Battlebot

University of Central Florida: Group 2

CLAYTON CUTERI (CE) COREY NELSON (EE) KYLE NELSON (EE) ALEXANDER PEREZ (CE)

UCF Faculty, Advisors, and Industry Experts RAY GARDNER (TECHNICAL CONSULTANT) MARK STEINER (MAE DIRECTOR OF ENGINEERING DESIGN) KURT STRESSAU (MAE SENIOR DESIGN COORDINATOR) LEI WEI (ECE SENIOR DESIGN COORDINATOR) MARK HEINRICH (CS SENIOR DESIGN COORDINATOR) JIHAN GOU (ME FACULTY ADVISOR)

Project Overview / Statement of Work

2

- Design, build, test, and deliver a manually-remotecontrolled ground robot that utilizes several sensing technologies to:
 - Autonomously detect, track, and fire at enemy robots, medics, and other targets
- Compete in NERF-enabled Battlebot competition

► Comprised of 3, 10-minute rounds

Course Description

40 ft. x 20 ft.
2 primary zones
1 keep-out area (10 ft. x 20 ft.)
2 course obstacles
Multiple stationary course targets

Lockheed Robot Requirements

Physical Platform

Maximum size of 3ft. x 3ft. x3ft.

Budget

- Maximum budget of \$2k
- Maximum as-demonstrated cost of \$1k

Sensors

Battlebot

Minimally use 1 sensor modality

Weapon Systems Allowed on Robot

4

- ▶ 1 NERF Ball and/or Dart Gun
- Maximum of 50 shots per weapon

Target Detection Automation

- Provide video overlays that highlight detected targets
- Provide wireless video feed

Work Distribution

Mechanical		Computer Science		Computer & Electrical	
Name	Responsibilities	Name	Responsibilities	Name	Responsibilities
Tyler Coughlin	• Drivetrain	Daniel Healy	PrioritizationObject DetectionUser-Application	Clayton Cuteri	Software Integration (primary)Sensor Detection (secondary)
Austin Moore	• Chassis	Nick Ho Lung	Facial DetectionMovement Detection	Corey Nelson	Firmware Integration (primary)Fire Control (secondary)
Jared Weber	• Turret	Sayeed Tahseen	Visual FeedObject DetectionUser-Application	Kyle Nelson	Fire Control (primary)Firmware Integration (secondary)
Corbin Rowe	PowerDriv e Control			Alexande r Perez	Sensor Detection (primary)Software Integration (secondary)
Nathan Herald	• NERF Weapon				

Battlebot

Group 2: Goals and Motivation

6

The project goals:

- ► Cost-effective
- ▶ 100% in compliance with Lockheed's required specifications

The cumulative motivation:

- Experience coordinating with multiple engineering disciplines
- ► Working together with Lockheed Martin Applied Research

Battlebot Design Goals

Modular

Easy to assemble and perform maintenance

- Responsive
 - Low latency reaction to usercommands

Accurate Target Discrimination
 Facial, Robot, Human Profile (medic)

Green Team Battlebot design as of 12-13 (Subassembly discussions to follow)

Engineering Requirements

8

Small Footprint:

- Less than 2 feet in length, width, and height (2' x 2' x 2')
- Maximum Engagement Range
 - ▶ 40 feet
- Ammo Capacity
 - 40 rounds unmodified
- Duel Sensor Integration
 - Camera
 - Range Sensor

Project Top-Level Overview

9

Battlebot

Battlebot Subassemblies

10

Battlebot

Weapon Choice: NERF RIVAL KHAOS

2' 5"

Cost: \$65.00
 Holds 40 rounds
 Electric Trigger
 Test fire completed with software
 Trading weight for power
 Issues

► Heavy

Jam probability

► Upward spin

13

Servo Part Analysis

COMPONENT	HS-805BB	HS-645MG
BearingType	Dual Ball Bearing	Dual Ball Bearing
Speed (4.8V)	0.19sec/60°	0.24/sec/60°
Speed (6.0V)	0.14sec/60°	0.20sec/60°
Torque (4.8V)	19.8 kg/cm	7.7 kg/cm
Torque (6.0V)	24.7 kg/cm	9.6 kg/cm
Size	2.59 x 1.18 x 2.26 in	1.59 x 0.77 x 1.48 in
Price	\$38.99	\$49.99

One of two chosen servos

Turret System

- Pan and Tilt system for 2 degrees of motion
 - Metal Gear
 Pan Servo
 - Giant-scale
 Tilt Servo

4

NERF Pan & Tilt system as designed by the M.E. team

Battlebot

Intel Stick Advantages

- Twice the memory
- Provides
 Internal Flash Storage
- Over 3X faster CPU

	Intel Stick	Raspberry Pi 3
Clock Speed	1.44 GHz	1.2 GHz
Memory	2 GB	1 GB
Internal Storage	32 GB	N/A
USB Ports	2	4
Power Consumption	10 Watts	4 Watts
Average CPU Benchmark	1697	482
OS	Windows	Raspbian
Dimensions:	113 x 38 x 12 mm	3.4 x 2.3 x 0.8 in
Cost	\$130.00	\$35

17

Intel Compute Stick: Computer Processing

- Full computer in palm-sized package
 - 32-bit Windows 10 OS
 - x86-based 14 nm processor
- USB to PCB
- USB to Camera
- Expandable Storage

Autonomous Targeting System: Overview

OpenCV Blob Detection

- Useful for detecting colors and movement
- CS team will be implementing facial recognition algorithms

🔋 Group02_BasicTargetingSoft... — 🗌 🛛 🛛

Example using Blob Detection to track motion

Processing and GUI

Example of using imported library to detect faces

Processing is an object-oriented environment

- Compatible with
 Computer Vision libraries
- Provides means of implementing:
 - ▶ 1) Graphical User Interface
 - ► 2) Video streaming overlays
 - ▶ 3) Communication with hardware

Logitech Camera Analysis: C270 vs C615

	Logitech C270 (\$20)	Logitech C615 (\$40)
Photo Quality	3 Megapixels	8 Megapixels
Field of View (FOV)	60°	74°
Optical Resolution (True)	1280 x 960 1.2 MP	True = 2MP, Interpolated = 8MP
Video Capture (16:9 W)	720p	1080p
Frame Rate (max)	30fps @ 640x480	30fps @ 640x480
FocusType	Fixed Focus	Auto Focus

21

Logitech C270 was selected: More affordable and less demanding on the computer due to lower resolution

22

Ultrasonic Sensor: Fall Analysis

- The sensor was tested to verify functionality
- Results revealed greater difficulty with long range detection than specified in the product documentation

Solution: LIDAR Range Sensor Upgrade

Features	LIDAR Lite V3	SRF08 Ultrasonic
Range	0 – 40 meters	3cm-11m
Power	5V	5V
Current	130ma	20ma
Optimal Range	>5 meters, <45 meters	6m
Cost	\$150	\$50

23

LIDAR Lite V3 was selected due to increased range

Targeting System Battery Technologies

Rechargeable Lithium Ion Battery

Will be utilized to power the on-board computer

► 6V Battery Holder

Provides 6V of power to peripherals

25

ATmega328/P Microcontroller

- 32K Flash Storage
- 23 GPIO pins
- Low cost development board available
 - Arduino Uno (IEIK) \$10

Custom Targeting Schematic

Flywheel and Trigger Motor Control

Two transistors individually control the NERF flywheel and trigger motor

Servo and Sensor Control

- The data outputs of the pan servo, tilt servo, and range sensor are connected to various inputs of the microcontroller
- The microcontroller sends and receives data from these peripherals

PCB Generation from Custom Schematic

Two layer design Surface mounted Final board to measure ~ 6" x 4" Smaller size to reduce cost Final vendor selection TBD 4PCB offers \$33 per board No minimum order requirement Additional component costs

29

Preliminary Design

Budget & Finance

- Sensors
- Power Supplies
- Computer
- PCB
- Chassis, Turret, and Drivetrain

30

NERF Weapon

Total: \$885

Current Progress

100%

Issues

- Chassis Stability and Performance
- NERF Gun accuracy
- Open CV microcontroller integration
- Range Detection Consistency

Path Forward

Integrate Autonomous Targeting Software and Hardware

- Optimize software for ideal objective fulfillment
- Finalize and order PCB
- Construct prototype Battlebot
 - Conduct practice battle scenarios & longevity tests
 - ► Iron-out issues

Have any questions, do you?

35

Appendix

Battlebot

Remote Manual Drive Selection: Radio Control

- GoolRC FS-T6 2.4ghz Digital Proportional 6 Channel RC Transmitter and Receiver Model 2
- Comes with receiver that wires into Arduino
- Arduino Motor Shield attachment: The Arduino Motor Shield allows your Arduino to drive DC and stepper motors, relays and solenoids.
- Motors and receiver plug into Arduino; code will be written with assistance from EECS team.

Nerf Gun Accuracy

- 35 shots were fired
 - Aiming at bottom right target
- Figure (right) shows
 the distribution from
 25 feet away

Concept Generation

- Final Concept:
 - Lower Center of Gravity
 - 50% reduction in weight
 - Smaller target
 - Allows for future modification of magazine

Initial Frame

- Constructed of ¹/₈" x ¹/₂" 6061 aluminum beams for weight reduction and strength
 - ¹/₈" x ¹/₂" standard
 - Available at Alro metals
- Upper bracing to mount turret and additional space for CS/CE components
- Gussets and diagonal beams to increase rigidity. Gussets also act as mounting surface for electric motors
- 2ft x 2ft x .42 ft

Final Frame Revision

- Reducing width of beams to a $\frac{1}{4}$ " reduced the weight of the frame to 0.85 lbs, but resulted in a higher displacement. Thickened to original $\frac{1}{2}$ in width for reduced displacement from 0.22mm to 0.08mm from weight and drivetrain forces (FEA)
- Weight: 1.11bs Dimensions: 12" x 12"
- Manufacturing:Welding with use of tig welder and jig fixtures

40

Stress Plot

Displacement Plot

Wheel/Drivetrain Generation and Selection

Originally selected tank drivetrain.

 Researched the slide, mecanum, and swerve drivetrains for their perpendicular movement to "juke" the opponent.

	High	Agility	Inexpensive	Simple	# of
	push			Software	motors
	force				
Tank	x		x	х	1-2
Slide		x	x	х	2-4
Crab	x	x			6-8
Mecanum		x			4

 Slide Drivetrain was chosen for its simple design and inexpensive cost

42

Drivetrain and Wheel Explanation

- Four part assembly of motor, omnidirectional wheels, mount, and screw hub
- Pololu 131:1 Metal Gearmotor 37Dx73L mm with 64 CPR Encoder.
 - Inexpensive at 39.95 per motor
 - Versatile motors
- 100 mm Omni-directional wheels selected

	Price	Motor ready
100 mm RobotShop	19.99	Yes
4" Vex Robotics	17.99	No
55 mm Robotshop	12.49	No
152 mm Robotshop	72.51	Yes

Motor Stall Torque Explanation

- Stall Torque = $W \times \mu \times r$
- Where W is weight on wheel, μ is coefficient of friction, and r is radius of wheel.
- This robot achieves maximum power at about 18.6 lbs.
 - Goal of final design
 - Good starting point; variety allows for easy changes in the future

Dimensions

Size:	37D x 72.5L mm ¹
Weight:	235 g
Shaft diameter:	6 mm

General specifications

Gear ratio:	131:1
Free-run speed @ 6V:	40 rpm ²
Free-run current @ 6V:	250 mA ²
Stall current @ 6V:	2500 mA ²
Stall torque @ 6V:	125 oz∙in <mark>²</mark>
Free-run speed @ 12V:	80 rpm
Free-run current @ 12V:	300 mA
Stall current @ 12V:	5000 mA
Stall torque @ 12V:	250 oz∙in
Lead length:	11 in

Drivetrain Battery

- Duel Universal Smart Charger:
 - 7.2v 12v (#01005) +
 2 pcs Tenergy 7.2V
 NiM H 3800m Ah
 Battery Packs
 - Comes with two batteries and charging unit
 - Will be able to replace battery midbattle if needed

Battery Calculations

At 6V, the motor's stall current is 2500mA. To calculate maximum conditions, we assume all four motors are going to remain in stall the entire round. Provided that this is the case, the total current draw is 2500mA x 4 = 10,000mA

- ▶ The battery chosen has a capacity of 3800mAH
- 3800mAH/10000mA = 0.38 hours
- Theoretical run time under full load= 0.38 hours
- Realistic run time=20 minutes = .33 hours

Battlebot

Video Steaming

Multimedia Frameworks

- ► GStreamer
 - Pipeline-based multimedia framework
 - Compatible with Windows OS
- ► FFMPEG
 - Streaming
- To show boxes around the detected targets
- The video feed will display:
 - Range to target
 - Current algorithm running

ATmega328P microcontroller schematic

Alternative Scenarios: A Case Study

Options if provided with extra \$500:

- ► Faster processor & advanced optics
- More RAM
 - ▶ Pushing 70% RAM usage with current software trials

- Additional NERF gun
- Greater quantity of high quality sensor modalities