

College of Engineering and Computer Science

Aaron HoytEE.Daniel AgudeloCpE.Rachel GremillionCpE.Rafael RamirezCpE.

Nerf-Battlebot Red Team Group 9

Motivation

- Lockheed Martin mentorship
- Collaborate with other engineering disciplines
- High quality components

Goals and Objectives

- Design a modular system
- Provide robot with powerful as well as precise movement
- Onboard processing
- Combine two sensor modalities

Customer Requirements

3 ft. x 3 ft. x 3 ft. (L x W x H)

Must be able to traverse battlefield

Prototyping budget of \$2K

Maximum as-demonstrated cost of \$1K

Sensor

Use at minimum one sensor

Weapon System

Must acquire and fire at selected targets Max ammo store: 50 rounds per gun

Target Detection

Video highlight overlay on detected targets

Wireless connection

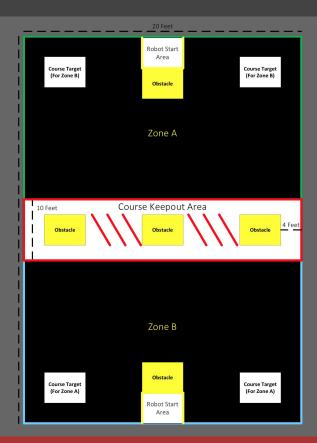
Engineering Requirements

Be able to last two 10 minute rounds

Movement Speed

Be able to obtain a minimum speed of 1.0 ft/s

Aiming Accuracy


Hit 2ft. x 2ft. targets from max range of 40 ft.

Processing time

Be able to detect and fire upon target within a 3 second time frame

Competition

Arena

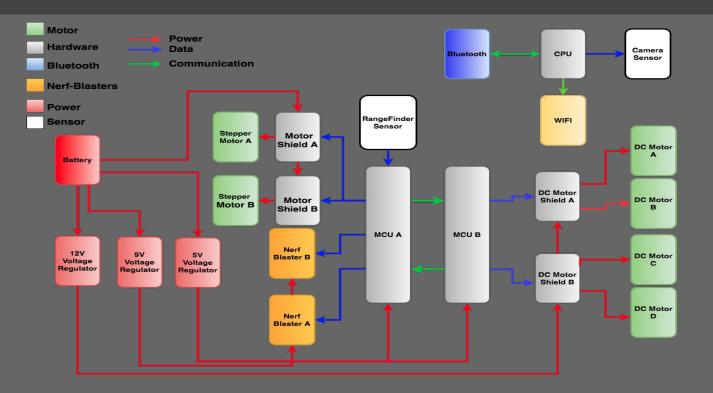
- 40ft. by 20ft.
- Two Zones
 - 15ft. by 20ft.
- Course Keepout Area
 - In the middle
 - 10ft. by 20ft.

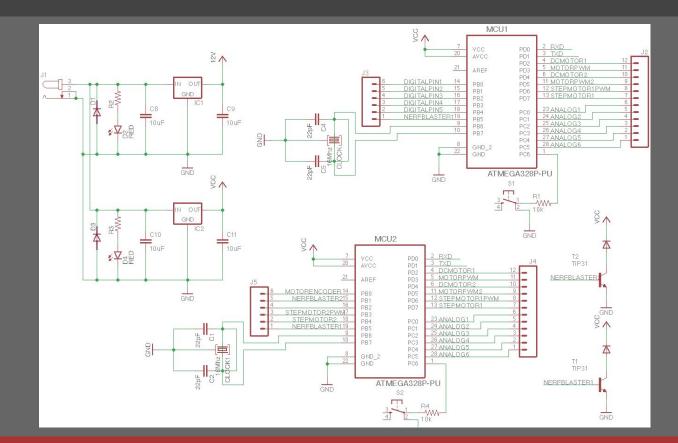
Rounds

- One-to-one robot battle
- 10 minutes
- Three rounds
 - o Red vs. Green
 - Red vs. Blue
 - o Green vs. Blue

Point System

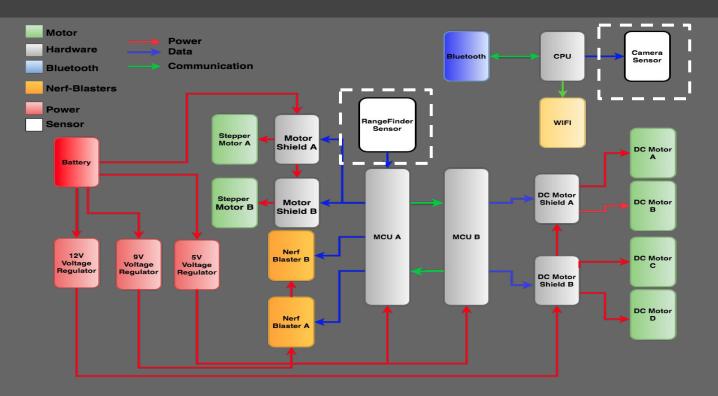
- Enemy Bot Nerf Ball (2)
- Enemy Bot Nerf Dart (4)
- Enemy Medic (8)
- Course Target [Max 2] (2)
- Entering Restricted Area (-5)


Robot Architecture


Deliberative paradigm

- Find all targets
- Distinguish target type
- Fire upon appropriate targets

Block Diagram



PCB Schematic

Hardware Selection

Sensors

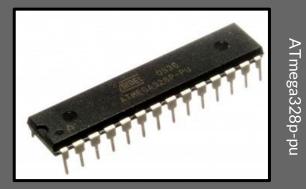
Logitech C920 Webcam

- Built-in H.264 video compression
 - Low video transfer bit rates
- Plug and play via USB
 - Included USB cable reaches top of robot from base

LIDAR-Lite Rangefinder

- Affordable
 - Best performance over cost
- Longest distance detection
- Comparable accuracy
- Small form factor

LIDAR-Lite v3	TeraRanger Duo	LeddarTech Leddar One
• \$149.99	• \$207.20	• \$115.00
• 131 ft	• 46 ft	• 49 ft
• +/- 2.5 cm	• +/- 2 cm	• +/- 5 cm
• 2 x 4.8 x 4 cm	• 5.3 x 4.4 x 2.5 cm	• 2" in diameter


Microcontrollers

Microcontrollers

ATmega328p-pu

- 20 input/output pins
 - 14 digital (6 of which are PWM)
 - 6 analog (can be used as digital pins)
- 5V operating voltage
- 6-20V input voltage allowed

ATmega2560

- 70 input/output pins
 - 54 digital (14 of which are PWM)
 - 16 analog (can be used as digital pins)
- 5V operating voltage
- 6-20V input voltage allowed

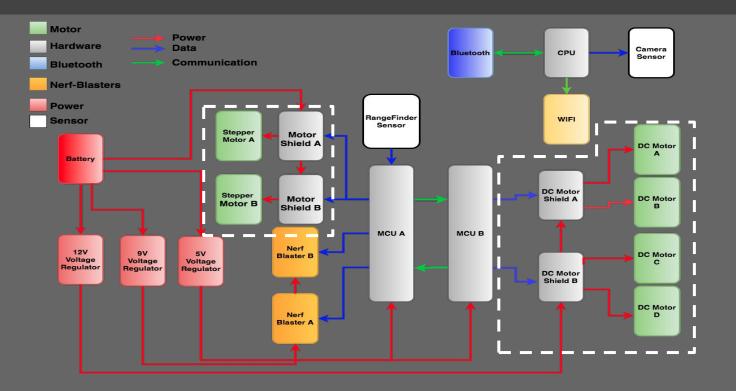
Microcontroller Complications

- Device overload
 - Insufficient pin availability
 - Reduce functionality to reduce pin count
 - Potential processing delay
 - Sending commands to multiple devices
 - simultaneously
- Dual ATmega328p
 - Split performance load
 - Increase complexity via device communication

Image Processing

NVIDIA Jetson Tegra K1 (TK1)

- \$129 with student discount (Original \$192)
- 2.3 GHz Quad Core
- GPU optimized for OpenCV
- 2GB RAM


Raspberry Pi 3 Model B

- \$35.69
- 1.2GHz Quad-Core
- 1GB RAM
- Introductory grade level of processing

Raspberry Pi 3 Model B

Motors and Drivers

Motor Selection

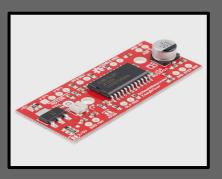
DC Motor

- Will be used for Battlebot manual navigation
- Maximum velocity of 3.3ft/s using four motors
- Equipped with Encoders
- Operating at 12V, 1.3A

Stepper Motor

- Will be used for pan/tilt of the turret
- 68 oz-in to supply enough force to adjust Nerf Blasters
- 0.9 step angle for precise accuracy
- Operating at 3.06V, 1.7A

NeveRest 40 Gearmotor


Stepper Motor Driver

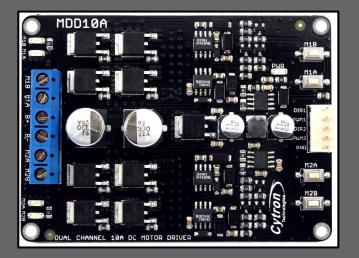
EasyDriver Stepper Motor

- 6V to 30V supply voltage
- Any voltage of stepper motor
- Current control from 150mA/phase to 700mA/phase

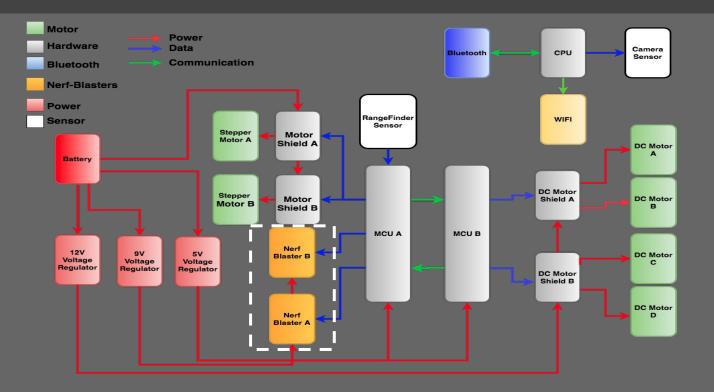
A3967SLB chip

- Step, Direction, MS1, and MS2 Input Pins
- Two logic inputs allow for full, half, quarter, and eighth step
- Compatible with bipolar motors

EasyDriver Stepper Motor



DC Motor Driver


Dual Channel DC Motor Driver

- Drives two DC motors
- Bi-directional control
 - PWM1, PWM2, DIR1, DIR2
- 5V to 25V motor voltage
- Maximum 10A continuous
- PWM frequency up to 20 KHz for speed control

Dual Channel DC Motor Driver

NERF-Blasters

NERF-Blasters Selection

Name	Ammo Type	0-Angle Range	Velocity	Price
Rival Zeus MXV-1200 Battle Gun	Ball	65-75 feet	100 feet/second	\$39.99
N-Strike Vulcan EBF-25	Dart	25-35 feet	49 feet/second	\$44.99
N-Strike Elite Rampage	Dart	50 feet	50 feet/second	\$31.99
Rapidstrike CS-18	Dart	55 feet	75 feet/second	\$39.99

Rapidstrike CS-18

Rival Zeus MXV-1200 Battle Gun

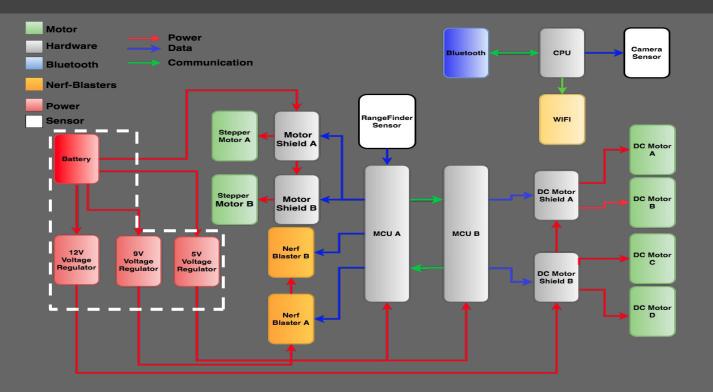
NERF-Blasters Integration

Rapidstrike CS-18

- Power: 6V, 1.2A
- Utilizes two motor

systems

Rival Zeus MXV-1200


- Power: 9V, 1A
- One motor system and mechanical latch

Rival Zeus MXV-1200 Battle Gun

Rapidstrike CS-18

Power

Power Consumption

Component	Quantity	Voltage(V)	Total Current(mA)	Mostly On/Off	Power(W)
Microcontroller	2	5	46.5	ON	0.46
DC Motor	4	12	4800	OFF	57.60
Stepper	2	3	3400	OFF	10.20
Nerf-Blaster (Darts)	1	6	1500	OFF	9.00
Nerf-Blaster (Ball)	1	9	1500	OFF	13.50
Jetson TK1	1	12	2500	ON	30.00
LIDAR Lite	1	5	130	OFF	0.65
Total Power					121.41

Battery Selection

Sealed Lead Acid Battery

- 12V, 5 aH
- 15 minute run time
- Supplies high current
- Low cost: \$15

Communication

Onboard Processing

Bluetooth

12C

- One module per MCU
- CPU- Master
- MCU- Slave

- HC-05 Master/Slave
- HC-06 Slave

Bluetooth Modules HC-05, HC-06

Remote Workstation

Intel Dual Band Wireless

- WiFi, Bluetooth
- PCle
- Remote Control
- Upstream video feed

Intel Dual Band Wireless-AC 7260

Software Involvement

Deliverables

- DC Motor, Stepper Motor, LIDAR-Lite, and Nerf Blaster control algorithms for use by CS team
 - i.e. sending speed, direction, distance outputs to motors and retrieving target range data from sensors

Assistance

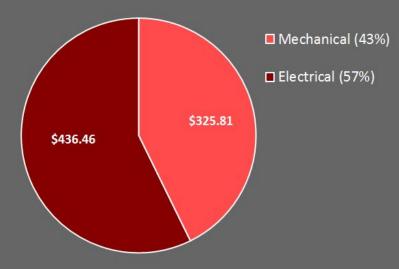
- Provide help to CS team on computer vision algorithms
- Testing functionality

Administration

Work Distribution

	PCB Design	Motor Control	Sensors	Firing System	Communication	Software
Aaron H.	×	×		×		
Daniel A.			×		×	×
Rachel G.	×	×		×		
Rafael R.			×		×	×

Design Budget


Component Name	Qty	Unit Cost	Cost
NVIDIA Jetson TK1	1	\$129.00	\$129.00
LIDAR-Lite v3	1	\$112.49	\$112.49
Logitech C920 Webcam	1	\$52.49	\$52.49
10A Dual Channel Bi-Directional DC Motor Driver	2	\$23.49	\$46.98
ATmega328p-pu (3-pack)	1	\$13.48	\$13.48
Powersonic PS-1250 F1 12V	1	\$17.32	\$17.32
Voltage Regulator L7805CV 5V 1.5 A	1	\$5.45	\$5.45

Component Name	Qty	Unit Cost	Cost
Voltage Regulator 5V 1A	1	\$15.00	\$15.00
16 MHz Crystal	3	\$0.86	\$2.58
SparkFun EasyDriver Stepper Motor Driver	2	\$13.46	\$26.92
DC Barrel Plug to 2-Pin Terminal Block Adapter	1	\$1.95	\$1.95
TIP31C Transistor	5	\$1.06	\$5.30
Voltage Regulator 12V	5	\$1.50	\$7.50
		Total	\$436.46

Testing Budget

Component Name	Qty	Unit Cost	Cost
USB 2.0 A-male to B-male	1	\$4.99	\$4.99
Elecgoo Upgraded Electronics Fun Kit	1	\$16.86	\$16.86
ZJchao 9V 1A Power Adapter for Arduino	1	\$5.59	\$5.59
Arduino Uno R3 Microcontroller A000066	1	\$16.06	\$16.06
Sparkfun USB to Serial Breakout Board	1	\$13.46	\$13.46
		Total	\$56.96

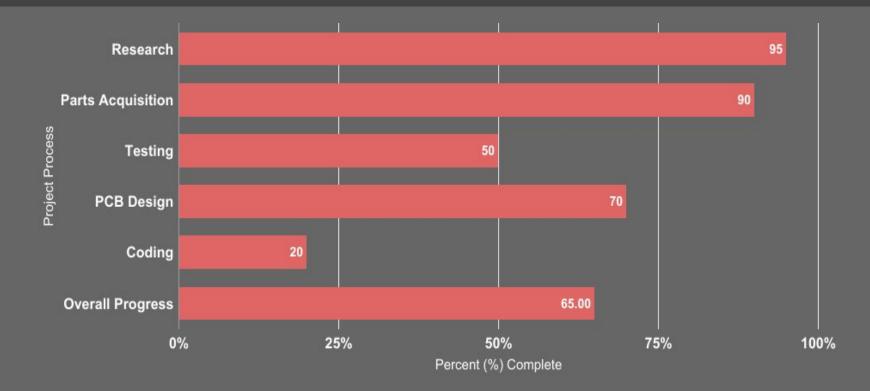
Division of Budget

	Total
Mechanical	\$325.81
Electrical	\$436.46
Budget Used	\$762.27
Budget Remaining	\$237.73

Issues and Future Plans

Issues

- Balancing \$1000 on demonstrated cost
- Optimizing output pins on microcontrollers
- Drop two DC Motors


Backup Plan

• Provide own chassis and backup programming

Future Plans

- Triggering Nerf-blasters
- Finalize PCB design

Questions?