Group 29 CREOL UV/VIS Spectrophotometer`

$\bullet \bullet \bullet$

Group 29 CREOL Josh Beharry - PhE Sean Pope - EE (Bio) Jimmy Vallejo - EE Evan Zaldivar - CpE

1

Motivation

- Answers the question "How much protein or DNA is in my sample?"
- Asked many times during a project, often between every step
- Many labs require several devices for parallel workflows
 - May not all need high accuracy
 - Cheaper options may be preferred
- Accuracy, usability, and cost all important
- Lab time is lost using and processing spectrometer data
- Create low-cost, decent accuracy device with excellent usability

Market Comparisons

Name	SmartSpec Plus	NanoDrop One	Cary 60
Manufacturer	Bio-Rad	Thermo Scientific	Agilent
Accuracy	±0.01 AU	±0.002 AU	±0.01 AU
Interface	RS-232, 2x24 LCD	Touch-screen, USB, Wi-Fi	PC only
Price (\$)	\$1,500	\$12,000	\$600

Specifications

- Fully standalone device, only requires wall outlet
- Low cost, < \$2000 retail
- Output detection sensitive to within 0.1 AU
- Spectral range: 200 800 nm
- Wavelength accuracy: < 10 nm
- Weight: < 30 pounds
- Form factor: less than 2 ft. x 2 ft.

Block Diagram

Color	Primary	Secondary
	Josh Beharry	Sean Pope
	Sean Pope	Jimmy Vallejo
Ĵ.	Jimmy Vallejo	Evan Zaldivar
	Evan Zaldivar	Josh Beharry

POWER SUPPLY

QUANS: 110V to 12V DC, 5A, 60W

Transformer 120V to 12V DC, 1A

QUANS TRANSFORMER

- Transformer is removed
- Bridge rectifier no longer needed
- Reduces the amount of rails
- Remove fuses
- ✤ LED
- ✤ Less Filter Capacitors needed
- Reduces Cost

New Price

Old Price

QUANS Transformer	\$ 16.89	Transformer	\$ 12.80
LM 7805 CT	\$ 1.12	LM 7805 CT	\$ 1.12
			\$ 1.81
	ֆ 1.46	LM 7912 CT	\$ 2.27
IRF 3205	\$ 0.36	LM 1117 CT	\$ 1.46
Blow Fuse 2A	\$ 2.00	IRF 3205	\$ 0.36
Blow Fuse 5A	\$ 1.00	Bridge Rectifier	\$ 4.99
	(())))))))))))))))))	Blow Fuse 2A	\$ 4.00
	\$ 22.83	Blow Fuse 5A	\$ 3.00
		Total	\$ 31.81

TOTAL PRICE REDUCTION: \$8.98

RAILS

- > 12 volts to supply light source
- > 12 volts for fan, Keypad
- 5 volts supply LCD, Backlight, and Sensor Amp
- 3.3 volts is used to supply the Microcontroller, Sensor, and LCD
- -12 volt could be used to supply Sensor Amp, and initially used for Light source
- Could be removed if redesigned

	Linear	Switching	
Function	Only steps down (input voltage must be output Voltage)	Steps up and down	LINEAR Regulators
<u>Efficiency</u>	High if input to output voltage is small	High, except at low loads due to switching	3.3V Linear Regulator
<u>Waste Heat</u>	High if input to output voltage is small	Low	 High, Efficiency (3.3V/5V = .66) Low, Power Waste ((5V-3.3V)*800mA = 1.36W)
Complexity	Low only requires low value bypass capacitors	High, requires multiple components	 No Ripple 5V Linear Regulator Medium Efficiency (5V/12V =
Size	Small but larger if heat sink needed	Large at low power, but smaller when linear requires heat sink	.45) • High, Power Waste ((12V-5V)*(1A) = 7W) • Add Heat Sink
Total Cost	Low	High, due to extra components	Low Noise/No Ripple
<u>Ripple/Noise</u>	Low, no ripple, low noise	High, due to ripple switching	

POWER MOSFET IRF 3205

- N-Channel Mosfet
- 55v, 110A to 220
- Rds(on) = 8m ohms
- Usually 20% more Rds(on) = 9.6m ohms
- Vgs(th) = 2 to 4 volts \rightarrow on

- 4x4 matrix keypad\$16.95
- □ Length 2.6 inches
- □ Height 2.9 inches
- □ Width 0.4 inches

- □ Scorpius-22
- **□** \$59.95
- □ Length 4.3 inches
- □ Height 3 inches
- □ Width 0.5 inches

ENCLOSURE

- I. Height = 4 inches
- II. Length = 14 inches
- III. Width = 13 inches
- IV. 3D Printed
- v. \$15.00

- I. Tool Box
- II. Height = 5 inches
- III. Length = 12.5 inches
- IV. Width = 7 inches
- V. \$6.88

Optics Overview

- The guts of the spectrometer
- Main Components
 - Light source
 - Diffraction grating
 - Concave mirrors
 - CCD detector
- Spectrometer Configuration

Optics: Light Source

Tungsten & Deuterium Lamps

Xenon Lamp

Requires two-source manipulation

Longer lifetime than other lamps

Can cover the UV-VIS range

Selection: BulbAmerica H7 - 55 W, 12 V

Optics: Concave mirrors

• ThorLabs CM254-075-F01

• 1 inch diameter

• Focal length: 75 mm

• UV-Enhanced Aluminum

Optics: Diffraction Grating

• ThorLabs GR25-0305

• Size: 25 mm x 25 mm x 6 mm

• Central wavelength: 500 nm

• Groove frequency: 300 grooves per mm

Optics: CCD Detector

- Toshiba TCD1304AP
- 3648 pixels
- Pixel size of 8 μm x 200 μm
- 3.3 V operating voltage
- CCD detectors are state-of-the-art

Spectrometer Configuration

- Folded Czerny-Turner
- Compact design
- Stray light problems
- For low to medium resolution applications

- Unfolded Czerny-Turner
- Alleviate stray light
- Reduce optical noise
- Space not an issue

Microcontroller Selections

- Main difference:
 - Coding environment
- More familiar with TI products.

MSP430F5529 Launchpad Image Courtesy of TI

	GPIO	ADC	CPU	RAM (bytes)
ATxmega64A1U	78	12 bit	8 bit	4k
MSP430F5514	47	Slope - 2 bit	16 bit	6k
MSP430F5528	47	12 bit	16 bit	8k

LCD

- Kentec QVGA Display
 - 4-Wire SPI connection
 - 320x240 Resolution
 - Small but inexpensive
 - Easily compatible with Launch Pad

Image Courtesy of TI

- Graphics Library within Code Composer Studio
- o **\$24.99**

Display Design

Spy-Bi-Wire

- 2 Wire version of JTAG
 - Simpler, but slower
 - Uses less PINS
 - Backup in case USB doesn't load up automatically
 - Support for code emulation and debugging

SBW Diagram from TI

Software

- Written in C through Code Composer Studio
- Will generate a graph/table
 - Given data from the tests
- Create display
 - Graphics Library within Code Composer Studio
- Will have functional Keypad used to navigate the LCD

Use Case Diagram

Sensor Processing

- CCD signal must be buffered and ranged
- Signal rides on a large DC offset (2.3VDC @ 3.3V supply)
 - \circ Varies with sensor, measured from one of ours
- Saturation reduces DC level to 0.5V
- Atypical output, continuous data level
- No reference level for correlated double sampling
- 400kHz data rate
- ADC sample and hold averages pixels

Sensor Amplifier

- TL084 Texas Instruments Quad op-amp
- \$0.14 for quad vs \$0.22 for dual amp
- Unity gain buffer for input, high input impedance
- Inverting gain/offset stage
- Trimmed gain/offset for sensor differences

Sensor Driving

- Requires master clock for data rate
- Integration clear input to reset pixel exposure
- Shift gate input to control integration time
- Misleading datasheet for timing requirements
 - \circ Listed ½ data rate for shift period, should be full rate

Timing parameters from MCU

Spectrum Calibration

Schematic

PCB

Research and Development

- Multiple redesigns for feasibility/cost
 - Array detector instead of scanning monochromator
 - MSP430F5528 instead of MSP430F5529 for cost
 - Digital correlated double sampling instead of dual slope integrator for cost
 - High-wattage PSU for cheaper wideband light source
- UV light difficult to manage and measure
 - CCD likely has low UV response, but high response is expensive
 - Xenon bulbs often coated to prevent UV exposure
 - Oxygen absorbs some UV light
- Surface-mount MCU is difficult to work with
 - \circ BGA and QFN packages only, hard to assess quality
- Optics can be very expensive
 - Mounts cost more than mirrors

Estimated and Final Costs

Component	Estimate	Actual	
Microcontroller	\$10	\$4	
LCD and Keypad	\$200	\$35	
Motherboard	\$50	\$10	
Optics	\$1500	\$227	
Power supply	\$30	\$25	
Enclosure	\$20	\$20*	*Projected
Totals	\$1810	\$321	

Current Progress

Prototype Progress

