Low-Shift Raman Microscope

GROUP # 17 KEVIN ORKIS - EE BRANDON SEESAHAI - PSE MATT AVILES – EE/CPE CHRIS BECK - PSE

CREOL

COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

MOTIVATION

- Sponsor: Professor of Chemistry and Forensic Science wants a Raman spectroscopy system in his lab that detects low-shift signals.
- Raman spectroscopy has applications in forensic science for analyzing drugs, explosive substances, and other materials for forensic applications.
- Raman spectroscopy and microscope integration: Microscope allows for easy sampling, sample visualization with high magnification, and can focus light to a small point to easily create a Raman Signal.
- Low-shift signals provides a more detailed "fingerprint" of a sample.

GOALS

- Integrate Raman spectroscopy with a microscope.
- Create a Raman spectroscopy system that can detect low-shift Raman signals.
- "Cheaper", safe, and easy to use system for non-optics majors.

WHAT IS RAMAN SPECTROSCOPY?

- Focus Laser light to a sample to create Raman scattering.
- Raman scattering can provide a spectrum that provides the molecular signature of a material.
- Raman scattering: Rayleigh scattering and inelastic scattering (stokes and antistokes).

Stokes Signals of Excedrin Tablet

Hardware Diagram

Software Diagram

WORK DISTRIBUTION

OVERALL REQUIREMENT SPECIFICATION

- Laser Wavelength = 785 nm
- \bullet Resolution ≤ 5 cm⁻¹
- Detect Peaks ± 200 cm⁻¹ (770.87 nm to 799.13 nm).
- Class 1 Laser System
- Fit on a Chemistry Lab Table

EXCITATION SECTION OBJECTIVES

- Inject a narrow line width laser into a microscope
- Focus as much laser power as possible to a sample
- Generate Raman scattering that can be detected by a spectrometer.
- Camera imaging of sample

EXCITATION OPTICS

Microscope

MICROSCOPE

Olympus BH2 Microscope

INSIDE THE MICROSCOPE

CAMERA

- Camera is on top of the microscope.
- Camera has the same field of view as the objective
- Camera imaging of sample
- Matching focal planes

CAMERA

Matching focal planes

LASER

- Laser Wavelength = 785 nm from Innovative Photonic Solutions (IPS)
- Single Mode
- Collimated Output Beam with FWHM 0.018 nm.
- \bullet Maximum output ~100 mW
- **o** Optical Isolator

 $P_{scattered} \propto \frac{I_o}{\lambda^4}$

VOLUME BRAGG GRATINGS (VBG)

- VBG is a dispersive element for a single wavelength at a single angle.
- Reflects 785 nm and transmits other wavelengths.
- Narrow spectral profile of laser down to less than 5 cm^{-1} or 0.31 nm .
- Cleans intensity profile.

PERISCOPE MIRRORS

- Broadband Dielectric Mirror
- 0.5" or 1" mirrors? Raman signal will have a diameter of 0.49" if 10 X is used. 1" Mirrors cost ${\sim} \$24$ more than $0.5"$

SEMROCK FILTER

- Single-Edge Short Pass Dichroic Beamsplitter
- Efficient at 45 degrees

FILTERING

 Correct collimation (Two-lens collimator) Reduce laser line (Notch Filters) Remove scattering (Iris aperture) Pinhole (Optical Fiber)

FILTERING

SPECTROMETER

- Design based on Czerny-Turner spectrometer
- \bullet Lens (f = 50 mm) collimates light from fiber
- Grating (1200 lines/mm, 12.5x12.5 mm) for dispersion
- \bullet Lens (f = 400 mm) focuses light onto detector

SPECTROMETER

DETECTOR

Collects spectrum

 Each pixel represents a single wavelength

o TCD1304AP

- Highly sensitive, low dark current linear image sensor
- 3648 Pixels
- 8 um x 200um Pixel Size
- Commonly used, cheap, easy to use

CALIBRATION

- Calibration assigns pixel # to a wavelength or wavenumber.
- Argon lamp used for calibration

RESOLUTION CALCULATION

$\bullet \sim 10.3 \text{ cm-1}$

RESULTS - EXCEDRIN TABLET

RESULTS – SILICON

Our Spectrometer Ocean Optics Spectrometer

ELECTRICAL DESIGN SPECIFICATIONS

- Temperature Monitoring
- Laser blocking
- Backlight Control
- Laser Power Control
- o Obtain spectrum with CCD

ELECTRICAL DESIGN SPECIFICATIONS

- Temperature Monitoring
- Laser blocking
- Backlight Control
- Laser Power Control

Electrical System 1 Electrical System 2

o Obtain spectrum with CCD CCD Cooling to reduce noise

MICROCONTROLLERS

Electrical System 1 - Atmega328P

- 5V System Voltage \circ 16 MHz
- 23 Programmable I/O
- 6 Pulse Width Modulation
- Easier to Solder (28 pin DIP)
- **o** Cheap \$2.21
- Easy to use

Electrical System 2 – Atmega1284P

- 5V System Voltage
- \circ 16 MHz
- 32 Programmable I/O
- 6 Pulse Width Modulation
- Easier to Solder (44 pin DIP)
- \bullet Cheap \$5.50
- Needs Arduino Flash

Other Considerations – Atmega2560

- 5V System Voltage 16 MHz
- 32 Programmable I/O
- 6 Pulse Width Modulation
- Hard to Solder (100 pin TQFP)
- **o** Cheap \$2.31
- **o** Easy to use

TEMPERATURE MONITORING

- Constantly Monitor temperature with Automatic Cooling
- Parts Used:
	- Temperature Sensor Digital
	- Fans

DS18B20 - Digital Temperature Sensor

- Uses "One Wire" Communication For multiple sensors on a single bus
- More Accurate than Analog Temperature Sensors

Circuit Diagram

TEMPERATURE MONITORING

- Provides air flow to the system
- 1 Intake fan and 1 Outtake fan
- o Multicomp MC36031
	- \bullet 5V
	- \bullet 115mA
	- 600 mW
	- Pushes 3cu.ft/min

 Pulse Width Modulation for variable fan speed ($0V = 0$ PWM and $5V = 255$ PWM)

LASER BLOCKING

• Needed to block the laser while a sample was being loaded on to the sampling stage

Circuit Diagram

- Must be quick
- Mini Push-Pull 5V Solenoid
	- Faster than a motor for our application
	- Small and cheap \$4.95

LASER POWER CONTROL

- Display Laser Power (Software) & Control Laser Power.
- Laser uses 100mW and runs on a 5V source.
- Pulse Width Modulation to modulate the power.

Circuit Diagram

BACKLIGHT CONTROL

- Control Microscope backlight
	- Allows for user to toggle the backlight on/off

- **o** Backlight Specifications:
	- 24V
	- 1.5A
	- Runs on separate power supply
	- Optional Plan to integrate power supply into the system

ELECTRONIC SYSTEM 1 - CIRCUIT

ELECTRONIC SYSTEM 1 - PCB

SPECTROMETER CCD CIRCUIT

- Converts the intensity of light to an associated voltage
- This is done by "shifting" signals between stages

- Only allows for 256 different values.
- Reads 800 pixels continuously, not each single pixel.
- Doesn't capture milliVolt changes
- **o** Easy Circuit
- For 1 Least significant bit $= 4.8$ mV
- Did not work for our system

8 Bit CCD Circuit 16-Bit CCD Circuit

- Allows for 65,535 different values.
- Reads all 3648 pixels.
- Captures microVolt changes
- More difficult to implement
- For 1 least significant bit $= 38$ uV
- Used in our final system

SPECTRUM COMPARISON

8 Bit Spectrum 16-Bit Spectrum

SPECTROMETER CCD CIRCUIT

The Atmega1284 has to generate clocks to drive the CCD and ADC.

The Master Clock, the Shift Gate, and the Integration Clear Gate.

 The CNVST, RD, and the BYTESWAP control lines on the ADC. To generate the pulses, the ATmega1284 timers were used.

 An AD7667 16-bit 1 MSPS converter was used which can digitize a frame in 16ms

• The sensitivity of the 16 bit converter is 2.5V / 65536 = 38μ **V**

ELECTRONIC SYSTEM 2 - SCHEMATIC

ELECTRONIC SYSTEM 2 - PCB

CCD COOLING

- A TEC was built because thermal noise was too much when looking at low voltage signals.
- 5V, 1.5A TEC plate was used while a fan and a heatsink blow out heat.

o CCD Cooling design

SPECTRUM COMPARISON USING THE TEC

 Spectrum before cooling. Noise at its highest is at 6000 analog to digital unit.

 Spectrum after cooling. Noise at its highest is at 800 analog to digital unit

ELECTRICAL SYSTEMS ENCLOSED

GRAPHICAL USER INTERFACE

- MATLAB
- Used to Control
	- Laser Power
	- Fan Speeds
	- Temperature
	- Door Sensor
	- Graph Wavenumber vs Intensity
	- Camera

COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

GUI PICTURE

ISSUES

o Optical Issues:

- Resolution specification not met
- Detector is noisy
- Ambient light causing issues
- Electrical Issues
	- Sometimes the Electrical system $1 -$ Arduino runs "hot" and may "lose connection to the host PC"
	- Solenoid gets very warm when blocking laser
	- CCD cooling system generates dew on the CCD.
- Software
	- High serial throughput for a single MATlab interface.
	- The camera the professor wants to use does not connect with MATlab. Therefore we used the a separate software for the camera connection.

BUDGET

QUESTIONS?