’s smartphone or laptop.

0

2000

4000

6000

1

21 41 61 81

10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1Li

gh
t

Le
ve

ls

Data points

LDR

 Figure 6.1.2 shows the flow chart of wireless

communication between the phone and

microcontroller. To begin, the microcontroller will

have multiple access to the device through Wi-Fi.

The microcontroller acts as an access point and

accepts connections from devices that connect to it

through Wi-Fi. Starting at the bottom of the flow

chart, the user when set up at the start line and when

ready will pair with the microcontroller using Wi-Fi.

The user does not have to specifically connect due to

those conditions, they may pair based on their

preference of choice. Once the phone and

microcontroller are connected and the user hits start

the phone waits a random amount of time to send the

command wirelessly to the microcontroller. Once the

wireless message is received the microcontroller

decodes the message and starts the timer. When the

sprinter crosses over the finish line the MCU stops

the timer and records the time. This information is

then sent wirelessly back to the phone where the user

can view their times. As seen in figure 6.1.2, an early

goal was to allow connecting to the microcontroller

through either Bluetooth, or Wi-Fi, as both are built

onto the chip. Though since the esp32 is a relatively

recently released board, it’s libraries are still

somewhat in infancy, with the Bluetooth libraries

being too underdeveloped to be used in the context of

this design. The communications are mirrored here

since only one connection is needed, and they

accomplish the same tasks. There will be slight

downgrade in power consumption (with Wi-Fi

consuming more power), but an increase in effective

range (Wi-Fi having a longer effective range than

Bluetooth Low Energy).

D. Battery

 Since our project will be a standalone project a

battery is the center of the power distribution for the

system. Using a battery allows our project to be used

on the track or other racing surface at a moment’s

notice, that mobility is our goal for this project. An

important thing to note in this project is that there will

be two batteries, one in each pylon on each side of the

race finish line. The system in general is relatively low

power in each pylon so that allows us to get away with

a smaller battery which is to our liking.

The battery we will be using in each pylon are the

same so charging will be identical. The battery itself is

a Li-Ion 18500 Battery. The nominal voltage is 7.4V

with 1400mah. Important related measurements would

be its power at 10.36Wh, and its discharge current of

2A rate due to a poly-switch. The dimensions of 51mm

(2.0”) x 38.1mm (1.5”) x 19mm (0.75") allow us to fit

to the small pylons we plan to use. Also, it is relatively

light weight at 70.8 grams (2.5 oz).

E. Power Distribution

In each of the pylons there will be two linear

voltage regulators, one at 3.3V and the other at 5V. As

such both regulators will be buck regulators.

For the 3.3V voltage regulator, TPS82130 from

TI it has the following operating values and schematic

to fit our needs in our 3.3V rail for our device.

Table 1: 3.3V Regulator values

TPS82130 Value Description

Duty Cycle 46.20% Duty cycle

Efficiency 92.44% Steady state efficiency

IOUT_OP 1.1A Iout operating point

Pout 3.3 W Total output power

Total Pd 0.27 W Total Power Dissipation

Vout p-p 2.425mV
Peak-to-peak output ripple

voltage

Following is the schematic and the PCB layout for the

3.3V Regulator.

Figure 1: Schematic of 3.3V Regulator

Figure 2: PCB Design

 The PCB itself has two layers, with ample copper

planes our regulator should have little problem with

heat internally, as it fits snuggly into the pylons

 For the 5V Regulator, the TPS6307 from TI it has

the following operating values and schematic to fit our

needs in our 5V rail for our device.

Table 2: 5V Regulator values

TPS63070 Value Description

Duty

Cycle
10.28% Duty cycle

Efficiency 92.58% Steady state efficiency

IOUT_OP 1 Iout operating point

Pout 5 Total output power

Total Pd 0.40W Total Power Dissipation

Vout p-p 0.00135 V
Peak-to-peak output ripple

voltage

Following is the schematic and the PCB layout for the

5V Regulator.

Figure 3: Schematic for the 5V Regulator

Figure 4: PCB Design for 5V Regulator

The PCB itself has two layers, with ample copper

planes our regulator should have little problem with

heat internally, as it fits snuggly into the pylons.

F. Battery Charging

For our charger design our main goal is for there

to be an easy to use charging method for the two

pylons. Our project has a high probability to be stored

in a locker room or sporting equipment closet of some

sort. In this setting the two pylons need to have easy

access to get to the batteries in order to charge them.

For an easy charging solution we will use a smart

charger designed for batteries with a nominal voltage

of 7.4V. Simply put the battery charger is designed to

charge 7.4V Li-Ion/Polymer battery with capacity >=

1600mAh. The battery charger Automatically cut-off

power when battery pack is full at 8.4V. The status of

the battery charging is indicated with an LED.

Table : Charger Characteristics

For testing and backup charging we will simply

use an additional smart battery charger designed to

charge 7.4V Li-Ion/Polymer battery. This uses a basic

wall outlet, and gives the necessary 8.4VDC with 1.2

A of current. This will allow us to have a relatively

quick charge.

G. Microcontroller Programming

Figure G-1 – High-Level Microcontroller Programming Design

 Since the esp32 can run at a high clock speed, we

can meet our accuracy requirement when

programming the timing of the microcontroller. As

seen in figure G-1, the microcontroller programming

is broken into a handful of functions that call each

other in sequence. Since the microcontroller two tasks

are communicating with the android device and timing

a sprint, we can break the methods in a way to remove

the latency of the wireless communication affecting

timing. Since we need to manage a wireless

connection with the device as well, we’ll be passing

the TCP socket to send and receive data to and from

these functions. In our final implementation, we’ve

stuck to using the 802.11n WI-FI protocol and the TCP

transfer protocol to send data between the two devices.

Our main routine as shown in figure G-1 initializes

variables and establishes a wireless connection with

the android device using the 802.11n Wi-Fi protocol.

We chose to utilize the 802.11n wireless protocol as

it’s outdoor range can be approximated to about 250

meters, exceeding our requirements of a typical use

case where the user is likely 100-150 meters from the

microcontroller housing. Once the main routine has

initialized the wireless parameters the microcontroller

passes off control to the “sprintWait” routine.

 The “sprintWait” routine does as the function name

suggests: waits for a signal from the android device

requesting for a sprint to begin. The android device

must send over a request before the microcontroller

can begin timing. The routine does this by reading

from the TCP socket connecting the android APP to

the microcontroller program, continuing once a

specific sequence of bytes have been received

indicating a sprint request. Once a request has been

received, we pass off the request (which contains some

sprint information such as warmup and timeout times)

to the sprint function, where the timing happens.

 All the sprint timing is handled on the

microcontroller. Once the microcontroller receives a

signal, we use the LED and speaker to signify the user

of when to start sprinting this is shown in the android

UI as well as to prevent users from starting too early.

The sprint functions main timing method is by reading

from the real-time clock of the microcontroller as the

beam breaks. Once the speaker and LED signals are

sent to indicate to the user to begin sprinting, we use a

function call that converts clock cycles to real time and

capture the time as the user crosses the finish line. To

optimize timing accuracy, we’ll be running the esp32

microcontroller at the clock speed of 240 MHz. The

esp32s clock is more than capable of timing to 0.01

seconds of accuracy. In testing, we’ve found our

timing method to be far below 0.01 seconds of error,

we know this due to every cycle we capture a time, the

delta in time from 1 cycle to another is no longer than

2 ms.

 Once we’ve completed the sprint, we pass the sprint

data to “sprintComplete”, which is the function that

handles sending the finished time to the android device

to store and show to the user. While simple, this design

of using function calls to pass data relevant to the

sprint and TCP connection allows the development of

the microcontroller software to be iterative and allow

for easy debugging in case issues arise.

H. Android Application Programming

 The Android application is the primary way in which

the user is going to be interacting with the design,

through its GUI, or graphical user interface. This

interface must prioritize ease of use by showing as

much necessary information as possible while

minimizing the number of screens the user needs to

navigate. The application must also display to the user

after they’ve sent a sprint instructions on to wait for

Input Voltage
 100 -240VAC 50/60Hz / US AC

power plug

Output Voltage 8.4VDC

1.2A

Charge time = (Ah rate of the pack x

1.5) / 1.2A charge current

Protection
 Reverse Polarity and over charge

protection

Red - Charging

Green - Fully charged

Dim Green/no LED - you are trying to

charge a fully charged battery.

Dimension

(LxWxH)

 88mm(3.5") x 52mm(2.0") x

30mm(1.2")

Weight 4.9Oz (139grams)

Charging Current

LED Indicator

Charger Characteristics

the signal from the main device, as well as their time

at the completion of their sprint. With these key

functionalities in mind, we’ve broken the android

application into three subsections: Connecting to the

microcontroller, sending a sprint, displaying a sprint.

 Since the microcontroller is behaving as an access

point in the connection between the 2 devices, the user

can simply connect to the microcontroller from their

system settings. The app must however keep track of

its port and the socket connecting the microcontroller

to the application through the TCP protocol. Besides

the LED and speaker connected to the microcontroller,

the app is the only way the user gets information

relevant to the state of the system. The app must

provide any information that isn’t clear from the I/O

devices attached to the microcontroller.

 Upon requesting a sprint, the app displays

instructions for the user to get ready during the

warmup phase and “go” on the LED changing color

and speaker sounding. Upon completing a sprint, the

app displays the finishing time of the user’s sprint.

While this isn’t much functionality we have to be

careful as to make the workflow easiest to understand

for the user as possible.

III. SCHEMATICS

Microcontroller

 The picture above represents part 1 of 2 of the full

Microcontroller board. The main components for the

ESP-32 contains Two clocks at 32MHZ and an

external 26MHZ in case we would like to run a

backup clock to keep track of peripherals. The rest of

the components are a few capacitors, resistors and

Flash to store variables and a compiled program.

These are all the components needed to run the

microcontroller at a bare minimum keeping the cost

significantly low.

The figure above is part 2of 2 of the microcontroller

board and is compartmentalized into 4 subsections

listed above. An onboard regulator is used for when

we debug the board and use external power sources.

The FTDI will be used to program the board through

USB, but once the proper firmware is flashed to the

device it will be able to receive programs over the

Air (OTA). Two buttons used to pull both the GPIO0

pin and the EN pin to ground to boot into the

programming flash mode. JST connecters are for

battery and contain are voltage divider circuit for

reading the Analog voltage of the LDR.

Line laser/LDR circuit

The picture represents the LDR trip circuit using the

voltage divider

IV. BUILD DESIGN

The whole

assembly is

separated into

5 separate

pieces as of

now making all

the electronics

easily

accessible for

modifications

and updates.

Balloon one is

the top cover

that snaps on

two part 2.

Balloon 1’s

purpose is to protect the electronics from any weather

conditions that can affect operation, such as rain

snow, wind, and the sun’s rays. Balloon 2 is where

the trip sensor LDR is housed. The LDR is recessed

in to the housing to minimize the amount of sun rays

that can enter. The sun’s rays like the laser is also a

source of light that can essentially affect the results

from the LDR which is why we try to minimize the

amount of sun rays from the cavity to allow the laser

beam to produce most of the light source so we can

establish a trip sensor for the system. This part of the

assembly is also where the electronics for the main

speaker is housed to provide an acoustic signal for

when the race begins and ends. Balloon 3 is not 3D

printed but is an acrylic piece to house the led

lighting. This is to provide a visual que to the user to

show when the laser is aligned and ready to start the

race. It also shows the user when the race begins and

when the race is finished. We will use a laser cutter

to create a circular ring that can be placed directly on

top of the Led ring circuit. The acrylic will also be

sanded to make the light diffuse through the acrylic,

making it easier for the user to see. Balloon 4 is the

main body of the housing. This part of the assembly

is where the main microcontroller is housed. This is

where all the wires are routed from external circuits

to the main MCU. This part also serves as the

housing for the power and circuitry that must be

distributed to all the other subsystems. Balloon 5 is

the bottom cap that closes everything in from the

bottom of the housing thus keeping all of the

elements from destroying the internal components.

Figure 6.4.1 (4) below is an exploded view to help

the reader visually understand the different parts of

the housing more in depth and visually see the

construction assembly of the product.

V. Conclusion

 The main goal of this project is to create a system

that allows for an athlete to practice and compete in

his/her track related events. With a combination of

hardware in the finish line pylons and software

communication through a mobile phone app, the user

and other athletes should be able to use this project to

practice and improve in race related events.

Separating this project into multiple subsystems

allowed the design and testing to be done in smaller

chunks. Choosing a microcontroller that can integrate

these subsystems was key to the success of the

project. With our choice of microcontroller, it

covered the need for wireless communications in the

project through Wi-Fi. The high clock rate also

covered the challenging task of timing accuracy. The

microcontroller will communicate with an audio,

LED and laser subsystems while wirelessly

communicating with a smartphone app. The project

plans on being easily used and mobile so as far as the

power system goes battery is the only option, which

will lead to needing two batteries (one for each

pylon). The power distribution system following will

include two voltage regulators making two rails of

3.3V and 5V rails. With all these subsystems working

together and a minor aligning our project is ready for

use.

 This project also shows the group's design

capabilities utilizing the tools taught through UCF's

engineering program. This project expanded the

group's engineering toolbox by forcing the group to

learn new real world applications. Learning Eagle

cad software and learning how to design and create

PCB's will be an added benefit in future careers.

Testing and troubleshooting real world design issues

as a group also creates another invaluable skill set

that can be used throughout the group's future career.

The manipulating of the multiple deadlines,

meetings, reports, and the need to achieve success in

the prototyping of the project has given this group a

small “taste” of the career that we have chosen.

VI. References

1. Bates, Mathew. "Build Your Own Induction

Charger." Nuts and Volts Magazine. N.p., n.d. Web.

05 Dec. 2016.

2. "WEBENCH® Design Center." End-to-end

Custom Circuit Designs | WEBENCH® Tools |

TI.com. Texas Instraments, n.d. Web. 05 Dec. 2016.

3. "Android 7.0 Nougat!" Android Developers. N.p.,

n.d. Web. 05 Dec. 2016.

4. "ESP32 Programming Guide¶." ESP32

Programming Guide — ESP32 Programming Guide

1.0 Documentation. N.p., n.d. Web. 05 Dec. 2016.

5. "LED Application Notes - LED Basics"

.theledlight Web 05 Dec 2016

6. @atlasRFIDstore. "RFID 101: The Definition and

Basics of RFID Technology." RFID Insider. N.p.,

2013. Web. 05 Dec. 2016.

7. Burgess, Phillip. "Adafruit NeoPixel Überguide".

Web 05 Dec 2016.

8."Photo Resistor - Light Dependent Resistor (LDR)

» Resistor Guide." Light Dependent Resistor (LDR) »

Resistor Guide. N.p., n.d. Web. 05 Dec. 2016.

9.Espressif. "Espressif/arduino-esp32." GitHub. N.p.,

2016. Web. 05 Dec. 2016.

10."SparkFun ESP32 Thing." Learn at SparkFun

Electronics. N.p., n.d. Web. 05 Dec. 2016. reference

11."Light Dependent Resistor, Photoresistor, or

Photocell." Light Dependent Resistor LDR |

Photoresistor | Radio-Electronics.com. N.p., n.d.

Web. 05 Dec. 2016.

12.LDR Light resistor. (n.d.). Retrieved March 28,

2017, from http://www.antonine-

education.co.uk/Image_library/Physics_1/Electricity/

LDR_86.JPG

	Portable Finish Line Data Capture System for Sprinters
	College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816 U.S.A.
	Abstract — The goal of this project is to bring the timing accuracy of digital capture systems to practice for sprinters of all skill levels to improve timing accuracy over analog methods during training, while keeping costs low to be marketed towards...
	Index Terms — microcontroller, LDR sensor, 802.11n, GUI, TCP, Socket
	I. Introduction
	II. System Components
	III. Schematics
	IV. Build design

