

Jeff Mueller, EE Jon Graff, EE Thierry Alerte, CpE Jonathan Schooley, EE

MOTIVATION

- Extra hand in the kitchen
- More time for family and friends
- Good for tailgating
- Better tasting food
- No CO indoor/outdoor
- Cost effective
- Easy to clean

\rightarrow

Component	Parameter	Specification
Grill Burners	Max Temperature	500°F
LCD Screen	Current Draw	700mA
Grill Burners	Current Draw	12A
Rotisserie Speed	Revolutions per min	2 rpm
Temperature Sensors	Max Temperature	750°F
Mobile Wireless Link	Maximum Range	10 meters

SPECIFICATIONS

GOALS AND OBJECTIVES

- A. To accurately measure and display the appropriate temperature to cook food completely and safely using temperature sensors
- B. Have user interface through LCD screen and mobile App
- C. To time and send alerts to the user to let them know when to turn the food over to cook other side using LCD Screen as well as mobile app
- D. To Let the user know when cooking is complete using the LCD Screen & mobile app

GRILL OVERVIEW

Mounted

Temperature Sensors

Rotisserie Motor

Mission - Get variable-temperature for burner & ON/OFF (CW/CCW) control for rotisserie.

Solution - Use a Triac for switching power with simple pulse code for variable-temperature & ON/OFF (CW/CCW) rotisserie control.

• Constraint - use OEM burner & rotisserie features.

Burner Specs

- ~11 Ohms
- rated @115VAC
- 1500W
- up to ~500F but regulated to 450F
- Food cooks 5F / 115s
- To increase ratio Vs=IR -> 2500W?

Burner Element

Burner Terminals

Making things fit OK

\rightarrow

Power System

Motor Specs

- ~2 RPM Synchronous 120VAC motor
- Magnetic Memory
- Triac to control CW/CCW
- 15s motor-relay cycle 10s ON 5s OFF

Rotisserie motor push switch

 Allowed us to figure out the rotisserie toggles CW/CCW

- SSR TRIAC
- Longer lifetime
- Need Heatsink
- Need safety enclosure

FOTEK SSR-25 DA

Input = 3-32 VDC

Output = 24-380 VAC

Max Current = 25A

Op. J.Temp. = 80C = ~180F

Switching ON/OFF Speed = <10ms

Temperature Measurement

Requires (3) Temperature sensors rated to 750[°]F

We chose the Accuon ACU0235 Temperature Probes for:

- Ambient Temperature
- Burner Food Temperature
- Rotisserie/Food Temperature

- (3) Thermistor Temperature Sensors
- (3) 3/32" Panel Mount phone Jacks
- (3) 1M Ω Resistors

- For our project our Thermistor Temperature sensors are **Negative Temperature Coefficient** (NTC) sensors
- As the Temperature 🌣 the Resistance 🌣
- Linear relationship, Not very accurate, Small Temp ranges
- We found using the Steinhart-Hart equation in our coding gave us Greater Accuracy and a Larger Temperature Range

Why use $1M\Omega$ Resistors?

- **75**°F is room temperature
- At 75^{F} the Thermistor Resistance measures $1M\Omega$
- This is **Baseline** for most Thermistors to have resistance at **75**[°]F or room temperature
- A change in voltage between the 1MΩ resistor and the Thermistor Probe is read on the analog pin at the signal line

Prototyping Temperature Sensor Circuit

- When test measurements were taken results very accurate

• •		/dev/cu.usbmod	dem1411 (Arduing	o Leonardo)				
							S	end
currente remperature.	123.00							
Current Temperature:	132.00							
Current Temperature:	141.00							
Current Temperature:	150.00							
Current Temperature:	159.00							
Current Temperature:	167.00							
Current Temperature:	176.00							
Current Temperature:	183.00							
Current Temperature:	188.00							
Current Temperature:	195.00							
Current Temperature:	204.00							
Current Temperature:	212.00							
Current Temperature:	213.00							
Autoscroll				[No line ending	0	9600 baud	0

Temperature Sensor Placement

Rotisserie/Food Temp Sensor

Burner & Ambient Temp Sensors

Temperature Sensor PCB Placement

Temp Sensor Issues

- 3/32" phones jacks difficult to solder to board directly
- Movement caused solder to disconnect jack from board
- Limited space on PCB

Solution

Soldered wires to jacks then soldered wires to board for better connection

Temperature Sensor PCB Placement

<u>Yellow</u>

Ambient Temp Sensor

<u>Red</u>

Burner Temp Sensor

<u>Green</u>

Rotisserie/Food Sensor

- -Primary way for user to interact with the Smart Grill.
- -Main Menu allows user to choose from a variety of food options
- -3 Steps: Preheat/Prep/Cook

Part Number	uLCD-70DT
Price	\$179.95
Supplier	www.sparkfun.com
Screen Size	7in

Grill Preheating

- -Thermometer and red LED digits display burner temperature
- -Green LED digits display time remaining for preheating

<u>Grill Prep</u>

-Enable/Disable rotisserie

Adjust final
cooking temp for
food being made
Place food on
grill with temp
probe inserted

Grill Cooking

- -Monitor current ambient, burner, and food
 - temperatures
- -Estimated time until food needs turned over or is finished

Back of LCD Overview

- -5V,GND,TX,RX,Reset
- -Optional 5V DC Jack
- -2GB Micro SD Card
- -Speaker
- -Programming Header

MOBILE APPLICATION

- Which mobile operating system: Windows, Android, or iOS
 O Winner: Android
- Wireless Connections: ZigBee, Bluetooth, and/or Wi-Fi
 - Winner: Bluetooth
- Features
 - Display Temperatures
 - Display Timers
 - \circ Set emergency alerts
 - \circ $\,$ Create User Accounts: Using Parse Firebase $\,$

WHY ANDROID OVER IOS ... AND OTHERS

- Android makes it easier to constantly update apps
 - Quick feedback from users
- Developer entry
 - Already paid \$25 fee to register for Google Play Store
 - iOS requires \$99 annual fee
- iOS requires a Mac for development
- Android dominate the market share

CLASS DIAGRAM

BLUETOOTH MODULE

Device: BlueSMirf Silver

- FCC Approved Class 2 Bluetooth Radio Modem
- Extremely small radio 0.15x0.6x1.9"
- Very robust link both in integrity and transmission distance (18m)
- Hardy frequency hopping scheme operates in harsh RF environments like WiFi, 802.11g, and Zigbee
- Encrypted connection
- Frequency: 2.4~2.524 GHz
- Operating Voltage: 3.3V-6V
- Serial communications: 2400-115200bps
- Operating Temperature: -40 ~ +70C
- Built-in antenna

Dimensions: 45x16.6x3.9mm

Alternative Module

- HC-06 RS232 TTL
- BLE Mini
- ITEAD BT
- BlueFruit EZ-Link

PCB LAYOUT

<u>Breadboard</u> <u>Prototype</u> <u>View</u>

BLOCK DIAGRAM

 \rightarrow

TESTING

• For **testing purposes** we **cooked a hotdog** on the rotisserie using the Rotisserie/Food Temperature probe

• We used a **stopwatch to measure the time required to cook the hotdog** at a specific temperature interval.

• We started cooking the hotdog at **65°F** and set the cooking temperature to **100°F**

TESTING

- The LCD Temperature value reads in 5°F increments
- Code was written to round the Temperature value up or down to the nearest 5°F.
- Started cooking hotdog at 65°F and set final Temperature at 100°F
- At this rate we determined it takes 1 minute 15 seconds to increase 5°F and it takes 8 minutes and 45 seconds to reach 100°F

<u>Measured Temp & Cook Time</u>

Grill Temperature (℉)	Cook Time (min:sec)		
65	0:00		
70	1:15		
75	2:30		
80	3:45		
85	5:00		
90	6:15		
95	7:30		
100	8:45		

 \rightarrow

TESTING

- Test the BlueSMiRF by changing the device name and searching with a Bluetooth enable device
- Test one sensor and display temperature on arduino serial monitor
- Test mobile connection by changing the text to indicate if connection was successful

WORK DISTRIBUTION

Group Member	Primary Focus	Secondary Focus			
Jeff Mueller	Power Management	PCB			
Jon Graff	Temperature Sensing	Assembly			
Thierry Alerte	Mobile App/Bluetooth	LCD User Interface			
Jonathan Schooley	LCD User Interface/PCB	Temperature Sensing			

BUDGET AND EXPENSES

Part	#	Price/Unit	Total Cost	Part	#	Price/Unit	Total Cost
Grill Housing	1	\$188.00	\$188.00	Android Phone	1	n/a	n/a
Sunfounder UNO	1	\$60.00	\$60.00	LCD Enclosure	1	\$24.12	\$24.13
7" LCD Touchscreen	1	\$179.95	\$179.95	Relays	2	\$30.00	\$60.00
BlueSmirf Module	1	\$24.95	\$24.95	Misc Parts	1	\$25.00	\$25.00
Thermistor	3	\$12.00	\$36.00	2GB SD Card	1	\$5.49	\$5.49
PCB	1	\$60.00	\$60.00	3/32" Temp Jacks	10	\$3.00	\$30.00
Food for Testing	3	\$2.00	\$6.00	Super Glue	1	\$9.00	\$9.00
PCB Components	1	\$15.65	\$15.65	Proposed Budget Actual Cos		I Cost	
USB to LCD Port	1	\$24.95	\$24.95	\$1000.00 \$756.12		6.12	

-Food temperature sensing without cable getting tangled around rotisserie rod

Solution: Change rotisserie motor direction at certain interval so cable never gets wrapped around too far

-Providing accurate estimated cooking times and temperatures to user

Solution: Timed how long it takes for food to increase 5 degrees in temperature then coded it from there

-Sending three temperatures from microcontroller to app

- Serialization: Send as struct or Array or FlatBuffer
- Send temperature one at a time and use a semaphore to correct place in textview
- Convert integers into a binary string, append a character, concatenate and have the app decode it
- -Having the bluetooth work along the LCD screen
- -Parse getting shut down and trying to learn Firebase

QUESTIONS

