

Home Hydroponic System Senior Design Spring 2017 Group 18

Group Members:

Joshua Casserino Richard Charmbury Alexander Costello Ernest Inman | Computer Engineering - Document Manager
| Electrical Engineering - Budget Manager
| Computer Engineering - Component Manager
| Electrical Engineering - Project Manager

Administration

User Interface

Administration

Website

Database

App

Introduction

Current Hydroponic Systems

System Break Down

Introduction

Motivation

► Project Description

User Interface

Administration

Project Description

- To create a home hydroponic system
 - \circ Easy to use
 - $\circ~$ Fits in a usual home
 - \circ Can be easily moved

Current Hydroponic Systems

System Break Down

Introduction

Motivation

Project Description

User Interface

Administration

Motivation

- Make the growing of home produce easier
- Aid individuals to become more independent
- Aid in a healthier lifestyle
- Help lower the current waste of the modern farming practices
- Help make the growing of personal produce more affordable

Introduction

Motivation

Project Description

User Interface

Administration

► Current Hydroponic Systems

System Break Down

Current Hydroponic Systems

- Issues with current hydroponic systems
- Too large for household use
- Stationary

Introduction

Motivation

Project Description

User Interface

Administration

► Current Hydroponic Systems

Home Hydroponic

System

Current Hydroponic Systems
Member Work break down
System Break Down

Introduction Project Description Motivation

User Interface Administration

System Break Down

Current Hydroponic Systems

- Issues with current hydroponic systems
- Too complicated for a beginner

Home Hydroponic System

Introduction

System Break Down

Requirements/Specifications
 Main Schematic
 Microcontroller Selection

PCBs

- Master
- Slave
- Power-supply
- MCU Code Flow Chart
- User Interface
- Administration

Requirement and Specifications of Hydroponic System

Requirement Specification	Value
Reservoir Capacity	5 Gallons
Power Supply	120V AC to 12/5/3.3 Volts DC
LED Array	6000 Lumens per Square Foot
pH Sensor	0 - 14 pH Reading w 0.1 Increment Accuracy
TDS Sensor	Accurate to Within 20 (S/m)
Light Sensor	Up to 188 uLux Sensitivity I2C Interface
Water Level Sensor	0 - 8 Inches w 0.1 Increment Accuracy
Microprocessor Speed	16 MHz 8-bit
Peristaltic Pumps	0 – 100 (mL / min)
Wi-Fi Data Connection Rate	Once per 5 minutes

Microcontroller Selection

Microcontrollers			
Manufacturer	TI	Atmel	Atmel
Part Number	MSP430G2553	ATmega328P	ATmega2560
SRAM	0.5 kB	2 kB	8 kB
Flash Memory	16 kB	32 kB	256 kB
Clock Speed	16 MHz	16 MHz	16 MHz
Number I/O Pins	24	32	54
Cost	\$5.55	\$1.55	\$9.99

Introduction

System Break Down

- Requirements/Specifications
- ► Microcontroller Selection

PCBs

- Master
- Slave
- Power-supply
- MCU Code Flow Chart
- User Interface
- Administration

PCB

Master/Slave Configuration

Introduction

System Break Down

Requirements/Specifications Microcontroller Selection

► PCBs

- Master
- Slave
- Power-supply
- MCU Code Flow Chart
- User Interface
- Administration

PCB

System Break Down

Requirements/Specifications Microcontroller Selection

► PCBs

Master

Introduction

- Slave
- Power-supply
- MCU Code Flow Chart
- User Interface
- Administration

REVD Home Hydroponics Change the color (no Black)

Master / Lighting System

- Purpose of the lighting control
 - Save energy
 - $\circ~$ Control how long the plants receive lighting
 - Monitor light intensity the plants receive
 - $\circ~$ Control intensity of light emitted through dimming circuit

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic
- Microcontroller Selection
- PCBs
- ► Master
 - Slave
- Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Master / Lighting System Light Sensor

Requirements/Specifications

System Break Down

Main Schematic

Introduction

- Microcontroller Selection
- PCBs
- ► Master
- Slave
- Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

The light sensor needs to perform the following:

- Read intensity of light
- Distinguish between Sunlight and artificial light
- Efficiently help control artificial lights

The 2 sensors that were considered:

- The Adafruit GA1A12S202
- The Adafruit TSL 2561

Master / Lighting System Light Sensor

The GA1A12S202

- Low power consumption 3.3mW
- Analog Output easy to control with code
- Dynamic reading range between 3 to 55,000 LUX
- Can be used indoors or outdoors
- Cost is \$3.95

The TSL 2561

- Low power .75mW
- 16 bit output and can utilize I^2C saves pins
- Reads lumens/lux, full spectrum, infrared, and visible light
- Cost \$5.95

TSL 2561 was chosen

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic
- Microcontroller Selection
- PCBs
- ► Master
- Slave
- Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply MCU Code Flow Chart

User Interface

Administration

PCBs

► Master

Slave

Master / Lighting System Dimming control

Options to control lighting intensity

- MCP4131 Analog to Digital Integrated Circuit
- Op amps

Analog to Digital IC

- Small footprint
- Power efficient .025 A

Op amp Circuit

- Utilizes low efficient resistors
- Not power efficient .7 A
- Need an LED driver to provide constant current

The Analog to digital IC was utilized

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply MCU Code Flow Chart

User Interface

Administration

PCBs

Master Slave

Master / Lighting System Dimming control

LED Dimmer Control

- Using the digital to analog converter allowed us to have full control
- Low power 25mA
- The MCU will receive information from sensor and decide the setting
- 128 bits can be utilizes to control the brightness of the lights

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply

User Interface

Administration

MCU Code Flow Chart

PCBs ► Master Slave

Master / Lighting System Digital Potentiometer – Digital to Analog Converter

Master / Lighting System Light Sensor & Dimmer Testing

Testing Lighting for

- Sensitivity of light sensor
- How to distinguish between sunlight and artificial lighting
- Distance the sensor needs to be from lighting

Results

- We found the sensor to be very sensitive
- Needs to be 7 inches from the LED array
- The sensor will provide full spectrum readings
- LED does not produce full spectrum

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic
- Microcontroller Selection
- PCBs
- ► Master
- Slave
- Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Home Hydroponic System

Master / Water Treatment System Pump Control

Options to control pumps considered

Mechanical Relays Transistor Circuit control

Mechanical Relays Easy to Control Easy to implement Not Power efficient Caused problems with MCU

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic
- Microcontroller Selection
- PCBs
- ► Master
- Slave
- Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply MCU Code Flow Chart

User Interface

Administration

PCBs

Master Slave

Home Hydroponic System

Master / Water Treatment System Pump Control

Transistor Circuit control

Utilizing BJT and Diode circuit power efficient

Small footprint

Efficient coding

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic
- Microcontroller Selection
- PCBs
- ► Master
- Slave
- Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Master / Water Treatment System

Transistor Array to Control Peristaltic pH and TDS Pumps

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply MCU Code Flow Chart

User Interface

Administration

PCBs

Master Slave

Master / Water Treatment System pH Subsystem Add a comparison

- pH Sensor
 - Monitors solutions for proper pH
- Peristaltic Pumps
 - $\circ~$ Raise pH Levels to Required pH of Plants
 - Lower pH Levels to Required pH of Plants
- EZO pH Module Circuit
 - Converts the measurements to useable data

Master / Water Treatment System pH Subsystem – pH Sensor Add a comparison

- Female BNC Connector to EZO pH Module Circuit
- Fully Submergible up to BNC Connector
- Proper pH for Optimal Nutrient Absorption
- Generates a Analog Voltage that Corresponds to pH

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic

Microcontroller Selection

PCBs

- ► Master
- Slave
- Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply

User Interface

Administration

MCU Code Flow Chart

PCBs ►Master

Slave

Home Hydroponic System

Master / Water Treatment System pH Subsystem – pH Peristaltic Pumps Add a comparison

- 2 Pumps One Each for pH+ & pH-
- 12 Volts DC Operation
- 80 mA Operating Current
- 0 100 (mL / minute) Flow Rate
- Silicone Tubing
 - 4mm Outer Diameter
 - o 2mm Inner Diameter

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply MCU Code Flow Chart

User Interface

Administration

PCBs ▶Master

Slave

Master / Water Treatment System TDS Subsystem Add a comparison

- TDS Sensor
 - Monitors solutions for proper nutrients
- Peristaltic Pumps
 - 1 Pump for Growth Nutrients
 - 1 Pump for Flowering Nutrients
- EZO TDS Module Circuit
 - Converts the measurements to useable data

Master / Water Treatment System TDS Sensor Add a comparison

- Female BNC Connector to EZO TDS Module Circuit
- Fully Submergible up to BNC Connector
- Reads Nutrients in Solution by Reading Total Dissolved Solids in Solution
- Generates a Analog Voltage that Corresponds to TDS

Introduction

- System Break Down
 - Requirements/Specifications
 - Main Schematic
 - Microcontroller Selection
 - PCBs
 - ► Master
 - Slave
 - Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply MCU Code Flow Chart

User Interface

Administration

PCBs

Master Slave

Master / Water Treatment System TDS Peristaltic Pumps

- 2 Pumps for Growth and Flowering Nutrients
- 12 Volts DC Operation
- 80 mA Operating Current
- 0 100 (mL / minute) Flow Rate
- Silicone Tubing
 - o 4mm Outer Diameter
 - o 2mm Inner Diameter

Requirements/Specifications

Master / Water Tank Subsystem

Reservoir Tank

- Dark / Light Blocking Water-Proof Container
- Contain a Minimum of 2 Gallons* of Liquid
- eTape Water Level Sensor
- Continuous Water Pump for Nutrient Circulation
- Continuous Air Pump w Air Stone

Microcontroller Selection PCBs

Main Schematic

Introduction

- Master
- Slave
- Power-supply
- MCU Code Flow Chart
- User Interface
- Administration

Master / Water Tank Subsystem

Water Sensor

- eTape Continuous Liquid Sensor
 - 8" eTape
 - Resistive Analog Output
 - 1500 Ω (Empty Reading)
 - 400 Ω (Full Reading)
 - Accuracy to 0.01 Inch
 - o 0.5 W Power Rating
 - Actuation Depth: Nominal 1 Inch
 - Temperature Range 15 ° to 140° F

Introduction

- System Break Down
 - Requirements/Specifications
 - Main Schematic
 - Microcontroller Selection
 - PCBs
 - ► Master
 - Slave
 - Power-supply
- MCU Code Flow Chart
- **User Interface**
- Administration

Slave / LCD Screen

• We wanted a way to see data without having to look online

Adafruit 16x2 character LCD

Introduction System Break Down

- Requirements/Specifications
- Main Schematic
- Microcontroller Selection
- PCBs
- Master
- ► Slave
- Power-supply MCU Code Flow Chart User Interface Administration

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

Power-supply

User Interface

Administration

MCU Code Flow Chart

PCBs

► Slave

Master

Slave / LCD Screen

Pros

- Small LCD display doesn't use much space
- Cheap (~\$10)
- Besides power and ground, only uses 5 Arduino pins.

Cons

- ns
 - Not touchscreen
 - Only one color
 - Manual contrast adjustment via potentiometer

Slave / LCD Screen Specifications

- 5v Power and Logic sections
- Standard HD44780 controller/driver
- 0.9" x 2.7" Screen (24mm x 69mm)
- 1.4" x 3.2" x 0.04" PCB (36mm x 80.6mm x 1mm)

Introduction

- System Break Down
 - Requirements/Specifications
 - Main Schematic
 - Microcontroller Selection
 - PCBs
 - Master
 - ► Slave
- Power-supply MCU Code Flow Chart User Interface
- User Interface
- Administration

Microcontroller Selection

Requirements/Specifications

Slave / WiFi Module

Adafruit HUZZAH ESP8266 Breakout

ESP8266-12f Module

► Slave

Master

PCBs

Introduction

Main Schematic

Power-supply MCU Code Flow Chart User Interface Administration

Slave / WiFi Module

- Requirements/Specifications Main Schematic
- Microcontroller Selection

System Break Down

- PCBs
- Master

Introduction

- ► Slave
- Power-supply MCU Code Flow Chart User Interface Administration

- Can function as both client and access point
- 802.11 g/b/n functionality
- 3.3v Power and Logic
- Arduino IDE libraries

Slave / Wireless Communications

- Options
 - WiFi
 - o Bluetooth
 - Why we chose WiFi
 - **o** Using Bluetooth would require close proximity when using the app
 - We wanted our data available online

Introduction

- System Break Down
 - Requirements/Specifications
 - Main Schematic
 - Microcontroller Selection
 - PCBs
 - Master
 - ► Slave
- Power-supply MCU Code Flow Chart User Interface
- Administration

Home Hydroponic System

Power Supply

System needs

- The total power needs of the system is about 2.0 watts
- Total current needs is about <u>1 amp</u>

Component	Current (ampere)	Voltage (Vdc)	Power (Watts)
MCU	0.05	5	0.25
pH sensor	0.018	5	0.092
TDS sensor	0.023	5	0.113
Control pumps	0.08	12	0.96
Voltage isolation	0.2	5	0.001
Data isolation	0.008	5	0.038
WiFi	0.5	3.3	0.0017
Light sensor	0.0004	5	0.002
DigiPot	0.025	5	0.138
LCD	0.07	5	0.035
Total	0.9744		1.6307

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic
- Microcontroller Selection
- PCBs
 - Master
 - Slave
- ► Power-supply MCU Code Flow Chart
- User Interface
- Administration

Microcontroller Selection

Requirements/Specifications

Introduction

Main Schematic

► Power-supply

User Interface

Administration

MCU Code Flow Chart

PCBs

Master Slave

Power Supply / System Design

Subsystem Current Needs (ampere)		
12 V	5.0 V	3.3 V
0.08	0.3944	0.5

Knowing the current needs of each subsystem we compared regulators Two options considered:

- Linear
 - Good for low power systems
 - \circ Low noise
 - Inexpensive Cost \$0.60
- Switching
 - Slower switching speeds
 - $\circ~$ Creates noise that would need to be filtered out
 - Cost around \$ 2.00

Home Hydroponic System

Introduction

System Break Down

- Requirements/Specifications
- Main Schematic
- **Microcontroller Selection**
- PCBs
 - Master
- Slave
- ► Power-supply MCU Code Flow Chart User Interface Administration

Power Supply / System Design Add final view of board

MCU Code Flow Chart

Introduction System Break Down

► Requirements/Specifications

User Interface Flowchart

Introduction

User Interface

Administration

Website App

Database

Requirements and Specifications

The Home Hydroponics system's user interface requires:

- Multi-user access
 - Able to update user settings from the App or Website
- Able to alert the user when the system needs maintenance

Requirements and Specifications

Languages used;

- Programming
 - \circ Javascript
 - o Java (Android Studio)
 - \circ **PHP**
 - C/C++ (Arduino IDE)
- Markup
 - o CSS
 - o **HTML**
- Database Management
 - MySQL

System Break Down

User Interface

Introduction

- Requirements/Specifications
 Website
- Арр
- Database
- User Interface Flowchart
- Administration

F CEN7

App Flow Chart

System Break Down User Interface

Requirements/Specifications Website

►App

Database

Introduction

User Interface Flowchart

Administration

Home Hydroponic System

46 7 11:49

Introduction **App Screen Flow** System Break Down ⁴⁶ 7 11:48 ⁴⁶ 7 11:49 **User Interface** Home Hydroponics System W Home Equipment History Requirements/Specifications Website Garage System ► App Garage System INFO Equipment ID: 0001 Database 2017-02-11 15:46:47 Username pH: 6.82 Lux: 28309 **User Interface Flowchart** pH: 9.00 TDS: -7 2017-02-09 15:49:17 TDS: 845 Water Level: 3.00 Administration Lux: 9090 0002 2016-01-30 23:59:00 Password INFO Equipment ID: 0002 pH: 6.82 TDS: 845 pH: 7.50 Lux: 31876 Water Level: 3.00 Lux: 28309 TDS: 829 2017-02-09 06:16:14 2016-01-30 23:52:00 LOGIN 0003 pH: 6.55 TDS: 788 Water Level: 3.00 Equipment ID: 0003 Lux: 30888 INFO pH: 7.29 Lux: 28846 2016-01-30 23:50:00 TDS: 832 2017-02-09 06:16:53 Haven't registered yet? pH: 7.38 TDS: 870 Water Level: 3.00 0004 Lux: 29468 NEW USER REGISTRATION 2016-01-30 23:44:00 Equipment ID: 0004 INFO pH: 7.64 TDS: 881 pH: 7.24 Lux: 29442 Water Level: 3.00 Lux: 30580 2017-02-09 14:09:02 TDS: 748 2016-01-30 23:34:00 0007 pH: 6.72 TDS: 798 Equipment ID: 0007 INFO Water Level: 3.00 Lux: 27927 pH: 7.87 Lux: 30903 2016-01-30 23:26:00 TDS: 867 2017-02-09 06:40:04 ~~~~ \triangleleft Ο \triangleleft Ο \triangleleft Ο

Introduction **App Screen Flow** System Break Down 46 7 11:49 **User Interface** Equipment ID Management Requirements/Specifications Website ► App Database ADD Enter Equipment ID User Interface Flowchart Administration Garage System DELETE •

 \triangleleft

Requirements/Specifications

Introduction

User Interface

Website

Database / Break Down

🔽 🐟 id587274_homehydroponicsystem equi	ipmentid 🔽 💿 id587274_homehydroponicsystem users
userName : varchar(16)	userName : varchar(16)
🛿 equipmentID : varchar(4)	userPassword : varchar(16)
# currentTDS : int(11)	🔽 👝 id587274_homehydroponicsystem presets
# currentPH : decimal(4,2)	👔 plantType : varchar(255)
# currentLUX : int(11)	<pre># settingTdsHigh : int(11)</pre>
currentWaterLevel : decimal(4,2)	# settingTdsLow : int(11)
<pre># settingTdsHigh : int(11)</pre>	# settingPhHigh : decimal(5,3)
<pre># settingTdsLow : int(11)</pre>	<pre># settingPhLow : decimal(5,3)</pre>
# settingPhHigh : decimal(4,2)	lightOnTime : time
# settingPhLow : decimal(4,2)	lightOffTime : time
# counterTDS : int(11)	# flowering : tinyint(1)
# counterPHUp : int(11)	id587274_homehydroponicsystem equipmenthis
counterPHDown : int(11)	<pre>a oguipmontID : varshar(4)</pre>
counterFlowering : int(11)	TDS : int(11)
🗉 lightOnTime : time	# TDS . Int(TT)
🗉 lightOffTime : time	# PH : decimal(4,2)
# led : tinyint(1)	# LOA : Int(11) # Meterl evel: desimpl(4.2)
# flowering : tinyint(1)	<pre># vvalerLever. decimal(4,2)</pre>
currentTimestamp : datetime	The stamp . dateume
nickname : varchar(16)	
IdatePlanted : text	

plants : text

Current Hydroponic Systems

System Break Down

Member Work break down

Introduction

Motivation

Project Description

User Interface

Administration

Home Hydroponic System

Member Work break down Turn this into flow Chart

Hardware

Bread Board Testing – Ernest Inman/Richard Charmbury Bread Board Wiring – Richard Charmbury Component Selection – Richard Charmbury Light Sensor Testing/Wiring – Ernest Inman/Joshua Casserino PCB Design – Richard Charmbury pH Sensor Testing/Wiring – Alexander Costello/Richard Charmbury Power Supply Design/Creation – Ernest Inman Rig Design/Creation – Ernest Inman TDS Sensor Testing/Wiring – Ernest Inman/Joshua Casserino Water Level Sensor Testing/Wiring – Joshua Casserino/Richard Charmbury WiFi Module Testing/Wiring – Alexander Costello/Richard Charmbury

Software

App Design/Creation – Alexander Costello Database Design/Creation – Joshua Casserino LCD screen Coding – Alexander Costello MCU Coding – Alexander Costello/Joshua Casserino Website Design/Creation – Joshua Casserino WiFi Module Coding – Alexander Costello/Joshua Casserino

- Introduction System Break Down User Interface
- Administration
- Current Problems and Concerns
- ► Budget
 - **Current Progress**
 - Future Upgrades
 - Questions?

Budget

Current Problems and Concerns

Introduction

User Interface

Administration

Current Progress Future Upgrades Questions?

Budget

Future Upgrades

- Install a user interface on the system to increase user's access to system information
 - Install a modem in the system to increase reliability of database communication
 - Add catastrophic system failure protection
- Improve the systems scalability

- Introduction System Break Down
- User Interface
- Administration
- Current Problems and Concerns Budget
- Current Progress
- Future Upgrades
- ► Questions?

Questions?

