

Group 4: Pocket Amp

Trent Coleman, EE Joshua DeBaere, EE Marissa Kane, EE William McKenna, CpE

Motivation

- Portability
- ♦ Affordability
- Passing Senior Design

- Quality of Sound
- ♦ Battery Life
- ♦ Ease of Use

Requirements Overview

ID	Туре	Requirement			
E.1	External	1-hour battery life			
E.2	External	Fit in a 5x6x3 inch pocket			
E.3	External	Weigh less than 5lb			
E.4	External	Have a 6.35mm "phone jack" audio input jack			
E.5	External	Have a 3.5mm "mini phone jack" audio output jack			
E.6	External	Will NOT have an onboard speaker			
E.7	External	Will have an external charging port to charge the battery			
1.1	Internal	Power a pair of headphones			
1.2	Internal	Use an onboard MSP432 MCU to handle digital signal			
		processing			
1.3	Internal	Use MSP432 built-in ADC			
1.4	Internal	Amplify the standard range of guitar and bass guitar sounds			
1.5	Internal	Sample at least 12-bits with a frequency of at least 30kHz			
1.6	Internal	Introduce less than 1% total harmonic distortion			
F.1	Effects	Implement digital delay effects			
F.2	Effects	Implement digital reverb effects			
F.3	Effects	Implement digital echo effects			
F.4	Effects	Implement digital flanger effects			
F.5	Effects	Implement digital chorus effects			
F.6	Effects	Implement analog distortion effects			
F.7	Effects	Implement analog overdrive effects			
F.8	Effects	Implement analog tone control			
F.9	Effects	Implement analog volume control			
U.1	UI	Communicate through Bluetooth with smartphone application			
U.2	UI	App will be developed for Android devices			
U.3	UI	App will control effects			
U.4	UI	App will control volume			
A.1	Admin	Unit production hardware cost will be less than \$100			
A.2	Admin	Unit prototype will be finished by the end of Spring 2017			

Modelling Amps

- ♦ Large variety
- Mimics vacuum tube amplifiers

Portable Amps

- Increased mobility
- Less play-time
- Most power drives speaker

Traditional Amplifiers

- Wide range of effects
- No power constraints
- ♦ No size constraints

- Digital implementation of traditionally analog effects
- Requires a converter to plug guitar into phone (usually \$20 - \$99)
- ♦ Latency of app-converter

High Level Block Diagram

Power System

Power System Goals

- Provide a compact, safe and sufficient power source for the Pocket-Amp
- Provide desired voltage and current levels to the analog and digital components of the Pocket-Amp.
- Perform charge management of the energy storage system

Power System Block Diagram

Power System Components

Battery

- With recent advances in batteries, there are many compact battery systems available.
- ♦ Lithium Ion Polymer (LiPo) was chosen for this project
- Provides a high nominal voltage of 3.7V and high energy density.
- The LiPo is able to be packaged in a rectangular case and thus able to fit better with the rest of the components.

Power System Components

Digital Voltage Conversion

- Two primary options for lowering the battery voltage for the digital devices
- Buck Regulator- higher efficiency through a wider range of inputs but utilizes inductors
- ♦ LDO linear regulators high efficiency when the input is closer to the output, smaller simpler device and does not utilize an inductor.

LP2989- A LDO linear regulator produced by Tl. This regulator is used for the digital supply as it will output 3.3V. It also outputs an error flag when the input reaches 5% of the desired output voltage. This will be fed to the microcontroller to create a low battery signal.

Power System Components

Analog Voltage Conversion

- A higher voltage would be required as well as an inverted supply
- Several possible designs were considered
- Utilizing a single boost convertor in conjunction with a separate inverting boost convertor
- Creating the appropriate voltage through a boost convertor and then utilizing a buck convertor as a simple inverter
- Split-rail single inductor convertor to provide both positive and negative voltages

Analog Voltage Conversion

TPS65132 – A single inductor Split-rail boosting convertor. This convertor will supply both negative and positive voltages for the analog components. Limiting the analog power supply to a single inductor and single chip reduces space on the PCB and also limits any noise that might be produced through the windings of the inductor.

Power System PCB Layout

Power System Components

-3.5cm

Battery Charging Schemes

- ♦ Battery charging is an essential par of the Pocket Amp's portability
- Charging can be the most expensive and risky part of the power system
- Failure with a battery charging scheme can be an expensive/ dangerous failure
- ♦ A prebuilt charging scheme based on the MCP73833 was purchased to help quarantee safe charging

Analog System

Analog System Overview

Effects

Realization of effects commonly found in professional sound systems.

Equalization

Three channel, digitally controlled equalization of input signals that can be tuned to personal preferences

Amplification

Linearly amplify guitar input of approximately 100mV - 1V to ADC input of 0V-3.3V

Filtering

Ensuring only frequencies in the range of the electric guitar will be amplified to improve efficiency and sound quality

Op-Amp Selection

Amplifier	Pros	Cons
LME49723	Inexpensive	Noisy, Low slew Rate
OPA1611	Good all around performance	Not exceptional at anything
OPA1632	High GBWP, very low noise	Expensive, High offset voltage

Analog Effects

- ♦ Equalization
- Shaping the output response to produce the wanted sound signature
- ♦ Overdrive
- A common effect in genres like blues and rock

All analog effects use the OPA1611 op-amps.

Effects Diagram

Order of effects chosen by effect on signal power.

Input Filtering

- ♦ 60Hz Hum
- Inductance caused by mains electric
- ♦ Pass >80Hz with minimal attenuation
- ♦ Attenuate 60Hz and lower by at least 3 dB

Filter Types

Passive Filters

3dB drop at 60Hz

Doesn't return close to OdB until near 500Hz

Sallen-Key

Active notch filter

Extremely high sensitivity at required Q factor

Would require variable resistance to tune

Fleige

Active notch filter

Requires two op-amps in addition to a low-pass filter

Dramatic reduction in 60Hz with little attenuation above 80Hz

Fliege Filter Topology

Overdrive

- ♦Methods
- Driving Tube amplifier into overdrive region
- Driving a solid state amplifier to it's rails
- Clipping network

Overdrive

Audio PCB

Digital System

Microcontroller

Requirements:

- ♦ Low Power Consumption
- ♦ DSP and onboard DAC
- ♦ Many communication ports
- Easy development: Launchpad and IDE

MSP 432 overview

MSP432 chip

100-pin flat pack design

1.2x1.2mm

3.3v

ARM

DSP

MSP432 Launchpad

Built-in debugging
Built-in programming
Jumpers to detach dev features

Launchpad

- USB debugging and programming
- ♦ Onboard power regulation (3.3v and 5v)
- Pinouts or headers for all pins
- Removable debug jumpers

Chip Features:

Ports

SPI
UART
I2C
Serial/GPIO
JTAG/SWD (debugging)

48 MHz Onboard Clock

Internally adjusted
OR
External resistor/capacitor
OR
External power source

DSP

MSP432 DSP libraries Built-in DSP asm instructions FFT (512 samples)

ARM Instruction Set

32-bit ARM Cortex-M4F Contains FPU and memory protection

ADC

14-bits (full resolution) 1 MSPS max Successive Approximation (SAR)

DSP Overview

- ♦ Delay base effects in time domain
- ♦ Delay, Flanger, Reverb, Chorus, Echo
- ♦ Samples will be stored in cyclical array
- Previous samples will be mixed with current sample

After DSP, sample is passed to DAC and MCU goes to sleep.

App Overview

- ♦ Change settings for all effects
- ♦ Save/Load presets
- ♦ Sync with Pocket Amp

pp (Previous Version)

Interchip Communication

SPI

- ♦ 1 Master & 1+ Slaves
- ♦ Min 4 wires
- Extra wire for each slave
- Unidirectional wires

I2C

- ♦ 1+ Master & 1+ Slaves
- ♦ Only 2 wires
- Unique address per slave
- Bidirectional wires

Interchip Communication

MSP432

 \Diamond I2C

♦ SPI

I2C

 \Diamond DAC

♦ Bluetooth

Power Supply

SPI

> Potentiometers

Bluetooth Classic

- Pair and maintain connection
- ♦ Require its own MCU

Bluetooth Low Energy

 Only connected when needs to transmit data

Administration

Progress Chart

Primary & Secondary Roles

Subsystem	Primary	Secondary
Analog Signals	Joshua	Trent
Digital Signals	Marissa	William
Power	Trent	Joshua
Software	William	Marissa

