1

129

[bookmark: _Toc468701399]Table of Contents

Table of Contents	i
Table of Figures	v
1 - Executive Summary	1
2 - Project Description	2
2.1 - Motivation	2
2.2 - Overview	2
2.3 - Requirement Specifications	4
2.3.1 - User Serviceable	4
2.3.2 - UCF Servers	4
2.3.3 - Modernization	4
2.3.4 - Diagnostic Tool	4
2.3.5 - System Expandability	5
2.3.6 - User Friendly	5
2.3.7 - User Manual	5
3 - Realistic Design Constraints	6
3.1 - Economic Constraints	6
3.2 - Time Limitations	6
3.3 - Environmental, Social, and Political Constraints	6
3.4 - Ethical, Health, and Safety Constraints	7
3.5 - Manufacturability and Sustainability Constraints	7
3.6 - Security Constraints	7
4 - Related Standards	8
4.1 - MODBUS protocol standards	8
4.2 - Electrical panel standards	10
4.3 - RS-232 and RS-485 standards	10
5 - Research	12
5.1 - Existing Similar Projects and Products	12
5.2 - Relevant Hardware Technologies	13
5.2.1 - RTU	13
5.2.2 - Raspberry Pi & Arduino	14
5.2.3 - ProXR Web Relay	15
5.2.4 - PLC	15
5.2.4.1 - Allen Bradley / Rockwell Automation	16
5.2.4.2 - Automation Direct	16
5.2.5 - User Interface	17
5.2.5.1 - Touch Screen	17
5.2.5.2 - User Identification/Authentication	19
5.2.5.3 - Kiosk	20
5.2.6 - Diagnostic Tool (DT)	21
5.2.6.1 - Power Supply	21
5.2.6.2 - Microcontroller Overview	22
5.2.6.3 - Embedded Microcontroller Environment	24
5.2.7 - Communication Protocol	25
5.2.7.1 - RS 232	25
5.2.7.2 - RS 485	26
5.2.8 - Machine Control	26
5.2.8.1 - Relay Functionality	26
5.2.8.2 - Electrical Relay Contact Types	27
5.2.8.3 - PowerSwitch Tail II Relays	28
5.2.8.4 - Stand Alone Relay	28
5.2.8.5 - Electronic/Magnetic Locks	28
5.2.9 - Power Supplies (Control System Panel)	29
5.2.10 - Materials and Enclosure	31
5.3 - Software	35
5.3.1 - Communication	35
5.3.1.1 - Network Topology	35
5.3.1.2 - TCP	36
5.3.1.3 - Implementation of the TCP Protocol	39
5.3.1.4 - MODBUS Protocol	41
5.3.1.4.1 - Function codes	43
5.3.1.4.1.1 - Using Function Code 3	44
5.3.1.4.1.2 - Using Function Code 16	45
5.3.1.5 - Implementation of MODBUS protocol	46
5.3.1.5.1 - Existing Implementations	47
5.3.1.6 - Database Management	48
5.3.1.6.1 - Communication between PC and Database	48
5.3.1.6.2 - Design of communication	49
5.3.1.6.3 - Reading from the database	51
5.3.1.6.4 - Writing to the database	52
5.3.1.6.5 - Data Checks	53
5.3.1.6.6 - Complete Overview of PC software UML	56
5.3.2 - Webserver	57
5.3.2.1 - PHP	57
5.3.2.2 - Python	57
5.3.2.3 - Ruby	57
5.3.2.4 - Sessions	58
5.3.2.5 - WordPress	59
5.3.2.6 - HTML and CSS	60
5.3.2.7 - Database	61
5.3.2.7.1 - SQLite	61
5.3.2.7.2 - PostgreSQL	62
5.3.2.7.3 - MySQL	62
5.3.2.7.4 - NoSQL	62
5.3.2.8 - Server	63
5.3.2.8.1 - XAMPP	63
5.3.2.8.2 - UCF Server	63
5.3.2.8.3 - Shibboleth	63
5.3.2.9 - Client Side	63
5.3.2.9.1 - jQuery	64
5.3.2.9.2 - AJAX	64
5.3.2.9..3 - JSON and XML	65
5.3.3 - Existing Implementations	65
6 - Hardware Design and Schematics	67
6.1 - Power Supply Design	67
6.1.1 - Power Consumption	67
6.1.2 - Transformer	68
6.1.3 - Circuit Elements	69
6.1.3.1 - Rectifiers	69
6.1.3.2 - Diodes	70
6.1.3.3 - Capacitors	70
6.1.4 - Simulation	71
6.1.5 - Linear Regulator	73
6.2 - RS-485 Chip	74
6.2.1 - MAX 485	74
6.3 - External Crystal	77
6.4 - LCD Display and Push Button Configuration	78
7 - Software Design	81
7.1 - Web Application Design	81
7.1.1 - User Interface	81
7.1.1.1 - Login	81
7.1.1.2 - Create Account	83
7.1.1.3 - Home Screen	84
7.1.1.4 - Create Reservation	85
7.1.1.5 - Administrative Controls	86
7.1.1.5.1 - View Users	86
7.1.1.5.2 - View Machines	88
7.1.1.5.3 - Generate Invoice	90
7.1.2 - Authentication	90
7.1.2.1 - Input Sanitization	91
7.1.2.2 - Shibboleth	91
7.1.3 - Database access	91
7.1.3.1 - MYSQL	92
7.1.3.2 - MYSQLI	92
7.1.3.3 - PDO	92
7.2 - Database Design	93
7.2.1 - Relations	93
7.2.2 - Relational Diagram	94
7.2.2.1 - Optimization	95
7.2.3 - Constraints	95
7.2.4 - Integrity	96
7.2.4.1 - Normalization	96
7.2.4.1.1 - First Normal Form:	96
7.2.4.1.2 - Second Normal Form:	97
7.2.4.1.3 - Third Normal Form:	97
7.2.4.2 - Transactions	97
7.2.4.2.1 - A.C.I.D.	98
7.3 - UCF Server Access	99
8 - Prototyping	100
8.1 - Temporary Panel	100
8.2 - PLC programming	102
8.3 - Touch panel program	108
9 - Testing	112
9.1 - Communication	112
9.1.1 - Ananas (MODBUS)	113
9.1.2 - NetCat	113
9.1.3 - MOD_RSsim	114
9.1.4 - RS-232 to RS-485 Transmission	116
9.1.5 - Capture and Parse ISO Number	118
9.2 - PCB	119
9.2.1 - Complete Schematic	119
9.2.2 - Manufacturing Choices	120
9.2.2.1 - Seeed Studio	120
9.2.2.2 - Osh Park	121
9.2.2.3 - PCBway	121
9.2.3 - Breadboard	121
9.3 - Web Application	123
9.3.1 - Account Creation	123
9.3.2 - Reservations	123
9.3.3 - Authorizing Students	124
9.3.4 - Adding a Machine	124
9.3.5 - Focus Groups	124
10 - Administrative	125
10.1 - Milestones and Timeline	125
10.2 - Budget and Finance	126
Appendices	127
Appendix A – Copyright Permissions	127

[bookmark: _Toc468701400]Table of Figures

Figure 1- Control System Process Overview	3
Figure 2 - a) standard MODBUS packet; b) MODBUS TCP/IP packet [1]	9
Figure 3 - MBAP header field breakdown [1]	10
Figure 4 - Remmon R-COM RTU [4]	13
Figure 5 - Raspberry Pi 3 [5]	14
Figure 6 - Arduinio Uno R3 [6]	14
Figure 7 - ProXR Web Relay [7]	15
Figure 8 - Allen Bradley Micrologix 1200 PLC [8]	16
Figure 9 - Automation Direct Click PLC	17
Figure 10 - 3" touch panel with data and programming cable attached [9]	18
Figure 11 - 6" panel front view [10]	19
Figure 12 - 6" panel rear view	19
Figure 13 - Diagnostic tool, PLC, and card swipe connection diagram	21
Figure 14- Block Diagram of VAC to VDC conversion	22
Figure 15 - Diagnostic Module overview	23
Figure 16 - Electromechanical Relay Diagram	27
Figure 17 - Electrical Relay Contact Arrangements	27
Figure 18 - Diagram showing the power supply connections to each component	30
Figure 19 - Electrical panel components	32
Figure 20 - Electrical panel closed front view	34
Figure 21 - Overview of network topology	35
Figure 22 – PLC, PC, and database communication diagram	36
Figure 23 - Socket event three way handshake	37
Figure 24 - TCP header/packet contents	38
Figure 25 - UML Diagram of the TCP layer	41
Figure 26 - MODBUS function codes	43
Figure 27 - MODBUS TCP/IP application data unit (ADU)	46
Figure 28 - PLC to PC communication UML diagram	47
Figure 29 - Interaction between the PC and database	48
Figure 30 - User-PLC-PC-Database interaction diagram	51
Figure 31 - Database to port monitor communication	52
Figure 32 - Database to port monitor communication	53
Figure 33 - User data authentication and decision flowchart	55
Figure 34 - PC software UML diagram	56
Figure 35- PHP vs Ruby on Rails performance comparison	58
Figure 36 - Sample code showing session variable usage	58
Figure 37- University Header	59
Figure 38 - Document object model representation	60
Figure 39- AJAX Data Retrieval	64
Figure 40 - Example of UCF EPC reservation calendar	66

Figure 41 - Basic Functionality of a Transformer	69
Figure 42 - MULTISIM simulation of Power Supply Design	72
Figure 43 - MULTISIM Oscilloscope and DC output from Linear Regulator	72
Figure 44 - MAX485 schematic configuration	75
Figure 45 - Differential Input Voltage and Corresponding Output	76
Figure 46 - DT crystal schematic	77
Figure 47 - Eagle schematic push button configuration using one pin	79
Figure 48 - Eagle schematic push button configuration using six pins	79
Figure 49 - Login Component	82
Figure 50 - The Shibboleth federated identity login screen	82
Figure 51 - Create Account Page	83
Figure 52 - The student home screen layout	84
Figure 53 - Administrative home screen layout	85
Figure 54 - Calendar layout using a table format	86
Figure 55 - View students mockup	87
Figure 56 - Update student mockup	88
Figure 57 - View machines	89
Figure 58 - Update machine	89
Figure 59 - Monthly invoice	90
Figure 60 - Input sanitization	91
Figure 61 - Relational database model	93
Figure 62 - Entity relationship diagram (ERD) of database	94
Figure 63 - Temporary panel with most components removed	100
Figure 64 - Temporary panel plastic hinges	101
Figure 65 - Temporary panel plastic latches	101
Figure 66 - Program 1 – magnetic swipe test	102
Figure 67 - Program 2 – swipe process send (part 1)	103
Figure 68 - Program 2 – swipe process send (part 2)	104
Figure 69 - Program 3 – swipe process send receive (part 1)	105
Figure 70 - Program 3 – swipe process send receive (part 2)	106
Figure 71 - Program 4 – PLC loopback test	107
Figure 72 - Program 5 – send 1 ASCII char	107
Figure 73 - temporary touch screen startup screen	109
Figure 74 - temporary touch screen login screen	109
Figure 75 - temporary touch screen machine select screen	109
Figure 76 - temporary touch screen machine operations screen	109
Figure 77 - Machine selection screen on 6” panel	109
Figure 78 - Successful login screen for Machine 1	110
Figure 79 - Successful extend request processed	110
Figure 80 - Successful logout request processed	111

Figure 81 - Unsuccessful login, user must create a reservation	111
Figure 82 - Unsuccessful login, user is not authorized on Machine 1	111
Figure 83 –PLC and PC communication software process flowchart	112
Figure 84 - Ananas MODBUS/TCP server screenshot	113
Figure 85 - NetCat command line MODBUS communication software	114
Figure 86 - MOD_RSsim main window	115
Figure 87 - MOD_RSsim comms log window	115
Figure 88 - Testing Port 3 (RS-485) of the PLC	116
Figure 89 - RS-485 transmission from PLC ASCII character “=” 0x3D	117
Figure 90 - RS-232 transmission from PLC ASCII character "=" 0x3D	117
Figure 91 - Receive card swipe info (PLC program)	118
Figure 92 - Complete Eagle schematic - part 1	119
Figure 93 - Complete Eagle schematic – part 2	120
Figure 94 - Breadboard Prototype Setup	122
Figure 95 - Project milestones and deadlines	125

[bookmark: _Toc468701401]1 - Executive Summary

Control Systems are used throughout many different fields to regulate the behavior of devices or machines. From the most common association of production to more recent implementations in artificial intelligence, we see application in almost every aspect of the modern world today. The Control System to be designing is for the Clean Rooms that exist in engineering building one, and are used for all Electrical and Computer Engineering PhD Candidates and Professors. The idea is to provide accountability, and ease of use into these rooms that currently only have a ‘sign-in’ sheet to show the date, time, and machine that was used. However, this type of system that is currently used, creates several problems.

The Control system will be designed to cover a wide range of issues. One of the biggest challenges faced right now, is being able to schedule a device/machine in advance. Often enough, students or professors do not communicate with one another scheduling of when a machine will be used or when it has availability. Part of the Control system will be to enable all authorized users access to a website to schedule a specific time to use a machine. This will give the opportunity for students to plan experiments in a timelier manner and budget their time more efficiently. To go along with scheduling, no unauthorized user of equipment will be allowed to freely go into a room and use any machine. The system will create accountability for equipment use as well as any wear on a machine by indicating which user most frequently operated a given machine. The second largest motivation for a control system is to provide record of, and charge appropriately for, use of a device. Each machine in the clean room has ownership by a Professor or the school of Engineering. With the current system, there is no way to have documentation of who entered the clean room and who used a device other than by signing a sheet of paper. The Control System will provide the time that each user occupied a machine, the time a user scheduled the machine, and each time a user enters the Clean Room itself. With this information, the administrator will be able to accurately bill for use of materials and devices for all persons that are authorized access to the clean room.

To achieve the main challenges given above, and considering other variables and parameters dictated by the sponsor, a controller device is needed as well as purchasing relays to be able to turn on devices that are powered with 120 volts. A magnetic card swipe was decided as the most practical way to implement login access to the control system while in the clean room. Other considerations such as a fingerprint scanning device, or an access card control on each machine, did not provide as much continuity when tying the system together with UCF’s network. The ISO number assigned to everyone is a universal to the entire system, and became the most obvious choice. The system will also need a touch screen or equivalent to aid in giving the user options to choose a specific device for operation, modes of operation, and the ability to communicate a response back if needed. These things will provide a streamlined, stable, and much needed accountability to UCF’s Engineering Clean Rooms.

[bookmark: _Toc468701402]2 - Project Description

[bookmark: _Toc468701403]2.1 - Motivation

The main motivation for implementing a dynamic control system into UCF’s engineering clean rooms was dictated by the sponsor. In previous years, several senior design teams had attempted to implement a system to use for accountability and authorization for each machine. However, with some constraints in budget as well as constraints given by UCF engineering department, groups did not have success in creating a system that was sustainable and practical to use. Previous projects attempted to create a PCB design as the main unit to control all machine functionality. Relying on a single PCB design to be able to send power to relays for many machines, to be able to function with many timers running at the same time, to be able to communicate through any means of a website or database proved to be too much for a single processor or design.

With guidance and direction from the sponsor, it became clear that to meet all specifications, we would need to use industry standard controllers. The vision dictated by the sponsor was to design and implement a system that would last for years to come, not just to be done during a demonstration for Senior Design. The system must be expandable and the database and web design should be capable of being hosted through UCF servers. We wanted to develop a control system that allows for all users in the clean room to easily use the control system, without impeding any progress they may have in research. The interface should be intuitive so that even someone new to using the clean room, would have an easy transition in use. A student or professor should be able to log on to the website, make a reservation for a given machine, enter the clean room, swipe their UCF ID, and use the machine. Meanwhile the database should log and file all use and provide streamlining for monthly billing that will occur. The system we design should be transparent, and with enough guided instructions, that any maintenance or expandability needed will not cause any disruption in the day to day operation of the control system, database, or website.

[bookmark: _Toc468701404]2.2 - Overview

The diagram given in Figure 1 shows the highest-level overview of the control system. This figure already assumes the user has first made a reservation via the website. The diagram below gives clarity to how the control system functions. When the user wants to interact with the system, he will first use the touch screen interface to use a machine. The interface will have multiple options for the user. If the user wants to login and use a machine, the interface will prompt the user to swipe his UCF ID using the magnetic card swipe. The information is then sent to the PLC (Programmable Logic Controller) which acts as the master in a master/slave configuration. The PLC packages the information together such as the user’s UCF ISO number, the machine requested for use, and the request type to the server. The server communicates with the database to give either permission or denial. With Permission, the user will receive a message on the interface indicating a successful login. If the user is denied, a packet of information will be transmitted to the interface that will give a general description to the user as to why he is denied access. Two examples of such permissions are “the user is not authorized to use this machine”, or “the user did not schedule a reservation.”

[image: https://documents.lucidchart.com/documents/04581b25-a557-446a-aa86-7f4615d98a04/pages/eNbqbEM6f5NI?a=1149&x=-1&y=390&w=1348&h=1100&store=1&accept=image%2F*&auth=LCA%207c8cd293648d5e3370d87f71b799ff719d08960a-ts%3D1480805619]
[bookmark: _Toc468709534]Figure 1- Control System Process Overview

Once permission is granted, the PLC sends an enable high to the relay to turn on the selected machine. A timer is set by the PLC for the given time that the user scheduled the machine for. This information was part of the package of data sent from the database to the PLC responding to the request. If at any time, the user wishes to terminate experimentation early, he will be able to logoff and the time used will be sent from the PLC to the database to be recorded. If the user wishes to extend time, there will also be that option; provided no other scheduling conflicts. To run along parallel to the system is the system diagnostic tool which will connect to the PLC through an expansion of the PLC and through the RS-485 port. This tool will be designed to allow for quick access in case some error occurs when using the PLC. It should give administration the ability to determine which machines are in use and give the amount of time left on each in use. It should also be able to determine which machines are out of order, and should be able to indicate whether the PLC is function correctly. The diagnostic tool will have a smaller LCD display along with directional buttons to navigate through options.

[bookmark: _Toc468701405]2.3 - Requirement Specifications

For the Clean room LCS to become the product envisioned by the sponsor it must adhere to a strict set of requirements and specifications. Along with the sponsor, we have identified certain requirements involved in our system that we must fulfill in the development process. The following is devoted to identifying requirements that we must meet to reach our goals as a group and reach the vision of our sponsor for the clean room LCS.

[bookmark: _Toc468701406]2.3.1 - User Serviceable

This requirement was strongly dictated by the sponsor. The system to be implemented should be such that if any component malfunctions, one should be able to order new components for replacement, and not rely on a third party to service the system. With this design requirement, we sought out industry standard components such as the PLC, power supplies, and relays for the system.

[bookmark: _Toc468701407]2.3.2 - UCF Servers

Along with the website allowing users to make reservations to use a given device, the system should be able to interact and work with UCF servers. All web design and software used will be compatible with UCF’s system and should operate under the umbrella of UCF’s security.

[bookmark: _Toc468701408]2.3.3 - Modernization

The system shall remain modern for at least three years after being designed and installed into the clean room. This requirement goes hand in hand with 2.3.1 with user serviceable. Along with choosing a proper industry standard for a controller, we also must consider what companies have had a long and lasting impact within the industry as well as consider what models have been maintained and continued throughout time. This will yield a very low probability that the components we have chosen to act as the LCS will go out of production

[bookmark: _Toc468701409]2.3.4 - Diagnostic Tool

The system will contain a diagnostic tool (PCB designed by EE group members) in case of machine malfunction or to read general status information. The tool must be able to connect to the PLC and have two-way communication. The diagnostic tool will provide quick access during a malfunction, including being able to read from the PLC in case error occurs within.

[bookmark: _Toc468701410]2.3.5 - System Expandability

Dictated by the Sponsor, the PLC must be expandable, and the administrator will be able to add up to twenty-two machines per room. The entire system can be purchased and assembled by experienced EE students or faculty to replicate the system in additional clean rooms.

[bookmark: _Toc468701411]2.3.6 - User Friendly

The interface in the clean room as well as the website must be user friendly. This is challenging to quantify. However, the user should be guided through a series of steps to minimize the learning curve necessary to use the system and ensure that no wrong selections are made. The idea is to create a website that is responsive, simple in design, and like reservation type websites that already exist and are widely used. The user interface in the clean room should have simple instructions printed above the panel, as well as giving the user all options needed on the interface without complexity. To meet this requirement, we would like to consistently get feedback from the PhD students using our system when first prototyping and eventually implementing in both clean rooms

[bookmark: _Toc468701412]2.3.7 - User Manual

This requirement is the next most logical step in creating a streamlined system to last for years to come. A complete manual will be written to assist in diagnosing any major malfunction with the hardware, and give instruction for software to be developed and updated. The manual will also give descriptive procedures to add machines, to add or remove users, and to show how to change any administrative processes.

[bookmark: _Toc468701413]3 - Realistic Design Constraints

[bookmark: _Toc468701414]3.1 - Economic Constraints

Economic constraints do not play a large role in the development of the Clean Room LCS. With the Design Specifications and requirements dictated by our sponsor yields a more flexible budget than normal. However, a budget was still proposed and approved by the sponsor which can be seen in Section 11 Administration. The pricing for components such as the PLC purchased through automation direct, the interface, and power supplies can add up quickly. The only cost to the students will be building and prototyping the Diagnostic Tool. The expectation is to design and obtain approximately three printed circuit boards. Our budget is small for the diagnostic tool, but does not affect the overall functionality of the LCS, given that it runs parallel to its functionality.

[bookmark: _Toc468701415]3.2 - Time Limitations

The amount of time that we must design, implement, and install to create a successful LCS to last for years is a limiting factor. We started design for the project a full semester before officially enrolling for the fall semester to begin the Senior Design class. We began by making decisions to figure out what the best technologies would be to implement the system, and then getting approval from our sponsor. The biggest hurdle thus far has been learning so many different communication protocols which seemingly no one within Electrical/Computer Engineering, or Computer Science had experience with. After becoming familiar with communication protocols, we then also should work side by side with technical support to ensure that our website and database can be implemented with the UCF server. The group also must make sure a working prototype is put in the clean room and used with at least two machines before the end of the first semester. Doing this, ensures that any bugs or glitches that occur can be fixed; leaving a solid LCS by the time the group finishes the two-semester sequence.

[bookmark: _Toc468701416]3.3 - Environmental, Social, and Political Constraints

There does not seem to be any relevant political constraints when designing the LCS for the clean room. The development is not aligned with the philosophy of any one political party. Any research we performed, regarding the products that we used shows no political involvement. However, Environmental awareness is one that we have considered when designing the LCS. Power use and power reduction is one that all engineers seem to have to face during their career, and our LCS is no exception to this. We firmly believe that going with industry standard designs and manufacturers such as Automation Direct for the PLC, versus creating one ourselves has a much more effective result in reducing power consumption for the system. While adding the LCS there is a trade-off. It will increase power consumption in the clean room, to create accountability for the system.

[bookmark: _Toc468701417]3.4 - Ethical, Health, and Safety Constraints

Any discussion of ethical constraints, other than that of power consumption and energy efficiency, does not play a direct role for implementing the LCS. However, health and safety constraints are related directly when implementing the design. As a group, we must create a system that is safe to use. One of the key elements to ensure safety is to consolidate and cover all wiring of the PLC and power supplies in a contained enclosure. This allows for the user to only have access to the touch screen interface and magnetic card swipe. Another safety constraint, is to have circuit breakers to protect the PLC and the power supplies. Lastly the final safety constraint is to have all wiring to relays and machines comply with regulations and standards with building codes and UCF.

[bookmark: _Toc468701418]3.5 - Manufacturability and Sustainability Constraints

Considering most of the design for the LCS utilizes industry standard components, manufacturability constraints do not have any relevance for this project. The diagnostic tool may have potential to be implemented for use with the specific Automation Direct PLC. However, unless universities start using similar design for any clean room they may have, then this PCB will be designed only for use within the UCF clean room. Sustainability Constraint is a major factor for the project. When approaching design for the system, we had to consider the project to be able to function at least three years after being installed successfully in the clean room. This constraint was the primary focus for our sponsor, and we believe will be met with no discrepancy.

[bookmark: _Toc468701419]3.6 - Security Constraints

Our system will be implemented on the UCF network and must be in compliance with UCF security standards. The UCF Tech Support department can provide us with a server that minimizes any potential risks to the UCF network. One security measure that the UCF network invokes is Shibboleth. Shibboleth is a federated identity solution that connects UCF students to services on the UCF network. Applications behind the Shibboleth secure login screen are protected against a variety of potential vulnerabilities. Shibboleth guards both UCF and our reservation system from malicious user interactions. In addition to Shibboleth, our server system will be granted limited user permissions. Our developers will not have the permissions to manipulate the UCF server network - which provides another layer of security guarding UCF from potential vulnerabilities.

[bookmark: _Toc468701420]4 - Related Standards

[bookmark: _Toc468701421]4.1 - MODBUS protocol standards

The following standards were consulted when writing the PC software to make sure it would be able to communicate to the PLC properly.

Taken from “MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3” found at http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

Standards 4.1 through 4.4 were used in order to make sure the PC software accurately simulated a MODBUS device with proper data addressing and data encoding. The MODBUS protocol is a simple way to structure communication with the base structure of any packet being sent between devices in a MODBUS network consisting of a function code followed by data. Various wrappers are placed around this packet depending on which type of physical network the communication is tied to. Standard 4.1 states that all communication is initiated by the client and then the server formulates a response and sends it back to the client. The server never sends the initial connection request. This fits our project’s needs because we only want the PLC to initiate communication whenever a user wants to use the system to log in, log out, or extend their time.

Standard 5.1 was consulted in order to choose the right function codes for our communication needs. We chose function code 16 (0x10) to write data from the PLC to the PC because it allows us to send a large data packet that contains the student’s card number, a request code, and a machine number all at once which the PC then interprets and sends a “response” which is actually initiated by the PLC again function code 3 (0x03); function code 3 is the PLC reading multiple registers from the PC which should have already consulted the database and formulated a response packet to send back to the PLC for interpretation and execution.

Standards 6.3 and 6.12 were consulted extensively to make sure the PC software sent, received, and interpreted the PLC data correctly. Standard 6.3 covers function code 3 (0x03) which is to read multiple registers. Standard 6.4 covers function code 16 (0x10) which is to write multiple registers. These standards are crucial to our project as this is the protocol we used in order to pass data back and forth from the PLC to the PLC and vice versa.

Taken from “MODBUS MESSAGING ON TCP/IP IMPLEMENTAION GUIDE V1.0b” found at http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

Standards 3.1.2 and 3.1.3 were used in order to properly build the MODBUS TCP/IP ADU (application data unit) in order for the communication between PLC and PC to happen over Ethernet.

[image:]
[bookmark: _Toc468709535]Figure 2 - a) standard MODBUS packet; b) MODBUS TCP/IP packet [1]

The MODBUS TCP/IP ADU is composed differently than the standard MODBUS ADU. Instead of having wrapper information on both ends of the packet (as seen in figure 2-a), the transmitted data contains only a header known as the MBAP or Modbus application protocol header (as seen in figure 2-b).

The MBAP header contains four fields: the transaction identifier, protocol identifier, length, and unit identifier. The transaction identifier is two bytes long and is a simple count of all the transactions sent and received between the client and server. By restarting either device, the transaction identifier will be reset to zero. The protocol identifier is also two bytes long and is set to zeroes to signify that the MODBUS protocol is being used. The length is another two byte long section that specifies the number of bytes coming up in the packet. Finally the unit identifier is a one byte address of the MODBUS device, usually 0 or 1 for two-device MODBUS networks such as the one we are implementing over Ethernet. [1]

[image:]
[bookmark: _Toc468709536]Figure 3 - MBAP header field breakdown [1]

[bookmark: _Toc468701422]4.2 - Electrical panel standards

When choosing the hardware we needed to implement this project, one important consideration was the electrical enclosure that would house all of the electrical components as well as provide an interface for users to access the system. The panel we chose is UL listed and conforms to UL-50 standards for enclosure for electrical equipment. This covers everything related to an enclosure such as the materials, construction, connections, and markings. [2] The panel is also NEMA 250 certified which is the standard for enclosure for electrical equipment under 1000 volts. [3]

[bookmark: _Toc468701423]4.3 - RS-232 and RS-485 standards

Our project utilizes both RS-232 and RS-485 standards for gathering the card number from users when they swipe their ID to use our system. RS-232 is a serial communication protocol that outlines such things as voltage levels, the rate of transmission, and many other electrical characteristics of the signals being sent between devices as well as some physical connector descriptions to take advantage of this communication protocol. RS-232 and RS-485 are very similar to each other and, in fact the RS-485 protocol is an evolution of the RS-232 protocol. The biggest difference between the two is that RS-485 can be used to create larger device networks than RS-232. Because we could not find a card swipe reader that sent its output over the RS-485 protocol, we were forced to use one that outputs over RS-232. However, since the ASCII encoding in both protocols is extremely simple and the voltage levels used are acceptable for both RS-232 and RS-485 mixing the two standards does not pose an issue.

[bookmark: _Toc468701424]5 - Research

[bookmark: _Toc468701425]5.1 - Existing Similar Projects and Products

Our research began with finding all the possible solutions available that would provide the required functionality by our sponsor. We also considered some previous projects done by UCF students to achieve the goal of creating an LCS that will fulfil the sponsor’s requirements. Several projects that served as inspiration, such as home automation projects. Important points that we saw and that were necessary to consider are providing different voltages to power different elements of a system and the ability to control the system on the individual device level. We must be able to turn on or off any individual machine without affecting the rest of the system.

We considered the following control systems to possibly implement in order to automate the cleanroom laboratory machinery: remote telemetry/terminal unit (RTU), programmable logic controller (PLC), system on chip (SOC) devices such as the Raspberry Pi and the various Arduino boards available, and the ProXR Web Relay. Going forward with our decision, the most important features we were looking for are: cost effectiveness, post-install serviceability, expandability, flexibility of configuration, and durability. Each system was researched and considered according to the sponsor’s requirements and in order for the system to be future-proof and durable.

[bookmark: _Toc468701426]5.2 - Relevant Hardware Technologies

[bookmark: _Toc468701427]5.2.1 - RTU

The remote telemetry/terminal unit (RTU) was one of the first technologies we considered in order to implement the laboratory control system (LCS). An RTU is a remote unit that is set up in locations that are hard to reach on a regular basis such as weather monitoring data stations. They are durable and made to withstand harsh temperatures and climate conditions. Another benefit is that each unit can be configured to receive a variety of sensor inputs and will send the data back to a central server on a preset schedule, on demand, or in real time.

Drawbacks of the RTU that affected our decision include the fact that RTUs are designed mostly to collect and transmit data and not do much onboard processing. Also, the RTU is not meant to control other devices because of its main purpose of collecting data, so it is a device with many inputs but it does not handle inputs well. For the purpose of our project, we need a device that is capable of both receiving input data (from the magnetic swipe reader) and controlling outputs (turning each machine on or off). Because of these drawbacks of an RTU, we ultimately decided not to implement it in our project.

[image: rtu]
[bookmark: _Toc468709537]Figure 4 - Remmon R-COM RTU [4]

[bookmark: _Toc468701428]5.2.2 - Raspberry Pi & Arduino

The Raspberry Pi and Arduino boards are perhaps the most well-known in engineering, computer science, and other tech circles. They provide almost limitless flexibility at a low cost that is attractive to those who are developing solutions on a budget and need a robust platform that they can configure to their specifications. However, the level of customization that is available and necessary to implement the LCS using one of these boards is too high for the purposes of our project. A specific requirement of our sponsor is that in case of component failure, the system should remain user-serviceable through a series of simple steps and the components that need to be replaced or repaired should be available for purchase by the user/system administrator. This requirement conflicts with the UCF senior design requirement that each group design a PCB that serves a central or important role in the overall project. By designing a custom PCB utilizing elements similar to the Raspberry Pi or Arduino, the system is no longer user-serviceable because in case of component failure, the whole board needs to be replaced and because it is a custom design, it needs to be special ordered from PCB manufacturers. Despite the appeal of this solution, restrictions in design and requirements on both the sponsor side and the senior design side prevented us from choosing this path in order to realize the LCS.

	[image: raspberry pi]
[bookmark: _Toc468709538]Figure 5 - Raspberry Pi 3 [5]

	[image: arduino uno r3]
[bookmark: _Toc468709539]Figure 6 - Arduinio Uno R3 [6]

[bookmark: _Toc468701429]5.2.3 - ProXR Web Relay

The ProXR Web Relay was suggested by our sponsor and is almost an ideal solution to the implementation of our LCS. It is a relay board that has the capability to power up to 256 discrete inputs and any combination of analog or digital sensors. Also, it is programmable and accessible through the internet via built-in web pages which would aid greatly in administrative tasks and management.

One of the drawbacks we saw with this is the price. One board with 32 relays costs around $1000 and that doesn’t take into account the control hardware that is necessary to connect each machine and the required hardware to mount in the laboratory such as enclosures, power supplies, human interface, and of course the magnetic swipe reader. Another consideration we made when deciding on a control system implementation is the ease of programming. In order to set up the system according to our sponsor’s specifications, we would need to purchase a copy of the programming software from the ProXR’s manufacturers for an additional $169.

[image: ProXR Web Relay]
[bookmark: _Toc468709540]Figure 7 - ProXR Web Relay [7]

Despite the strengths of the ProXR Web Relay line of products, we decided not to choose it for our implementation of the laboratory control system because of its high price, need for additional peripherals to make the system function, and proprietary software that must be purchased in addition to the hardware.

[5] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
[6] https://store-usa.arduino.cc/products/a000066
[7] https://www.controlanything.com/Relay/Device/ZUXPSR3210ProXR_WEB-i

[bookmark: _Toc468701430]5.2.4 - PLC

The PLC is a programmable logic controller that can be programmed according to the user’s needs and provides discrete as well as analog/digital data inputs and outputs typically in a modular configuration. This combined the elements of customizability and expandability of the ProXR Web Relay but did so at a lower cost that could be tailored according to the needs of the project. A basic PLC costs under $200 and expansion modules as well as power supplies are typically under $100 in the less powerful product lines that would suit our purposes perfectly.

[bookmark: _Toc468701431]5.2.4.1 - Allen Bradley / Rockwell Automation

One of the PLC manufacturers we considered is Allen Bradley / Rockwell Automation which makes a line of programmable controllers called MicroLogix Control Systems. The MicroLogix 1200 contains all the features that we need including discrete I/O points, expandability, and customizability. The reason we did not choose this implementation is because the MicroLogix 1200, like the ProXR Web Relay required purchasing extra software in order to program the device. In addition, to order a MicroLogix 1200 PLC or any expansion cards, it is necessary to go through a vendor of Allen-Bradley products, so that is a step that could be inconvenient to the user when it is time to repair or replace components.

[image: micrologix 1200]
[bookmark: _Toc468709541]Figure 8 - Allen Bradley Micrologix 1200 PLC [8]

[bookmark: _Toc468701432]5.2.4.2 - Automation Direct

The final product we researched is the Click Micro PLC line from Automation Direct. Automation Direct supplies a plethora of products that are used in various industries in order to automate processes, production lines and machinery. We chose the Click Micro due to its low cost, and modular expansion capabilities as well as the free software available to program the device. A base unit includes an Ethernet port for networking and communication, an RS-232 RJ-12 port for connecting compatible devices (in our case, we used this port for a touch screen interface), and a two-wire RS-485 port that will be used to receive the card swipe input data. An important part of our decision was the amount of compatible products available for the Click Micro PLC and the availability of those products. Automation Direct also makes the vast majority of its products available to order online so in the case of component failure, it is easy to get a replacement. All of these factors combined made Automation Direct our chose of supplier for the majority of the hardware for our project. Combined, the cost of the PLC base module, all power supplies, output expansion modules, touch screen interface, and other panel hardware came to about $1200 for one complete system that can be installed in a laboratory.

[image: automation direct plc in panel]
[bookmark: _Toc468709542]Figure 9 - Automation Direct Click PLC (center) with attached power (left) and output expansion slots (right)

Figure 9 shows the PLC in the center as well as the attached power supply on the left, and two 8-point relay output expansion blocks. This convenient ability to add on expansion blocks is important to our sponsor because it means user expandability is quick and easy.

[bookmark: _Toc468701433]5.2.5 - User Interface

[bookmark: _Toc468701434]5.2.5.1 - Touch Screen

Following our decision to use Automation Direct Click Micro PLCs, the choice for touch screen became simplified: we had several choices from Automation Direct that were compatible with the PLC we selected. We considered the 3” C-more Micro touch panel and it was a good fit for testing the system in the initial stages of prototyping, but the amount of information we wanted to give the user on one screen did not fit in the 128 x 64 pixel display. This led us to change to the 6” EA3-T6CL C-more micro panel.

[image: three inch panel]
[bookmark: _Toc468709543]Figure 10 - 3" touch panel with data and programming cable attached [9]

The bigger touch panel afforded us several benefits such as a 320 x 240 pixel display, giving us more room to create various buttons, display instructions, and user feedback; full 32K color display to help with making certain parts of the user interface stand out; free programming software available for download; separate port for programming and communication with the PLC, making the programming and design much more convenient. Something we had to consider when choosing this panel was the power supply; the 3” panel was port powered through the PLC but the bigger 6” panel requires a separate +12-24 V power supply.

	[image: six inch panel 1]
[bookmark: _Toc468709544]Figure 11 - 6" panel front view [10]
	[image: six inch panel 2]
[bookmark: _Toc468709545]Figure 12 - 6" panel rear view showing power, data/communication, and programming ports

[bookmark: _Toc468701435]5.2.5.2 - User Identification/Authentication

When approaching how to authenticate each user that has access to use the clean room, two options were discussed and researched. Both options required communicating through one of three ports on the PLC, and act as a compliment to the user interface. The first option was to acquire and use a fingerprint scanner for User Identification. At first, this seemed to be the most secure option being that fingerprints are unique to an individual. This would allow for absolute isolation for user access to an individual machine. However, with this sophistication also included complication. Each professor would have to initialize and scan a new PhD student to get access to use the clean room. With UCF’s ever growing population, this seemed to rule out the finger print scanner as it would create delay and lack of interest in keeping the control system.

Using a magnetic card swipe soon became the clear choice for authentication. With a design requirement of using the UCF server’s, a student’s ISO number would be the easiest to use for gaining access to the clean room as well as access to machines. To go along with streamlining the control system with UCF’s servers, and associating a NID login with a student’s ISO number, each professor would be able to add or remove students quickly by being given administrator access to the database. Typically, magnetic card swipes communicate through USB protocol or serial connection. Communication with the PLC being paramount, we chose to implement using magnetic card swipes that use RS-232 serial ASCII communication. Consideration also went into having a magnetic card holder at each machine that would keep the machine active, if the card remained locked in place. This quickly posed problems sending and receiving ISO information to the PLC from each card holder. The group decided to use a single magnetic card swipe that would be mounted to an enclosure accompanying the touch screen interface.

	Magnetic Card Reader
	Operating Voltage
	Current
	Magnetic Head Life Span
	Physical
Interface
	Price

	SU90 (RS-232)
	DC5V±0.5
	10mA
	800,000
	DB9, PS/2
	$44.95

	ZAUM120-PL
MSR112A (RS-232)
	DC 3.3V
	5.5 – 6.5 mA
	500,000
	DB9
	$62.00

	POSMATE MSR
(USB)
	N/A
	3mA
	500,000(min)
	USB
	$40 ($20 + USB-Serial converter)

Table 1- Comparison of Magnetic Card Swipe readers

Above, Table 1 gives a comparison to several RS-232 options to purchase. Another requirement when using a student UCF ID is that the magnetic card reader can read two tracks of data. All the listed options have this capability. The market seems to be getting more limited in readers that communicate via RS-232. Most today seem to be made for small businesses or personal use considering the vast amount having a USB Interface. The three choices above have similar operating voltage/current. Given that power is something to always try to minimize, but not a restriction, we mainly had focus on price. The cheapest option is the SU90. We decided to purchase this item, to quickly get to testing the PLC. However, this proved to be costly for progress. After approximately 3 months of use, the card swipe started to fail when reading information, but still maintained power. The group decided to order something made significantly better with a higher cost. The MSR112A is the next logical choice. The only issue is that the operating voltage is now less, than what was required for the SU90. A lower voltage means that the group must get a different power supply for the system that what was originally designed for a 5V magnetic card reader.

[bookmark: _Toc468701436]5.2.5.3 - Kiosk

In order to provide real-time laboratory statistics such as which machines are available, when the next reservation is for a certain machine, if a user is logged in to a machine it will show the remaining time. This kind of information and other useful data can be displayed on a computer screen that does not allow user input. Its only purpose is to give a quick glance at the status of the laboratory and the machines for a user to decide whether or not they want to use a machine or to check how much time they have remaining.

[bookmark: _Toc468701437]5.2.6 - Diagnostic Tool (DT)

The Diagnostic tool is meant to run parallel to the control system. It will assist in quickly diagnosing any malfunctions with the system and provide administration quick access to the PLC. The goal of the DT is to be able to communicate immediately with the PLC through an 8-point input module, and receive communication through Port 3 via RS-485.

[image:]
[bookmark: _Toc468709546]Figure 13 - Diagnostic tool, PLC, and card swipe connection diagram

In order to make sure the card swipe and diagnostic tool can be connected to the PLC simultaneously and not require the user to connect anything to the panel in order to use the diagnostic tool, we will implement a pass-through system. The card reader will be connected to the diagnostic tool and by default, the diagnostic tool will pass the signal through itself and onto the PLC which will then read the card swipes under normal use. If the diagnostic tool is activated, the PLC will know via the 8-point input module, and will know to send data out of the RS-485 port rather than receive data. The diagnostic tool itself will also switch over to receive the data from the PLC and display it, rather than allowing the card swipe data to pass into the PLC

[bookmark: _Toc468701438]5.2.6.1 - Power Supply

One of the most fundamental and overlook aspects of design is Power requirements of the system. Even with the DT being a tool that runs parallel to the control system, different components of the system require varying voltages and/or currents. When researching, several different types of basic AC to DC conversion options are available. Since this is not critical to design, we will investigate various options, and with time permitting, have full implementation.

The LM5023 AC-DC Quasi-Resonant Current was initially considered as an option for design. After viewing documentation from Texas Instruments Datasheet, even the most common applications for VAC -VDC conversion seemed complicated in design and components. With budgeting for the DT from funds outside of the sponsor’s budget, we felt that although benefits do arise from using this configuration, it would not be feasible to implement for the Diagnostic Tool.

A popular option for our design from 120 VAC outlet to a 12 VDC implements a simple design and far less components than that of LM5023. The voltage first needs to be converted from VAC to VDC. It will then need to be further stepped down to 12VDC. From the source (wall), a step-down transformer will be used. Once the voltage is stepped down it is fed through a bridge rectifier composed of four diodes. Using bypass capacitors for limiting ripple, the signal is then transmitted through a 12-volt linear regulator to accurately maintain a 12-volt DC signal. Figure 14 gives a block diagram of progression from outlet to 12 Volt DC signal.

[image: PowerFLow]
[bookmark: _Toc468709547]Figure 14- Block Diagram of VAC to VDC conversion

[bookmark: _Toc468701439]5.2.6.2 - Microcontroller Overview

Figure 15 gives the basic overview of the Diagnostic Tool. At the top of the figure shows the expected components that the DT will communicate with. Currently, we are not sure if a switch for Port 3 will be attached to coincide with the magnetic card swipe so that both components can be connected at the same time. It seems more beneficial to have two separate adapters for both the card swipe and the DT because of easy access to Port 3 of the PLC. The microcontroller will also have 8 pins dedicated to an expansion of the PLC that is designated to read 8 point signals in range of 3.3V – 5V DC.

[image: Micro_C overview]
[bookmark: _Toc468709548]Figure 15 - Diagnostic Module overview

The decision on which chip to use as a RS-485 decoder chip became very transparent the more research that was done. The most frequently used chip for RS-485 communication is Maximum Integrated’s MAX 485 CSA. They are abundantly available, are frequent to many breakout boards, and with the added benefit of the same voltage requirement as the microcontroller.

The User Interface portion of the DT will have 6 push buttons to configure. These buttons will allow the user to navigate and select which machine to get information from as well as check the status of the PLC itself. Two different LCD’s are being considered for final implementation. The Sainsmart LCD2004 and the Adafruit 20x4 display are both viable choices for use with the type of microcontroller being used. Currently the Sainsmart is used for prototyping. If time and budget permits, the Adafruit display would be implemented in the final design.

To achieve the above design for the DT, only a few requirements need to be considered. The first consideration is to have enough memory to receive large transmissions from Port 3 using RS-485. Also, the microcontroller will need to have enough general-purpose Input and output pins if we decide in the future to implement the Adafruit 20x4 display, or something with even more features for the user.

[bookmark: _Toc468701440]5.2.6.3 - Embedded Microcontroller Environment

Although not centralized to the LCS itself, deciding on which processor to use is crucial for designing the DT. The microcontroller needs to be able to send data to the PLC as well as receive from RS-485 port. As part of its user interface, the DT also needs to successfully connect to the LCD screen as well as have inputs for push buttons that interact with the LCD screen. One last consideration, is regarding the amount of memory needed to store instructions as well as transmission from Port 3 of the PLC (data transmission/storage). The instruction set should be equally expandable as the requirement for the PLC, giving need for additional memory to add machines over time without replacement of the processor. Expanding memory, to include expansion on program as well as data, was considered as an option. However, this also posed problems with having software support, and seemed to be adding a level of complication for future expansion. This idea was quickly eliminated as a viable option to the DT.

The first decision needed to be made was what type of processor to use. The two main core processors under consideration were the ARM or ATMega. At first the ARM seemed very attractive. These core processors are used heavily, and is also the processor Texas Instruments (TI) uses for their microcontrollers. TI microcontrollers have been used for several classes at UCF and the IDE (integrated development environment) Code Composer Studio brings some familiarity and comfort in software. ARM processors also carry larger address space and higher clock speeds, but bring complexity in programming. The ATMega series (by AVR) cost less, consume less power overall, and have a wide range of operating voltages. The learning curve is generally faster than that of ARM, and most of the group is equally familiar with Arduino IDE and microcontrollers. The deciding factor in processor choice was the vast amount of information when using Arduino based products. Because Arduino is open source, a plethora of information is readily available. Along with this, and the seamlessly easier IDE with Arduino, we decided to use AVR’s ATMega series.

Table 2 lists just some of the ATMega series processors briefly researched for the DT. With a concern for Memory, the 168 and the 88 were immediately taken out of the running. We were left with the 32, 328, and the 1284. The 1284 has the largest Flash Memory, however the pin count seemed to be excessive for what our needs are, and at close to $8 per chip it was also removed from the running. The final two processors under consideration are the ATMega 32A and the ATMega 328. With the ATMega 328 having a higher maximum frequency, a sufficient I/O configuration, and a friendly cost, it became the best option for the DT.

	ATMega
	Flash Memory (kB)
	Pin Count
	Max Frequency (MHz)
	CPU
	Price

	168
	16
	32
	20
	8-bit AVR
	$5.35

	88
	8
	32
	20
	8-bit AVR
	$3.25

	325
	32
	64
	16
	8-bit AVR
	$7.20

	328
	32
	32
	20
	8-bit AVR
	$3.38

	1284
	128
	44
	20
	8-bit AVR
	$7.95

Table 2 - ATMega series Comparison

Once deciding to use the ATMega 328 chip, there is still some issues before making it completely usable. Looking through multiple forums and datasheets, there are two options to purchase different type ATMega 328’s. The option to order a 328 with Optiboot versus without. With a price difference of ~$2.30, we first questioned if the Optiboot was worth the price difference. However, without this, the processor is missing a bootloader, which allows one to upload any written code without using supplementary hardware. To be able to write to these microcontrollers, we need to burn bootloader to these chips. To save time, we decided to go with the ATMega 328 with Optiboot to avoid having to configure the chip itself. If time permits, and funds are not available, burning bootloader onto the chip will be an option.

[bookmark: _Toc468701441]5.2.7 - Communication Protocol

The following two protocols play an important role in communication between devices in the Control system. The magnetic card swipe communicates through RS-232 to Port 3 of the PLC as RS-485. The touch screen User interface connects to Port 2 of the PLC which is designated for RS-232. Additionally, the Diagnostic Tool to be designed will communicate with the PLC through its third port as well. A significant emphasis on RS-232 and RS-485 is detailed in this section because of problems the group has faced when trying to convert from RS-232 to RS-485 as will be demonstrated in section 9.1.4.

[bookmark: _Toc468701442]5.2.7.1 - RS 232

RS-232 (Recommended Standard) is a serial communication standard that defines electrical signal characteristics (voltage, rate, timing, and slew rate) between two connected devices. This standard, however, excludes guidelines set for character encoding or error detection protocols. Voltage levels typically include the range of +3 to +15 or range -3 to -15 with respect to the ground pin. The two components that communicate using this standard is the magnetic card swipe reader and Port 2 of Automation Direct PLC.

[bookmark: _Toc468701443]5.2.7.2 - RS 485

RS-485 (TIA-485(-A), EIA-485) is like RS-232 in that it also is a serial communication standard defining electrical characteristics between two components. It has benefit in that it sends its message through a differential line consisting of two pins. The two components that communicate using this protocol are the Diagnostic tool, and Port 3 of Automation Direct PLC

[bookmark: _Toc468701444]5.2.8 - Machine Control

Although overlooked, machine control is very important for the operation of the LCS. With implementing control over a wide variety of machines in the Clean Room, we decided that relays would be the most beneficial. However, even with the use of relays, there are still some complications regarding different machines being used in the LCS. Most machines operate on 120 to 240 Volts. Finding an industry standard relay (as per sponsor request) seemed to be simple enough for 120 VAC. The PLC can be configured to output different voltages based on its common, with a maximum of 12 Volt output to the relay. However, some complication will occur when configuring a relay for machines with 240 Volts, and even more the case with machines that require to be constantly running (Implying no ON/OFF switch).

[bookmark: _Toc468701445]5.2.8.1 - Relay Functionality

Although used quite frequently in Industry and with hobbyist, not much is taught about relays. To implement or choose a relay, research was done on its basic functionality. The type of relay that is need for our system is known as the Electromechanical Relay (EMR). Fundamentally it allows control of a machine to turn “ON” or “OFF” based on interruption of electrical supply. Figure 16 gives a simple overview of the functionality of a relay. When the coil is energized by applying a low voltage, the magnetic flux generated from the yolk attached to the coil pulls the armature to allow the contact to move the electrical connections. There are two types of connections; Normally Open (NO) or Normally Closed (NC). When the Voltage is applied, the contact will move to its opposite side of normal condition, allowing for the “ON” state. When voltage is no longer supplied to the coil, the contact moves to its normal condition, and the relay is turned “OFF”.
[image:]
[bookmark: _Toc468709549]Figure 16 - Electromechanical Relay Diagram [11]

[bookmark: _Toc468701446]5.2.8.2 - Electrical Relay Contact Types

Electrical Relays are characterized by their contacts, and the number of contacts combined in a single relay. Figure 17 demonstrates some of the more common diagrams used for each type of contact configuration. The terminology introduced here is mainly out of convenience. For instance, “pole” just refers to a contact. Each pole (contact) can be “thrown” or connected by the energizing coil. Hence the four acronyms are given names as Single Pole Single Throw (SPST), Single Pole Double Throw (SPDT), Double Pole Single Throw (DPST), and Double Pole Double Throw (DPDT). [11]

[image: electrical relay contact configurations]
[bookmark: _Toc468709550]Figure 17 - Electrical Relay Contact Arrangements [11]

[bookmark: _Toc468701447]5.2.8.3 - PowerSwitch Tail II Relays

The PowerSwitch Tail II (PST) relay was the most obvious choice when looking for an industry standard relay that enables machines to be turned on from a wall outlet 120 VAC. The features of PST plugs into standard 3-prong outlet, and eliminates exposure of dangerous voltages in the LCS. The option to have this as a normally open or normally closed relay also could provide benefit for certain types of machines (standard wired as normally open). The PST allows for a large range of input voltage, anywhere from 3-12 VDC. The PST, although a bit expensive, seemed to provide a simple, and replaceable solution for a relay. This will be used for all machines that can be turned on and off without losing any functionality as well as any machine that operates on standard 120 VAC. This relay has configuration of SPST (NO).

[bookmark: _Toc468701448]5.2.8.4 - Stand Alone Relay

Stand Alone relays at first seemed to be of interest to allow for machine control. With many different configurations given by the company Denkovi, we had to look at overall specifications, and how this relay would configure with the LCS PLC. The amount of options it provided with cost seemed reasonable. Most of the stand-alone relays considered are Wi-Fi IP relay modules that allow for remote management and control via a virtual Serial Port, TCP/IP, or Web. This still posed problems though. The first issue, and most detrimental in applying this type of relay is needing some sort of router within the LCS. Adding separate routers in each Clean Room brings complexity, and more importantly is not allowed under UCF’s security policy. Working within the constraints of UCF security, this alone eliminated the stand-alone relay. However, if at any time in the future, security allows for routing, this could be a viable replacement for the PST. These modules are suitable for data acquisition, sensor processing, and has PLC applications. [12]

[bookmark: _Toc468701449]5.2.8.5 - Electronic/Magnetic Locks

These types of locks will be crucial for controlling machines that are always on, and have no user interface. Creating accountability for these machines seemed to pose problems and until we proceed to implement the LCS completely, uncertainty still exists. When speaking with the staff at UCF that works directly in the clean rooms, the option to use locks that would impede functionality of machines that require power to be constantly “ON” seemed to be the only option. The most common application of Magnetic enabled locks seems to come from applications for home use. Many of these locks are available through smarthome.com. Pricing, proper functionality, and size will play a factor in determining which door strike to use. Table 3 gives comparison for different types of locks that would meet the requirements for the LCS PLC output. [13] The pricing shown is some of the cheapest options for door locks, and until we know exact dimensions and available budget, we cannot proceed. This will be the last part of implementation for machine control in the LCS, and will not be addressed until all other functionality is complete.

	Electronic Lock
	Physical Size
	Operating Voltage (VDC)
	Current (mA)
	Price

	Lee Electric 220-12
	Face:
Case:
Latch:
	12
	400-500
	$22.04

	Lee Electric 5-S-12
	Face:
Case:
	12
	400
	$35.29

	SECO-LARM Enforcer
	Base:
Armature Plate:

	12
	85
	$39.07

Table 3 - Electronic lock comparison

[bookmark: _Toc468701450]5.2.9 - Power Supplies (Control System Panel)

Due to the various devices involved in building the physical portion of the LCS, several power supplies were necessary to provide the proper voltages and levels of power to ensure everything is working correctly. The table below shows each device, and its voltage input requirement as well as the current draw and power consumption.

	Device
	Voltage input
	Current draw (max)
	Power consumption

	PLC
	24 V DC
	140 mA
	3.36 W

	Output expansion 1
	24 V DC
	100 mA
	2.4 W

	Output expansion 2
	24 V DC
	100 mA
	2.4 W

	Touch screen
	24 V DC
	625 mA
	15 W

	Magnetic swipe reader
	3.3 V DC
	6.5 mA
	21.45 mW

	Diagnostic tool
	5 V DC
	15 mA
	75 mW

Table 4 - Panel component power requirements

The PLC, both of its expansions, and the touch screen will be powered by a single power supply that is attached to the PLC. The diagnostic tool will have an onboard power regulator and the magnetic swipe reader will receive power from an external source. In the table below are listed the different power supplies we chose to power the system.

	Power supply
	Input
	Output volts
	Output current
	Power rating

	C0-01AC
	120 V AC
	24 V DC
	1.3 A
	31.2 W

	PSC-12-030
	120 V AC
	12 – 16 V DC
	2.5 A
	30 W

	TOBSUN DC-DC Converter
	12/24 V DC
	5 V DC
	3 A
	15 W

	Diagnostic tool
	5 V DC
	5 V DC
	15 mA
	75 mW

Table 5 - Panel power supply specifications

The diagram below shows how each device is connected to each power supply.

[image: Power flow (1)]
[bookmark: _Toc468709551]Figure 18 - Diagram showing the power supply connections to each component

[bookmark: _Toc468701451]5.2.10 - Materials and Enclosure

The system was envisioned as a single enclosure that contains all the necessary system hardware, excluding external machine relays connected by wire, as well as the relevant user interface components to be able to stand alone in the cleanroom without disrupting the environment in terms of space or accessibility. Towards this end, we went back to Automation Direct to find an enclosure that would satisfy our requirements. We settled on the Hubbell-Wiegmann enclosure model number HW-J161406CHQR. It is a hot compression-molded fiberglass enclosure with two metal latches that are compatible with padlocks and it can be mounted to the wall. The enclosure measures 16” tall x 14” wide x 6” deep, so when it is wall mounted it will be about the size of a medicine cabinet. With this enclosure, we were able to centralize most of the control hardware for the LCS including the PLC, relevant expansion blocks, two power supplies, two circuit breakers, terminal block strip with slot for every input and output, as well as the touch panel interface mounted in the door of the enclosure itself and the magnetic card swipe also mounted on the door. Most of the components in the panel are mounted to the backplane via three DIN rails that run horizontally and are in turn attached to the backplane.

This is an important design feature because it allows anyone who needs to service components convenient access to the entire hardware system. In order to service or replace a single component, it is easy to pull it off the DIN rail without any special tools. If the whole panel needs to be diagnosed, it only takes four screws to remove the backplane and all components attached to it and now the system can be placed on a diagnostics workbench. No proprietary or unique fasteners were used in the construction of the panel where it was possible to do so. Special thanks to the faculty and students of the UCF machine shop for helping cut out the hole in the panel door which we needed in order to mount the touch panel!

[image: 20161204_212112]
[bookmark: _Toc468709552]Figure 19 - Electrical panel components

As can be seen in figure 19 above, the components of the control panel are laid out with plenty of room for a technician to make repairs or modifications. The numbered components are summarized in the table below.

	No.
	Description

	1
	PLC power supply

	2
	PLC main module

	3
	Output expansion module 1

	4
	Output expansion module 2

	5
	12V DC to 5V DC converter

	6
	120V AC to 12V DC converter

	7
	6 A circuit breakers (x2)

	8
	Terminal block strip (green = ground, white = neutral, red = 120V, grey = I/O)

	9
	5V DC to 3V DC converter

	10
	DB9/D-SUB/Serial port to screw terminal pinout board

	11
	9-pin serial connector plug leading to card swipe

	12
	6” touch panel and monitor interface

	13
	Card orientation instructions

	14
	Area for displaying basic instructions/disclaimers/warnings

Table 6 - Electrical panel compoenent list and description

[image: 20161204_211852]
[bookmark: _Toc468709553]Figure 20 - Electrical panel closed front view

Care will be taken when installing the system in the cleanroom so as not to damage any existing equipment or UCF property. The control lines from each machine connected to our system will be run through plastic or metal conduit that will be routed to the main control panel in an unobtrusive way. Whenever possible we will contact those responsible for maintaining machines, equipment, and other materials in the cleanroom and make sure that any changes we make are approved and if not, we will gain approval before proceeding.

[bookmark: _Toc468701452]5.3 - Software

[bookmark: _Toc468701453]5.3.1 - Communication

[bookmark: _Toc468701454]5.3.1.1 - Network Topology

The network topology consists of different layers that facilitate the communication of data between the PLC and Personal Computer. For the software component the bottom layers exists as the Network Layers which consists of the IP protocol, and the Ethernet (MAC) Address. The next layer is then a wrapper of the Network Layer that is known as the Transport Layer. This Transport Layer includes the TCP protocol that will synchronize the transmission of the data. The next layer is Application Layer which supports all the MODBUS functionality such as reading and writing to registers.

[image:]
[bookmark: _Toc468709554]Figure 21 - Overview of network topology

A final layer of communication will be utilized to take data from PLC and use that data in relation to a database of information. This additional Application Layer will connect the local PC with a Server Database in order to effectively establish working parameters to the PLC. Figure 21 shows the relation between different layers.

The final result of the network will allow the data to be sent from PLC to the PC. From the PC this data will then be compared to data in the database on the Server to formulate a response to PLC. This response will then be sent back to PLC. This is shown in figure 22

[image: Untitled Diagram]
[bookmark: _Toc468709555]Figure 22 – PLC, PC, and database communication diagram

[bookmark: _Toc468701455]5.3.1.2 - TCP

The TCP layer effectively provides the communication between PC and PLC. This protocol will provide for error checking and synchronization of the communication between the PC and PLC. This is done by using a header. The communication is performed by opening a socket. This socket contains the port number through which both devices will pass data. The standard port number for the MODBUS protocol is port number 502. When the socket is opened a “handshake” is performed to initialize the communication. From here the communication is synchronized by using acknowledgements between the destination and source. If a packet is not acknowledged then it will be transmitted again. Since these packets are numbered in the sequence number, the packets will always be sent in the correct order.

[image:]
[bookmark: _Toc468709556]Figure 23 - Socket event three way handshake

The figure above shows an event on the socket will cause an establishment of the connection. This is also down through what is known at the TCP three way handshake. The handshake is three way, yet it only involves two devices. The three way comes from the fact that first a sync request is sent. After the sync request is sent, then an acknowledgement of the sync request is returned to the original sender of the sync request. Once the sync acknowledgment is returned to the original sender of the sync request, then that device that sent the original sync request will then return an acknowledgement. The second devices receives the acknowledgment and then the communication is established

[image:]
[bookmark: _Toc468709557]Figure 24 - TCP header/packet contents

The breakdown of the TCP Header are as follows:
1. The first two fields which are 16 bits each are the port numbers. This allows for ports to span 65,536 different ports. The Source Port is the port that is the transmitter will be listening on for acknowledgements. The Destination port is port that the transmitter will be send the message to. For communication between the PC and MODBUS these ports will be port number 502.

1. The 32-bit sequence number and acknowledgement numbers are used to synchronize the transmission of the data. The sequence number will be the number that transmitter sends to the receiver. For each message sent, the transmitter will then be expecting an accompanying acknowledgment number. One this acknowledgment number is received the transmission of this packet will then be considered complete.

1. The next 32bits are used to designate information relating to the packet being sent. The first 4 bits are reserved for the header length (HLEN). The next 6 bits are simply reserved bits that could be used in future possible implementations of the TCP protocol. The next 6 bits “the UAPRSF” bits are used to establish certain flags suck as: U for urgent, A for acknowledgement validity, P for push to application layer, R for reset if the connection needs to be reset, S for synthesis used to synchronize both the sequence numbers with their corresponding acknowledgment numbers, and the F for finish, used to designate the complement of the packet that was sent from the transmitter.

1. The next 32 bits are used to the checksum and urgent pointers. The 16 bit checksum is used for error checking to ensure that the packet was sent correctly. The 16 bit urgent pointer is used in connection with the previously mentioned urgent bit to be transmitted the message up to the receiver more quickly.

1. The last section is the data section which will be the data that is used in the application layer. This section can contain up to 1,460 bytes of data. This data can incorporate the encoding of many different protocols, or if needed could include a user defined protocol. The data section could also be used to simply transmit raw binary data or small data such as String Variables. For the use of this project, the data section would contain the data which is used by the MODBUS protocol. Proceeding this section is an optional 32 bits which are seldom used, but could be utilized in further customizing the TCP protocol.

For transmission of data the most important part of the TCP transmission is the data section. This section will include all the data that is sent and received through the MODBUS protocol between the PC and PLC. There are many different ways to send this data but for implementation of the MODBUS protocol the most intuitive way will be through the use of a byte array buffer that will be used to transmit and receive information through the use of bytes that are stored in a dynamically allocated buffer.

[bookmark: _Toc468701456]5.3.1.3 - Implementation of the TCP Protocol

Since the TCP protocol is a widely used and standard protocol, many high level languages support the use of the TCP protocol through predefined libraries. For this project, the use of the JAVA programming language and it socket classes will greatly automate the TCP connection. Using the ServerSocket class which is constructed based on the port number 502, the socket is established and opened. Once opened the socket is ready to receive any incoming communications.

An important note is to be made on the impact of the MODBUS protocol being on port number 502, as it is a low level port, and thus is normally restricted on UNIX like systems. When using an operating system such as Windows, this does not present a problem; however in testing on Linux based systems, this port is restricted without having root level access. This can make development and interesting challenge as root access is not the standard for development on the standard IDE’s. This would mean that in order to do testing the program would have to be first compiled into a fully functioning elf file, which then would have to be given the super user status that would enable this port to be open. Any runtime compiling for testing purposes would be not be possible, as that port would simply not be allowed to be opened. Windows operation system; however, does not take this precaution, and allows any port to be opened, even on guest level accounts. This fact makes windows an easier environment to do testing on, since the port can be opened during debugging runtime compiling. Also once the program has been compiled into an executable file it will freely open the port without any restrictions being placed on the opening of the port on such a low number.

Upon the receiving of any incoming communication the TCP handshake is made, and through the use of the server sockets accept function and new Socket is made. This newly made socket is the socket for the client side socket. For TCP communication there is always a client and a server or a master and a slave. The server is effectively always listening for the requests made by the client. These requests are then handled by the server and then result of the request is then returned to the client.

Once the information has been received the client will be constructed through the instantiation of a class that will handle all a certain instance of communication between the PLC and PC. This will include the construction of variables that will be used with for MODBUS protocol. It will also, generate two special variables. These are the DataInputStream and DataOutPutStream type variables. The DataInputStream type variable is used to receive incoming data, while the DataOutPutStream variable is used to transmit outgoing data.

For the incoming data, the DataInputStream will be populated by the sockets getInputStream function. This will allow reading in the data according to the MODBUS protocol. In short the stream will be read in first by 16 bit chunks (using a “short”) until the first 6 bytes are read in. Then the remainder of the incoming message will be stored in a byte buffer. This byte buffer will then contain the contents of the MODBUS data message. Once this input has been received the server will have essentially received the order from the client, and will be able to then fufill that order. For the purpose of this project, that order will be filled after making the necessary queries to a database. Once this order has been fulfilled, it can be delivered back to the PLC in the form of an outgoing data.

For the outgoing data, a packet will be built according the MODBUS protocol. Once that packet is built it can be transmitted using the DataOutPutStream. First stream must be populated using the DataOutPutStream as it was for input stream by using the getOutPutStream function of the socket. This will then allow the packet to be sent by using the DataOutPutStreams write function. The write function will get passed in the packet that was previously built. The relationship between the classes, variables, and functions is shown in the UML diagram shown in figure 25.

[image: UML]
[bookmark: _Toc468709558]Figure 25 - UML Diagram of the TCP layer

[bookmark: _Toc468701457]5.3.1.4 - MODBUS Protocol

The MODBUS protocol is a serial protocol used for communication between computer devices. It originated in 1979 for use with programmable logic controllers (PLCs). It provides for efficient transmission of data through a standard communication protocol. It is mainly used for connecting industrial electronic devices that are required to communicate with each other. One of the benefits of using MODBUS is that it is an open source protocol that can be used without any licensing or payments. The protocol facilitates an effective means of communicating bytes of information by implementing the use of its header that allows for easy interpretation of transmitting data. There are several ways of communication through the MODBUS protocol such as RTU and TCP.

The data of the MODBUS protocol is stored in holding registers. These registers can then be read from or written to. The function codes will store values used that will then be used by the PLC. The manipulation of these registers is performed by functions that are distinguished by certain function codes. The MODBUS protocol can also use holding coils; however, for this project the implementation will utilize the holding registers. Multiple registers can be written to, or a single register can be specified.

The MODBUS protocol allows for devices to be configured in a couple different ways. One configuration would be to have the PLC set up as a slave and the PC set up as master. In this arrangement the PLC would constantly be listening for incoming messages from the PC. Once a message is received the PLC would perform a certain action based on the request from the PC. After the action is completed the PLC will then return a response back the PC. This is a standard arrangement that is used by many setups that incorporate the use of PLC to PC connections. Many of the prebuilt libraries for driving the MODBUS protocol use this arrangement. Another arrangement that can be used is the PLC acting as a Master and the PC acting as the Slave. In this arrangement the PC is actively awaiting incoming messages from the PLC. One a message is received from the PLC, the PC will generate a response to deliver back to the PLC. Once the PLC sends a request it will actively be waiting for the response from the PC. This is the setup that will be used for this project.

Each time a message is sent over through the TCP protocol the MODBUS protocol will consists of a message that is divided up into different bytes. These bytes follow the same convention as outlined by the MODBUS protocol. The first 8 Bytes will always follow the same order. An advantage of having the length field is that any buffer can be dynamically sized according to the size specified in the length field.

	TCP FRAME FORMATS FOR MESSAGES SENT

	Name
	Length
	Function

	Transaction ID
	2 Bytes
	Identifies each message
sent over the protocol

	Protocol ID
	2 Bytes
	Is set to zero for the
TCP implementation

	Length
	2 Bytes
	Identifies the length of the message after this field.
(2 + the size of the Data transmitted)

	Unit ID
	1 Byte
	Set to 1 for communication over the protocol

	Function Code
	1 Byte
	Identifies the action
to be performed

	DATA
	Dynamic in size
	The accompanying data that could be written
to the registers

Table 7 - Byte assignments for MODBUS protocol
In each message that is sent through TCP through the use of an open socket a transaction ID will be used. This transaction ID will be the same for the request sent by PLC and the response sent by the PC. This keeps the synchronization the messages to identify to what request a response is intended for. In implementation these transaction ID’s will always be in order since a new socket is generated for each request. One the socket is created the request and response will be fulfilled in order, and another socket cannot be opened until that transmission is finished. The protocol ID will be static since it will always be 2 bytes of zeroes for TCP. The Length is an important field since it will designated how much data is incoming or outgoing. For incoming messages from the PLC this allows the PC to set aside a buffer that is large enough to contain all the data that will be needed to be stored. For the purpose of this project the Unit ID will be 1 to distinguish that the PLC is going to be receiving the responses and generating the requests. The function codes will allow the data to be written to the PLC or to be read to the PC.

The DATA contained in the message will either store data to be read by the PC, or values that are to be written to the PLC’s holding registers. From the Length field the size of the Data can anticipated. For the PC this also allows the PC to be able to distinguish which request the PLC is trying to generate.

[bookmark: _Toc468701458]5.3.1.4.1 - Function codes

There are many different function codes supported by the MODBUS protocol. For this project only two function codes will be utilized. These are the function codes 3 and 16. Function code 3 is used to read registers, while function code 16 is used to write to multiple registers. The PLC understands these function codes and performs the corresponding action depending on which function code it read.
[image:]
[bookmark: _Toc468709559]Figure 26 - MODBUS function codes

[bookmark: _Toc468701459]5.3.1.4.1.1 - Using Function Code 3

Request:

	
	Size (bytes)
	Range

	Function Code
	1
	0x03

	Starting Address
	2
	0x0000 to 0xFFFF

	Number of Registers
	2
	1 to 125

Table 8 - Function code 3 request breakdown

Response:

	
	Size (bytes)
	Value

	Function Code
	1
	0x03

	Byte Count
	1
	(no. of registers) x 2

	Register Value
	(no. of registers) x 2
	

Table 9 - Function code 3 response breakdown

Function code 3 is used to read the contents of the holding registers. The registers can be read only in a continuous order. For example registers 1, 2, and 3 can be all be read at once; however, registers 1, 5, and 8 could not be read at once. In order to use the function, its function code (3) is specified in the first byte and then the starting address is specified in the next 2 bytes. The last 2 bytes will specify how many registers will be read (must be at least 1 to read a register).

The response generated will include the function code (3), then will contain the total bytes in the next byte. The remainder of the message will include values in the registers by allocating 1 byte for the hi value and 1 byte for the low value (each register holds 16 bits)

An example of this would be requesting to read the registers 5-8. The following message would be sent: 0x0300040004. The total message size is 5 bytes. The first byte is the function code 0x03 (each hex value is 4bits or a half of a byte). The next two bytes 0x0004 specify the starting address (starting address 0 holds the first register (register 1)). The Last two bytes 0x0004 hold the number of registers to be read. The response from to this request will return the data stored in registers 5, 6, 7, and 8. Each register holds two 2 bytes of data.

The response would be: 0x03080005000600070008. Here each register contains the data that shows which register it is. The first byte 0x03 contains the function code that was called. The next byte 0x08 contains the numbers of bytes that will proceed. The last 8 bytes hold the data. There are 2 bytes of data for each register. Therefore register 5 holds the value 0x0005, and register 8 hold the value 0x0008.

[bookmark: _Toc468701460]5.3.1.4.1.2 - Using Function Code 16

Request:

	
	Size (bytes)
	Value

	Function Code
	1
	0x10

	Starting Address
	2
	0x0000 to 0xFFFF

	Number of Registers
	2
	0x0001 to 0x007B

	Number of Bytes
	1
	(no. of registers) x 2

	Data to be Written
	(no. of registers) x 2
	xxx

Table 10 - Function code 16 request breakdown

Response:

	
	Size (bytes)
	Range

	Function Code
	1
	0x03

	Starting Address
	2
	0x0000 to 0xFFFF

	Number of Registers
	2
	1 to 123

Table 11 - Function code 16 response breakdown

Function code 16 is used to write to the contents of the holding registers. The registers can be written to only in a continuous order. For example the registers 1, 2, and 3 can be all be written to at once; however, registers 1, 5, and 8 cannot not be written to at once. In order to use the function, its function code (10) is specified in the first byte and then the starting address is specified in the next 2 bytes. The next 2 bytes will specify how many registers will be written to (must be at least 1 to write to a register). The next byte will specify how many bytes will be written. The remainder of the command will specify the data that is to be written to the registers.

The response generated will include the function code (10), then will contain the starting address in the next 2 bytes. The last 2 bytes will hold the number of registers that are written.

An example of using this function would be writing to registers 2 and register 3 the value of the corresponding registers. The following message would be sent: 0x10000100020400020003. The total message size is 10 bytes. The first byte 0x10 is the function code. The next 2 bytes 0x0001 are the starting address. The next 2 bytes 0x00002 specify the number of register that will be written to. The next byte 0x04 specifies how many bytes will be written (each register is 2 bytes, 2x2 bytes = 4 bytes). The remaining 4 bytes 0x00020003 specify the data that will be written (register 2 will be have the number 2 written to it, and register 3 will have the number 3 written to it).

[bookmark: _Toc468701461]5.3.1.5 - Implementation of MODBUS protocol

To implement the Modbus Protocol there will be have the PC will actively wait for incoming messages from the PLC making it the server. This is an implementation in the JAVA high level programming language. The PortMonitor class we be actively listening. Once a message has been received through the TCP protocol, it will start to be interpreted by using the MODBUS protocol. The bytes will be separated by their corresponding order according to the MODBUS protocol.

[image:]
[bookmark: _Toc468709560]Figure 27 - MODBUS TCP/IP application data unit (ADU)

The bytes that belong to the transaction ID will be the first bytes that get picked out of the message. Since the transaction ID is 2 bytes it will be stored in a short type variable. The next variable will be the Protocol ID which is also 2 bytes; therefore it is also stored in a short type variable. The next byte in the message will hold the function ID, this will be stored in the type byte which corresponds to one byte. The next variable in the message will be the number of bytes which is also stored in a byte type. The data will then be store in a byte array. This array will be of determined length which will match the number bytes that is specified to be received. The Port Monitor class will be actively monitoring the port number 502, so it will be reading registers that contain the data.

Once the message has been read the PLC will be awaiting a response from the PC. This response will come in the form of a packet of data that sent back to the PLC. The packet will be built in the form that matches the MODBUS Protocol. Then this packet will be sent off using the TCP protocol. The packet will contain the same transaction ID indicating that it is the proper response to the request. The function ID will indicate that it is to use function 16 (hex 0x10) to write back to the registers. This data that is written back will contain the response that the PLC has been waiting for. The PLC will be able to interpret this data due to the fact that it knows the incoming data length which tells it how many registers will be written. Figure 28, below, shows the UML diagram for the communication between the PLC and the PC.

[image:]
[bookmark: _Toc468709561]Figure 28 - PLC to PC communication UML diagram

Note that in this case the setup between the PC and PLC insinuates a client server relationship. In many cases this relationship involves the client being the PC and the PLC acting as the server. In various industrial applications the PLC will be serving requests. The PC then issues the requests and takes on the role of the client. In doing research many of the premade libraries for implementing the MODBUS protocol assume this relationship. However, in this case those libraries cannot be used because the communication will never be able to complete a cycle. For this project the roles are reversed. The PC has actually become the server and the PLC is acting as the client. The PLC will receive information from the outside world, and the relay that information to the PC. This in turn will designate the PLC as client, as it is expecting a response from the PC to complete the cycle of communication.

Due this interesting relationship a MODBUS protocol shall be written from scratch to facilitate the unique nature of the server-client relationship between the PLC and the PC. This unique implementation of the MODBUS protocol will still follow the same basic principles of using the function codes to be able to read and write to the holding registers. However the order in which they are used will be changed slightly to reflect the state of the relationship between the PLC and the PC.

[bookmark: _Toc468701462]5.3.1.5.1 - Existing Implementations

There are many different existing implementations to choose from. Many implementations are written under different languages such as python, java, or php. The many different implementations are designed around preconceived notions of how the complete system operates. Many of these preconceived notions do no not work for the certain application desired in this project. The different implementations rely on the understanding of how the communication between the PLC and the PC operate. For this project’s implementation none of the existing implementations are suitable, therefore a new implementation must be designed from the bottom up. This new implementation will take into consideration the specific communication between the PLC and PC.

[bookmark: _Toc468701463]5.3.1.6 - Database Management

[bookmark: _Toc468701464]5.3.1.6.1 - Communication between PC and Database

Once data is received from the PLC, it is parsed through the MODBUS protocol to identify specific information. This information is then compared to information that is stored in a database. After the comparison is made with the database data, then a response to the PLC can be formalized. Information from the database will be sent back to the PC. The PC will then interpret this data through logic to determine a response to the PLC. The information being stored in the database, such as ISO numbers, machine ID’s, and scheduling information, are used to send a response to the PLC. This is the first series of communication between the PC and database. After sending the information to the PLC, the PC will await for further responses from the PLC. After these responses are received the PC will once again interact with the database. The first interaction with the database can be thought of as reading information from the database.

The second interaction with the database consists of writing information to the database. Once a user has finished using a machine in the clean room, the PLC will send a response to the PC letting the PC know that a user is finished using the machine. This data will be sent to the PC through the MODBUS protocol. The PC will then calculate the total time that a user used a machine and will write that information back the database. The database thus will be able to keep full logs on the usage of each machine. These logs will be able to store information such as all machine start and stop times, and all users who logged into a machine. The logs can then be used to perform any audit of machine use if need be.

First the PC will send a request for data from the database. Next, the database will send this data back to the PC. Then the PC will use this data to formulate and send a response to the PLC. The PLC will eventually send data about the session back to the PC. Then the PC will then update information on the database
[image:]
[bookmark: _Toc468709562]Figure 29 - Interaction between the PC and database
[bookmark: _Toc468701465]
5.3.1.6.2 - Design of communication

There are many different ways to implement the design of the connection between the PC and the Database. The communication alone can be implemented using several different programming languages. To keep the communication efficient, the same programming language used to communicate with the PLC will be used to communicate with the database. The choice of using java to communicate with the PLC makes the communication with the database somewhat simplified. There are two important aspects to using the Java programming language to implement the design of the database. The first advantage of this choice is that Java comes with some predefined libraries for implementing the communication with databases. The second advantage of this choice is the re-use of the same objects and variables that are used to communicate with the PLC.
Since the design choice for the database is the MySQL database structure, a connector driver will be needed for the java software project. This connector is available for download from the MySQL developer website https://dev.mysql.com/downloads/connector/j/”. This driver will provide all the necessary libraries for communicating with a MySQL database through the java programming language. Once the driver has been added to the build path of the project the following libraries can be imported to the java software project.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

These libraries provide the first advantage to using the Java programming language. With these libraries the communication to the database can be established. The driver manager can establish a link with the database by providing it with the location which the database is hosted on, a username, and a password. The user name and password are stored as part of the database. The database can be stored on a remote computer or on a local computer. For this design the database will be on the same PC the PLC is connected to. For communication to the database between the PC and database, the only difference between having the server stored locally or remotely is the address used. Once the driver has made the connection the PC can begin to make queries to the database. These queries represent the requests for information that the PC wants from the Database. The database can then send back the information to the PC. This information will be stored in variables declared as part the program.

Since the programing language used is the object orientated programming language JAVA, there will be a separate class in the programming project to handle the implementation of the database communication. This database class will handle all the request and responses from the database as well as the initial connection to the database. The database class will initially connect to the database then proceed to get information out of the database. Once the information is received it will then perform logic to send a response to the PLC.

The second advantage to using the java programming language to implement the design of the communication between the PC and database is the re-use of the same variables that were used to communicate information between the PC and PLC. When communicating with the PLC the software located on the PC will gather information such as UCF ISO numbers and Machine IDs. These will then be stored in local variables. Since the same software project is being used to communicate with the database, these same ISO numbers and Machine IDs that are stored in local variables can be directly sent over as part of the requests to the database. This simplifies the communication as there need not be an intermediate layer to store these variables. When the PC makes the requests to the PLC it can directly transfer the variables as part of the request. Likewise when it performs logic on these requests, it can directly transfer over the conclusion of the requests back to the PLC.

A simplified example of communication between the PLC and database would be determining if a user is allowed to use a machine. Once the user has scheduled an appointment to use a machine on the website, this appointment will be stored in the database. The user will scan his UCF ID at the magnetic card reader terminal while selecting the appropriate machine number. The users ISO and machine number will be sent to the PC from the PLC through the MODBUS protocol. These will be stored in local variables. The PC will then connect to the database through the driver. The PC will send the database a request for the scheduled time that user made for that specific machine number under his ISO number. The database will then send the PC back the scheduled time. The PC will check if the current time is with the scheduled time. Once this check is complete the PC will send a message to the PLC with the total time to turn on the specific machine. The user will then use the machine until his time is up or the user logs out. The PLC will then send a message to the PC notifying the PC that the user is finished. The PC will then calculate the total time used by the user on the specific machine and store it in a variable. The PC will then send the total time the user was on a specific machine to be written into the database. This will conclude the communication.

[image:]
[bookmark: _Toc468709563]Figure 30 - User-PLC-PC-Database interaction diagram
	
[bookmark: _Toc468701466]5.3.1.6.3 - Reading from the database

Reading from the database is vital step in the communication between the PC and PLC. The reading will allow the PC to decide what response to send back to the PLC. The reading is done through a set of queries to the database. The queries request information from the tables stored in the database. The MySQL language has specific keywords for queries that request information. The command for requesting information is the SELCT command. The database is divided into certain tables. These tables divide the stored information into rows and columns. Once the communication connection is made with the drivers, the PC can then begin sending requests to the database. The variables that hold the ISO number that was swiped and the machine number that was selected will be passed onto the database class.
The first request will be to retrieve a user ID. The ISO number that was scanned will be sent to the database. The database will then search for a user ID that corresponds to the ISO sent. This will be located in the people table. The people table stores everyone who is able to use the system. Once the ID is found it will be stored in a variable. This variable can then be used to send a request to get the scheduled time for that specific ID. This information will be gathered from the schedules table. The schedules table will store all the scheduled appointments. This query to retrieve the scheduled time will only retrieve the schedules for the specific user ID. The schedule query will retrieve a begin time, an end time, and a machine ID.

Prior to making the requests, a timestamp will have been recorded by the program. This time stamp will contain the current time in the form of year, month, date, hour, and minute. This timestamp will then be used to compare with the schedule time. If the current time stamp is within the scheduled time and the machine number requested is the same as the machine number scheduled, then the software will calculate the total time the user is allowed to use the machine. This total time is obtained by subtracting the current time from the scheduled end time. The total time will be stored in a variable, which will then be passed to the PLC. This concludes the reading portion of the database communication.

[image:]
[bookmark: _Toc468709564]Figure 31 - Database to port monitor communication

[bookmark: _Toc468701467]5.3.1.6.4 - Writing to the database

Once the user is finished with using the machined during his scheduled appointment, the PLC will send a message to the PC signaling the user has logged off, or ran out of time. At this point the PC will be able to connect back to the database and log the final time used on the machine. The writing will be done similar to the reading of the database. First the connection is made with the drivers, and then queries are sent to modify the data contained in the database. The MySQL language has specific keywords to modify the data stored in the tables. These commands are the UPDATE and SET commands.

In the structure of the database exists the “used table”. The table is divided up into columns containing the user ID, the machine ID, the begin time, and the end time. Once the user has logged out of the machine, the total time used will be calculated. The software on the pc at this point will know the total time used, which machine used this time, and which user was logged on. This information will be stored in variables to represent the user, time used, and machine number.

The software will then connect to the database, and send queries to update the used table. The first command issued will be to add a row to the used table. The new row will represent a new log to be inserted into the list of all times used. The MySQL language has a specific keyword to execute these queries. These keywords are the INSERT and INTO commands. The INSERT will produce and new row, and the INTO specifies with table to insert the new row. Once the new row is inserted into the used table, the data can then be filled using the UPDATE and SET commands. The UPDATE will SET the user ID, the machine ID, the begin time, and the end time.

[image:]
[bookmark: _Toc468709565]Figure 32 - Database to port monitor communication

[bookmark: _Toc468701468]5.3.1.6.5 - Data Checks

An important aspect of receiving and sending information from the communications is to have checks in place along the transmission of data to make sure the data being received is correct. The main points along the path of receiving data to take note of are the data received from the PLC and the data received from the database. There are certain checks that must be implemented to make sure that the data received is the correct data that is expected. Otherwise the program will send incorrect data. In the transmission of data the first transmission is the information received from the PLC.

When a user first swipes their UCF ID card, the PLC will send out the 16 digit ID ISO number along with the machine number and a code to specify the action being performed. After this first transmission is received the PC needs to check if the information is correct. The first check is to make sure that 16 digit ISO is indeed a 16 digit number. For example when a user swipes their ID the PC will identify that the PLC is sending an ISO number by the request code the PLC sends along with the ISO number and machine number (in this case the code is A). After the request code indicating a login is being performed is received by the PC then the PC expecting the ISO number and machined number to be located at certain precise location in the transmission. If the ISO number is not for example all number digits then there has obviously been an error. The error could be in that the user did not scan a proper UCF ID, for example they swiped their bank card or license by mistake, or, the error could be a result of faulty transmission along the way. This could be cause by the card reader not ready the magnetic data on the card, which might result from the card been swiped too fast or other circumstances. In this case the PC should recognize that the ISO number or machine number is not in the correct format and cease operation. The PC program should instead send back a message to the PLC that the input does not match what was expected. This should prompt the PLC to ask the user to swipe their UCF ID again.

If all is clear in receiving data from the when a user swipes their UCF ID card, the next point data needs to be checked is when the data is received from the database. The database will be returning data back to the PC based on the ISO and machine number the PC uses to query the database. The first point to be checked is when the PC sends the database the ISO number and is expecting to get back a user ID. The database will check all registered users for the ISO number the PC sent. If no user ID is found that corresponds to the ISO sent, then the PC should recognize that the user is not registered as an active user. At this point the PC should cease any further operations. After recognizing that the ISO does not point to an active user, the PC software should send back a response code to the PLC indicating that the ISO number is not authorized (response code 9).

If the ISO returns a user ID. The next point to check is whether that ISO is authorized to use the machine that was selected. In the database will be stored what machine’s each user ID is authorized to use. By checking the database, the PC will be able to recognize if a user is not authorized to use a certain machine or not. If the user is not authorized to use a machined then the PC program should cease any further operations at this point and send back a message to the PLC. This message should notify the PLC that the user is not authorized to use the machine that was selected. The message will consist of the response code 7 signaling that the user is not authorized to use the machine.

The next point to check that data is valid from the database is when the PC makes a query into scheduled times. At this point the PC software would have captured a timestamp of the current time. If this timestamp does not correspond to a scheduled time the user has set up an appointment for, then the PC software should cease any further operation and send back a response code to the plc.

If any of these checks fail the PC software will send a specific response code back to the PLC indicating where the point of failure occurred, along with the time that the machine should be active set to zero. The time will always be sent to the PLC; however, if any of the checks fail then it is certain that the time the user should be allowed to use the machine for is 0 minutes. Figure 33 shows the flow of checks presented in a flow chart.
[image:]
[bookmark: _Toc468709566]Figure 33 - User data authentication and decision flowchart
[bookmark: _Toc468701469]5.3.1.6.6 - Complete Overview of PC software UML

[image:]
[bookmark: _Toc468709567]Figure 34 - PC software UML diagram

[bookmark: _Toc468654363][bookmark: _Toc468701470]5.3.2 - Webserver

The following sections discusses software components that are used in web development.

[bookmark: _Toc468654364][bookmark: _Toc468701471]5.3.2.1 - PHP

PHP is a server-side programming language widely used in the development of web applications. It is a powerful object oriented language that can be used to create dynamic web pages. PHP is commonly supported and there are a great deal of resources for developers. PHP natively support MySQL database queries, so an external library would not be necessary to access user information stored in a database. PHP supports ‘DateTime’ functions. ‘DateTime’ is a format standard used by software and databases to store exact time information and is a critical aspect of creating a reservation system. Sessions and cookies can be managed in PHP applications which enable user authentication, a vital element of a login system.

[bookmark: _Toc468654365][bookmark: _Toc468701472]5.3.2.2 - Python

Python is a backend web development language similar to PHP. It can be used to perform much of the same functionalities, such as interacting with a database and sending information to the web browser in the form of HTML. Some web developers consider Python to have a more structured programming approach, because Python uses white space and indentation instead of the curly brackets that are used with PHP. Python also has a heavier emphasis on object-oriented programming, and much of the Python libraries utilize object-orientation.

[bookmark: _Toc468654366][bookmark: _Toc468701473]5.3.2.3 - Ruby

Ruby, like Python and PHP is a backend web development software used to develop internet applications. Ruby has all the necessary components to develop our web software, including database querying and HTML output. The Ruby on Rails framework, written in Ruby, is a popular implantation of the backend language. Performance wise, the Ruby on Rails framework can at time be much slower that pure PHP. It is worth noting that a performance comparison between Ruby on Rails and PHP is unfair, as a framework will most always be slower than a pure programming language. Frameworks sacrifice performance for ease of use and development time. Ruby on Rails would be a wise alternative to PHP if our web application was being developed in a professional environment with several developers working together.
[image:]
[bookmark: _Toc468709568]Figure 35- PHP vs Ruby on Rails performance comparison

[bookmark: _Toc468654367][bookmark: _Toc468701474]5.3.2.4 - Sessions

PHP sessions enable user tracking through server variables. When a user access our website through the login component, session variables for that user are created. Using these variables, the server-side PHP code can identify who the user is and what they are doing on the website. Session variables are an important aspect of web development, and because sessions are supported by PHP, we will be using session variables to a great extent in our system. User login, authentication, reservations and invoices will all incorporate session variables in their algorithms. The following code snippet provides a realistic example of using session variables to identify whether or not a user has already logged in:

[image: Sessions.PNG]
[bookmark: _Toc468709569]Figure 36 - Sample code showing session variable usage

Session variables are also a way for information to be transferred from page-to-page within the web application. Other methods of transferring information are through POST and GET requests. A POST request is sent via an HTML form and the variables are stored within the body of the request and are not visible to the user (for the most part). A get request is sent via the URI (Uniform Resource Identifier) and is, in other words, passed with the URL string. Information sent using the GET method will be visible to the user in their browser’s URL. There are obvious security vulnerabilities associated with this method and for that reason, it is common to see GET requests sent through an encryption variation. Websites like Facebook and Google often have long winded URL strings that make no sense to the user. Often times, these strings contain sensitive information that has been encrypted, and will be decrypted during the backend processing of information. An additional method that can be used to transfer information is called a PUT request. Similar to a POST request, a PUT requests delivers information hidden from the user. The difference being that PUT requests expect a different format for the data.

[bookmark: _Toc468654368][bookmark: _Toc468701475]5.3.2.5 - WordPress

WordPress is a content management system based on PHP and MySQL. It is one of the most popular website creation tools available and can be used to develop all types of websites and web applications. WordPress is popular because it is easy to use, free and open-source. WordPress comes with a variety of themes which can be used to give a website a consistent template. Themes are a big part of WordPress. The user community is highly activity, and thousands of themes can be downloaded and included in your WordPress installation. Packages are available for purchase which add additional themes and features.

UCF uses WordPress to format and template their websites. A variety of UCF web themes are available for download off the UCF GitHub repository. In addition to pre-made UCF templates, UCF offers web components that fit the style of the university. The below UCF header is displayed at the top of all university sites and can be downloaded and implanted on any website with a simple copy and paste of JavaScript code.

[image:]
[bookmark: _Toc468709570]Figure 37- University Header

[bookmark: _Toc468654369][bookmark: _Toc468701476]5.3.2.6 - HTML and CSS

Hypertext Markup Language (or HTML) is the backbone of browser applications. HTML instructs the web browser how to display information to the user. Everything that a user sees and interacts with on a web page is encapsulated by HTML tags and symbols. Cascading Style Sheet (or CSS) is a software technology that often accompanies HTML documents. CSS gives the web developer control over how certain HTML elements are displayed to the user. For example, a web developer can instruct the browser to display all HTML headings in the color blue by including a few lines of CSS code. HTML and CSS in combination offer endless variety in how a web developer chooses to display content to end-users. Fortunately, open-source, free to use libraries have been developed that simplify the process of the designing complex, interactive web pages. One such library that we will be using in the development of our system is called ‘Bootstrap’. Before I delve into the benefits of using Bootstrap, I should describe the Document Object Model.

The Document Object Model (or DOM) is an application programming interface (API) for HTML documents. The concept provides a structure for HTML documents - a hierarchy or tree of components - that allow for document access and manipulation. For example, a JavaScript developer with an understanding of the Document Object Model will be able to manipulate elements of the web page after having already been loaded into the user’s browser. This is how websites like Facebook and Google allow for instant messaging between users: a client-side application like JavaScript is accessing a database and manipulating the HTML of the webpage without having to refresh the page. The Document Object Model can be used in a wide variety of programming applications. Below is a visual representation of the Document Object Model:

[image: DOM.png]
[bookmark: _Toc468709571]Figure 38 - Document object model representation

Bootstrap, a CSS library that will be used in our system, implements the Document Object Model. Bootstrap is a free, open-source, CSS, HTML and JavaScript library that is commonly used in modern web applications. It provides a sleek, simplistic design for common HTML elements and mobile friendly customization options. The Bootstrap resources website contains useful information for developers to get up and started with Bootstrap quickly. Bootstrap will help to reduce the development process by minimizing the amount of CSS code the development team will have to produce. Most of the web application styling can be accomplished through an understanding of Bootstrap classes and components. In the following paragraph, we will describe how Bootstrap is used by developers to create effective webpages.

Bootstrap implements a grid system and a diverse list of components. Developers can create modules within the grid system, and dictate how these modules will appear on certain size devices. For example, users on a mobile device will have a smaller screen, and the grid system will orient the modules in a vertical fashion so that the user can scroll through the content. On a desktop display with more screen space, the modules will appear horizontal so that scrolling is no longer necessary. Bootstrap components can be used by specifying Bootstrap recognizable classes within HTML tags. For example, a developer can implement a Bootstrap table and whichever customization options by specifying the proper class name within the HTML table tags.

[bookmark: _Toc468654370][bookmark: _Toc468701477]5.3.2.7 - Database

This section discusses popular relational database management systems (RDBMS) that are used in modern software applications. Each of the following systems are free and open-source. Other databases that were considered include the Microsoft SQL Server and Oracle, but were omitted from our selection due to being closed-source.

[bookmark: _Toc468654371][bookmark: _Toc468701478]5.3.2.7.1 - SQLite

For smaller systems that don’t require a fully featured relational database management system, SQLite provides minimal functionalities with exceptional efficiency. SQLite supports most SQL (Structured Query Language) commands and is a popular DBMS used in mobile and embedded applications. SQLite stores database information in a single file which allows for a high degree of data mobility. SQLite supports a limited number of data types including null values, integers, double precision, strings and blobs (chunks of data). SQLite does not support user management which means that custom user permissions cannot be assigned. SQLite does not support concurrent file access. It is not recommended to use SQLite in systems that need to support concurrent user interactions and due to the nature of our reservation system, SQLite is not an appropriate candidate.

[bookmark: _Toc468654372][bookmark: _Toc468701479]5.3.2.7.2 - PostgreSQL

PostgreSQL is an advanced, object-oriented relational database management system that fully supports the SQL standards. PostgreSQL is feature packed and supports modern functionalities, including reliable transactions which involves atomicity, consistency, isolation, and durability (ACID). PostgreSQL is known for being a powerful database tool, capable of meeting the most complex and advanced demands of software developers. Although not the most popular DBMS on the market, PostgreSQL has an active user community with a variety of resources and libraries available to developers. PostgreSQL meets the requirements of our relational database needs. However, it might be more than we need. The following section discusses MySQL, a capable database system with an emphasis on simplicity.

[bookmark: _Toc468654373][bookmark: _Toc468701480]5.3.2.7.3 - MySQL

MySQL is the most widely used database management system in the world. It is full of features and relatively simple to use. MySQL supports reliable transactions, a critical element of a reservation system which enables multiple users to reserve time slots without conflicts. MySQL supports a variety of data types, including integers, single and double precision values, varchars, blobs, date-time and much more. MySQL has support for user management which enables custom user permissions. MySQL enables concurrent database access allowing multiple users to interact with the database simultaneously. Most importantly, the UCF Tech Support can provide students with a MySQL database on a UCF server. Due to its native integration into PHP, MySQL and PHP would be an efficient combination of server-side programming language and database system.

[bookmark: _Toc468654374][bookmark: _Toc468701481]5.3.2.7.4 - NoSQL

This section discusses a database management system fundamentally different than the previous systems mentioned. A NoSQL database system is designed to be quicker in certain applications but introduces a few weaknesses. NoSQL is the concept of denormalizing data (database normalization is discussed in a later section). Normalization is traditionally a data storage technique that increases data storage efficiency. In some situations, normalization can increase the number of queries and slow down a process. NoSQL databases are used in applications that except to see these sorts of situations. One example would be a comment system. Traditional normalization might want users and comments to be stored in different tables. A NoSQL system would storage all this information in a single so that only a single query is necessary. Weaknesses of a NoSQL system include the inability to craft complex and joining queries. For many applications, NoSQL is not desirable. Our system would not see a great enough benefit from using a NoSQL implementation.

[bookmark: _Toc468654375][bookmark: _Toc468701482]

5.3.2.8 - Server

[bookmark: _Toc468654376][bookmark: _Toc468701483]5.3.2.8.1 - XAMPP

XAMPP is a free, open-source server development suite that contains a variety of software technologies. XAMPP includes Apache, MySQL, and PHP, among other software components. Apache is the server component which allows PHP code to execute display on a web browser. XAMPP is an excellent cross-platform software bundle that can be used during the development and testing process of the reservation system. Code can efficiently be shared between developers running the XAMPP suite before the team can acquire a permanent UCF server.

[bookmark: _Toc468654377][bookmark: _Toc468701484]5.3.2.8.2 - UCF Server

The University of Central Florida Tech Support team can provide students access to a server on the UCF network. The cleanroom reservation system is designed to be integrated into the UCF software infrastructure and will need to be installed onto a UCF server. The UCF server environment provided to the cleanroom reservation system team will share similarities with the XAMPP environment used to develop and design the software.

[bookmark: _Toc468654378][bookmark: _Toc468701485]5.3.2.8.3 - Shibboleth

Shibboleth is a single-sign-in service that provides unified authentication for a corporation. UCF uses Shibboleth to sign-in students and faculty into their various web based applications. MyUCF, WebCourses, and much more display the UCF Federated Identity login screen. Shibboleth takes the users UCF provided NID and password and verifies this combination with a centralized UCF database system. Shibboleth then passes specific user credentials, including ISO, PID, semester information and course history to the application that is implementing Shibboleth. This process maintains a high-level of security across all UCF online services, and allows web developers who are developing on top of the UCF network to easily interact with student information.

[bookmark: _Toc468654379][bookmark: _Toc468701486]5.3.2.9 - Client Side

JavaScript is a powerful client-side scripting language used in modern interactive web applications. JavaScript can be used to make web applications more user friendly and intuitive. While it may not become a necessary component of the reservation system, JavaScript could be implemented further into the development process to optimize the user interface.

[bookmark: _Toc468654380][bookmark: _Toc468701487]5.3.2.9.1 - jQuery

jQuery is a JavaScript library designed to simplify the process of manipulating DOM (Document Object Model) elements of a web page. With jQuery, a developer can select HTML elements and update them on the fly. For example, a web developer could change the color and font of bolded elements, or make headings clickable. jQuery is also used to implement transitions and effects, and the jQuery library automatically manages cross browser inconsistencies, which can be a probably when developing in pure JavaScript. Programming in JavaScript is unlike programming in PHP. JavaScript requires a unique approach to programming. Knowledge of chainable functions, shorthand function names, and the DOM model are a must. jQuery is open-source, free to use and under the MIT license.

[bookmark: _Toc468654381][bookmark: _Toc468701488]5.3.2.9.2 - AJAX

AJAX (Asynchronous JavaScript and XML) is a collection of technologies that allow for information to be transferred from the database layer to the presentation layer without having to reload the webpage. In other words, AJAX allows web developers to update webpage information dynamically, right in front of the user, without having to refresh the web page. AJAX makes possible common internet applications such as instant messaging, real time feeds and google maps. After the page has been loaded, the application can request additional information only when necessary. This interaction limits the total amount of data that needs to be sent over an internet connection because the entirety of the page is no longer having to be sent. Another benefit of using AJAX are user interface improvements. A much more dynamic experience can be had on a website implementing AJAX technologies.

[image:]
[bookmark: _Toc468709572]Figure 39- AJAX Data Retrieval

[bookmark: _Toc468654382][bookmark: _Toc468701489]5.3.2.9..3 - JSON and XML

JSON (JavaScript Object Notation) is a method used to transfer information over the internet, specifically for asynchronous JavaScript server interaction (AJAX). JSON is language independent, meaning it can be implemented by which ever technologies are being run on the server. Many programming languages are capable of parsing JSON formatted data. JSON is human readable and easy for machines to analyze. JSON is often used in tandem with jQuery.

XML (Extensible Markup Language) is another data-interchange format. It supports Unicode which allows for all human languages to be transmitted. XML primarily focuses on documents, but can also be used to send objects and data structures. JSON has been replacing XML in recent years, however, XML is still commonly implanted in web development.

[bookmark: _Toc468654383][bookmark: _Toc468701490]5.3.3 - Existing Implementations

The UCF Evaluation and Proficiency center in Engineering Building 2 implements a reservation system hosted on the UCF network. They provide users the ability to view the schedule in a table format, with time and availability being indicated in each cell. The Evaluation and Proficiency center implements Shibboleth for user authentication. Shibboleth is a security feature frequently used on the UCF network. Students who have used other UCF services will probably be familiar with the Shibboleth federated identity login screen.

The Evaluation and Proficiency center uses a table to display calendar information. A tabular calendar has several benefits. Tables are quick to implement using HTML and server-side scripting. From a developer perspective, creating a table requires a number of iterations through rows and columns, and a number of queries to a database to check the schedule. A table is highly intuitive and is commonly used to display calendar information and a table is space efficient and maximizes the amount of content that can be displayed on a page. The UCF Evaluation and Proficiency center has a successful and intuitive design for their reservation system.

[image: Existing Implementation.JPG]
[bookmark: _Toc468709573]Figure 40 - Example of UCF EPC reservation calendar

[bookmark: _Toc468701491]6 - Hardware Design and Schematics

[bookmark: _Toc468701492]6.1 - Power Supply Design

This section outlines much of the detail required for adequate Power with the DT. As mentioned before, the LCS has separate power requirements that do not pertain to the functionality of the DT. Overall Power Consumption of components gives an idea for requirements in design for PCB as well as Power supply design. Accompanying this, creating an AC to DC design presented a unique opportunity to have some basic exposure in working with transformers, and linear regulators. Something that has not had much influence in the undergraduate curriculum.

[bookmark: _Toc468701493]6.1.1 - Power Consumption

As mentioned in the previous section of design constraints, efficiency and limiting power consumption is not a focus or intent when implementing the LCS. Nor does in factor into design constraints of the DT. While the notion of power efficiency and conservation is an important one that all engineers are faced with in design, our sponsor’s main concern is functionality and longevity which meant going with industry standards developed. Had an approach be taken to be more competitive with power consumption, different design decisions would have occurred. For example, with both chips the ATMega 328 and the MAX485 have an operating Voltage approximately 5 V. Texas Instruments microcontrollers and equivalent 485 chips have lower operating voltage with additional power save modes. The decision to use the Devices were ones of performance over power efficiency. This decision was discussed in the research portion of the DT.

	Device
	Operating Voltage (V)
	Current

	ATmega 328
	4.5 – 5 .5 V
	5.5mA(idle) – 12mA(active)

	MAX485
	4.75 – 5.25 V
	120μA (unloaded) – 500μA (fully loaded)

	Sainsmart LCD2004
	5 V
	1.6 mA

Table 12 - Operating Voltages and Currents of components used in DT

Table 12 lists all the operating voltages and currents to be used for the DT. This range of current for the ATMega 328 can be attributed to using different clock speeds for the chip. For instance, when the ATMega 328 is in “Active” mode, 1MHz, and Vcc = 2 V the maximum current consumption is 0.5 mA versus “Active” mode, 8MHz, and Vcc = 5V the maximum current is around 12 mA. This is a large difference in just adjusting the clock frequency of the microcontroller. Clearly we can see the frequency is a function of not just current, but also voltage. A depiction of frequency versus voltage is given in the section that outlines adding an external crystal.

With power efficiency not a concern, there is still options with the ATmega 328 to put in various sleep modes to enabling unused modules to be shut down in the MCU. A Brown-out Detector (BOD), if enabled, monitors the power supply voltage during sleep periods that also contribute to saving power consumption. Six different sleep modes exist for the ATmega 328, as well as an ‘Idle Mode’, ADC Noise Reduction Mode, and Power-Down Mode. If time permits these options will be considered for greater efficiency when using the DT.

[bookmark: _Toc468701494]6.1.2 - Transformer

The transformer is the beginning component used when building a Power supply. A transformer was chosen over a switching system for several reasons. A transformer costs much less than a switching system. It has relatively simple circuitry, and low noise. Whereas, the switching system has significantly more complex circuitry and there exists some switching noise. The transformer does have a few short comings, namely heat dissipation and lower efficiency. Figure 41 gives the fundamental theory behind the transformer of interest; the step-down transformer. Equation 1 dictates this basic principle from electromagnetic field theory to step down from primary to secondary voltage.

Equation 1

From power requirements as well as a concern with efficiency, we decided that the step down will be from 120 VAC to 24VAC. This seems to be a common step-down voltage choice. An important distinction when choosing a transformer is to consider current drawn as well as voltage. Transformers are rated as VA (volt amp), otherwise known as apparent power. This allows to account for phase lag/lead between voltage and current. When considering a rating VA for the Transformer, we must account for current drawn from all components used when smoothing the AC to DC conversion, as well as the current consumption for the DT. We know the output voltage will be 24 Vrms, and with maximum current drawn from all 3 components used in the DT, the VA rating is not a concerning issue. With most transformers on the market today being sold with a VA rating of 40, and a current consumption that at most would approach 100mA, we can safely choose a rating of 40, accounting for inefficiency with the transformer as well.
[image:]
[bookmark: _Toc468709574]Figure 41 - Basic Functionality of a Transformer

Two more factors to determine a suitable transformer is the type, and what kind of mounting method to use. Because we have decided to use the full wave rectifier for part of the AC to DC signal process, a central tapped transformer is the only option. Mounting options will be decided based primarily on cost. There is not too much concern for size considering it will power the DT which is an attachable unit to the LCS. Some options still under consideration are the PCB, Snap in, Surface Mount, and Through Hole.

[bookmark: _Toc468701495]6.1.3 - Circuit Elements

The remaining Circuit Elements are fundamental in design, and only need a brief overview to outline functionality, and to provide options considered. Rectifiers, Diodes, and Capacitors, although familiar, are also crucial to convert from VAC to VDC. The final component to step down the voltage to desired values is the Linear Regulator.

[bookmark: _Toc468701496]6.1.3.1 - Rectifiers

Rectifiers change our AC signal to DC, and seems to be one of the most important applications when using Diodes. Two main rectifier configurations for power supplies are typically used; the Full-wave bridge and the Center-tapped Full-wave. The output for a center-taped full-wave is about half of what one would get if using a bridge rectifier. This type is not as efficient in terms of transformer design as well. This is due to each half of the secondary is used only half of the time. Another type of Rectifier available, although not considered, is the half wave bridge rectifier. This is far less efficient than using both bridge and center tapped. Half wave rectifiers, as the name suggest use only half of the signal cycle. The only advantage to using a half wave rectifier is less diodes which means a reduction in power. This is not enough to choose this configuration. The best option for the power supply is the Full-wave bridge rectifier.

[bookmark: _Toc468701497]6.1.3.2 - Diodes

Several types of Diodes exist in the market today. The Zener, Constant Current, Shottkey, Shockley, Step Recovery, Tunnel, and Varactor Diode to name a few. The Zener diode acts similarly to a general-purpose diode, but it also allows current in reverse direction when voltage reaches the breakdown region. This characteristic we do not desire for the power supply. This would mean that if the circuit malfunctioned, current could potentially reverse direction towards the transformer, and cause serious damage to the power supply. The Constant Current Diode regulates voltage at a specific current, and functions as a two-terminal limiter, which also not a desirable characteristic. The Shottkey Diode has a metal junction, which allows for high conduction current capability, allowing for these to be used in switching applications as well as high frequency rectifier applications. Although the power supply does seek rectifying diodes, the VAC from the wall has a frequency of 60 Hz, which is far below what one would consider to be a high frequency. The Shockley Diode is interesting in that it is a PNPN diode that stays in the ‘ON’ state once enabled and stays in the ‘OFF’ state once disabled. Its applications are not desirable in that it is typically used in Trigger switches for SCR and acts as a relaxation oscillator. The Step Recover, Tunnel and Varactor Diode all have specific application, yet none seemed to be as viable to the design in the power supply as the 1N4001 general-purpose diodes. These diodes act perfectly to fit our Full wave bridge rectifier. The 1N400X family differs only by DC blocking voltage, Non-Repetitive Peak Reverse Voltage, and RMS Reverse Voltage. The higher X value, gives for higher tolerance for each diode. We can safely choose the 1N4001 for the power supply.

[bookmark: _Toc468701498]6.1.3.3 - Capacitors

The main function of the capacitor in designing the power supply is to calculate the approximate ripple voltage. The load causes the capacitor to discharge somewhat between cycles. For the sake of getting an approximate capacitor value, we assume that the load current stays constant. Then we use Equation 2 to approximate what values to be used for the ripple voltage and capacitance. [14] In the United States, f = 60 Hz for most wiring. We assume a load of 0.5 A which easily compensates for the DT as well as any current consumption belonging to Linear regulators and its respective components.

Equation 2

The most challenging part of the equation to find a value for is . How much ripple is acceptable? This question can be answered by looking at what the Linear Regulator can handle. One volt seems reasonable for the Power supply, so the target for the Capacitor value will be an inequality as follows:

Equation 3

Solving we find that . A 6800, 3300, and 2200 μF capacitors will be considered for the ripple. The Linear Regulator has headroom for more than 1V, choosing capacitors with larger values, reduces the ripple voltage. However, this method does not come without some disadvantages. The larger the capacitor value, the larger the size. This first observation is obvious by the governing equation of capacitance: , where A is the surface area and d is the distance between the plates. Secondly the short interval of current flow during a cycle produces more heating. Lastly, even with a reduced ripple variations in the output voltage still occur. [14] A simple solution to reduce ripple to low levels is the use of a Linear Voltage Regulator, and use the capacitance to reduce the ripple to around 10% of the VDC. We will see the application of this in the section below.

[bookmark: _Toc468701499]6.1.4 - Simulation

Figure 42 uses MULTISIM to simulate the Power supply design. Note that the Transformer has a 5:1, Primary to Secondary ratio winding. These two terminals then lead to the full bridge wave rectifier, and then the larger capacitor of 2.2mF which then smooths out the ripple to be marginal. Although not touched on until later, the output is then connected to A LM7812 Linear Voltage Regulator. This drops the DC voltage down to the desired level of 12 VDC. Figure 43 gives the simulation of the Oscilloscope and the output of the Linear Regulator. Notice that the voltage seems a bit high from the desired value of 24 VAC from the step down of the transformer. This is due to the peak value from the Vrms. If we multiply 24 by the square root of two, we get the output seen below. However, this will not be the overall DC average value, and is under the maximum voltage that the Regulator can handle. As seen in the oscilloscope simulation, the ripple is minimized as well (~0.01). It is way below our required ripple tolerance. However, we must keep in mind that although this is true, MULTISIM does not account for many factors that will be less than ideal. Previous calculations for values have accounted for non-ideal components as well as non-ideal power.

[image: Aar0n1]
[bookmark: _Toc468709575]Figure 42 - MULTISIM simulation of Power Supply Design

[image: Aar0n2]
[bookmark: _Toc468709576]Figure 43 - MULTISIM Oscilloscope and DC output from Linear Regulator

[bookmark: _Toc468701500]6.1.5 - Linear Regulator

Using Linear Regulators for design of the Power Supply as well as using it in the microcontroller design seems to be the modern standard in design. However, even with this knowledge, many different types exist. A Series Regulator, 3-terminal Regulator, Dropper, or LDO. We desire a fixed output, and not an adjustable output regulator. This type of regulator is a 3-terminal type consisting of input, output and ground. Even more distinction exists from fixed to adjustable regulator types. The two sub types are the conventional Regulator and the Low Dropout (LDO) Regulator. The minimum input-output voltage difference to enable regulated operation is defined as the dropout voltage. Traditionally this was ~3V. With our need of only having a 12V to 5V Linear Regulator, we do not need the LDO type Regulator unless further development of the DT uses 3.3V for microcontroller operation. The LDO Regulator would need to be used to handle the dropout voltage less than the traditional 3V. [15] A few prevalent companies make 3-terminal conventional Regulators. We chose to use TI’s LM7812 and LM7805 because of familiarity with these products and detailed datasheets given.

[bookmark: _Toc468701501]6.2 - RS-485 Chip

Choosing a RS-485 communication chip was a bit difficult at first. Most applications using these types of chips are strictly for longer distance type transmissions. However, in the case of the DT, the maximum length the tool would be from the PLC port 3 is approximately 1.83 meters (6 ft.). With such a short distance to consider, all chips available on the market today far exceed this maximum length of communication, and was not included as part of the decision.

	Company
	Model #
	Operating Voltage
	Supply Current (No load)
	Price

	
	
	
	Outputs Disabled
	Outputs Enabled
	Typical
	

	Linear Technology
	LTC485
	5V ±5%
	500μA
	900μA
	300μA
	$2.51

	Maxim Integrated
	MAX485
	4.75 – 5.25 V
	300μA
	900μA
	500μA
	$1.62

	Texas Instruments
	SN75156B
	4.75 5.25
	35 mA
	70mA
	26-42mA
	$0.83

Table 13 - RS485 chip comparison table

An important factor to note is having a robust chip/system to guard against Electrostatic Discharge (ESD). From looking through several forums and datasheets, the most robust chip is the Maxim Integrated MAX485. Table 13 shows a breakdown of operating voltages, supply currents, and pricing for the three main manufacturers of an RS-485 chip. With Maxim’s mid-level price, its popularity within communications, hobbyists using it with microcontrollers, as well as its ESD protection, we decided to purchase and use this chip for the DT. It is interesting to note that all the 485 chips have an operating voltage around 5 Volts. However, while Linear Tech and Maxim have similar Supply Currents, TI’s current is much higher. This also took TI out of consideration due to power consumption due to its higher supply current. Although it was not the main factor, as stated before, power efficiency is not an immediate requirement.

[bookmark: _Toc468701502]6.2.1 - MAX 485

After deciding on using the Maxim Integrated MAX485 chip for the DT, we had to then design a schematic for implementation on a Printed Circuit Board (PCB). This required research regarding the chip functionality as well as basic parameters to establish successful communication. The 485 chip uses Differential Data Transmission, designating the two lines as A and B shown in figure 44. Using the Differential Pair, the chip and PLC that will be communicating are both referred to as a transceiver. This means that this device is composed of both a transmitter and a receiver. The DE and pins for the 485 chip are tied together. The DE pin enable the driver when a logic high is set (DE = 1), and when DE is set to low (DE = 0), enables the chip to receive information. An LED is connected to the combined pins to show successful transmission of data from the 458 chip.

[image:]
[bookmark: _Toc468709577]Figure 44 - MAX485 schematic configuration

On the Differential Transmission Data lines A and B, a pull up and pull down resistor are connected to the lines as well as a resistor between the two. This is designed for fail safe biasing in the case known as bus idle condition. In this state, the differential voltage (VA – VB) is zero. When this occurs the RO pin is undefined by RS-485 standard, and consequently, the receiver output can produce random data. The pull up and pull down resistor shown in figure 44 solve this issue. To calculate these values, we must first define a minimum and maximum differential voltage threshold. A typical RS-485 defines a min/max of ± 200mV . When the differential input is larger or equal to this value RO will be defined as logic high. Similarly, when the differential input is less than or equal to -200 mV RO is defined as logic low. By using this relationship, we can calculate the Resistor values given R11 = R9 = R [14]. It follows:

Equation 4

Where RT = 120 Ω, and Vcc = 5V, we then get a value of R = 1440 Ω. This value is much larger than the one we chose for design. Figure 45 gives a great representation of the bus states and differential input voltage. We chose lower values for R to increase the noise margin that is achieved for the system. This allows for a stronger condition for logic high/low, providing the DT tool may have interference in the LCS.
[image:]
[bookmark: _Toc468709578]Figure 45 - Differential Input Voltage and Corresponding Output

The value of RT is a standard value typical for RS-485 communication. Signals can reflect from an end of an undetermined bus so much that the receiver could interpret the reflection as actual communication transmission. With using a twisted pair configuration to cancel out electromagnetic interference, we set this resistor termination value of 120 Ω to equal the typical characteristic impedance of a twisted pair.

[bookmark: _Toc468701503]6.3 - External Crystal

The ATmega 328 has a multitude of attributes that made it ideal for the DT. However, one drawback is the need for implementing an external crystal. The ATmega factory operating frequency resides at 1 MHz. From the datasheet, the maximum frequency attainable is around 20 MHz at an operating voltage of 5V. We chose to go with a seemingly standard value for the ATmega of 16 MHz. The External Crystal, shown in figure 46, connects from the labels CLK+ to PB6 (XTAL1) and CLK- to PB7 (XTAL2). Yet just choosing an operating frequency is not enough. We also need to be able to calculate capacitor values C2 and C3 (shown in figure). This is critical to get accurate and stable results out of the crystal, and requires that we have knowledge of what Crystal will be used with the DT.
[image:]
[bookmark: _Toc468709579]Figure 46 - DT crystal schematic

The Crystal unit to be used is the NX5032GA by NDK. With settling on a specific surface mount type Crystal, the datasheet gives the load capacitance of 8 pF for this and most other Crystals by NDK. Using this information, we now use Equation 3 to calculate our values for the Capacitors in figure 46. The only unknown is the stray Capacitance. Following standard layout PCB formatting and keeping the trace from the Crystal to the pins of the ATmega 328 as short as possible, we can estimate this value to be in range of 2 to 5 pF [16].

Equation 5

Here we must try to use the range of stray Capacitance and choosing standard capacitor values for C2 and C3. If we let Cstray = 3 pF and CL = 8 pF we have C2 = C3 = 10 pF. This is a rough estimate, but should provide some accuracy in using the NDK Crystal.

[bookmark: _Toc468701504]6.4 - LCD Display and Push Button Configuration

Two options existed for initial implementation of the push buttons for the DT. We first looked at the possibility of using only one pin to read different values for the push buttons. Clearly this pin would have to be an analog reading pin, and the corresponding resistor values would have to be calculated to give enough difference between each output read. This technique is dated, but still seems to have some validity when limited in the number of pins to be used. The main concern in output difference would be power loss from the pull-down resistor. Using Equation 4, and Excel to calculate values for the Resistors, it was decided that a voltage difference of 0.6V would be enough for the analog pin to read. This also allowed for the Output range for each corresponding button be from 4V to 1V. [17]

Equation 6

Table 14 shows the calculated Resistor values by using Equation 4 and solving for Rbutton and knowing we want our approximate ΔV , we could calculate Resistor values and determine percentages used of VCC for each Button. Rpd was chosen to be for all calculations involved using Equation 4.

	
	Resistor
	% of VCC used
	Output V
	Δ V

	Button 1
	9700
	80.08
	4.00
	0.61

	Button 2
	18500
	67.83
	3.39
	0.59

	Button 3
	30600
	56.03
	2.80
	0.61

	Button 4
	50000
	43.82
	2.19
	0.59

	Button 5
	83000
	31.97
	1.60
	0.57

	Button 6
	150000
	20.63
	1.03
	1.03

Table 14 - Pull-down resistor calculation and output voltage

Figure 47 shows the eagle schematic considered for the single pin Analog Input read. Note that Vout in the schematic corresponds to the single output for each push button. However, as with many implementations, using a single Analog Input to read different voltages has drawbacks. For instance, often when a user could be operating the DT, the push buttons will be close enough together to push multiple buttons down at the same time. When this occurs, and not a desired effect, the microcontroller could read as a different output voltage value, or simply not read the value due to programming within a specific range. The differences between voltages should be wide enough to be able to compensate and filter this type of error. The minimum (1V) and maximum (4V) input/output was chosen so that the pin read would not be confused with the VCC (high) value, or the low (pull-down) value close to zero.
[image:]
[bookmark: _Toc468709580]Figure 47 - Eagle schematic push button configuration using one pin

[image:]
[bookmark: _Toc468709581]Figure 48 - Eagle schematic push button configuration using six pins

After evaluating the needs of the DT, we realized that although using one pin to read the six buttons would be ideal for the circumstances had we chosen a smaller microcontroller, or needed more pins for additional features for the DT, was not a necessity. Figure 48 is the alternative to using one pin to read multiple voltage values. We have enough pins available on the ATmega to assign each push button its own pin. This allows for some distinct advantages. First, we can now program the microcontroller to read a digital high value for when the button is pressed. The program no longer needs to read a range of values to determine which button is pressed. Resistor values do not have to be calculated, and we simply use a for each push button, to drive the pin low when the button is not pressed. The final advantage to using a single pin for each push button is that when multiple buttons are pressed simultaneously, writing the program for this case can easily be addressed, which will ultimately be designed to take no action on this occurrence.

[bookmark: _Toc468701505]7 - Software Design

[bookmark: _Toc468654406][bookmark: _Toc468701506]7.1 - Web Application Design

The web application will be running on a UCF server and will allow students to log in and schedule reservations. The components of this application include a calendar to view the schedule and create reservations, a lab use component to view reservations and equipment usage, an account information component to edit user information, and an account creation/login component. There will also be a different user interface for students than for admins. Admins will have access to student records and will have the ability to alter information stored in the database.

[bookmark: _Toc468654407][bookmark: _Toc468701507]7.1.1 - User Interface

Simplicity is the primary objective for the web application’s user interface. The design and presentation of information should be intuitive and require little instructions. The calendar and reservation page will display the schedule in table-like-structure, with each cell containing a half-hour block as either available or unavailable. The user will be able to select an available slot and then determine the duration of their reservation.

[bookmark: _Toc468654408][bookmark: _Toc468701508]7.1.1.1 - Login

There will be two variations of the login screen. For testing and prototyping purposes, we will be using a hand-made log in component utilizing a HTML form and Bootstrap. The prototype login screen will allow us to configure the web application and ensure that the components are interacting in the way we desire. The following graphic contains a simple username and password combination. The username will most likely be the student’s knights email, and the password will be determined when creating an account.

[image:]
[bookmark: _Toc468709582]Figure 49 - Login Component

The UCF federated identity will be incorporated when our system is functional on the UCF network. In order for us to equip the web application with the federated identity login screen, we will need server access that is behind the Shibboleth security layer. The Tech Support department will have to grant us access to a Shibboleth enabled server. Setting up Shibboleth will be relatively quick once our prototype login screen is functional because they work in similar ways. Shibboleth will be delivering the user information rather than the prototype’s HTML form.

[image: Login.PNG]
[bookmark: _Toc468709583]Figure 50 - The Shibboleth federated identity login screen

[bookmark: _Toc468654409][bookmark: _Toc468701509]7.1.1.2 - Create Account

Users will have the ability to create an account on the prototype version of our system. Required user information includes a UCF email, student ISO number, first name, last name, and a valid password. When we implement the federated identity login, we will not need an account creation page because Shibboleth will fetch user information automatically from the UCF database. A new user logging in through Shibboleth will have an account automatically created for them on our system because we will already be given the information that we need.

Similar to the login page, the account creation page for the prototype system will be designed in HTML and Bootstrap. The HTML form will submit information via a POST request.

[image:]
[bookmark: _Toc468709584]Figure 51 - Create Account Page

[bookmark: _Toc468654410][bookmark: _Toc468701510]7.1.1.3 - Home Screen

A navigational menu will be required to access the different components of our system. Student and administrators will require unique functionalities from the system, so the home screen for each will be different. Students will see a reservation option, a lab use option, and an account information option. Administrators will have the option to generate a list of users, create complex searches of database information, and will have the ability to edit protected information in the database. Administrative abilities will be discussed in-depth in a later section.

The following figures illustrate the home screen concepts for students and administrators. Students are limited in their abilities to creating and viewing their reservations, while administrators can view and edit the activity of all users in the system.

[image: Home.png]
[bookmark: _Toc468709585]Figure 52 - The student home screen layout

[image:]
[bookmark: _Toc468709586]Figure 53 - Administrative home screen layout

[bookmark: _Toc468654411][bookmark: _Toc468701511]7.1.1.4 - Create Reservation

Selection controls are necessary for the user to navigate the calendar system. The user can select what machines and what times to view on the calendar. To keep the interface uncluttered, there may be a maximum number of machines that can be viewed at once. Our system’s hardware is capable of supporting at least 40 machines. The schedule for each of these machines must be accessible in an intuitive manner on the webpage. Sources of inspiration for our calendar system come from other facilities, including the UCF engineering building testing center which uses a similar tablature design displaying reservations in 30-minute increments.

The following conceptual layout illustrates how 30-minute reservation blocks can be used to convey availability throughout the day. Each time block will be a clickable button which will redirect the student to a page where they can complete their reservation. Red buttons marked with an ‘unavailable’ tag will not be clickable. This calendar layout makes it possible to display availabilities, as well as being the first step in the reservation creation process. This mockup does not include selections such as choosing a date and a time frame to view a machine.

[image: Create Reservation.png]
[bookmark: _Toc468709587]Figure 54 - Calendar layout using a table format

[bookmark: _Toc468654412][bookmark: _Toc468701512]7.1.1.5 - Administrative Controls

[bookmark: _Toc468654413][bookmark: _Toc468701513]7.1.1.5.1 - View Users

Administrators will be able to generate a list of users on the system. Administrators can view student users, faculty users, and administrative users. These functionalities will be accessible from the same page. As seen in the example below, switching between user groups is a matter of clicking the designated button. Users can be updated or deleted from these lists as well.

[image:]
[bookmark: _Toc468709588]Figure 55 - View students mockup

Clicking update will bring the administrator to a page containing the user’s information. Each field will be editable, making it simple to view current user information and quickly update the information. User groups contain different fields. For example, updating a student will contain fields for ISO number, authorized machines, and a faculty advisor. A faculty user will contain a field for their approved students. Finally, an admin user will contain only the basic information: first name, last name, and email. In some cases, a faculty member might also be an administrator. This is allowable in our current configuration.
[image:]
[bookmark: _Toc468709589]Figure 56 - Update student mockup

Students can be added to the system in a similar vein. If an administrator wants to pre-authorize a student before that student has created an account, they can simply add the student’s email and authorizations to the database. When the student creates an account with the proper email, the student’s information in the database will be updated with their chosen password and name. Authorizations will already be in place and the student will be able to schedule reservations for machines that they are authorized to use. If a student hasn’t been pre-authorized by an administrator before creating an account, then when they try to schedule a reservation, they will see no machines available in the system.

[bookmark: _Toc468654414][bookmark: _Toc468701514]7.1.1.5.2 - View Machines

Administrators will have the ability to view the machines in the system, update machines, and add or delete machines. Students can be authorized to use a machine from the update machine page, as well as the update student page. The following mockups illustrate the ‘view machines’ and the ‘update machine’ page.
[image:]
[bookmark: _Toc468709590]Figure 57 - View machines

[image:]
[bookmark: _Toc468709591]Figure 58 - Update machine
The add machine function will work similarly to the update machine page. An administrator will be able to directly authorize students to a machine while creating it or while updating it. Student authorization can be accomplishment in a variety of locations across the web application. This aspect of the design is intended to make the software as intuitive as possible. Ideally, a user will not have to memorize how to navigate the system to find what they are looking forward. Instead, the process of adding and updating machines and students will come naturally through regular usage of the software.

[bookmark: _Toc468654415][bookmark: _Toc468701515]7.1.1.5.3 - Generate Invoice

The generate invoice page will ask the user to select a month, and all lab usage for that month will be displayed in a tabulated format. This page should convey all reservations for that month, as well as the actually time logged in the lab during the reservation. If a student does not show up to a reservation, it will be apparent on the invoice screen. Faculty information will also be displayed, so that the cleanroom staff knows who to bill for equipment use. The invoice will be designed in a format that can be uploaded to an excel spreadsheet, where administration can perform more complex operations and analysis. The invoice is ordered by the date of the reservation.

[image:]
[bookmark: _Toc468709592]Figure 59 - Monthly invoice

[bookmark: _Toc468654416][bookmark: _Toc468701516]7.1.2 - Authentication

Students and faculty accessing our system will have to login and be authenticated by our system. In this section, we will be discussing a hand-coded login system that will be used during prototyping of the system, and then we will be discussing how to implement Shibboleth, a UCF Federated Identity service, to assist in the login process.
[bookmark: _Toc468654417][bookmark: _Toc468701517]7.1.2.1 - Input Sanitization

Authentication requires communication between server-side code and the database. In our case, PHP and MySQL will be interacting to authenticate users. They will provide, through an HTML form, their login credentials. That information is passed to the server where it is sanitized of any harmful input. Input sanitization is important because malicious users may try to input data that will cause damage when executed on the server. The user credentials are checked against what we have stored in the database, then cookies and session variables are used to track the user across the application.

We will be using native PHP functions to sanitize inputs. The function strip_tags removes php and html tags from an input string. The function html_entities uses escape characters to escape html characters. Finally, the function stripslashes removes slashes from an input string. Using these functions together, we have a secure method of handling user input. The below example illustrated how these functions can be used together.

[image:]
[bookmark: _Toc468709593]Figure 60 - Input sanitization

[bookmark: _Toc468654418][bookmark: _Toc468701518]7.1.2.2 - Shibboleth

Shibboleth is a service UCF contracts to handle login systems in a standardized and secure manner. Implementing Shibboleth on our web application will require that we are given a UCF server that supports Shibboleth. Shibboleth is implemented similarly to PHP session variables. Instead of developing our own login page, users will be prompted by the familiar Federated Identity login system which will handle the authentication process. A successful login through Shibboleth will pass information to our application, and similar to our hand-coded procedure, we will verify the user with information in our own database. Server variables will be used to track the user across the application.

[bookmark: _Toc468654419][bookmark: _Toc468701519]7.1.3 - Database access

The MySQL database can be accessed through native PHP functions. The MYSQLI class is an improved extension of the MYSQL class which was revealed to have security vulnerabilities and is as of today, a depreciated library. The MYSQLI class provides all the necessary functionality to query a MySQL database, fetch results, and perform operations. We are looking at three API’s (Application Program Interface) that can be used to connect with a MySQL database in a PHP- The MYSQL API, the MYSQLI API, and the PDO (PHP Data Objects). As mentioned earlier, MYSQLI is the preferred method to MYSQL due to security improvements.

[bookmark: _Toc468654420][bookmark: _Toc468701520]7.1.3.1 - MYSQL

The PHP MYSQL extension is implemented in versions of PHP prior to 3.0. The MYSQL extension has been preceded by the MYSQLI extension. Our version of PHP supports MYSQLI. MYSQL is still used in legacy devices and PHP technically still supports the depreciated version. This way, systems coded using the older model will still function today. When possible, code should be revised to the modern format because of security vulnerabilities. MYSQLI also comes equipped with new features and performance improvements.

[bookmark: _Toc468654421][bookmark: _Toc468701521]7.1.3.2 - MYSQLI

As mentioned earlier, MYSQLI is the revised addition to the PHP MYSQL framework. MYSQLI supports an object-oriented interface, prepared statements, multiple statements, transactions, debugging abilities, and embedded server support. MYSQLI also supports a procedural interface. It is strongly recommended that anyone using version 4.1.3 of MYSQL or greater switch over to the MYSQLI extension.

[bookmark: _Toc468654422][bookmark: _Toc468701522]7.1.3.3 - PDO

PDO (PHP Data Objects) can be used with any time of database system, not just MySQL. From a technical perspective, PDO can be used to retrieve information from a variety of different databases with only minimal changes to your code. Advantages of using PDO include a simplistic programming interface and a lightweight, portable design. Disadvantages include a lack of advanced features that can be found in the MYSQLI extension. It should be mentioned that PDO is not an API in the way a programmer might think. PDO behaves like a driver. For example, when querying a MySQL server, the PDO driver, which is a layer below the actual PDO, provides the MySQL functionalities. For our project, the MYSQL extension is the preferred API since we will be interacting with a MySQL server.

[bookmark: _Toc468654423][bookmark: _Toc468701523]7.2 - Database Design

We will be using a MySQL database system. MySQL is a free, open-source application and is one of the most commonly used database systems in the world. The following sections explore MySQL database concepts and implementation.

[bookmark: _Toc468654424][bookmark: _Toc468701524]7.2.1 - Relations

The relational database management system (RDBMS) is a way of storing information based on the relational model. RDBMS’s have been in use since the 1980’s and are core aspect of modern day computing. Financial institutions, warehousing, manufacturing, social networking and many more rely on the RDBMS model to store information and perform complex operations. The relational database model works by organizing information into tables, and relating tables in a logical manner that reduces storage space and maximizes search efficiency. Through a process of normalization, a database designer can construct a relational model that maximizes the performance of their system (normalization is discussed in-depth in a later section).

[image:]
[bookmark: _Toc468709594]Figure 61 - Relational database model

Non-relational database models exist, but are not common in today’s technologies. In specific circumstances, a non-relational model can increase the speed at which data is retrieved. In most applications, a non-relational model creates a performance drain rather than boost. The concept of non-relational models involves denormalization- a complete antithesis to the concept recently discussed. Our application will not be requiring the niche performance benefits of the non-relational models, so an RDBMS is what we will be using. For more information on non-relational databases, see NoSQL.

[bookmark: _Toc468654425][bookmark: _Toc468701525]7.2.2 - Relational Diagram

Our database system will store user information, including names, emails, a UCF identifier, and the faculty advisor of the students. As can be seen in the entity relationship diagram (ERD), the ‘people’ table contains general user information. The system will contain different classes of users. User classes include student user, faculty users, and administrators. Defining a hierarchy of users will guard the integrity of the system, as each user class will have different privileges and abilities in our system.

[image:]
[bookmark: _Toc468709595]Figure 62 - Entity relationship diagram (ERD) of database

The lowest level user will be the student. The student user class will only be able to modify their current account- create reservations, modify reservations, and view their schedule and equipment usage. Student users will not be capable of modifying or viewing other user’s information. The administrator user class will have the ability to view and edit student information. The administrator class has complete control over all users in the system, as well as having the ability to create and modify existing users of any class.

[bookmark: _Toc468654426][bookmark: _Toc468701526]7.2.2.1 - Optimization

The database design in compliant with the second normal form. Users classes are defined via a ‘isa’ relationship with the ‘people’ table. Dividing tables in this manner creates a clear distinction between the user classes. The ‘superAdmin’ class is reserved for users who require permissions greater than an administrator. Such a user can be implemented in the future using the already existing database design. Future iterations of the database might migrate certain information, like the ISO number, into the ‘student’ table, because it is unnecessary to maintain an ISO number for faculty and administrators.

Reservations are stored in the ‘schedules’ table. The design illustrates that a student schedules a machine. The schedule table relies on a student ID foreign key, and a machine ID foreign key. The schedules table has a unique ID as well, called the ‘sid’. Every entry into the ‘used’ table will reference a schedule ID. To clarify, the ‘used’ table contains physical machine usage, entered into the database by the equipment in the laboratory.

Authorizations are contained within the ‘authorized’ table, which depend on student ID and machine ID foreign keys. The equipment in the laboratory will check the ‘authorized’ table before signing in a student to verify that the user is authorized to use the machine. The web application also consults the authorized table when creating reservations. Foreign keys cascade where applicable, to update dependent tables when the original values have been changed.

The ‘machine’ table contains a variety of attributes. The ‘mid’ is automatically generated identifier by the MySQL server. Available dictates whether or not the machine is operational (this value should be renamed to operational). Open contains the student ID of whoever is currently using the machine, NULL otherwise. Finally, ‘op_code’ is laboratory identifier chosen when adding the machine to the PLC hardware.

[bookmark: _Toc468654427][bookmark: _Toc468701527]7.2.3 - Constraints

Constraints are relational requirements that the database enforces. One such constraint is that student users must have a UCF identifier stored in their account. The identifier we are using is the UCF ISO number located on student ID’s. The database will reject any user that doesn’t provide a valid ISO number. Other constraints include requiring an email and a full name. In terms of reservations, a student should only be capable of creating a reservation for an authorized machine. Machine authorization is determined by administrators. Reservations stored in the database must also be for a future date, because creating an expired reservation will not be of any use to the student.

Constraints include:
· Users must have a unique email address
· Users must have an ID number (generated by the database)
· Students, Faculty and Administrators must have an entry in the ‘people’ table
· Reservations must include a valid student ID, machine ID,
and a begin and end time
· Reservations must be made for a future date
· Reservations cannot overlap for the same machine on the same day
· The authorization table only accepts valid student ID’s and machine ID’s
· Students must be authorized for a machine before reserving it

[bookmark: _Toc468654428][bookmark: _Toc468701528]7.2.4 - Integrity

The integrity of a database is a measurement of the quality of its design. Normalization, a three-step procedure in database design, ensures that a database has an optimal design. An optimal design requires that the database can efficiently search for information and does not waste storage space.

[bookmark: _Toc468654429][bookmark: _Toc468701529]7.2.4.1 - Normalization

Separating data into tables and creating indexes to perform quick searches is the process of normalization. Normalization ensures that data in a database isn’t redundant - that data is stored in only one location and storage space is not wasted. Storing multiple copies of an element needlessly wastes valuable database space and slows down seek speeds. The biggest risks of duplicate data arise when trying to update information. If all copies of the data aren’t updated, the application might encounter errors when accessing an out-of-date file. Database developers should be weary of segmenting data too far. Creating needless tables and indexes can diminish database optimization and is counterproductive to the process of data normalization.

Edgar F. Codd is the English computer scientists who invented the relational model for databases and defined the concept of database normalization. There are three steps to the database normalization called the first, second and third normal form.

[bookmark: _Toc468654430][bookmark: _Toc468701530]7.2.4.1.1 - First Normal Form:

Imagine we are creating a website where users can login and purchase products, we might want to store user information such as username, email and password. We could create a table called ‘users’, and give it the columns ‘username’, ‘email’, and ‘password’. A database usually consists of several tables. In our example, we might want to store the products available on a webpage and the user’s purchasing history. These could constitute the creation of tables called ‘products’ and ‘history’. During the design process of the database, it is important to store information in a way that minimizes redundancy and maximizes search efficiency. This is accomplished through a process called ‘Normalization’, the first step of which is called ‘The First Normal Form’. In this step, redundancy across the columns are eliminated by following three rules; one, each column should contain data that is not repeated in another column; two, each column should store only one piece of information; and three, there should exist a column that will contain a different value for each entry in the table (called a primary key).

[bookmark: _Toc468654431][bookmark: _Toc468701531]7.2.4.1.2 - Second Normal Form:

After meeting the conditions for the first normal form, which involves eliminating redundancy between columns, a database designed can then focus on the second normal form which eliminates redundancy between rows. When a table contains columns that repeat information in different areas, these columns can be moved to their own table. For example, if we were selling books on an online marketplace, we could store a table which contains the book name, price, and the buyer’s information. In this scenario, we will see the same buyer showing multiple times if he bought multiple books. A more efficient method would be to place the books and the buyers into tables of their own, and then form a relation between the two. This way, information isn’t duplicated between the rows.

[bookmark: _Toc468654432][bookmark: _Toc468701532]7.2.4.1.3 - Third Normal Form:

After adhering to the first and second normal form, a database is already in good shape. The third normal form can be implemented in very strict database systems, but is not a necessary component of an efficient database design. The third normal form dictates that any information not directly dependent on the primary key to be unique should be move into a new table. In this method, data is segmented into the lowest possible table hierarchy. For example, in a table that holds order information, the address ‘Orlando, Florida” can be divided into two separate tables. One containing ‘Orlando’ and one containing ‘Florida’. Depending on the system, the third normal form may or may not yield a substantial performance increase.

[bookmark: _Toc468654433][bookmark: _Toc468701533]7.2.4.2 - Transactions

Certain applications require that queries be run in a sequential order, without being interrupted by another user’s query. In the event that a query returns an undesirable result, all previous queries within the transaction might need to be undone. This process is called a transaction, and is vitally important in database systems that contain sensitive information. For example, a banking institution has to securely transfer funds between accounts. You wouldn’t want to run into a situation where you add the funds to the receiving account, but fail to subtract the funds from a sending account. In the event that a computing error disrupts the transfer of funds within a bank, we want a fall back plan that leaves the state of the system undisturbed. This is the guarantee that MySQL transactions provide.

Transaction also allow concurrent access to a database system, meaning that multiple users can interact with sensitive information at the same time. In our reservation system, for example, we wouldn’t want users to schedule reservations that overlap. Without transactions, it is possible for users to submit reservations within a close enough time period that they conflict within the database. A transaction creates a queue of sequential query requests. A transaction for a reservation system will first check that no overlapping reservation exists before being input into the database. The transaction model guarantees that queries are run in a sequential order and no other user can change the state of the database between queries.

The PHP MYSQLI extension supports transactions through the begin, commit, and rollback methods. Any query executed between ‘mysqli->begin’ and ‘mysqli->commit’ can be reversed using ‘mysqli->rollback’ method. Switch statements provide a convenient method of executing transactions. Each switch case represents a step in the transaction process. If a query isn’t executed properly, the queries can be rolled back in the default case of the switch block.

[bookmark: _Toc468654434][bookmark: _Toc468701534]7.2.4.2.1 - A.C.I.D.

Transactions contains four properties (Atomicity, Consistency, Isolation, and Durability). Atomicity constitutes an ‘all or nothing’ principle- if one query fails, they all do. Consistency means the database will begin and end in a consistent state. Isolation means the queries will execute sequentially. Finally, durability means after a transaction has been committed, it is a safely stored in the database and protected against crashes and power failures.

[bookmark: _Toc468654435][bookmark: _Toc468701535]7.3 - UCF Server Access

Obtaining a server on the UCF network is an important aspect of our project. The UCF network is capable of running our backend server code, our database, will provide us with a layer of security under the Shibboleth (Federated Identity) login screen, and will be easiest to maintain in the long run. A server on the UCF network will also mean that we won’t be having to host the website and database on a computer in the cleanroom laboratory, which has very limited space availability.

The UCF Tech Support department located in the Harris Corp Engineering building maintains the UCF network and grant users with server space. Hosting an application on the UCF network is a delicate process. UCF takes security very seriously, and handing out server space to undergraduate students is typically not something they do. There have been only a handful of cases were undergraduate students were granted server space for their senior design projects. Among those rare cases, even fewer applications were allowed to continue running on the network after the senior design process was completed. The message here is that UCF is careful about who they grant, and the permissions involved with the access.

We are wanting to setup an application behind the Shibboleth security layer. This security layer will protect not only our application, but the university network as well. Only students with a valid NID and password combination will be allowed to enter our web application. In other words, access into our server space on the UCF network will be just as protected as any other UCF service behind the Federated Identity login. In addition to the Shibboleth security layer, the Tech Support group grants students server space with limited permissions. Even if a malicious user made it into our server space behind the Shibboleth layer, any damage that they could do would be limited to the directories we have control over and the database we have designed. With this configuration, UCF takes minimal risk while providing us with the server resources that we are requesting.

The server is accessed via an ssh link. The Tech Support group provided us with the login credentials that we will need to sign into the network. From there, we will have access to a home directory which hosts our PHP web material. Files are uploaded to the server via FTP. Similarly, a database has been created and is accessible from our directory. For ease of use, Tech Support has recommended ssh tools like Cyberduck to make managing our server resources simpler.

[bookmark: _Toc468701536]8 - Prototyping

Throughout the process of building and assembling the LCS, there were several prototyping stages that included hardware as well as software prototypes made for testing and proof-of-concept that was necessary before assembling a more permanent, final solution.

[bookmark: _Toc468701537]8.1 - Temporary Panel

In the early stages of component programming and testing, the PLC, card reader, and touch screen were connected between themselves and the network sitting on a table. This was sufficient for initial testing, but as it became necessary for the system to be taken to either the UCF campus, or between group members’ residences, the need for a temporary panel arose. One of our group members was able to take a surplus panel from his place of employment and create a mock-up of what the final system would consist of. The temporary panel had plastic locks and hinges and was smaller than the final solution, but contained the key components such as a backplane, DIN rails for easy component access and replacement, and a terminal block strip for ease of wiring.

[image: temporary panel]
[bookmark: _Toc468709596]Figure 63 - Temporary panel with most components removed

	[image: temporary panel hinges]
[bookmark: _Toc468709597]Figure 64 - Temporary panel plastic hinges
	[image: temporary panel latches]
[bookmark: _Toc468709598]Figure 65 - Temporary panel plastic latches

As can be seen above, the temporary panel only had room for two DIN rails, therefore severely limiting the amount of components we could mount inside. Also, the hinges and latches are plastic and can be easily broken to access the inside of the panel. Despite the size drawback, having a temporary panel benefitted us in several ways. First, it allowed the main components of the system to be assembled and wired semi-permanently which made them more secure and less likely to be damaged accidentally. Second, it allowed the system to be taken to various locations such as another group member’s residence, or the UCF campus to use laboratory equipment such as oscilloscopes or to demonstrate our progress to our sponsor.

[bookmark: _Toc468701538]8.2 - PLC programming

While testing various components that needed to interact with the PLC in some manner, different PLC programs were written with specific purposes. Below are the programs that were crucial in developing the LCS. They include programs that do the following:

1. Program used to test magnetic card swipes
1. Receive data from the magnetic swipe, process it, and send it to the PC via Ethernet
1. Performs everything listed in 1 and listens to PC response and
turns output on or off
1. PLC loopback testing (RS-232 from port 2 to RS-485 in port 3)
1. Program to send a single ASCII character in order to read waveform on oscilloscope

[image: PLC program 1 - magnetic swipe test]
[bookmark: _Toc468709599]Figure 66 - Program 1 – magnetic swipe test

[image: PLC program 2 - swipe process send 1]
[bookmark: _Toc468709600]Figure 67 - Program 2 – swipe process send (part 1)

[image: PLC program 2 - swipe process send 2]
[bookmark: _Toc468709601]Figure 68 - Program 2 – swipe process send (part 2)

[image: PLC program 3 - swipe process send receive 1]
[bookmark: _Toc468709602]Figure 69 - Program 3 – swipe process send receive (part 1)

[image: PLC program 3 - swipe process send receive 2]
[bookmark: _Toc468709603]Figure 70 - Program 3 – swipe process send receive (part 2)

[image: PLC program 4 - PLC loopback test]
[bookmark: _Toc468709604]Figure 71 - Program 4 – PLC loopback test

[image: PLC program 5 - send 1 ASCII char]
[bookmark: _Toc468709605]Figure 72 - Program 5 – send 1 ASCII char

In order for the PLC and the PC software to communicate efficiently, we devised a system of request and response codes. The PLC sends the following request codes as part of its data packet:

	Code
	Description

	ASCII ‘a’ (0x61)
	Login request

	ASCII ‘b’ (0x62)
	Extend time request

	ASCII ‘c’ (0x63)
	Logout request

	ASCII carriage return (0x0D)
	Automatic logout request

Table 15 - PLC request codes

When a user tries to login to a machine, the PLC will send the corresponding code to the PC which will then process the request and respond appropriately, at which point the PLC will process the response from the PC and then either turn on a machine for the user and display a message on the touch panel (see next section) or it will deny the user access to the machine, display the appropriate message on the touch panel, and not turn it on.

[bookmark: _Toc468701539]8.3 - Touch panel program

During the initial stages of system testing, we were using a 3” touch panel made by Automation Direct that was compatible with the PLC we selected. The resolution on the 3” panel was extremely limited so the amount of user options, information, and feedback that can be put on one screen is limited as well. For example, in figure 75 there is only room for 4 machines, so for a clean room with 22 machines, it will take six screens to display all of the options for a user. Other things such as displaying user tips, help pop-ups, or feedback on user requests becomes practically impossible with such limited screen space. However, the point of the prototype was to serve as a proof of concept and demonstration to our sponsor as to the potential functionality of these devices.

Below are sample screens from one of our first prototype programs. Figure 73 shows the first screen displayed upon power up. A hidden button is located in the top left corner that goes to an “admin settings” screen, but it was not utilized due to the limited functionality of this prototype. Figure 74 is a “continue” buffer screen that allows the user to continue to select a machine or to go back to the power up screen. This is important as it allows access back to the power up screen that contains the hidden admin settings. The machine select screen in figure 75 displays four machines at a time and options to go to the next four machines or back one screen. Finally, the machine operations screen in figure 76 contains options to login, extend the session, or logout as well as a button to press when the user is ready to scan their ID. In the screenshot, the “login” and “scan id” buttons are selected, meaning the user is requesting to login to machine 1 and is ready to scan their ID.

	[image: small panel program 1]
[bookmark: _Toc468709606]Figure 73 - temporary touch screen startup screen
	[image: small panel program 2]
[bookmark: _Toc468709607]Figure 74 - temporary touch screen login screen

	[image: small panel program 3]
[bookmark: _Toc468709608]Figure 75 - temporary touch screen machine select screen
	[image: small panel program 4]
[bookmark: _Toc468709609]Figure 76 - temporary touch screen machine operations screen

[image:]
[bookmark: _Toc468709610]Figure 77 - Machine selection screen on 6” panel

[image:]
[bookmark: _Toc468709611]Figure 78 - Successful login screen for Machine 1

As can be seen in figures 77 and 78 above, the bigger panel and its greater resolution allow much more text, buttons, and other display elements to be placed on the screen and therefore provide more user control and feedback. Figure 78 shows a sample login request that has been successfully processed. The message in the center changes depending on user’s situation. Below are other examples of potential user interactions with the system. The figure below show various messages that are available to display for the user.

[image:]
[bookmark: _Toc468709612]Figure 79 - Successful extend request processed

[image:]
[bookmark: _Toc468709613]Figure 80 - Successful logout request processed

[image:]
[bookmark: _Toc468709614]Figure 81 - Unsuccessful login, user must create a reservation

[image:]
[bookmark: _Toc468709615]Figure 82 - Unsuccessful login, user is not authorized on Machine 1

[bookmark: _Toc468701540]9 - Testing

[bookmark: _Toc468701541]9.1 - Communication

Communications testing between the PLC and PC software was a key part throughout the design process. We used several free programs found on www.modbus.org in order to test the communication between the two devices. These programs include Ananas, MOD RSSim, and Net Cat. Our communication model is described in the flowchart below.

[image:]
[bookmark: _Toc468709616]Figure 83 –PLC and PC communication software process flowchart

[bookmark: _Toc468701542]9.1.1 - Ananas (MODBUS)

Ananas (which means “pineapple” in most other languages) is a MODBUS TCP/IP protocol server that listens on a designated port. In our case, the port is left as default 502. It allowed us to test whether or not the PC was receiving any communication at all from the PC when we first started designing the system. Ananas provides a convenient list of registers that can be viewed as hexadecimal or decimal values as well as information about the transaction packet that is sent.

[image:]
[bookmark: _Toc468709617]Figure 84 - Ananas MODBUS/TCP server screenshot

[bookmark: _Toc468701543]9.1.2 - NetCat

NetCat was instrumental in establishing two-way communication between the PLC and PC software. It is a simple, open-source, command-line program that allowed us to deconstruct the MODBUS TCP/IP communication protocol and helped write a custom software package that is purpose-built for our project needs. NetCat has a plethora of features, many of which we did not use. Some of the commands available are shown in the screenshot below.

[image:]
[bookmark: _Toc468709618]Figure 85 - NetCat command line MODBUS communication software (help command)

[bookmark: _Toc468701544]9.1.3 - MOD_RSsim

MOD_RSsim was perhaps the most helpful of the three programs. It simulates a MODBUS device and provides intuitive and clear access to the holding registers. Sending data to the PC using RSsim was very easy and reading data back from the PC was as simple as changing the proper registers to the desired value and sending a read request from the PLC. Another benefit to using RSsim is its communications log that showed whether or not the connection has been established and if the software is actively listening for communication. This was crucial to troubleshooting our connection issues and when the packets came through, we were able to replicate them for our own purposes using a custom written PC software.

[image:]
[bookmark: _Toc468709619]Figure 86 - MOD_RSsim main window

[image:]
[bookmark: _Toc468709620]Figure 87 - MOD_RSsim comms log window

[bookmark: _Toc468701545]9.1.4 - RS-232 to RS-485 Transmission

Communication between the magnetic card swipe (sending data as RS-232) to Port 3 of the PLC (receiving data as RS-485) should have been simple in theory. However, in application this process needed testing to ensure complete data transmission. We first set the transmission line from the magnetic card swipe to the PLC using two separate RS-232 to RS-485 converters; the Uxcell RS232 to RS485 Communication Data Converter Adapter, and the DTECH Port-Powered RS232 to RS485 Converter. After multiple attempts to configure the converters, it was decided to test the PLC port to understand what signals were being sent and received through Port 3.

[image: IMAG0047]
[bookmark: _Toc468709621]Figure 88 - Testing Port 3 (RS-485) of the PLC

Figure 88 shows the 3 active ports of PLC, with Port 3 configured to test on the Oscilloscope. Two separate channels are used to gauge the differential transmission of RS-485. Since the magnetic card swipe only sends ASCII characters as serial communication, a program was written to continuously send a test character as one byte. Figure 89 demonstrates the potentials of the ‘+’ and ‘- ‘pins of the Port output as the PLC transmits one ASCII character, ‘=’, as one byte of information. The order is little endian, meaning the first bit to the left is the lsb (least significant bit). Figure 89 shows the ‘+’ potential as the dark blue color in the top portion of the image, and the ‘- ‘potential as the light blue signal in the bottom portion of the image.

The red signal displayed in the center of the image shows the negation of the negative terminal from that of the positive. The labels are there to show what is the value being transmitted. It is worth noting that both RS-485 and RS-232 are characterized by opposite polarity type configurations. When transmitting a ‘high’ or logical one value, the data will read as low, and the opposite follows for transmission of a low value

[image: Untitled Diagram]
[bookmark: _Toc468709622]Figure 89 - RS-485 transmission from PLC ASCII character “=” 0x3D

[image: Untitled Diagram (1)]
[bookmark: _Toc468709623]Figure 90 - RS-232 transmission from PLC ASCII character "=" 0x3D

After testing Port 3 of the PLC, the next step was to test using Port 2 to send ASCII data and read the output. Once again a program was written to continuously send the ASCII character ‘=’ from Port 2. Now attaching on the first channel to the oscilloscope, figure 90 shows the result. By inspection, one can clearly see the waveform is the same as the negation of the differential from Port 3. The last consideration or concern for the group was voltage levels. While sending through Port 2, we know that the PLC has a higher power capability than that of a magnetic card swipe. Without amplification, the highest transmission for a magnetic card swipe would be approximately 5 volts. Considering the two waveforms are the same with transmission of ASCII data, we decided to directly link the magnetic card swipe to the RS-485 Port 3 of the PLC. After running several tests, data was received from the magnetic card swipe to the PLC.

[bookmark: _Toc468701546]9.1.5 - Capture and Parse ISO Number

When the PLC receives the card swipe information, the data contains only the information contained in track 2 of any magnetic stripe card. The UCF student IDs all begin track 2 with a semicolon “;” and contain the 16 digit ISO number our system uses to authenticate users. After the 16 digits is another ID number used by UCF for some other purpose, but that data is discarded by the PLC program and only the 16 digit ISO number is stored and then sent to the PC software in order to cross-check with the database. When the PLC receives a card swipe, it is stored in sequential memory addresses beginning with an address of the programmer’s choosing. The PLC stores the complete card swipe info in a temporary location, then moves only the relevant 16 digit ISO number to the location where the data packet (ISO, request code, machine number) is assembled for transmission to the PC software. In the figure below the program to configure the card swipe receiving port is shown. The data length is set to variable in order to accept different lengths of data and the termination code is a question mark (“?”) which means the PLC will stop reading data after it sees the question mark. This allows us to read the complete data without losing anything.

[image:]
[bookmark: _Toc468709624]Figure 91 - Receive card swipe info (PLC program)

[bookmark: _Toc468701547]9.2 - PCB

[bookmark: _Toc468701548]9.2.1 - Complete Schematic

Figures 92 and 93 give the complete Eagle schematic for the DT. Some of the main components have already been included in documentation. However, a complete schematic is desired to show how individual components of the design connect to the ATmega microchip. Sections not discussed in detail for implementation are some headers that will be used to connect the LCD display as well as an 8-pin header to connect to the PLC through digital outputs. It is also worth noting that most Analog I/O pins for the ATmega can be configured as digital I/O. This ability gave the option to have each push button be assigned its own pin. The power section of the schematic uses TI’s LM7805 to convert 12V down to 5V. An LCD is implemented in the design to indicate the DT tool is in an “ON” state. A small, yet useful feature is that of the Reset button used. This simple configuration using a Pull-up Resistor will reset the entire DT, and force the program to reboot from the beginning.

[image:]
[bookmark: _Toc468709625]Figure 92 - Complete Eagle schematic - part 1
[image:]
[bookmark: _Toc468709626]Figure 93 - Complete Eagle schematic – part 2

[bookmark: _Toc468701549]9.2.2 - Manufacturing Choices

Often overlooked, choosing the right PCB manufacturer can be crucial for having a reliable board to use when building the DT. Important factors in manufacturer choice is price, quality, customer service, options for builds, and shipping times.

[bookmark: _Toc468701550]9.2.2.1 - Seeed Studio

Initially Seeed Studio seemed very attractive. They have many options to build and create a PCB. The pricing is competitive with the other options for small PCB design. For a simple 2-layer PCB design that will be like the DT, with dimensions up to 100x100 mm, the cost is approximately $9.90 for 5 boards. Going with Seeed seems to have a few drawbacks though. The main concern is ordering from overseas. Seeed is based out of China, and with trying to minimize costs, when applicable, shipping could be crucial when trying to build and develop the PCB. Another concern is familiarity with Seeed Studio. From the past, many Senior Design groups have gone with Osh Park or more recently PCB way and have had great results. With shipping costs, time arrival, and familiarity being concerns, we decided to evaluate the other two companies as a manufacturing choice.

[bookmark: _Toc468701551]9.2.2.2 - Osh Park

Osh Park seems to be the choice for PCB housing. They offer excellent customer service, and are in the United States. Osh Park offers very competitive prices for a 2-layer board. With $5 per square inch, which includes 3 copies of the PCB ordered. If the DT was larger in design, this pricing model might not be an option for the group. It is a bit more expensive than the other two choices. However, the shipping is estimated to be under 12 calendar days from the day of ordering. The fast shipping time will help to ensure testing can be completed, and be able to prepare for any additional purchases if failure occurs.

[bookmark: _Toc468701552]9.2.2.3 - PCBway

Like Seeed Studio, PCBway is a China Shenzhen-based manufacturer. This posed some similar concerns regarding shipping time and costs. However, PCBway has kept an on-time delivery rate of 99% in recent years. They also consider having a short lead time as well as promising the highest quality PBC manufacturing. When getting the price quote from PCBway with the same specifications of that of Seed Studio, the price is exactly $10, and the shipping is even better than that of Osh Park, in that it has an estimated 3-4 business days. PCBway seems to have great customer support, as well as trained engineers to diagnose the PCB file sent in case of any errors.

Overall, PCBway far exceeds all others in cost, shipping, customer service, and reviews from both online sources as well as peers at the college of engineering. Despite being overseas, their shipping is faster than that of Osh Park, and is the best choice for the Diagnostic Tool.

[bookmark: _Toc468701553]9.2.3 - Breadboard

An important step in design of the DT is prototyping and testing components to ensure full functionality prior to finalizing the design to PCB. On one breadboard, we have placed the LM7805 linear regulator to provide 5 volts for three components; the Sainsmart LCD, the MAX485, and the ATMega 328. When testing, we had focus mainly on RS485 communication as one can see the twisted pair of wire on the right side of figure 94. This is the most crucial aspect of testing and design between the MAX485 and the ATMega 328. Not included in figure 94 is the eight output pins that will connect to the PLC. We felt that this wasn’t as important as the RS485 communication, given that each pin will just act as I/O logic “HIGH” and logic “LOW”. This communication will be tested in the future with the PLC.

[image: IMG_0872]
[bookmark: _Toc468709627]Figure 94 - Breadboard Prototype Setup

One concern for the design of the PCB is stepping down 12V to 5V using a linear regulator. Using a simple equation to figure power wasted in a linear regulator,

Equation 7

We can see that if our current draw is high, we will have significant inefficiency and will evaluate using a heat sink with the linear regulator or using a more complex switching regulator. This does come with a few drawbacks. A switching regulator is more complex, has higher costs, and introduces noise into the circuit. Future testing will be to try both components and then decide which is most suitable for implementation on the PCB.

[bookmark: _Toc468654443]

[bookmark: _Toc468701554]9.3 - Web Application

[bookmark: _Toc468654444][bookmark: _Toc468701555]9.3.1 - Account Creation

For the prototype, all human interaction with the web application will be done in the laboratory at the PLC kiosk. Students using our system will have to create an account before using our system. Accounts can either be pre-authorized by an administrative user, or created from scratch at the create account web page. The advantage of pre-authorizing a student account is that a student can login with machines already authorized to their name. This way, reservations can immediately be made. Students who haven’t already been established in the system won’t see any machines on the calendar until an admin looks up the new student, and assigns authorizations. In either case, a new student user will have to create an account via the account creation page. To view the account creation web page mockup, consult the Web Application Design section.

Administrators can pre-authorize a student. To do this, go to the “view users” page and add a student. All that is required is the student’s email. Fill in the required fields: the email and the authorizations. You can optionally select a faculty advisor for the student. Having a faculty advisor is not necessary to create a reservation. Designated faculty advisors are used to generate invoices so that the cleanroom staff know who to bill.

The UCF Federate Identity login solution will not require that we have a create account page. New users to our system can be created automatically at login because the UCF login system returns all the necessary student information from the databases. In other words, once Shibboleth is implemented on our system, users will not interact with account creation.

[bookmark: _Toc468654445][bookmark: _Toc468701556]9.3.2 - Reservations

Students can view the schedule and create reservations from the same web page. The page is designed to be intuitive, using input buttons that are noticeable and convey the information in the calendar. The reservation screen will also have a brief list of instructions at top, to assist students who might be struggling with creating a reservation.

To create a reservation, first select the machine, the date, and the time range you would like to view. Make sure to click refresh after your selection, because the calendar information will have to be fetched from the database. You can view the schedule for multiple machines at once as well as multiple days at once. Experimenting with different input combinations is the best way to become comfortable with the system. When you find a desirable availability, click on the first available slot to advance to the next screen.

Selecting the duration of your reservation is the final step of the reservation process. Pick, from the drop down menu, when you would like your reservation to end. Click submit to verify your reservation.

You can delete a reservation via the view reservations page. If you mistakenly created a reservation, or want to update your reservation, just delete your reservation and try again. You can make as many reservations as you like. Reservation that are in progress or have expired cannot be deleted.

[bookmark: _Toc468654446][bookmark: _Toc468701557]9.3.3 - Authorizing Students

Administrators can authorize students. Students must be authorized to a machine before seeing it appear in the calendar. To authorize existing students, navigate to the “view students” page (to authorize not yet created students see the account creation section). Click update on the student you would like to adjust authorizations. On the update student page, you can select from the list of machines what the student is authorized to use. Control-click with your keyboard and mouse to select multiple machines. If you accidently remove authorizations, click the back button on your browser and then try again. Click update after you have made your selection.

You can also update authorizations via the view machines page. Click update on the machine you would like to change authorizations. From the update machine page, you will see a list of students and will be able to adjust authorizations. Don’t forget to click update after you have made your selection.

[bookmark: _Toc468654447][bookmark: _Toc468701558]9.3.4 - Adding a Machine

Administrators can add and update machines. To add a machine, navigate to the machines web page and click the add machine button. Fill in the requested values and click the submit button. The application will request a laboratory code. This is the code you should use when adding the machine to the PLC kiosk.

[bookmark: _Toc468654448][bookmark: _Toc468701559]9.3.5 - Focus Groups

To improve our system and make it more intuitive, we could request that users provide us with their input of the system. This includes surveying students, faculty and administrators that interact with the system, asking non-engineering students to try creating a reservation, and stress testing the system. The prototype phase of our system will be involving a small subset of students and machines. Their input will be very valuable during the early stages of our implementation.

[bookmark: _Toc468701560]10 - Administrative

[bookmark: _Toc468701561]10.1 - Milestones and Timeline

[image:]
[bookmark: _Toc468709628]Figure 95 - Project milestones and deadlines

[bookmark: _Toc468701562]10.2 - Budget and Finance

Table 16 gives an extensive break down of expected cost for the LCS for the Clean Room and the DT that is being developed to meet PCB requirements for Senior Design. The table includes the item name, model number (where applicable), quantity needed, Price per unit, and price per quantity. The budget costs for the LCS is covered completely by our sponsor. The PCB costs is covered by the group and this is where we must be careful to consider price when purchasing and using components for design. It is worth noting that the LCS budget is only for one system, and to completely install, this budget will be doubled to use for the second clean room.

[image:]
Table 16 - Detailed budget of LCS and DT

Most items listed in Table 16 have already been purchased. However, we expect to have more cost to both the Sponsor and ourselves during the process of complete implementation of the System in the Clean Room as well as optimizing our Diagnostic Tool.

[bookmark: _Toc468701563]Appendices
[bookmark: _Toc468701564]Appendix A – Copyright Permissions

[image:]
https://commons.wikimedia.org/wiki/File:Relay_symbols.svg
[image:]
http://www.electronics-tutorials.ws

[image:]
https://commons.wikimedia.org/wiki/File:Transformer3d_col3.svg
[image:]
http://www.analog.com/media/en/technical-documentation/application-notes/AN-960.pdf
[image:]
http://www.comentum.com/images/360/ruby-on-rails-vs-php-performance.png

Appendix B - References

[1] 	Modbus-IDA, "MODBUS Messaging on TCP/IP Implementation Guide V1.0b," 24 October 2006. [Online]. Available: http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf. [Accessed 30 11 216].
[2] 	UL, "Enclosures for Electrical Equipment, Non-Environmental Considerations," 16 10 2015. [Online]. Available: https://standardscatalog.ul.com/standards/en/standard_50. [Accessed 1 12 2016].
[3] 	NEMA, "NEMA 250-2014 Enclosures for Electrical Equipment (1000 Volts Maximum)," 29 12 2014. [Online]. Available: https://www.nema.org/news/Pages/NEMA-Publishes-NEMA-250-2014-Enclosures-for-Electrical-Equipment-1000-Volts-Maximum.aspx . [Accessed 1 12 2016].
[4] 	Quora, "What is the difference between RTU (Remote Telemetry Unit) and PLC (Programmable Logic Controller)?," 17 12 2015. [Online]. Available: https://www.quora.com/What-is-the-difference-between-RTU-Remote-Telemetry-Unit-and-PLC-Programmable-Logic-Controller. [Accessed 1 12 2016].
[5] 	Raspberry Pi, "Raspberry Pi 3 Model B," [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed 1 12 2016].
[6] 	Arduino, "Arduino Uno REV3," 2016. [Online]. Available: https://store-usa.arduino.cc/products/a000066. [Accessed 27 11 2016].
[7] 	National Control Devices, LLC, "Web-i Relay Controller Board 32-Channel 10 Amp SPDT + UXP Universal Expansion Port," 8 10 2014. [Online]. Available: https://www.controlanything.com/Relay/Device/ZUXPSR3210ProXR_WEB-i. [Accessed 25 11 2016].
[8] 	Rockwell Automation, "MicroLogix," 2 2013. [Online]. Available: http://literature.rockwellautomation.com/idc/groups/literature/documents/br/1761-br006_-en-p.pdf . [Accessed 26 11 2016].
[9] 	Automation Direct, "HMI," 2016. [Online]. Available: https://www.automationdirect.com/adc/Shopping/Catalog/HMI_(Human_Machine_Interface)/C-more_Micro_Panels/3_inch_Panels_-a-_Accessories/EA1-S3ML. [Accessed 1 9 2016].
[10] 	Automation Direct, "EA3-T6CL," 2016. [Online]. Available: https://www.automationdirect.com/adc/Shopping/Catalog/HMI_(Human_Machine_Interface)/C-more_Micro_Panels/6_inch_Panels_-a-_Accessories/EA3-T6CL. [Accessed 9 2016].
[11] 	AspenCore, Inc, "Electrical Relay," 2016. [Online]. Available: http://www.electronics-tutorials.ws. [Accessed 10 2016].
[12] 	Denkovi, "Wi-Fi 12 relay module," [Online]. Available: http://denkovi.com/wifi-relay-module-12-relays-io-web-http-api-smtp-telnet. [Accessed 10 2016].
[13] 	Smarthome, "Electric Door Strike," 2016. [Online]. Available: http://www.smarthome.com/smart-door-locks/doors/strikes-magnetic-locks.html . [Accessed 11 2016].
[14] 	P. Horowitz and W. Hill, The Art of Electronics, New York: Cambridge University Press, 2015.
[15] 	Tech Web, "Linear Regulator Basics," 3 9 2015. [Online]. Available: http://micro.rohm.com/en/techweb/knowledge/dcdc/s-dcdc/01-s-dcdc/74. [Accessed 11 2016].
[16] 	adafruit, "Choosing the Right Crystal and Caps for your Design," 24 1 2012. [Online]. Available: https://blog.adafruit.com/2012/01/24/choosing-the-right-crystal-and-caps-for-your-design/. [Accessed 11 2016].
[17] 	R. McMahon, "Stack Exchange," 28 1 2015. [Online]. Available: http://arduino.stackexchange.com/questions/8276/is-it-wise-to-use-analog-input-pins-to-read-digital-buttons. [Accessed 1 12 2016].

[bookmark: _GoBack]
image2.png
User Interface

RS -232 Response
PLC {

i
H
H
Magnetic Card Swipe i MODBUS TCP/IP Protocol ISO +
H -
H Server
RS-232 to RS-485 H
AsCIl =
Database
DataBus/RS-485
‘-

Website

System Diagnostic Tool @

image83.png
Back Machine 1

Mot suthorized ta use machine

image84.png
Start Screen

Continue

LEGEND: |userweur

s
=
=
|
Select Back
B =
o |
o B
|
= (I
=

Login

out

No

Authorized?

Send response.

packetto PLC,

Yes.

Turn on
machine or
extend

timer

image85.png
& Ananas - Modbus/TCP server at [192168.1.118]

File Edit View Options

Registers
Register | Value _[RIW
0) -
1 [} -
2 0 -
3 0 -
4 0 -
5 0 -
5 0 -
7 0 -
8 0 -
9 0 -
10 0 -
1 0 -
12 0 -
13 0 -
u 0 -
15 0 -
16 0 -
7 0 -
18 0 -
19 0 -
2 0 -
21 0 -
2 0 -
2 0 -
2 0 -
2] -

Type Shown Clent
Olrput @ Holding

StatAddess UID

0 V] [o

Server

Connection IP:
Nagle:

12/5/2016 10:06:50 AM

Poll interval: 0 ms
Data packet size: o
Header check: =
Transaction ID: 00 00
Protocol ID: 00 00
Message length: 00 00
Unit ID: 00
Function code: 00
Starc address: 00 00
Word count: 00 00
Data received:]
Data sent: o
Local port: 502
Logged packets: =
Address offset: orr
Out of Synch: orr
Incorrect length: orr
Incorrect PID: orr
Incorrect TI: orr
Return exception: orr

()

()
()
()
()
()

00
00
00
00
00
00
00

Logging

00
00
00

00
00

()

()
()
()
()
()

image86.png
FINDSTR
FOR
FORMAT
FSUTIL
FTYPE

8 Administrtor: CAWINDOWS)\system32\cmd.exe - o

:\Google Drive\Senior Design\Modpoll and netcat\netcat-win32-1.12>help
For more information on a specific command, type HELP command-name

Displays or modifies file extension associations.
Displays or changes file attributes.

Sets or clears extended CTRL+C checking.

Sets properties in boot database to control boot loading.
Displays or modifies access control lists (ACLs) of files.
calls one batch program from another.

Displays the name of or changes the current directory.
Displays or sets the active code page number.

Displays the name of or changes the current directory.
Checks a disk and displays a status report.

Displays or modifies the checking of disk at boot time.
Clears the screen.

Starts a new instance of the Windows command interpreter.
Sets the default console foreground and background colors.
Compares the contents of two files or sets of files.
Displays or alters the compression of files on NTFS partitions.
Converts FAT volumes to NTFS. You cannot convert the
current drive.

Copies one or more files to another location.

Displays or sets the date.

Deletes one or more files.

Displays a list of files and subdirectories in a directory.
Displays or configures Disk Partition properties.

Edits command lines, recalls Windows commands, and
creates macros.

Displays current device driver status and properties.
Displays messages, or turns command echoing on or Off.
Ends localization of environment changes in a batch file.
Deletes one or more files.

Quits the CMD.EXE program (command interpreter).

Compares tuo files or sets of files, and displays the
differences betueen them.

Searches for a text string in a file or files.

Searches for strings in files.

Runs a specified command for each file in a set of files.
Formats a disk for use with Windous.

Displays or configures the file system properties.
Displays or modifies file types used in file extension

image87.png
B8 MODBUS Eth. TCP/IP PLC - Simulator (port: 502) - o X

&la|s/o| | w B =(mF
[T =] ot [WODBUS TCPA~] T~ Cine

Address] 1 2 3] 5 & 7]] ~
ODIO0CA 0000 00D 0000 00O 00D QOO0 OOOD 000D 0OOO 0000
0BOD14 0DOD OO0 OO0 ODOD OOOD OO0 OOOD 00D OO0 000D
OISODE 000D OO0 OO0 ODOD OOOD DO OOOD 00D OO0 000D
0IFO0E 000D OO0 OO0 ODOD OOOD DO OOOD 00O OO0 000D
029003 0000 OO0 OO0 ODOD OOOD OO0 OOOD 0OOD OO0 000D
0BO0GC 0000 OO0 OO0 ODOD OOOD OO0 OOOD 00D OO0 000D
00045 000D OO0 OO0 ODOD OOOD OO0 OOOD 00D OO0 000D
00470050 0000 OO0 OO0 ODOD OOOD OO0 OOOD 00D OO0 000D
510054 0000 000 0000 OOOD OOOD OO0 OOOD 000D 000 0000

II-III--IIIII-I_I_I:WS

Cornested (0/10): received/sert) (0/0) Sew. isering. °

Addess: @ Hex Dec 1/ [HoldingFegisters | @ Fmt:

image88.png
B8 MODBUS Eth. TCP/IP PLC - Simulator (port: 502) - o X

Connected (0/10): eceived/sent) (/0) Serv stening ° &|a| o] |w| =
Pause Stop iacking Cear [™ Showtines

[19056] Listen for connection. ~

112792] Listen for connecton.
[17520] Listen ot connecton

Socke 1 fisten thiead ID=(12132] unning
Socket 1 listen thiead ID=(3608] rring
Socket 1 listen thiead ID=(15252] rning
Socke 4 listen thiead ID=(13304] running
[12132] Listen ot connecton

3608] Listenfor connection.

[15252] Listen for comnecton.

image89.jpeg
CO-11ARE-D | pwn | CO-08TR wm | CO-08TR
| O

250V-1A 506002 50-1A S0tz 10

e | © A

s 8 -0
ovooMeon=Q

image90.png
Tek Prevu - M 100us

e [5)
L — [———1 lj
o — T [L —
ey [1 L
Zoom Factor: ~
v
@ -170.0i5 3045V
b © -22.00u5 -2.519v
i A148.0us 26463V
\D—f
Startbit i
»| -u 1 Off1([1|[1]1
p
@ 200V @ 200V .)
(@ s.oo0v Z40.0us J[za0os | (s [@ 7 oav
Value Mean Min Max Std Dev | W2~82.0000ps } (1000 points

@ Amplitude 3.249V 3.249 3.249 3.249 0.000
Amplitude 3245V 3245 3245 3.245 0.000
@ Amplitude 6.482V 6.482 6.482 6.482 _ 0.000

image91.png
[
]

4.138ms
4.398ms
£A260.4ps
dv/dt

13.40V

2520V
1180V
45.31kV/s

D sty s
ae 11101 1 of|o
Start it stop bit
D
40.0ps 25.0M5/5 @/
@& 500V i+~ 304200ms 10k points 1.20V

| @ Frequency

Value
19.21kHz

Mean
19.21k

Min
19.21k

Max
19.21k

Std Dev
0.000

30 Aug 2016
03:10:32

image92.png
Comport: [ports.

Protocol: [ASCIT

Receiving Data Setup
Data Length Type:

Termination Code:
(ASCII HEX code)

Data Destnation:

Osyte swap.

OFixed

COMPort setup...
@ variable.

@ 1.Character O 2 Characters.

1[sF 2 ASCII Table.
v [mxTi00

A

Albutnul

[Receive (Port3)
[Type

linter Timeout
[Frst Timeout
[Byte Swap
[Terminate Code

IDestination

Ascll
Variable|
Nonel
None|
None|

mTXT100

'SUCCESS_SWIPE
HC2

e

image93.png
ik
L

image94.png
an an a o o0 a

image95.jpeg
(e) yaanaaans O

image96.emf
Objective Estimated duration (days) Deadline Target time frame

Documentation

Table of Content 10 11/4/2016 10/26 - 11/4

Draft Document 7 11/11/2016 11/4 - 11/11

Final Document 7 12/6/2016 11/31 - 12/6

Prototyping

Database/Cleint Communication 30 10/3/2016 9/3 - 10/3

Magnetic Card Swipe 7 9/7/2016 9/1 - 9/7

Power Supplies 7 9/3/2016 8/26 - 9/3

RS 232/485 Converters 14 9/15/2016 9/1 - 9/14

PLC 21 10/3/2016 9/21 - 10/3

MCU family/Device 1 10/3/2016 10/2 - 10/3

Design

PCBs 60 11/30/2016 10/1 - 11/30

Website 30 11/1/2016 10/2 - 11/1

User Interface 20 11/1/2016 10/12 - 11/1

System Prototype 90 12/6/2016 9/6 - 12/6

Objective Estimated duration (days) Deadline Target time frame

Implementation

Installation of Prototype Room 1 30 2/6/2017 1/9-2/6

Testing/Diagnoising 30 3/6/2017 2/6-3/6

Prototype Electric/Mag Locks 14 2/20/2017 2/6-2/20

Install Electric/Mag Locks 14 3/20/2017 3/6-3/20

Funcitonal Website 60 3/6/2017 1/9-3/6

PCB

Complete functional Testing 14 1/23/2017 1/9-1/23

Finalize Design 7 1/30/2017 1/23-1/30

Manufacture 7 2/8/2017 2/1-2/8

Solder/Setup 14 2/22/2017 2/8-2/22

Test PCB with System 30 4/6/2017 3/6-4/6

Senior Design I

Senior Design II

image97.emf
Item Name Model Number Quantity Price/Unit Price/Quantity

Click PLC CO-11-ARE-D 1 $159.00 $159.00

AC Power Supply for PLC CO-O1AC 1 $39.00 $39.00

Output Relay Module CO-O8TR 2 $40.00 $80.00

Rhino 12 VDC Power Supply PSC-12-030 1 $64 $64.00

DC to DC Converter FA-DCDC-1 1 $64 $64.00

Power Switch Tail 2 N/A 2 $25.95 $51.90

Magnetic Card Swipe SEN-11096 1 $44.95 $44.95

6 Amp Circuit Breaker FAZ-C6-1-NA-SP 2 $18.00 $36.00

Hubbel-Wiegmann enclosure HW-J161406CHQR 1 $124 $124.00

Back PLANE HW-MP1614CS 1 $20.50 $20.50

6" Touch Screen EA3-T6CL 1 $299 $299.00

5 Volt Power Supply N/A 1 $8 $8.00

PCB

PCBway 5 boards 1 $10 $10.00

MAX485 chip MAX485CPA+ 4 $3 $10.60

ATMega 328 DEV-10524 4 $6 $22.00

Sainsmart LCD IIC/IC2/TWI Serial 2004 1 $12 $12.00

LM7805 LM7805CT/NOPB 3 1.58 $4.74

Miscellaneous

Wires, Resistors, Capacitors,

Breadboard, Crystal

1 $40 $40.00

Total Cost $1,089.69

Laboratory Control System

image98.png
Description
Date

Source

Author

Permission
(Reusing this file)

English: Schematic symbols of relays

29 July 2010, 13:49 (UTC)

« Electrical_symbols_brary svg
« SPST-Switch svg
« SPDT-Switch svg
« DPST-symbol svg

o Electrical_symbols_ibrary svg: User FDominec et al.
« SPST-Switch svg: lainf 22:01, 3 July 2006 (UTC)

« SPDT-Switch svg: lainf 22:01, 3 July 2006 (UTC)

« DPST-symbol svg: lainf 23:02. 8 July 2006 (UTC)

« derivative work: Moxfyre (talk)

1, the copyright holder of this work, release this work into the public domain. This apples worldwide.
In Some couniies tis may not be legaly possive 5o
1 grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

image99.png
RE: Permission for Images

Electronics Tutorials <webmaster@electronics-tutorials.ws>

Sat 11/5, 507 AM
Aaron Borgess ¥

Inbox

Hello Aaron,

Thank you for you email and question.

Firstly, thank you for you email and for asking in advance to use some of my.

images as part of your project. Most people would have just copied them

regardless.

As you have kindly asked | would have no objection to you using some of my
tutorials and images as part of your design project, free of charge.

However, | must ask that you correctly reference my tutorials, images and
site: www.electronics-tutorials.ws accordingly within your presentations,

Good luck with the course.

Kind regards.
Wayne Storr
webmaster@electronics-tutorials.ws

® 9 Replyall |v

image100.png
Licensing [edit]
BIllC at the English language Wikipedia, the copyright holder of this work, hereby publishes it under the following license:

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled GNU Free Documentation License. Subject to disclaimers.

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported# license. Subject to disclaimers.
Attribution: BilC at the English language Wikipedia

You are free:
« to share — to copy, distribute and transmit the work
g. « to remix — to adapt the work
e Under the following conditions:
®® « attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work).
« share alike I you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar
license to this one.

This licensing tag was added to this file as part of the GFDL licensing update.

image101.png
RE: Request Copyright Permission from Application Note AN-960[Analog Devices]
(SR-08990-H6K1K6) TRK-0010001134

ADI Americas Tech Support <CIC.Americas@analog.com> 5 Repiyall v
Tha 117, 1527 AM
Asron Borges: v

Inbox

Hi Aaron... Thanks for sending in this inquiry.
Our Legal Team reviewed your question below and provided the following insight >>>

This request seems fine to me. | would grant it on the conditions already offered (that it s properly cited) and only for use in
their report.

Best Regards.
APZ

Analog Devices
Technical Support

Original Message -~
From: AARON BORGES

Received: 11/15/2016 12:41 PM
To: ADI Americas Tech Support
‘Subject: Request Copyright Permission from Application Note AN-960

Good Afternoon,

image102.png
* Email

Website

Phone

Fax

Iminterested in

* Comments.

runninggator34@gmail com

41" Wb Application Development
4/ Mobile App Development

' Comentum eCommerce

@I Web Application Consulting
) Internet Business Strategy
4/ Custom Database Application
9l Corporate Web Design

() Brand Development

) cus Application

() Search Engine Marketing

(' Social Media Marketing

My name is Jimmy Ossa, I am a
senior computer engineering
student at the University of
Central Florida. I'm uritting to
ask your permission to use your
PHP vs Ruby on Rails performance
graphic (ruby-on-rails-vs-php-
performance.png) in my senior
design paper. This paper is for
my capstone project where I am
using PHP & NySQL to design a
reservation system.

Thanks for your consideration,
Jinmy 0ssa

image3.png
Additional address

b)

ADU

—_—
PDU

Error check

MBAP Header

MODBUS TCP/IP ADU

-

PDU

image4.png
Fields Length | Description - nt Server
Transaction 2 Bytes | Identification of a Initialized by the | Recopied by the
Identifier MODBUS Request/ | client server from the
Response transaction received
request
Protocol Identifier | 2 Bytes | 0 = MODBUS protocol | Initialized by the | Recopied by the
server from the
received
request
Length 2 Bytes | Number of following | Initialized by the | Initialized by
bytes client (request) | the server (
Response)
Unit Identifier TByte | Identification of @ Tnifialized by the | Recopied by the

remote slave
connected on a serial
line or on other buses.

client

server from the
received
request

image5.jpeg

image6.png

image7.jpeg

image8.jpeg

image9.png

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.png
~_ DT=PLCinput [S

Diagnostic
Tool

 DT<>PLCRS485 o

PLC

Card swipe to DT

pass-hrough

Card Reader

image15.png
120 VAC
Wall Outiet

Step Down
Transformer

>

Bridge Rectifer

>

Fiter

>

12 VoltLinear
Regulator

image16.png
PLC (Port3) f—f

8 Point 1O Module

T
RS-485 Comn|

j—

MAX 485 CSA Microcontroller [&—5\—{ Power
5
&
v

Leo

image17.png
Electrical
Connections

Fixed Contacts

Normally open

Common
Normally closed

Coil Supply Voltage

image18.gif
+ N0 NC NO

l

Fiy

Relay SPST SPST ~DPST SPDT DPDT
Coil (NO) (NC) (NO) (B-M) (B-M)

NC N0 NC NONC

[

image19.png
Qavac

i

v

Touchscreen [«24 V)| cootac PSC-12-030 DT Power
pi4 75 Supply
<
A2v,
* \DC/
. ¢ 1
Expansion 1
* TOBSUN Diagnostic
< DC-DC Tool
Expansion 2
* - an asterisk signifies a Magnetic

24 V DC passthrough

Card Swipe

image20.jpeg

image21.jpeg

image22.png
Application

o [Appiestion LaYER 5
User-Data (ADU) | (Appication)
TP Frame y (E0BYES May
TGP Feder ToP-LAYER 4
@t Numbers) TP 22 AT | (Transport Layen)
prame Yy 20879 Y
1 Header o-LAYER S
(P Addresses) 1P Dete Arey (Network layer)
etemetFrame Y2080 Al
Einermet Header 7CS | Ethemet. LAYER2
(Ethemet Addresses) Ethemet Dete Arey (Chesksum| (Data Link Layer)

y @Bres)
Cable Types (Fiber, Copper), Signal Form, e

LavER 1
(Physical Layer)

image23.png
PLC DATABASE

image24.png
CONNECT/SYN (Step 1 of the 3-vay-handshake)

> unusual vert
L e recenerpan (star) >

Cowware | o>

FIVACK

———> senerisender path LISTEN. A CLOSEL
¢ CLOSE-
(Step 2 of the 3-vay-handshake) SYN/SYN+ACK [usen |
A
RST- SENDISYN
SYN > SYN
RECEIVED |« SYNISYN+ACK _(simultaneous open) SENT
Data exchange occurs
ACK- SYNSACKIACK
LA 5 o« SYiAcKACK |
I < e
CLOSE/FIN
CLOSE/FIN FINIACK
E """ T Active crose| [passive crosz|
Y Y FACK] Y
[Comwams] ~[Corosme] [crosewarr |
FNSACKIACK T '
ACK- {acke. | CLOSE/FIN
1 Y

image25.png
TCP HEADER/PACKET CONTENTS
0 8 16 2 228is
L | J

16-bit Source Port 16-bit Destination Port

32-bit Sequence Number

32-bit Acknowledgment Number

HLEN (4)| Resrvd (6) |U|A|P|R|S|F| 16-bit Window Size
16-bit TCP Checksum 16-bit Urgent Pointer
20 Bytes
Options (Variable Bits) - Optional (Rarely Used)
24 Bytes

TCP USER DATA

Variable Up To 1460 Bytes

image26.png
onnection

+ssock ServerSocket
+sock Socket

+in: Datalnputstream
+out DataOutputStream
+packet byteldateLengih
~port int

+getinput(): byte[]

PacketBuilder
+builiPacket bytel]

+createPacket() byte []

TransmitPacket
+port int

+out: DataOutPutStream
+packet byte []

+ransmit(): void

image27.png
Modbus function codes.

Function type Function name Function code
Physical Discrete Inputs. Read Discrete Inputs 2
Read Coils. 1
Bit access
Internal Bits or Physical Coils Write Single Coil 5
Write Multiple Coils. 15
Physical Input Registers Read Input Registers 4
Read Multiple Holding Registers | 3
Data Access Write Single Holding Register |6
16-bit access Write Multiple Holding Registers | 16
Internal Registers or Physical Output Registers
Read/Write Multiple Registers 23
Mask Write Register 22
Read FIFO Queue 24
Read File Record 20
File Record Access
Write File Record 2
Read Exception Status. 7
Diagnostic 8
Get Com Event Counter I
Diagnostics
Get Com Event Log 12
Report Siave ID 17
Read Device Identification 43

Other Encapsulated Interface Transport | 43

image28.png
Modbus TCP/IP Application

Data Unit (ADU)
. .
e |
T H Transaction D
:
I
: =
7BYTES D (7Byes)
E Length
:
o
= -
vz 2 : e
BYTES T (1B MN)

68535 Bytes (VAX)

image29.png
G HonTior

ransiD: short
[-protocollD: short
[HunctioniD: byte.
[rumBytes: byte
[rdata: bytelnumBytes]

+readRegister(): bytel]

PacketBuilder
+builiPacket bytel]

+transID: short
+protocollD: short
+functioniD: byte
+numBytes: byte
+data: byte[numBytes]

rwriteReqgisters(): bytel]

image30.png
Interaction between PC and PLC

1.Request Information from Database

3. Write Information back to Database.

Firstthe PC will send request data from the database. The Database will send
this data back1o the PC. The PC will use this data to send a response to the
PLC.The PLC will eventually send data about the session back to the PC. The.
'PLC willthen write this data back!o the Database.

image31.png
3.PC Request Scheduled Times flom DATABASE

PC

4.PC Recieve Scheduled Times from
DATABASE

9.PC calculated total time used on mahine and
Updates database with new information

) B

,
g | 2
-
ER -
RN
S i|
[
8| E |3
LI
v

7. User Logs O

6.PLC activates machined for toal time.

o
]
[=§

1. User Scans ID

DATABASE

USER

image32.png
Database

Port Monitor

+totalTime: int
+responseCode: int
+isoNumber: String.
+machineNumber. int

+newDatabaseConnection: Database(isonumber, machineNumber)

+getlsoNumber(: String
+getmachineNumber():Int

+isoNumber: String
+machineNumber. Int
+currentTime: Calendar
+userlD: int

+beginTime: Calendar
+endTime: Calendar
+getUidQuery String
+getBeginTimeQuery: String
+gelEndTimeQuery: String
+getiachinelDQuery: String

+readData():void
+calculateTime(): int

image33.png
Port Monitor

+totalTimeUsed: int
+currentTime: calendar

+responseCode: int

+isoNumber: String

+machineNumber. int

+newDatabaseConnection: Database(isonumber, machineNumber)

Database

+getlsoNumber(: String
+getmachineNumber(:Int
+calculateTotalTimeUsed(Int
+readPLCResponse(): Int

+isoNumber: String
+machineNumber. Int
+totaimeUsed: Int

+conneciToDatabase: void
+writeData(); void

image34.png
1S0 Number & Machine Num

Send o PLC invalid I
Time =0 minutes

IS 150 number 16 digit nume.

‘Send to PLC user not recogni
IS 150 number register Response code 9
Time =0 minutes

‘Send to PLC not authorized to use Mac
5150 registered for machir Response Code 7
Time =0 minutes

‘Sendto PLC user not sched!

5180 schedulec “Time =0 minutes

YES

Send o PLC response code 1
User Authorized for allowed time
Allowed Time = (end time - current time) mi

image35.png
PacketBuilder

febuildPacket byte[]
ransID: short
feprotocollD: short
HfunctionD: byte
fumBytes: byte
frdata: byte[numBytes]

+ereatePacket(): bytel]
+writeRegisters(): byte[]

Port Monitor

bransiD: short
+protocollD: short

+functioniD: byte

+numBytes: byte

+data: byte[numBytes]

+totalTime: int

+responseCode: int

+isoNumber: String.

+machineNumber. int

+newDatabaseConnection: Database(isonumber, machinenUmber)
+totalTimeUsed int

+currentTime: calendar

+readRegister(): bte]]
+getlsoNumber(: String
+getmachineNumber():int
+calculateTotalTimeUsed() Int
+readPLCResponse() Int

+isoNumber: String
+machineNumber. Int
+currentTime: Calendar
+userlD: int

+beginTime: Calendar
+endTime: Calendar
+getUidQuery String
+getBeginTimeQuery: String
+gelEndTimeQuery: String
+getiachinelDQuery: String

+conneciToDatabase: void
+readData(): int
+calculateTime(): int

Connection

ssock Serversocket
rsock Socket

fin: Datainputstream
out: DataOutputstream
rpacket byte[datal ength]
eport int

rgetinput): bytef]

Transmit Packet

+port int
+out: DataOutPutStream
+packet byte [1

+ransmit(): void

image36.png
Requests Per Second

PHP559 Codelgniter laraveld] RubyonRals Rack 152
241 40

image37.png
13
10
15
16
17
18
15
20
21
22
23

session_start();

if (isset(S_POST['username'l))

$_SESSTON['username'] = sanitizeString($_POST['username']);
if (isset(S_POST['password'l))

§_SESSTON['password'] = sanitizeString($_POST['password']);

$loggedTn = login(§_SESSION['username'], SSESSION['password']):

if ($loggedIn)
displayHone () ;|

image38.png
University Header

image39.png

image40.png
Database

Database

AJAX Data Retrieval

i Non-AJAX Request

i AJAX Request

Web Page

Web Page

Web Page

image41.jpeg
9:00am

9:30am

10:00am

10:30am

11:00am

11:30am

12:00pm

12:30pm

100pm

130pm

Fri 11/11/2016

aflelaelalalclalialale
sHalalzlzlalalialalla
Hﬁiiiiiiiﬁ

Mon 11/14/2016

Tue 11/15/2016

Wed 11/16/2016

Thu 11/17/2016

image42.png
Primary
winding

Np turns N turns
Primary
current
—= Secondary
I, current
—
¥

.’
e
|

image43.png
o)

V1
120Vrms
60Hz

i

ut

L

D1
ANADOT

D2
ANADOT

D3
ANADOT

D4
ANA00T

(=]

1

2.2m

K1

L

s
£
2
L7812
T e V1
c1
-‘-ZZ“F 0.14F

image44.png
Oscilloscope-XSC1

< >
Tme Gheme A Chamel®

TR oo misy - e

€3 e7ss ety

T | mems S7am .

Timebase Chamela. Chamels Trigger

Scale: [10msPv | scale: [0 VDY |2 scale: [5 VD] Edge: 2lnEEs

¥ pos. OW): [0] ¥pos.om: [0] ¥pos.o): [0 | tevet: [v
(add] [e/a[am] [ac][0 |[oc] ac o |[oc] - 'single | Normal | Auto [None

image45.png
GND

R9

VAN
560

RS485/B"

R10

E

120

RS485/A"

MAX481CPA

+5V

R11l

VAN
560

32

image46.png
RECEIVER OUTPUT STATE

TIME

7

(8IA=Vin)
IOVLIOA LNNI VLINZ¥A410

3 3

> 2

(0¥) 1ndLNO ¥IAEOTY

image47.png
+ |
hv4 hv4
— —
0 T
WOT
4dot | 4dot
[40) 50)

image48.png
W_OUT

a1y
.
s 05T
L
M
x|
r, F !
4 a\l 2 xS
L
Zms
ory
.
- 405
L
TS
sk
e, F !
4 Yl_ 2 H0e
L
oms
o
r, H p
s 48T
L
6MS
erd 614 |
T MW +- AW 1
w6 Hoe
=
2
2

GND

image49.png
% % % %
of<] o ol —_ - ol
5 : E'¥ :E ‘E
R Rl R -1
AP il EL
442 427 B s Bt
GND. GND GND. GND. GND. GND.

image50.png
Login

Username

Passy

o

rd

image51.png
UCF Federated Identity

NID

Password

By signing on, you agree to the terms ofthe UCF
Information Technologies and Resources Policy

image52.png
Create Account

Username

150

First
Name

Last
Name

Password

Confim
Password

image53.png
Home

image54.png
Home :umin

image55.png
Create Reservation

ESNEseEs
(o0) [metane | [[rvatane] [atave)
(o3) [matae | [atooe | [v)
(o) [matave | [atone | (" unavaione)

ravatae |

Bl

image56.png
View Students

Name Faculty Advisor Email Update Delete

image57.png
Update Student

FirstName First

LastName Last

150 111122223333 4444

Email student@uctedu

Faculty Advisor AdvisorName ¥

Authorized Machines
Machine 1

Machine 2

Machine 3
Machine 4

image58.png
View Machines

Name Operational Current User Update Delete

image59.png
Update Machine

Description Description of machine

Authorized Students Student1

Student2

Student 3
Student 4

image60.png
Invoice

Date Faculty Student Reservation Physical Use
Novist9pm AdvisorName StudentName 3 Hours 2:45 Hours
Nov.2nd,8pm AdvisorName StudentName 3 Hours 2:45 Hours
Nov2nd, 9:30 pm AdvisorName StudentName 3 Hours 2:45 Hours

Nov.3rd, 10am AdvisorName StudentName 3 Hours 2:45 Hours

image61.png
function sanitizeString($str)
¢
global Sconn:
Sstr = strip_tags(§str);
Sstr = ntmlentities(Sstz);
$str = stripslashes(Sstz);
return Sconn->real_escape_string(§str);

image62.png
Relation

image63.png

image64.jpeg

image65.jpeg

image66.jpeg

image67.png
_toms_Clos: [Receive Porta) Ascl
msce mer [te Variabie|
11 I Timeout None|
1 1 [First Timeout None|

lovte swap None|
[ferminate Code 0.7
[pestination mrxTt
[eopy il
mcz
I see Wsoo
pes mmxT mmxrizs

_toms_Clos: [Send (Fort3) Ascl
msce mc: [ipe Dynamic]
Iy I Swap. Nore|

f 1 [ferminate Code Nare|
[start: mrxT200 0
[ertes. most

image68.png
(53 m mee
i
|} RST)
e o =
e 2 me
o imcut e M o
e Frimeon b
1 ore S)
[ferminate Code. cR. P LEg
osinsion w
e
B
meo mez
|
1 =
ey
RST)
EREa i
B e P
T Fie E
I B]
[ose m
e e oo
ey m
iz o
- o

image69.png
[Tmer(GFF Demy)
[Current Value
(omit

[sepoint

lcurrent

7
Not Retaines

mo

mror

o0EwS|
152.168.1.121

mox

o)

a0)

image70.png
_rstscan
msc2 Bvoor Evare
|} RST)

i |
2= Al
e @so0
lbes mmr mmriono
mvoos
ser
@ voos mvooz
1 our.
i |
[eceive o3l e
meio e Variae mer
11 Timeout Nene ()
1t Firt Tmeout Nonlmemng
ey swap. il
erminate Coce cr. e mcz
|oestintion moar =
R o= TioDe0s|
mer Padar 192168.1.16]
14} Servertio B
11t o |
[coce e
Stave Adar <0001
st Adar 2
[ora orel

image71.png
mc2 me

14 P
ith
[zt
losso1-2 |—{mossoz]
[Cony BT
[opton suppress
sre moszoz
loes mmxrie
[Send Pori 1) TioDe0s|
|PAdaress 192168.1.16] me:
Serverportio [—
siave 0 |
|Modbuz Functon Code. e
Stave Adar <0001
st Adar &
[ord Swap ore|
laster mrxrs
mes mes
14 e
ith
[Receive o) TioDe0s|
mes [PAddrezs 192168.1.16] mee
I Serverportio B
i | Sverd =
|Modbuz Functon Code. o
Stave Adar <0001
st Adar E
[ord Swap orel
[char order Chart Chac]
|aster mmarson
mee mes
I} RsT
i |
mmarson Wsoa @101
-} our.
f=t
mmarson @soo mvio1

image72.png
[Send (Pori2) ascl
[ipe Swtie
Swap. Nore|
[ferminate Code Nare|
|Send Message
“Hell. how sre your"
[Receive Porta) ascl
[te Fil
Timeout None|
[First Timeout None|
lovte swap Nore|
[pestination mTXT o TXT1S
Lengtn mis

image1.png
S UCE

COLLEGE OF
ENGINEERING &
COMPUTER
SCIENCE

image73.png
[Send (Fara)

Swap.

[ferminate Code

start

image74.png

image75.png

image76.png

image77.png

image78.png
Back Select a machine

Wachine 1 Wachine 5 Wachine 17
Wachine 2 Wachine 18 Wachine 12
Wachine 3 Wachine 11 Wachine 13
Wachine 4 Wachine 12 Wachine 22
Wachine 5 Wachine 13 Wachine 21
Wachine € Wachine 18 Wachine 22
Wachine 7 Wachine 15 Wachine 23
Wachine & Wachine 16 Wachine 23

image79.png
Back Machine 1

Losin sucogsstule 60 minutes

image80.png
Back Machine 1

Extend sucosssiyl, 30 minutes
Lt

image81.png
Back Machine 1

Losout sucosssful

image82.png
Back Machine 1

Waching svailsble, make
Se2ipiEhie

