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Abstract — This paper presents the design of a scaled-
down user-interactive waterfall feature, intended to be 
implemented as a peripheral to a full-scale solar sculpture. 
This waterfall is made up of a graphical array of water 
solenoid valves and a series of LED strips which can be 
manipulated through observer interaction. Both audio 
input through the sculpture’s sound card and the physical 
observer motion detected by the installation’s optical 
sensor, can be used to produce attractive and entertaining 
patterns in the installation’s solenoid array. 

Index Terms -- Interactive systems, Machine vision, 
MOSFET circuits, Object segmentation, Solenoids 

I. INTRODUCTION  

Orlando Utilities Commission in partnership with the 
Tavistock Company tasked our group with designing a 
solar sculpture peripheral that would attract attention and 
generate excitement about the structure while educating 
about the practicality of solar power. The proposed solar 
sculpture will be placed in the center of the town square 
for high visibility, and in line with the mosaic theme of the 
surrounding buildings.  

Interested in the cross over between art and 
engineering our group of Jack Gray, Connor Heckman, 
Ben King, and Robert Perkins began designing a project 
to highlight both aspects. To symbolize the flow of energy 
from the sun, harvested by the solar panel and 
redistributed to power the solar sculpture we decided on 
an interactive waterfall. The interactive waterfall works by 
receiving an input signal from the mounted camera, then 
translates the horizontal position of the person to the 
corresponding solenoid valves to create a falling stream. 
The mounted CMUcam5 receives color graded input and 
sends this information to the Raspberry Pi 3 for 
processing. The Raspberry Pi system control unit 
compares the current input image to a reference image to 
determine the horizontal and vertical coordinates of the 
person interacting. These coordinates are output through 
the MSP430 microcontroller to two 8-bit shift registers. 
These shift registers send enabling signals to the solenoid 
switching circuit on the printed circuit board.  

Powered by the 12V power supply and controlled by 
the signals send to the switching circuit the solenoids are 
turned on in relation to the horizontal position of the  

observer, while the vertical position corresponds to the 
height of the LED strips illuminated. To further the 
entertainment value of the water and light display, an 
audio input sensor is used to make the changing streams 
of water respond to songs being played. The water pump 
system uses a single 12V pump to supply a constant 
pressurized flow of water to the solenoids in a closed loop 
systems.  

The power supply requirements are split into two 
sections: the grid-tied energy collected from the solar 
panels, and the energy distribution from the grid into the 
system without the use of batteries. The photovoltaics 
convert the solar energy into DC electricity through a DC 
to DC converter with Max Power Point Tracking. For grid 
interconnectivity the DC electricity is pumped back into 
the grid using a DC to AC inverter. The final deliverable 
for this project is a one eighth scale model of the final 
implementation of the complete solar sculpture. The size 
restraint will eliminate the possibility of implementing grid-
tied solar panels into the final deliverable of our design. 
The power supplied to the project is from a grid-tied AC 
outlet that is then converted into 12V to power the 
solenoids, LED lights, and water pump. This 12V supply 
is then passed through a 5V regulator to supply the power 
used for the Raspberry Pi, CMUcam5, and Audio input 
sensor. Further voltage regulation down to 3.3V is 
necessary for powering the MSP430 microcontroller.  

As the project design developed the requirements and 
limitations of the OUC sponsorship changed. Originally 
the use of an interactive feature using water was 
approved on the basis that the cost of construction and 
maintenance will remain low. After the presentation of our 
prototype waterfall design concerns with maintenance 
costs caused our project to not be selected for the final 
implementation of the solar sculpture. We continued 
designing this entertainment feature for possible use and 
consulted the art and mechanical team for the design of 
an approved low maintenance solar sculpture 

The water system will consist of a reservoir at the 
bottom of the structure for holding water, a submersible 
water pump, water supply and return tubes to provide 
water to the top of the structure, the solenoid valves that 
control each individual water stream, and the solenoid 
switching circuit which drives the solenoid using the 
signals from the solenoid control unit.   

After viewing previous waterfall designs utilizing 
solenoid valves, it was determined that a spacing of 32 
valves per meter should produce an acceptable horizontal 
resolution for the waterfall display.  Due to budget 
constraints and the cost of solenoid valves, the scale 
model will use a half meter wide array consisting of 16 
solenoid valves.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Hardware Block DiagramWaterfall Feature Design 

A. Solenoid Valve Selection 

In order to precisely control the falling water streams, 
a solenoid valve is needed.  A solenoid valve is a valve 
that is electromechanically controlled by use of an electric 
current passing through the solenoid.  The solenoid itself 
is a coil of wire that is wound around a metallic core.  
When current is passed through the coil, it creates an 
electric field which moves the core pin.  In a solenoid 
valve, this movement is used to control the opening and 
closing of the valve. 

Many solenoid valves that are approved for use with 
water are made from plastic or brass, but due to cost 
constraints, the main focus for this project is on plastic 
solenoid valves. The solenoid valves have several other 
specifications to compare, such as response/opening 
time, normally open (NO) or normally closed (NC) 
operation, valve diameter, and their operating voltage and 
current draw.  For response time, a fast response is 
needed for the opening and closing of the valves in order 
to produce a decent resolution from the falling water.  An 
acceptable response time for this application is less than 
100ms, but lower response times would improve 
performance, as the vertical resolution quality relies on 
the valve response time.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given that this project will be run with solar power in 
mind, the lower 12 volt DC operating voltage solenoids 
were considered rather than AC or 24 volt DC valves. 
Based on these specifications, a relatively inexpensive 
nylon constructed water solenoid valve made by US Solid 
was chosen for this waterfall display application that 
included a normally closed (NC) operation, ¼ inch 
diameter, 12 volt DC operation with a 20ms valve 
response time.  The US Solid brand 12 volt solenoids are 
rated at 4.8 watts each. 

B. Switching Circuit Design 

A switching circuit is designed in order to control each 
of the 16 solenoid valves using the MSP430 output pins.  
The MSP430 does not have enough output pins to control 
the 16 individual valves by itself, so this issue was solved 
by using two daisy-chained 8-bit shift registers that are 
hooked up to the MSP430.  The shift register allows serial 
data from the MSP430 to be converted to 16 parallel data 
outputs, with a separate 5 volt pin to control each solenoid 
valve. 

The next consideration was how to control the 12 volt 
solenoids using the 5 volt signals from the shift register 
pins.  Using a transistor as a switch was an obvious 
solution, such a BJT or a mosfet.  While a BJT device 
would have worked fine for this application, the nature of 
the base current and base resistor required meant excess 
power dissipation.  While this power dissipation is 
relatively small, it is still taken into consideration given the 



solar powered nature of the full-scale design.  Due to the 
nature of the mosfet’s insulated gate and low drain to 
source resistance, the power dissipated by the mosfet is 
significantly less than a BJT.   For these reasons, an n-
channel power mosfet was chosen that can handle up to 
30 volts, with a low gate threshold of only 1.8 volts, 
allowing the 12 volt solenoid valves to be controlled by the 
5 volt shift register pins.    

The final consideration for the circuit design was 
flyback voltage.   Due to the inductive nature of the 
solenoid valve, the sudden reduction in current when the 
mosftet is switched off creates a large voltage spike of 
negative polarity across the solenoid load.  The 
relationship is given by the voltage equation for an 
inductive load as shown in (1).  

 

                                      𝑉 = 𝐿
𝑑𝑖

𝑑𝑡
                                 (1) 

 
 This high voltage spike could arc to a nearby ground 

trace on the PCB or damage the mosfet device itself.  In 
order to prevent this, a simple 1N4001 diode is placed in 
parallel with the solenoid valve, positioned so that it 
blocks current flow through the diode during normal 
operation, allowing it to flow through the solenoid as 
normal when the mosfet is on.   When the mosfet is 
switched off, and the solenoid valve produces a negative 
polarity voltage spike, and the diode is then forward 
biased, allowing the current to safely dissipate back 
through the load, rather than arcing or damaging the 
mosfet device. 

Given all of the previous design considerations, a 
schematic of the final solenoid switching circuit can be 
seen in Figure 2. 

 

 

 

 

 

 

 

 

 

Fig. 2 Solenoid switching circuit schematic 

C. Water Reservoir and Pump 

With the solenoid valve selected and the switching 
circuit designed to control the valves, a water delivery 
system was designed next in order to provide constant 
water flow to the 16 solenoid valves.  Consideration had 
to be given to make sure that the water flow was constant, 
while providing the same pressure regardless of whether 
only a single valve was open, or all 16 valves were open.   

For this design, a water system was designed 
consisting of an upper reservoir and a lower reservoir.  

The solenoid valves are directly connected to the upper 
reservoir, which supplies constant pressure to each valve.   
The lower reservoir catches the falling water from the 
solenoid valves, which is recirculated back to the upper 
reservoir using a small 12v pump.   

A 4 inch PVC pipe was chosen to act as the upper 
reservoir.  Through testing, it was determined that 4 
inches of standing water provided enough pressure from 
gravity to provide a steady water stream from the 
solenoids.  By using pressure from gravity, this eliminated 
the need for more complex water pressure calculations, 
and made the requirement for the upper reservoir to 
simply be completely full at all times in order for constant 
pressure to be supplied regardless of the number of 
valves open. 

In order to keep the upper reservoir full at a constant 
water level, two ½ inch flexible water tubes were 
attached to the top of the upper reservoir tube, with one 
on each side.   One tube is connected to the 12v 
submersible pump, and acts as the water supply tube.  
The second tube acts as the water overflow and return 
tube, which returns excess water pressure to the lower 
reservoir.  A simple diagram of this water supply system 
can be seen in Figure 3. 

 
Fig. 3 Interactive waterfall diagram. 

 
The use of both water supply and overflow return 

tubes allows for all air to be purged from the system, and 
provides a constant full water level in the upper reservoir. 
This constant full water level ensures constant pressure 
to each solenoid valve regardless of how many are open 
or closed. 

II. SYSTEM CONTROL 

The Installation is programmed with three separate 
“modes” of entertainment. First is the Aesthetics mode, 
which consists of the installation looping through a series 
of preprogrammed routines designed to impress 
observers and draw attention to the structure. Second is 
motion interaction mode, during which observers of the 
installation will be able to control solenoid and LED output 
by moving in view of the installation's optical sensor. Last 
is Audio Interaction mode, where observers can plug their 
phones in to the Installation's audio jack and watch as the 



installation performs music visualization through the use 
of the solenoid array. 

Mode switching is performed through the use of a 
remote controller (iPazzPort Wireless Mini Keyboard) 
operated by the system administrator. By hitting 
designated hotkeys on the remote, the system 
administrator calls or terminates executables for the 
distinct modes via a shell script which is continuously 
running within the System Control Unit (Raspberry Pi 3). 

III. COMPUTER VISION 

Computer vision plays a fundamental role in the in the 
installation's motion interaction mode. In this mode, the 
waterfall's optical sensor captures sequential images of 
the foreground using a Pixy Camera (cmuCam5) at a rate 
of 20 frames per second. This frames are smoothed to 
reduce noise and are then passed to the Raspberry Pi 3 
which interprets observer motion and sends output 
signals to the Solenoid switching array and the variable 
brightness LED strip. 

A.  Pixy Camera 

The Pixy cam, or CMUcam5 is an inexpensive DIY 
vision sensor used for object recognition purposes. It 
contains a NXP LPC4330 dual core onboard processor 
and hence can handle the intensive processing required 
to recognize objects frame by frame, sending positional 
data to the microcontroller running the camera. 

The Pixy Cam is built to run in concert with an Arduino 
microcontroller, however over the course of testing, an 
Arduino Uno microcontroller was found to have 
insufficient processing power for the installation's needs. 
A raspberry Pi 3 was used to control the Pixy Camera 
instead, utilizing the Pixy Camera's libpixyusb linux 
libraries. 

The primary obstacle we encountered with the Pixy 
Camera was its dependence on color based filtering 
algorithms to detect and track objects of interest. The Pixy 
cam learns what the objects of interest are for a given 
system by analyzing example objects presented to it in its 
“teaching” mode. 

This is known as a “supervised” object recognition 
system, since a human user is indicating objects of 
interest in the environment by “tagging” them (color 
tagging in the Pixy cam’s case). Our computer vision 
system was an “unsupervised” case, i.e. the vision 
system had to be capable of detecting and tracking 
“untagged” objects of interest. Nothing in the Pixy cam’s 
existing source code allowed for general motion tracking 
(tracking the movement of an “untagged” human body), 
so the Pixy Camera is treated as a simple capture device 
in our system (albeit one with effective exposure 
correction algorithms and several resolution options). All 
the “heavy lifting” of our computer vision software is thus 
carried out onboard the Raspberry Pi 3. 

 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 4 Pixy Cam or cmuCam5. 
 

B. Motion Segmentation 

Motion segmentation is one of the core fundamentals 
of object tracking in computer vision. It consists of 
separating the objects being tracked from the background 
environment. There are countless algorithms and 
methods by which real-time motion segmentation is 
performed, however one of the simplest and most 
effective methods is the concept of image difference.  

Image difference seeks to construct a map of 
differences between two contiguous frames from a video 
snippet. It identifies these differences by comparing the 
intensities of each of the consecutive frames 
corresponding pixels. This technique is extremely 
sensitive to image noise (random variations in brightness 
and color that can be thought of as “digital background 
noise”) and is practically unusable when the camera 
capturing the images is moving. Due to the fact that the 
installation utilizes a fixed camera solution and does not 
require fine-grained object recognition, this primitive but 
effective technique was a viable solution. Image 
difference is best at tracking blobs of motion moving 
through a series of frames. 

  

 

 

 

 

 

 

 

Fig. 5 Image difference visualization, reprinted with permission from 
OpenCV.org. 
 

Typically these motion blobs are then used as input to 
more advanced computer vision techniques, which might 
attempt to identify specific objects or produce a more fine-
tuned structure for the objects of interest. However in the 
case of the interactive waterfall, observers can very well 
be thought of as vague regions of movement, keeping in 
mind that the resolution of the graphical waterfall 



responding to the observer movement is made up of only 
16 solenoids. To reduce the rate at which the Pixy Cam 
observes a “false positive” (instructs a solenoid to turn 
active when no observer is present in front of the 
solenoid) a double thresholding solution was utilized. 

C. Hysteresis Thresholding 

The “difference image” is stored as a single black and 
white .pgm file. Double thresholding is then carried out to 
reduce foreground interference. “Double thresholding” or 
Hysteresis thresholding is used to reduce image noise 
and eliminate any change between the frames that is not 
the result of observer motion, such as movement in the 
background of the observed scene or brief changes in 
brightness. 

The thresholding is carried out first by applying a high 
threshold value to all pixel intensities in the difference 
image. This is the “first pass”. Any pixel that is above this 
initial high threshold is set to an intensity of 255 (white) 
and marked as a “peak”. Any pixel intensity that falls 
below this initial threshold is passed over for now. For the 
algorithm's second pass all pixels that passed the initial 
high threshold (the peaks) are re-examined. Any pixel that 
is adjacent to a peak pixel and has intensity greater than 
a second low threshold value is now additionally set to 
255 (white) as well. This method works due to the 
observation that pixels adjacent to pixels with a high 
intensity are likely to be a part of the same region of 
motion. 

It is important to recall that this thresholding is being 
performed on the difference image, hence regions being 
marked white in this final image are the regions where 
motion is occurring in the frame. With the final image 
computed, further calculation can be performed to 
determine what data to send to the solenoid control unit 
and LED switching circuit. The pixel intensities of the 
thresholded difference image are converted to values 
which are stored in a two dimensional array. This two 
dimensional array can be thought of as a dataset where 
every occurrence of the unsigned char value 255 
represents the x and y coordinate of a pixel in the 
captured frame where a region of motion has been 
observed. A graphical example of hysteresis thresholding 
in action is presented in Figure 5. 

 
 
 
 
 
 
 

 

 

 

 
 
Fig. 5 Hysteresis thresholding example, reprinted with permission from 

OpenCV.org. 

D. Low Threshold Calculation 

Over the course of testing our installation in the motion 
interaction mode we found that the most important factor 
in reducing image noise and background motion 
interference was the constant which is used as the low 
threshold during the Hysteresis thresholding process. 

Rather than selecting a static value which worked well 
during our limited testing of the installation, the team 
decided to take a more dynamic approach to low 
threshold calculation. When the system is starting up in 
its motion interaction mode there is a period of five 
seconds during which it performs a “background 
analysis”. This analysis consists of capturing 10 frames of 
the background scene (2 per elapsed second). The 
system then performs arithmetic image difference 
between each frame and its successive frame, so that it 
ends up with five two-dimensional image difference 
arrays. The average change in pixel intensity is calculated 
for each two dimensional array, creating five numerical 
values representing the average change in pixel intensity 
for a given second. These five values are then averaged 
to arrive at a final numerical value which is the 
dynamically determined low threshold value. 

IV. SPECTRUM ANALYSIS 

For the Audio Interaction mode of the installation, a 
USB sound card is connected to the raspberry Pi 3 which 
serves as our System Control Unit. We then utilize a 
modified version of existing open source Raspberry Pi 
software known as Lightshow Pi to interpret our audio 
input into output signals. Our modifications for this Python 
script involved converting its output signals into a format 
which would reproduce aesthetically pleasing patterns on 
our graphical solenoid array. 

V. OUTPUT CONTROL SOFTWARE 

The outputs of the installation consist of the graphical 
water solenoid array and the variable brightness LED strip 
which provides colored lighting for the waterfall. The 
solenoid switching array is controlled by a serial data line 
from the MSP430G2553 or Solenoid Control Unit. The 
LED strip however, is controlled directly by signals from 
the Raspberry Pi 3 or System Control Unit.  

A. Solenoid Control 

The graphical solenoid array’s output signals begin as 
a two dimensional array representing the results of our 
image difference calculations. A custom algorithm loops 
through this array and determines the longest 
consecutive region of motion in the x axis, or the longest 
series of consecutive pixels which have been marked as 
a region of motion in the most recent frame. The starting 
position as a ratio of the captured frame and the width of 
the horizontal region of potion in pixels is stored off by the 
Raspberry Pi 3. 

The Raspberry Pi 3 then transmits this data to the 
MSP430G2553 or Solenoid Control Unit which scales the 
region of motion’s starting x pixel coordinate and total 
pixel width to the resolution of the graphical waterfall 



array. Once the necessary signals for each solenoid have 
been determined, existing open source Energia shift 
register functions are used to send the output signals to 
the PCB. 

B. LED Strip Control 

The output signals for the LED strip are determined in 
a similar method, as the two dimensional image 
difference array is looped through and the longest 
consecutive region of motion in the y axis is attained. The 
values for the starting pixel of the region of motion and the 
vertical length of the region of motion are stored off by the 
Raspberry Pi 3. These values are then used in later 
function to change the brightness of the LED strip through 
Pulse Width Modulation. 

VI. POWER SYSTEMS 

A. Power Prototyping Restrictions 

 Our project started with extremely ambitious power 
design objectives. But due to customer concerns, budget 
and time constraints some aspects of the design were 
scaled back. Originally there were supposed to be several 
solar panels with an inverter built from a developer kit, this 
alone would cost close to $1000 dollars. Our client OUC 
also voiced concerns that our inverter design would not 
meet NEC regulations so would not be useful in their final 
design. OUC also wanted to use power from the grid to 
power the final design for the sake of simplicity and to 
eliminate the need for batteries. This combination of 
factors led us to drop the inverter and solar panels from 
our project and to focus more resources towards 
improving the aesthetic display. 

 Another item that proved to be too difficult to execute 
was a high power rectifier. There was two options for this 
which included a more amateur design that had high 
energy loss and a more professional design that was 
composed of about 140 components. The high 
complexity design couldn’t be completed due to the large 
amount of soldering and difficulty trouble shooting such a 
highly complicated system.  The simpler design used a 
large specialty transformer costing $100 and had a very 
long lead time.  The cost of this design was fairly high, 
$250, because of several factors. The PCB would need 
very thick copper traces to handle the high current which 
increases the price. The high current also makes using an 
integrated chip for the H Bridge impossible so one would 
have to be made out of expensive high power diodes. 
Finally to boost the current high power BJTs would need 
to be used. The cost of this rectifier would greatly affect 
the overall budget for our project. Because of these 
factors a commercial rectifier used for medium to large 
scale LED displays was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Above is the PCB layout for both of our voltage switching circuits. 
However the values of the passive components and the ICs used in the 
two circuits are different.  

B. Printed Circuit Board Design 

The design of the printed circuit board was 
constructed using the schematic software EagleCAD. 
The PCB contains 4 main components: the solenoid 
switching circuit, the shift register, the MSP430 
microcontroller, and the power supply rails. The solenoid 
switching schematic consists of a N-channel MOSFET, 
with a 1N4001 diode and the solenoid in parallel. These 
components all share a common 12V rail to supply power 
to the solenoid. The switching of these solenoids are 
controlled by the output from the two 8-bit shift registers 
and there connection to the MOSFETs. These MOSFETs 
act as switches to regulate the 12 volts supplied to the 
solenoid, when the shift register outputs high to the gate 
on the MOSFET the 12V is able to turn on the solenoid. 
The diode is placed in parallel with the solenoid in order 
to prevent fly back voltage to the MOSFET when the 
solenoid induction current is dissipated. The two 8-bit shift 
registers are daisy chained together by connecting pin 9 
to pin 14 as seen in Figure 7.  



 
Fig. 7 Daisy Chained 8-bit Shift Registers. 

 
This allows the MSP430 microcontroller to be able to 

communicate to all 16 solenoids simultaneously. The 
MSP430 is mounted on the circuit board with a 20-pin 
socket and receives input commands from the Raspberry 
Pi. These external connections are made through female 
header pins mounted on the outside edge of the PCB. 
These data lines allow for transmission of information 
from the sensor camera through the processing 
components out into the selector lines controlling the 
state of the solenoids. All these components mounted on 
the printed circuit board share a common 12V, 5V, or 3.3V 
rail. The 12V rail is a direct connection from an AC to DC 
power supply with 20A, necessary for the large power 
draw from the solenoid array and LED lights. These 12 
volts are then regulated down to 5V and 3.3V using 
external voltage regulating PCBs. The 12V is used to 
power the solenoids and water pump, while the 5V 
regulator is used to supply the power needed for the 
Raspberry Pi, CMUcam5, and Audio input sensor. Further 
voltage regulation down to 3.3V is necessary for powering 
the MSP430 microcontroller.   

After completion of the final schematic design in 
EagleCAD, the circuit is ready to be transferred to the 
physical printed circuit board layout design. Considering 
the high functionality and power draw of the solenoid 
switching circuit consideration for heat dissipation were 
evaluated. Placing the MOSFETs in parallel position 
along the length of the circuit board allowed to optimal 
cooling and preventative over heating measures. The 
control components, MSP430 and shift registers, are 
placed in the middle of the PCB because of their 
centralized connection to all the components on the 
board. This centralization allowed for minimal wiring 
layers and vias need when printing the board. The outer 
connections to the solenoid screw terminals are all placed 
in a row of 16 in order to consolidate the wires need 
between the PCB and the solenoids. The input and output 

pins used for communication with the other controllers are 
placed on the exterior of the PCB to allow for ease of 
access when debugging component interconnections. 
The layout of the final printed circuit board is shown in 
Figure 8, notice the use of 45 degree angles to minimize 
the wiring needed.  

 
Fig. 8 Printed Circuit Board for Solenoid control 

 
The final printed circuit board was constructed by 

the company Elecrow, and was shipped with additional 
PCBs for troubleshooting. All the components were 
through hole mounted and soldered on by the members 
of the design team. 

 

VII. THE ENGINEERS 

Ben King grew up and attended high school in Olathe, 
KS before moving to Florida.  He transferred to University 
of Central Florida in 2015 
with an AA degree from 
State College of Florida, 
and is graduating in May 
2017 with a Bachelors in 
Electrical Engineering. His 
interests include 
microelectronics and 
power delivery.  He hopes 
to work designing and 
testing electronic circuits 
for interesting gadgets and 
various applications. 

 
Tahte Perkins: started at 
the University of Central 
Florida in 2011 after 
graduating from Olympia 
High School in Orlando, 
FL. His interest in the field 
of electronics began when 
he started building his own 
computers and started 
writing simple programs in 
high school. In college he 
went into electrical 

engineering and interned with Conam Construction in 
Anchorage, AK summer of 2013 and 2014. There he was 



able to increase his real world understanding of high 
voltage power systems and large scale and small. 
 

Jack Gray from Rockville, 
MD began his interest in 
engineering as an 

International 
Baccalaureate student at 
Seminole High School 
where he gained an 
understanding of 
analytical thinking and an 
appreciate for the 
sciences. He continued 
his pursuit of knowledge 

at the University of Central Florida in 2013 towards a 
Bachelor’s of Science in Electrical Engineering. After 
being a student-athlete for four years on the water polo 
team, Jack hopes to continue his passion for inquisition 
and analytics through systems engineering. 
 

Connor Heckman began his 
education in computer 
engineering at the University 
of Central Florida in the fall of 
2012. His interests include 
image processing, real-time 
embedded systems, and 
machine learning. Throughout 
his final semesters at UCF, 
Connor has worked as a 
College student technician in 
the Lockheed Martin/UCF 
CWEP Program. Following his 
graduation, Connor will be 

starting full time at Lockheed Martin Missiles and Fire 
Control as a Software Engineering Associate on the 
LRASM program. 
 

VIII. ACKNOWLEDGEMENTS 

The authors are grateful for the support and input of the 
Orlando Utilities Commission throughout the course of 
this project.  
 
 


