
Project FLOW:
Fun Low-Power Observer-Interactive Waterfall

Ben King, Connor Heckman, Jack Gray, Robert
Perkins

College of Electrical and Computer Engineering

University of Central Florida
Orlando, FL, USA

Abstract — This paper presents the design of a scaled-
down user-interactive waterfall feature, intended to be
implemented as a peripheral to a full-scale solar sculpture.
This waterfall is made up of a graphical array of water
solenoid valves and a series of LED strips which can be
manipulated through observer interaction. Both audio
input through the sculpture’s sound card and the physical
observer motion detected by the installation’s optical
sensor, can be used to produce attractive and entertaining
patterns in the installation’s solenoid array.

Index Terms -- Interactive systems, Machine vision,
MOSFET circuits, Object segmentation, Solenoids

I. INTRODUCTION

Orlando Utilities Commission in partnership with the
Tavistock Company tasked our group with designing a
solar sculpture peripheral that would attract attention and
generate excitement about the structure while educating
about the practicality of solar power. The proposed solar
sculpture will be placed in the center of the town square
for high visibility, and in line with the mosaic theme of the
surrounding buildings.

Interested in the cross over between art and
engineering our group of Jack Gray, Connor Heckman,
Ben King, and Robert Perkins began designing a project
to highlight both aspects. To symbolize the flow of energy
from the sun, harvested by the solar panel and
redistributed to power the solar sculpture we decided on
an interactive waterfall. The interactive waterfall works by
receiving an input signal from the mounted camera, then
translates the horizontal position of the person to the
corresponding solenoid valves to create a falling stream.
The mounted CMUcam5 receives color graded input and
sends this information to the Raspberry Pi 3 for
processing. The Raspberry Pi system control unit
compares the current input image to a reference image to
determine the horizontal and vertical coordinates of the
person interacting. These coordinates are output through
the MSP430 microcontroller to two 8-bit shift registers.
These shift registers send enabling signals to the solenoid
switching circuit on the printed circuit board.

Powered by the 12V power supply and controlled by
the signals send to the switching circuit the solenoids are
turned on in relation to the horizontal position of the

observer, while the vertical position corresponds to the
height of the LED strips illuminated. To further the
entertainment value of the water and light display, an
audio input sensor is used to make the changing streams
of water respond to songs being played. The water pump
system uses a single 12V pump to supply a constant
pressurized flow of water to the solenoids in a closed loop
systems.

The power supply requirements are split into two
sections: the grid-tied energy collected from the solar
panels, and the energy distribution from the grid into the
system without the use of batteries. The photovoltaics
convert the solar energy into DC electricity through a DC
to DC converter with Max Power Point Tracking. For grid
interconnectivity the DC electricity is pumped back into
the grid using a DC to AC inverter. The final deliverable
for this project is a one eighth scale model of the final
implementation of the complete solar sculpture. The size
restraint will eliminate the possibility of implementing grid-
tied solar panels into the final deliverable of our design.
The power supplied to the project is from a grid-tied AC
outlet that is then converted into 12V to power the
solenoids, LED lights, and water pump. This 12V supply
is then passed through a 5V regulator to supply the power
used for the Raspberry Pi, CMUcam5, and Audio input
sensor. Further voltage regulation down to 3.3V is
necessary for powering the MSP430 microcontroller.

As the project design developed the requirements and
limitations of the OUC sponsorship changed. Originally
the use of an interactive feature using water was
approved on the basis that the cost of construction and
maintenance will remain low. After the presentation of our
prototype waterfall design concerns with maintenance
costs caused our project to not be selected for the final
implementation of the solar sculpture. We continued
designing this entertainment feature for possible use and
consulted the art and mechanical team for the design of
an approved low maintenance solar sculpture

The water system will consist of a reservoir at the
bottom of the structure for holding water, a submersible
water pump, water supply and return tubes to provide
water to the top of the structure, the solenoid valves that
control each individual water stream, and the solenoid
switching circuit which drives the solenoid using the
signals from the solenoid control unit.

After viewing previous waterfall designs utilizing
solenoid valves, it was determined that a spacing of 32
valves per meter should produce an acceptable horizontal
resolution for the waterfall display. Due to budget
constraints and the cost of solenoid valves, the scale
model will use a half meter wide array consisting of 16
solenoid valves.

Fig.1 Hardware Block DiagramWaterfall Feature Design

A. Solenoid Valve Selection

In order to precisely control the falling water streams,
a solenoid valve is needed. A solenoid valve is a valve
that is electromechanically controlled by use of an electric
current passing through the solenoid. The solenoid itself
is a coil of wire that is wound around a metallic core.
When current is passed through the coil, it creates an
electric field which moves the core pin. In a solenoid
valve, this movement is used to control the opening and
closing of the valve.

Many solenoid valves that are approved for use with
water are made from plastic or brass, but due to cost
constraints, the main focus for this project is on plastic
solenoid valves. The solenoid valves have several other
specifications to compare, such as response/opening
time, normally open (NO) or normally closed (NC)
operation, valve diameter, and their operating voltage and
current draw. For response time, a fast response is
needed for the opening and closing of the valves in order
to produce a decent resolution from the falling water. An
acceptable response time for this application is less than
100ms, but lower response times would improve
performance, as the vertical resolution quality relies on
the valve response time.

Given that this project will be run with solar power in
mind, the lower 12 volt DC operating voltage solenoids
were considered rather than AC or 24 volt DC valves.
Based on these specifications, a relatively inexpensive
nylon constructed water solenoid valve made by US Solid
was chosen for this waterfall display application that
included a normally closed (NC) operation, ¼ inch
diameter, 12 volt DC operation with a 20ms valve
response time. The US Solid brand 12 volt solenoids are
rated at 4.8 watts each.

B. Switching Circuit Design

A switching circuit is designed in order to control each
of the 16 solenoid valves using the MSP430 output pins.
The MSP430 does not have enough output pins to control
the 16 individual valves by itself, so this issue was solved
by using two daisy-chained 8-bit shift registers that are
hooked up to the MSP430. The shift register allows serial
data from the MSP430 to be converted to 16 parallel data
outputs, with a separate 5 volt pin to control each solenoid
valve.

The next consideration was how to control the 12 volt
solenoids using the 5 volt signals from the shift register
pins. Using a transistor as a switch was an obvious
solution, such a BJT or a mosfet. While a BJT device
would have worked fine for this application, the nature of
the base current and base resistor required meant excess
power dissipation. While this power dissipation is
relatively small, it is still taken into consideration given the

solar powered nature of the full-scale design. Due to the
nature of the mosfet’s insulated gate and low drain to
source resistance, the power dissipated by the mosfet is
significantly less than a BJT. For these reasons, an n-
channel power mosfet was chosen that can handle up to
30 volts, with a low gate threshold of only 1.8 volts,
allowing the 12 volt solenoid valves to be controlled by the
5 volt shift register pins.

The final consideration for the circuit design was
flyback voltage. Due to the inductive nature of the
solenoid valve, the sudden reduction in current when the
mosftet is switched off creates a large voltage spike of
negative polarity across the solenoid load. The
relationship is given by the voltage equation for an
inductive load as shown in (1).

 𝑉 = 𝐿
𝑑𝑖

𝑑𝑡
 (1)

 This high voltage spike could arc to a nearby ground

trace on the PCB or damage the mosfet device itself. In
order to prevent this, a simple 1N4001 diode is placed in
parallel with the solenoid valve, positioned so that it
blocks current flow through the diode during normal
operation, allowing it to flow through the solenoid as
normal when the mosfet is on. When the mosfet is
switched off, and the solenoid valve produces a negative
polarity voltage spike, and the diode is then forward
biased, allowing the current to safely dissipate back
through the load, rather than arcing or damaging the
mosfet device.

Given all of the previous design considerations, a
schematic of the final solenoid switching circuit can be
seen in Figure 2.

Fig. 2 Solenoid switching circuit schematic

C. Water Reservoir and Pump

With the solenoid valve selected and the switching
circuit designed to control the valves, a water delivery
system was designed next in order to provide constant
water flow to the 16 solenoid valves. Consideration had
to be given to make sure that the water flow was constant,
while providing the same pressure regardless of whether
only a single valve was open, or all 16 valves were open.

For this design, a water system was designed
consisting of an upper reservoir and a lower reservoir.

The solenoid valves are directly connected to the upper
reservoir, which supplies constant pressure to each valve.
The lower reservoir catches the falling water from the
solenoid valves, which is recirculated back to the upper
reservoir using a small 12v pump.

A 4 inch PVC pipe was chosen to act as the upper
reservoir. Through testing, it was determined that 4
inches of standing water provided enough pressure from
gravity to provide a steady water stream from the
solenoids. By using pressure from gravity, this eliminated
the need for more complex water pressure calculations,
and made the requirement for the upper reservoir to
simply be completely full at all times in order for constant
pressure to be supplied regardless of the number of
valves open.

In order to keep the upper reservoir full at a constant
water level, two ½ inch flexible water tubes were
attached to the top of the upper reservoir tube, with one
on each side. One tube is connected to the 12v
submersible pump, and acts as the water supply tube.
The second tube acts as the water overflow and return
tube, which returns excess water pressure to the lower
reservoir. A simple diagram of this water supply system
can be seen in Figure 3.

Fig. 3 Interactive waterfall diagram.

The use of both water supply and overflow return

tubes allows for all air to be purged from the system, and
provides a constant full water level in the upper reservoir.
This constant full water level ensures constant pressure
to each solenoid valve regardless of how many are open
or closed.

II. SYSTEM CONTROL

The Installation is programmed with three separate
“modes” of entertainment. First is the Aesthetics mode,
which consists of the installation looping through a series
of preprogrammed routines designed to impress
observers and draw attention to the structure. Second is
motion interaction mode, during which observers of the
installation will be able to control solenoid and LED output
by moving in view of the installation's optical sensor. Last
is Audio Interaction mode, where observers can plug their
phones in to the Installation's audio jack and watch as the

installation performs music visualization through the use
of the solenoid array.

Mode switching is performed through the use of a
remote controller (iPazzPort Wireless Mini Keyboard)
operated by the system administrator. By hitting
designated hotkeys on the remote, the system
administrator calls or terminates executables for the
distinct modes via a shell script which is continuously
running within the System Control Unit (Raspberry Pi 3).

III. COMPUTER VISION

Computer vision plays a fundamental role in the in the
installation's motion interaction mode. In this mode, the
waterfall's optical sensor captures sequential images of
the foreground using a Pixy Camera (cmuCam5) at a rate
of 20 frames per second. This frames are smoothed to
reduce noise and are then passed to the Raspberry Pi 3
which interprets observer motion and sends output
signals to the Solenoid switching array and the variable
brightness LED strip.

A. Pixy Camera

The Pixy cam, or CMUcam5 is an inexpensive DIY
vision sensor used for object recognition purposes. It
contains a NXP LPC4330 dual core onboard processor
and hence can handle the intensive processing required
to recognize objects frame by frame, sending positional
data to the microcontroller running the camera.

The Pixy Cam is built to run in concert with an Arduino
microcontroller, however over the course of testing, an
Arduino Uno microcontroller was found to have
insufficient processing power for the installation's needs.
A raspberry Pi 3 was used to control the Pixy Camera
instead, utilizing the Pixy Camera's libpixyusb linux
libraries.

The primary obstacle we encountered with the Pixy
Camera was its dependence on color based filtering
algorithms to detect and track objects of interest. The Pixy
cam learns what the objects of interest are for a given
system by analyzing example objects presented to it in its
“teaching” mode.

This is known as a “supervised” object recognition
system, since a human user is indicating objects of
interest in the environment by “tagging” them (color
tagging in the Pixy cam’s case). Our computer vision
system was an “unsupervised” case, i.e. the vision
system had to be capable of detecting and tracking
“untagged” objects of interest. Nothing in the Pixy cam’s
existing source code allowed for general motion tracking
(tracking the movement of an “untagged” human body),
so the Pixy Camera is treated as a simple capture device
in our system (albeit one with effective exposure
correction algorithms and several resolution options). All
the “heavy lifting” of our computer vision software is thus
carried out onboard the Raspberry Pi 3.

Fig. 4 Pixy Cam or cmuCam5.

B. Motion Segmentation

Motion segmentation is one of the core fundamentals
of object tracking in computer vision. It consists of
separating the objects being tracked from the background
environment. There are countless algorithms and
methods by which real-time motion segmentation is
performed, however one of the simplest and most
effective methods is the concept of image difference.

Image difference seeks to construct a map of
differences between two contiguous frames from a video
snippet. It identifies these differences by comparing the
intensities of each of the consecutive frames
corresponding pixels. This technique is extremely
sensitive to image noise (random variations in brightness
and color that can be thought of as “digital background
noise”) and is practically unusable when the camera
capturing the images is moving. Due to the fact that the
installation utilizes a fixed camera solution and does not
require fine-grained object recognition, this primitive but
effective technique was a viable solution. Image
difference is best at tracking blobs of motion moving
through a series of frames.

Fig. 5 Image difference visualization, reprinted with permission from
OpenCV.org.

Typically these motion blobs are then used as input to
more advanced computer vision techniques, which might
attempt to identify specific objects or produce a more fine-
tuned structure for the objects of interest. However in the
case of the interactive waterfall, observers can very well
be thought of as vague regions of movement, keeping in
mind that the resolution of the graphical waterfall

responding to the observer movement is made up of only
16 solenoids. To reduce the rate at which the Pixy Cam
observes a “false positive” (instructs a solenoid to turn
active when no observer is present in front of the
solenoid) a double thresholding solution was utilized.

C. Hysteresis Thresholding

The “difference image” is stored as a single black and
white .pgm file. Double thresholding is then carried out to
reduce foreground interference. “Double thresholding” or
Hysteresis thresholding is used to reduce image noise
and eliminate any change between the frames that is not
the result of observer motion, such as movement in the
background of the observed scene or brief changes in
brightness.

The thresholding is carried out first by applying a high
threshold value to all pixel intensities in the difference
image. This is the “first pass”. Any pixel that is above this
initial high threshold is set to an intensity of 255 (white)
and marked as a “peak”. Any pixel intensity that falls
below this initial threshold is passed over for now. For the
algorithm's second pass all pixels that passed the initial
high threshold (the peaks) are re-examined. Any pixel that
is adjacent to a peak pixel and has intensity greater than
a second low threshold value is now additionally set to
255 (white) as well. This method works due to the
observation that pixels adjacent to pixels with a high
intensity are likely to be a part of the same region of
motion.

It is important to recall that this thresholding is being
performed on the difference image, hence regions being
marked white in this final image are the regions where
motion is occurring in the frame. With the final image
computed, further calculation can be performed to
determine what data to send to the solenoid control unit
and LED switching circuit. The pixel intensities of the
thresholded difference image are converted to values
which are stored in a two dimensional array. This two
dimensional array can be thought of as a dataset where
every occurrence of the unsigned char value 255
represents the x and y coordinate of a pixel in the
captured frame where a region of motion has been
observed. A graphical example of hysteresis thresholding
in action is presented in Figure 5.

Fig. 5 Hysteresis thresholding example, reprinted with permission from

OpenCV.org.

D. Low Threshold Calculation

Over the course of testing our installation in the motion
interaction mode we found that the most important factor
in reducing image noise and background motion
interference was the constant which is used as the low
threshold during the Hysteresis thresholding process.

Rather than selecting a static value which worked well
during our limited testing of the installation, the team
decided to take a more dynamic approach to low
threshold calculation. When the system is starting up in
its motion interaction mode there is a period of five
seconds during which it performs a “background
analysis”. This analysis consists of capturing 10 frames of
the background scene (2 per elapsed second). The
system then performs arithmetic image difference
between each frame and its successive frame, so that it
ends up with five two-dimensional image difference
arrays. The average change in pixel intensity is calculated
for each two dimensional array, creating five numerical
values representing the average change in pixel intensity
for a given second. These five values are then averaged
to arrive at a final numerical value which is the
dynamically determined low threshold value.

IV. SPECTRUM ANALYSIS

For the Audio Interaction mode of the installation, a
USB sound card is connected to the raspberry Pi 3 which
serves as our System Control Unit. We then utilize a
modified version of existing open source Raspberry Pi
software known as Lightshow Pi to interpret our audio
input into output signals. Our modifications for this Python
script involved converting its output signals into a format
which would reproduce aesthetically pleasing patterns on
our graphical solenoid array.

V. OUTPUT CONTROL SOFTWARE

The outputs of the installation consist of the graphical
water solenoid array and the variable brightness LED strip
which provides colored lighting for the waterfall. The
solenoid switching array is controlled by a serial data line
from the MSP430G2553 or Solenoid Control Unit. The
LED strip however, is controlled directly by signals from
the Raspberry Pi 3 or System Control Unit.

A. Solenoid Control

The graphical solenoid array’s output signals begin as
a two dimensional array representing the results of our
image difference calculations. A custom algorithm loops
through this array and determines the longest
consecutive region of motion in the x axis, or the longest
series of consecutive pixels which have been marked as
a region of motion in the most recent frame. The starting
position as a ratio of the captured frame and the width of
the horizontal region of potion in pixels is stored off by the
Raspberry Pi 3.

The Raspberry Pi 3 then transmits this data to the
MSP430G2553 or Solenoid Control Unit which scales the
region of motion’s starting x pixel coordinate and total
pixel width to the resolution of the graphical waterfall

array. Once the necessary signals for each solenoid have
been determined, existing open source Energia shift
register functions are used to send the output signals to
the PCB.

B. LED Strip Control

The output signals for the LED strip are determined in
a similar method, as the two dimensional image
difference array is looped through and the longest
consecutive region of motion in the y axis is attained. The
values for the starting pixel of the region of motion and the
vertical length of the region of motion are stored off by the
Raspberry Pi 3. These values are then used in later
function to change the brightness of the LED strip through
Pulse Width Modulation.

VI. POWER SYSTEMS

A. Power Prototyping Restrictions

 Our project started with extremely ambitious power
design objectives. But due to customer concerns, budget
and time constraints some aspects of the design were
scaled back. Originally there were supposed to be several
solar panels with an inverter built from a developer kit, this
alone would cost close to $1000 dollars. Our client OUC
also voiced concerns that our inverter design would not
meet NEC regulations so would not be useful in their final
design. OUC also wanted to use power from the grid to
power the final design for the sake of simplicity and to
eliminate the need for batteries. This combination of
factors led us to drop the inverter and solar panels from
our project and to focus more resources towards
improving the aesthetic display.

 Another item that proved to be too difficult to execute
was a high power rectifier. There was two options for this
which included a more amateur design that had high
energy loss and a more professional design that was
composed of about 140 components. The high
complexity design couldn’t be completed due to the large
amount of soldering and difficulty trouble shooting such a
highly complicated system. The simpler design used a
large specialty transformer costing $100 and had a very
long lead time. The cost of this design was fairly high,
$250, because of several factors. The PCB would need
very thick copper traces to handle the high current which
increases the price. The high current also makes using an
integrated chip for the H Bridge impossible so one would
have to be made out of expensive high power diodes.
Finally to boost the current high power BJTs would need
to be used. The cost of this rectifier would greatly affect
the overall budget for our project. Because of these
factors a commercial rectifier used for medium to large
scale LED displays was used.

Fig. 6 Above is the PCB layout for both of our voltage switching circuits.
However the values of the passive components and the ICs used in the
two circuits are different.

B. Printed Circuit Board Design

The design of the printed circuit board was
constructed using the schematic software EagleCAD.
The PCB contains 4 main components: the solenoid
switching circuit, the shift register, the MSP430
microcontroller, and the power supply rails. The solenoid
switching schematic consists of a N-channel MOSFET,
with a 1N4001 diode and the solenoid in parallel. These
components all share a common 12V rail to supply power
to the solenoid. The switching of these solenoids are
controlled by the output from the two 8-bit shift registers
and there connection to the MOSFETs. These MOSFETs
act as switches to regulate the 12 volts supplied to the
solenoid, when the shift register outputs high to the gate
on the MOSFET the 12V is able to turn on the solenoid.
The diode is placed in parallel with the solenoid in order
to prevent fly back voltage to the MOSFET when the
solenoid induction current is dissipated. The two 8-bit shift
registers are daisy chained together by connecting pin 9
to pin 14 as seen in Figure 7.

Fig. 7 Daisy Chained 8-bit Shift Registers.

This allows the MSP430 microcontroller to be able to

communicate to all 16 solenoids simultaneously. The
MSP430 is mounted on the circuit board with a 20-pin
socket and receives input commands from the Raspberry
Pi. These external connections are made through female
header pins mounted on the outside edge of the PCB.
These data lines allow for transmission of information
from the sensor camera through the processing
components out into the selector lines controlling the
state of the solenoids. All these components mounted on
the printed circuit board share a common 12V, 5V, or 3.3V
rail. The 12V rail is a direct connection from an AC to DC
power supply with 20A, necessary for the large power
draw from the solenoid array and LED lights. These 12
volts are then regulated down to 5V and 3.3V using
external voltage regulating PCBs. The 12V is used to
power the solenoids and water pump, while the 5V
regulator is used to supply the power needed for the
Raspberry Pi, CMUcam5, and Audio input sensor. Further
voltage regulation down to 3.3V is necessary for powering
the MSP430 microcontroller.

After completion of the final schematic design in
EagleCAD, the circuit is ready to be transferred to the
physical printed circuit board layout design. Considering
the high functionality and power draw of the solenoid
switching circuit consideration for heat dissipation were
evaluated. Placing the MOSFETs in parallel position
along the length of the circuit board allowed to optimal
cooling and preventative over heating measures. The
control components, MSP430 and shift registers, are
placed in the middle of the PCB because of their
centralized connection to all the components on the
board. This centralization allowed for minimal wiring
layers and vias need when printing the board. The outer
connections to the solenoid screw terminals are all placed
in a row of 16 in order to consolidate the wires need
between the PCB and the solenoids. The input and output

pins used for communication with the other controllers are
placed on the exterior of the PCB to allow for ease of
access when debugging component interconnections.
The layout of the final printed circuit board is shown in
Figure 8, notice the use of 45 degree angles to minimize
the wiring needed.

Fig. 8 Printed Circuit Board for Solenoid control

The final printed circuit board was constructed by

the company Elecrow, and was shipped with additional
PCBs for troubleshooting. All the components were
through hole mounted and soldered on by the members
of the design team.

VII. THE ENGINEERS

Ben King grew up and attended high school in Olathe,
KS before moving to Florida. He transferred to University
of Central Florida in 2015
with an AA degree from
State College of Florida,
and is graduating in May
2017 with a Bachelors in
Electrical Engineering. His
interests include
microelectronics and
power delivery. He hopes
to work designing and
testing electronic circuits
for interesting gadgets and
various applications.

Tahte Perkins: started at
the University of Central
Florida in 2011 after
graduating from Olympia
High School in Orlando,
FL. His interest in the field
of electronics began when
he started building his own
computers and started
writing simple programs in
high school. In college he
went into electrical

engineering and interned with Conam Construction in
Anchorage, AK summer of 2013 and 2014. There he was

able to increase his real world understanding of high
voltage power systems and large scale and small.

Jack Gray from Rockville,
MD began his interest in
engineering as an

International
Baccalaureate student at
Seminole High School
where he gained an
understanding of
analytical thinking and an
appreciate for the
sciences. He continued
his pursuit of knowledge

at the University of Central Florida in 2013 towards a
Bachelor’s of Science in Electrical Engineering. After
being a student-athlete for four years on the water polo
team, Jack hopes to continue his passion for inquisition
and analytics through systems engineering.

Connor Heckman began his
education in computer
engineering at the University
of Central Florida in the fall of
2012. His interests include
image processing, real-time
embedded systems, and
machine learning. Throughout
his final semesters at UCF,
Connor has worked as a
College student technician in
the Lockheed Martin/UCF
CWEP Program. Following his
graduation, Connor will be

starting full time at Lockheed Martin Missiles and Fire
Control as a Software Engineering Associate on the
LRASM program.

VIII. ACKNOWLEDGEMENTS

The authors are grateful for the support and input of the
Orlando Utilities Commission throughout the course of
this project.

