# Low-Shift Raman Microscope

GROUP # 17 KEVIN ORKIS - EE BRANDON SEESAHAI - PSE MATT AVILES – EE/CPE CHRIS BECK - PSE

CREOL



COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

## MOTIVATION

- Sponsor: Professor of Chemistry and Forensic Science wants a Raman spectroscopy system in his lab that detects low-shift signals.
- Raman spectroscopy has applications in forensic science for analyzing drugs, explosive substances, and other materials for forensic applications.
- Raman spectroscopy and microscope integration: Microscope allows for easy sampling, sample visualization with high magnification, and can focus light to a small point to easily create a Raman Signal.
- Low-shift signals provides a more detailed "fingerprint" of a sample.

## GOALS

- Integrate Raman spectroscopy with a microscope.
- Create a Raman spectroscopy system that can detect low-shift Raman signals.
- "Cheaper", safe, and easy to use system for non-optics majors.

## WHAT IS RAMAN SPECTROSCOPY?

- Focus Laser light to a sample to create Raman scattering.
- Raman scattering can provide a spectrum that provides the molecular signature of a material.
- Raman scattering: Rayleigh scattering and inelastic scattering (stokes and antistokes).



#### Hardware Diagram



#### Software Diagram





## WORK DISTRIBUTION

|              | Main             | Secondary        |
|--------------|------------------|------------------|
| Spectrometer | Chris Beck       | Brandon Seesahai |
| Excitation   | Brandon Seesahai | Chris Beck       |
| Hardware     | Matt Aviles      | Kevin Orkis      |
| Software     | Kevin Orkis      | Matt Aviles      |

### **OVERALL REQUIREMENT SPECIFICATION**

- Laser Wavelength = 785 nm
- Resolution  $\leq 5 \text{ cm}^{-1}$
- Detect Peaks  $\pm 200 \text{ cm}^{-1}$  (770.87 nm to 799.13 nm).
- Class 1 Laser System
- Fit on a Chemistry Lab Table

### **EXCITATION SECTION OBJECTIVES**

- Inject a narrow line width laser into a microscope
- Focus as much laser power as possible to a sample
- Generate Raman scattering that can be detected by a spectrometer.
- Camera imaging of sample

## **EXCITATION OPTICS**

#### Microscope



## MICROSCOPE

### • Olympus BH2 Microscope

| Magnification     | 4 X   | 10 X  | 20 X | 40 X |
|-------------------|-------|-------|------|------|
| N.A.              | 0.10  | 0.25  | 0.40 | 0.65 |
| Focal Length (mm) | 34.23 | 17.69 | 8.99 | 4.61 |



### INSIDE THE MICROSCOPE



## CAMERA

- Camera is on top of the microscope.
- Camera has the same field of view as the objective
- Camera imaging of sample
- Matching focal planes





## CAMERA

### • Matching focal planes



## LASER

- Laser Wavelength = 785 nm from Innovative Photonic Solutions (IPS)
- Single Mode
- Collimated Output Beam with FWHM 0.018 nm.
- Maximum output ~100 mW
- Optical Isolator



|                       | 532 nm | 785 nm | 1064 nm |
|-----------------------|--------|--------|---------|
| Excitation Efficiency | high   | medium | low     |
| Fluorescence          | high   | medium | low     |
| Heat Absorption       | low    | medium | High    |

 $P_{scattered} \propto \frac{I_o}{\lambda^4}$ 



### VOLUME BRAGG GRATINGS (VBG)

- VBG is a dispersive element for a single wavelength at a single angle.
- Reflects 785 nm and transmits other wavelengths.
- Narrow spectral profile of laser down to less than 5 cm<sup>-1</sup> or 0.31 nm.
- Cleans intensity profile.



### PERISCOPE MIRRORS

- Broadband Dielectric Mirror
- 0.5" or 1" mirrors? Raman signal will have a diameter of 0.49" if 10 X is used. 1" Mirrors cost ~\$24 more than 0.5"

| Part                  | BB1 - E03         |
|-----------------------|-------------------|
| Wavelength Range (nm) | (99 %) 750 – 1100 |
| $\operatorname{Cost}$ | \$75.10           |

| Magnification                              | 4 X  | 10 X | 20 X | 40 X |
|--------------------------------------------|------|------|------|------|
| Pupil Diameter (in)                        | 0.27 | 0.35 | 0.28 | 0.24 |
| Raman signal<br>diameter on Mirror<br>(in) | 0.38 | 0.49 | 0.40 | 0.34 |



## SEMROCK FILTER

- Single-Edge Short Pass Dichroic Beamsplitter
- Efficient at 45 degrees

| Cost                 | \$ 225       | \$335        | \$335        |
|----------------------|--------------|--------------|--------------|
| Reflection Band (nm) | (97 %) 705 – | (90 %) 750 – | (96 %) 770 – |
|                      | 900 nm       | 1140 nm      | 1100 nm      |
| Tranmission          | (93 %) 532 – | (90 %) 430 – | (93 %) 400 – |
| Band (nm)            | 690 nm       | 700 nm       | 730 nm       |



## FILTERING

Correct collimation (Two-lens collimator)
Reduce laser line (Notch Filters)
Remove scattering (Iris aperture)
Pinhole (Optical Fiber)

### FILTERING



### Spectrometer

- Design based on Czerny-Turner spectrometer
- Lens (f = 50 mm) collimates light from fiber
- Grating (1200 lines/mm, 12.5x12.5 mm) for dispersion
- Lens (f = 400 mm) focuses light onto detector

## Spectrometer





## DETECTOR

- Collects spectrum
- Each pixel represents a single wavelength
- TCD1304AP
  - Highly sensitive, low dark current linear image sensor
  - 3648 Pixels
  - 8 um x 200um Pixel Size
- Commonly used, cheap, easy to use



### CALIBRATION

- Calibration assigns pixel # to a wavelength or wavenumber.
- Argon lamp used for calibration

| Pixel Number | Wavelength (nm) |
|--------------|-----------------|
| 154          | 842.465         |
| 256          | 840.821         |
| 1166         | 826.453         |
| 2108         | 811.531         |
| 2187         | 810.369         |
| 2777         | 801.479         |
| 3164         | 794.818         |



### **RESOLUTION CALCULATION**

### $\circ \sim 10.3 \text{ cm} \cdot 1$

| Model            |            | Gauss                                          |                     |                         |                         |                         |                                       |                                                                                                                       |
|------------------|------------|------------------------------------------------|---------------------|-------------------------|-------------------------|-------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Equation         | on         | y=y0 + (A/(w*sqrt(Pl/2)))*exp(-2*((x-xc)/w)^2) |                     |                         |                         |                         |                                       |                                                                                                                       |
| Plot             |            | Peak1(B)                                       | Peak2(B)            | Peak3(B)                | Peak4(B)                | Peak5(B)                | Peak6(B)                              | Peak7(B)                                                                                                              |
| yО               |            | $107.35017 \pm 1.89806$                        | 107.35017 ± 1.89806 | $107.35017 \pm 1.89806$ | 107.35017 ± 1.89806     | 107.35017 ± 1.89806     | $107.35017 \pm 1.89806$               | 107.35017 ± 1.8980                                                                                                    |
| XC               |            | 162.0012 ± 0.0591                              | 258.61762 ± 0.09109 | $399.84318 \pm 0.10894$ | $418.01533 \pm 0.05325$ | $639.54873 \pm 0.04392$ | $846.00722 \pm 0.07867$               | 869.42043 ± 0.0773                                                                                                    |
| w                |            | 11.6083 ± 0.11908                              | 20.29634 ± 0.18457  | 11.84137 ± 0.20711      | 12.49648 ± 0.10336      | 11.65547 ± 0.08854      | 10.35455 ± 0.16135                    | 10.52721 ± 0.1587                                                                                                     |
| A                | :          | 31447.96048 ± 283.44                           | 46811.7107 ± 378.02 | 28381.90823 ± 485.96    | 62995.01762 ± 492.96    | 40961.97879 ± 273.73    | 19007.59945 ± 256.50                  | 19778.3108 ± 258.2                                                                                                    |
| Reduce           | ed Chi-S   |                                                |                     |                         | 10017.45253             |                         |                                       |                                                                                                                       |
| R-Squa           | are(COD    |                                                |                     |                         | 0.97839                 |                         |                                       |                                                                                                                       |
| Adj. R-          | Square     |                                                |                     |                         | 0.97827                 |                         |                                       |                                                                                                                       |
| Intensity (a.u.) | 300<br>200 | - 00<br>00<br>00<br>                           | MARAMAN MAN         |                         | elfferenter             |                         |                                       | rgon Spectrum<br>t Peak 1<br>t Peak 2<br>t Peak 3<br>t Peak 4<br>t Peak 5<br>t Peak 6<br>t Peak 7<br>umulative Fit Pe |
|                  | -100       | 0 +                                            | 200                 | 0 40                    | )0 60                   | 8 00                    | i i i i i i i i i i i i i i i i i i i | 000                                                                                                                   |
|                  |            |                                                |                     | Raman                   | Shift (cm               | 1 <sup>-1</sup> )       |                                       |                                                                                                                       |

## Results – Excedrin Tablet



## RESULTS - SILICON



#### Our Spectrometer

Ocean Optics Spectrometer

## **ELECTRICAL DESIGN SPECIFICATIONS**

- Temperature Monitoring
- Laser blocking
- Backlight Control
- Laser Power Control
- Obtain spectrum with CCD

### **ELECTRICAL DESIGN SPECIFICATIONS**

#### **Electrical System 1**

- Temperature Monitoring
- Laser blocking
- Backlight Control
- Laser Power Control

#### **Electrical System 2**

Obtain spectrum with CCDCCD Cooling to reduce noise

## MICROCONTROLLERS

Electrical System 1 -Atmega328P

- 5V System Voltage 16 MHz
- 23 Programmable I/O
- 6 Pulse Width Modulation
- Easier to Solder (28 pin DIP)
- Cheap \$2.21
- Easy to use

Electrical System 2 – Atmega1284P

- 5V System Voltage
- 16 MHz
- o 32 Programmable I/O
- 6 Pulse Width Modulation
- Easier to Solder (44 pin DIP)
- Cheap \$5.50
- Needs Arduino Flash

Other Considerations – Atmega2560

- 5V System Voltage16 MHz
- o 32 Programmable I/O
- 6 Pulse Width Modulation
- Hard to Solder (100 pin TQFP)
- Cheap \$2.31
- Easy to use

TEMPERATURE MONITORING

- Constantly Monitor temperature with Automatic Cooling
- Parts Used:
  - Temperature Sensor Digital
  - Fans

### • DS18B20 - Digital Temperature Sensor



- Uses "One Wire" Communication For multiple sensors on a single bus
- More Accurate than Analog Temperature Sensors

### • Circuit Diagram



## TEMPERATURE MONITORING

- Provides air flow to the system
- 1 Intake fan and 1 Outtake fan
- Multicomp MC36031
  - 5V
  - 115mA
  - 600 mW
  - Pushes 3cu.ft/min



• Pulse Width Modulation for variable fan speed (0V = 0 PWM and 5V = 255 PWM)

| Duty  | Voltage            | Temperature Range       | PWM Value | Fan Speed |
|-------|--------------------|-------------------------|-----------|-----------|
| Cycle |                    |                         |           |           |
| 0     | 23 mV              | Less than 70 F $^\circ$ | 0         | 0         |
| 30%   | $.778\mathrm{V}$   | 70 F °                  | 72        | 30%       |
| 40%   | $1.123~\mathrm{V}$ | $74~\mathrm{F}^{\circ}$ | 102       | 40%       |
| 60%   | $2.553\mathrm{V}$  | 78 F °                  | 153       | 60%       |
| 80%   | $3.753\mathrm{V}$  | 82 F °                  | 204       | 80%       |
| 100%  | $4.42\mathrm{V}$   | 86 F °                  | 255       | 100%      |



## LASER BLOCKING

- Needed to block the laser while a sample was being loaded on to the sampling stage
- Must be quick
- Mini Push-Pull 5V Solenoid
  - Faster than a motor for our application
  - Small and cheap \$4.95





• Circuit Diagram



## LASER POWER CONTROL

- Display Laser Power (Software) & Control Laser Power.
- Laser uses 100mW and runs on a 5V source.
- Pulse Width Modulation to modulate the power.

| Duty Cycle | Voltage        | Power Prior to Calibration | PWM<br>Value |
|------------|----------------|----------------------------|--------------|
| 10%        | .5             | 10 mW                      | 26           |
| 20%        | 1              | 20 mW                      | 51           |
| 30%        | 1.5            | 30 mW                      | 77           |
| 40%        | 2              | 40 mW                      | 102          |
| 50         | 2.5            | 50 mW                      | 128          |
| 60         | 3              | 60 mW                      | 153          |
| 70         | 3.5            | 70 mW                      | 179          |
| 80         | 4              | 80 mW                      | 204          |
| 90         | 4.5            | 90 mW                      | 230          |
| 100%       | $5 \mathrm{V}$ | 100 mW                     | 255          |

### • Circuit Diagram



## BACKLIGHT CONTROL

- Control Microscope backlight
  - Allows for user to toggle the backlight on/off



- Backlight Specifications:
  - 24V
  - 1.5A
  - Runs on separate power supply
  - Optional Plan to integrate power supply into the system



ELECTRONIC SYSTEM 1 - CIRCUIT



### Electronic System 1 - PCB



## Spectrometer CCD Circuit

- Converts the intensity of light to an associated voltage
- This is done by "shifting" signals between stages

#### 8 Bit CCD Circuit

- Only allows for 256 different values.
- Reads 800 pixels continuously, not each single pixel.
- Doesn't capture milliVolt changes
- Easy Circuit
- For 1 Least significant bit = 4.8mV
- Did not work for our system

#### **16-Bit CCD Circuit**

- Allows for 65,535 different values.
- Reads all 3648 pixels.
- Captures microVolt changes
- More difficult to implement
- For 1 least significant bit = 38uV
- Used in our final system



## Spectrum Comparison

#### 8 Bit Spectrum

#### **16-Bit Spectrum**





## Spectrometer CCD Circuit

• The Atmega1284 has to generate clocks to drive the CCD and ADC.

• The Master Clock, the Shift Gate, and the Integration Clear Gate.

The CNVST, RD, and the BYTESWAP control lines on the ADC.
To generate the pulses, the ATmega1284 timers were used.

• An AD7667 16-bit 1 MSPS converter was used which can digitize a frame in 16ms

• The sensitivity of the 16 bit converter is  $2.5V / 65536 = 38 \mu V$ 

### ELECTRONIC SYSTEM 2 - SCHEMATIC



## ELECTRONIC SYSTEM 2 - PCB



### CCD COOLING

- A TEC was built because thermal noise was too much when looking at low voltage signals.
- 5V, 1.5A TEC plate was used while a fan and a heatsink blow out heat.





## • CCD Cooling design



## Spectrum Comparison using the $\ensuremath{\text{TEC}}$



Spectrum before cooling.
Noise at its highest is at 6000 analog to digital unit.

Spectrum after cooling.
Noise at its highest is at 800 analog to digital unit

## ELECTRICAL SYSTEMS ENCLOSED





## GRAPHICAL USER INTERFACE

- MATLAB
- Used to Control
  - Laser Power
  - Fan Speeds
  - Temperature
  - Door Sensor
  - Graph Wavenumber vs Intensity
  - Camera



College of Engineering and Computer Science



## **GUI PICTURE**



## ISSUES

## • Optical Issues:

- Resolution specification not met
- Detector is noisy
- Ambient light causing issues
- Electrical Issues
  - Sometimes the Electrical system 1 Arduino runs "hot" and may "lose connection to the host PC"
  - Solenoid gets very warm when blocking laser
  - CCD cooling system generates dew on the CCD.
- Software
  - High serial throughput for a single MATlab interface.
  - The camera the professor wants to use does not connect with MATlab. Therefore we used the a separate software for the camera connection.

| Electronics Parts        | Price    |
|--------------------------|----------|
| Arduino Uno              | 24.95    |
| 5V 2A Power Supply       | 7.95     |
| Magnetic Contact Switch  | 3.95     |
| DS18B20                  | 3.95     |
| Solenoid                 | 4.95     |
| TO-220 Heatsink          | 0.75     |
| Diode Kit                | 5.99     |
| Transistor Kit           | 20       |
| Capacitor kit            | 20       |
| Resistor Kit             | 10.99    |
| 5V DC Fan                | 7.99     |
| TCD1304                  | 3.5      |
| LM324 Op Amp             | 0.58     |
| break-away pin stip male | 4.95     |
| FT232RL                  | 14.95    |
| PCB-Team Raman           | \$33     |
| PCB -Electrical System 2 | \$33     |
| Atmega1284               | \$6      |
| Max660 Charge Pump       | \$10     |
| Schmartboard             | \$6      |
| ad7667                   | \$22     |
| LM7805                   | \$1      |
| L78L05 Linear Regulator  | \$1      |
| AD8021                   | \$3      |
| Total                    | \$250.48 |

## BUDGET

| Optics Parts                                  | Price     |
|-----------------------------------------------|-----------|
| Grating                                       | 64.40     |
| Grating Mount                                 | 65.90     |
| Focusing Lens                                 | 40.50     |
| Focusing Lens Mount                           | 25.25     |
| 1st Lens                                      | 41.21     |
| 1st Lens Mount                                | 16.00     |
| 2nd Lens                                      | 33.10     |
| 2nd Lens Mount                                | 34.70     |
| Cage 4pack                                    | 26.37     |
| 2" 5-pack Post Holders                        | 38.50     |
| 2" 5-pack Posts                               | 23.36     |
| Notch Filter Mounts                           | 38.70     |
| Mount for Detector                            | 59.20     |
| Kinetic Mirror Mount with a 1" BB1-E03 Mirror | 103.50    |
| Semrock Beamsplitter                          | 255.00    |
| Total                                         | \$ 865.69 |



QUESTIONS?