Battlebot

Sponsored by Lockheed Martin: Applied Research KENNY CHEN

JOHNATHAN TUCKER

University of Central Florida: Group 2

CLAYTON CUTERI (CE) ◆ COREY NELSON (EE) KYLE NELSON (EE) ◆ ALEXANDER PEREZ (CE)

UCF Faculty, Advisors, and Industry Experts

RAY GARDNER (TECHNICAL CONSULTANT) ♦ MARK STEINER (MAE DIRECTOR OF ENGINEERING DESIGN) KURT STRESSAU (MAE SENIOR DESIGN COORDINATOR) ♦ LEI WEI (ECE SENIOR DESIGN COORDINATOR) MARK HEINRICH (CS SENIOR DESIGN COORDINATOR) ♦ JIHAN GOU (ME FACULTY ADVISOR)

Battlebot Final Design

- Modular
- Responsive
- Accurate Target Discrimination

Green Team Battlebot

EE/CpE: Statement of Work

- Design, build, test, and deliver an autonomous fire control system
 - Autonomously detect, track, and fire at an object of a selected color
- Compete in NERF Battlebot competition
 - Comprised of several 10-minute rounds

Work Distribution

Mechanical		Computer Science		Computer & Electrical	
Name	Responsibilities	Name	Responsibilities	Name	Responsibilities
Tyler Coughlin	• Drivetrain	Daniel Healy	 Prioritization Object Detection RF Control User-Application Hardware Integration 	Clayton Cuteri	SystemCommunicationSensor Detection
Austin Moore	• Turret			Corey Nelson	Fire Control BoardElectrical Integration
Jared Weber	• Frame	Nick Ho Lung	Facial DetectionMovement Detection	Kyle Nelson	Electrical IntegrationFire Control Board
Corbin Rowe	SkirtPower	Sayeed Tahseen	Video FeedBackgroundSubtraction	Alexander	PlanningTeam Logistics
Nathan Herald	NERF Weapon			Perez	Blob DetectionSystem Integration

Group 2: Goals and Motivation

The project goals:

- Cost-effective
- ▶ 100% in compliance with Lockheed's required specifications

The cumulative motivation:

- Experience coordinating with multiple engineering disciplines
- Working together with Lockheed Martin Applied Research

Engineering Requirements

- Color Detection of 16" x 16" target
 - Accurate within 8 inches of centroid
- Sufficient battery life for Lockheed Battlebot Competition
 - At least 10 minutes
- Compact PCB
 - Less than 100mm² to fit on robot
- Dual Sensor Integration
 - Camera
 - Accurate Range Measurement within 40 feet

Battlebot Subassemblies

Battlebot Subassemblies: Chassis/Frame

Weapon Choice: NERF RIVAL KHAOS 2' 5" RIVAL

- Stock 40 round magazine
- Electric Trigger to integrate with PCB
- Highest FPS rating of NERF Rival line

Nerf Gun: Fall/Spring Analysis

- Gun disassembled for internal component analysis
 - Physical switches removed
 - Wired to PCB
 - Battery relocated and gun size reduced
- Issues
 - Length
 - Thermistor

Servo Part Analysis

COMPONENT	HS-805BB	HS-645MG
Bearing Type	Dual Ball Bearing	Dual Ball Bearing
Speed (4.8V)	0.19sec/60°	0.24/sec/60°
Speed (6.0V)	0.14sec/60°	0.20sec/60°
Torque (4.8V)	19.8 kg/cm	7.7 kg/cm
Torque (6.0V)	24.7 kg/cm	9.6 kg/cm
Size	2.59 x 1.18 x 2.26 in	1.59 x 0.77 x 1.48 in
Price	\$38.99	\$49.99

One of two chosen servos

Turret System

- Pan and Tilt system for 2 degrees of motion
 - Metal GearPan Servo
 - Giant-scale
 Tilt Servo

NERF Pan & Tilt system as designed by the M.E. team

Battlebot Subassemblies: Targeting System

Intel Stick Advantages

- Twice the memory
- ProvidesInternal Flash Storage
 - Over 3X faster CPU

	Intel Stick	Raspberry Pi 3
Clock Speed	1.44 GHz	1.2 GHz
Memory	2 GB	1 GB
Internal Storage	32 GB	N/A
USB Ports	2	4
Power Consumption	10 Watts	4 Watts
Average CPU Benchmark	1697	482
OS	Windows	Raspbian
Dimensions:	113 x 38 x 12 mm	3.4 x 2.3 x 0.8 in
Cost	\$130.00	\$35

Intel Compute Stick: Algorithm Processing

- Full Windows 10 computer in palm-sized package
- 2 GB of RAM
- Internal Flash Storage
- Expandable Storage
- USB to PCB & Camera
- Fast CPU

Autonomous Targeting System: Overview

OpenCV Blob Detection

- Open-source computer vision tool
- Useful for detecting colors and movement

Example using Blob Detection to track motion

"Processing"

```
LiveFaceDetect_scaled
int scale = 4;

void setup() {
    size(640, 480);

    // Start capturing
    cam = new Capture(this, 640, 4k
    cam.start();

    // Create the OpenCV object
    opencv = new OpenCV(this, cam.)

    // Which "cascade" are we goin opencv.loadCascade(OpenCV.CASC/

    // Make scaled down image smaller = createImage(opencv.w

    // Which "cascade" are we goin opency.loadCascade(OpenCv.CASC/
    // Make scaled down image smaller = createImage(opencv.w

    // New images from camera to include the complete of the co
```

Example of using imported library to detect faces

- Processing is an object-oriented environment
 - Supports Computer Vision libraries
 - Provides means of implementing:
 - ▶ 1) Graphical User Interface
 - ▶ 2) Video stream
 - 3) Communication with hardware

Logitech Camera Analysis: C270 vs C615

	Logitech C270 (\$20)	Logitech C615 (\$40)
Photo Quality	3 Megapixels	8 Megapixels
Field of View (FOV)	60°	74°
Optical Resolution (True)	1280 x 960 1.2 MP	True = 2MP, Interpolated = 8MP
Video Capture (16:9 W)	720p	1080p
Frame Rate (max)	30fps @ 640x480	30fps @ 640x480
Focus Type	Fixed Focus	Auto Focus

 Logitech C270 was selected: More affordable and less demanding on the computer due to lower resolution

Ultrasonic Sensor: Fall Analysis

- The sensor was tested to verify functionality
- Results revealed greater difficulty with long range detection than specified in the product documentation

Solution: LIDAR Range Sensor Upgrade

Features	LIDAR Lite V3	SRF08 Ultrasonic
Range	0 – 40 meters	3cm – 6m
Power	5V	5V
Current	130ma	20ma
Optimal Range	>5 meters, <45 meters	6m
Cost	\$150	\$50

LIDAR Lite V3 was selected due to increased range

Targeting System Battery Technologies

- Rechargeable Lithium Ion Battery
 - ▶ 6700 mah
 - Powers the Intel Stick
- 6V Battery Holder
 - Provides 6V of power to peripherals

ATmega328/P Microcontroller

- 32K Flash Storage
- 23 GPIO pins
- Low cost development
 - Arduino Uno (IEIK) \$10

Custom Targeting Schematic

Flywheel and Trigger Motor Control

Two transistors individually control the NERF flywheel and trigger motor

Servo and Sensor Control

- The data outputs of the pan servo, tilt servo, and range sensor are connected to various inputs of the microcontroller
- The microcontroller sends and receives data from these peripherals

Custom PCB Design

- Two layers
 - Surface mounted components
- Measures approximately 6" x 4"
 - Smaller size to reduce cost
- \$2 per board from PCBway
 - Additional component costs
- Issue
 - Design flaws

Budget & Finance

EE/CpE Total: \$505

Total: \$987

...questions?

Course Description

- ▶ 40 ft. x 20 ft.
- 2 primary zones
- 1 keep-out area (10 ft. x 20 ft.)
- 2 course obstacles
- Multiple stationary course targets

Project Top-Level Overview

Lockheed Robot Requirements

Physical Platform

Maximum size of 3ft. x 3ft. x3ft.

Budget

- Maximum budget of \$2k
- Maximum as-demonstrated cost of \$1k

Sensors

Minimally use 1 sensor modality

Weapon Systems Allowed on Robot

- ▶ 1 NERF Ball and/or Dart Gun
- Maximum of 50 shots per weapon

Target Detection Automation

- Provide video overlays that highlight detected targets
- Provide wireless video feed

Radio Control

- GoolRC FS-T6 2.4ghz Digital Proportional 6 Channel RC Transmitter and Receiver
- Comes with receiver that wires into Arduino

Motor Driver

- Pololu Dual VNH5019
- 2 Channels
- 12 amps continuous output current per channel

Drivetrain Battery

- 12 volts
- 9 amp-hours
- Provides sufficient power for competition
 - At least 10 minutes when motors are pulling the maximum 5 amps
- 5.6 pounds

