

Jeff Mueller, EE Jon Graff, EE Thierry Alerte, CpE Jonathan Schooley, EE

MOTIVATION

- Extra hand in the kitchen
- More time for family and friends
- Good for tailgating
- Better tasting food
- No CO indoor/outdoor
- Cost effective
- Easy to clean

SPECIFICATIONS

Component	Parameter	Specification
Grill Burners	Max Temp	500°F
Mobile Wireless Link	Maximum Range	18 meters
Voltage Regulator	Voltage Drop	9V to 5V
Rotisserie Speed	Revolutions per min	5rpm
Temperature Sensors	Temp Tolerance	∓ 5°F

GOALS AND OBJECTIVES

- A. To accurately measure and display appropriate temperature to cook food completely and safely using temperature sensors
- B. Have user interface through LCD screen and Mobile App
- C. To time and send alerts to the user to let them know when to turn the food over to cook other side using LCD Screen as well as mobile app
- D. Personalize by inputting user settings to preference of the food when it is done cooking (rare, med-rare, welldone) as well as amount of time to cook

Mission - Get variable & ON/OFF control for burner temperature and rotisserie speed.

Solution - Use PWM phase-control signal on a relay for variable temperature/speed.

Constraint - use OEM temperature and rotisserie features each powered by separate single phase power supplies.

Burner

- rated @115VAC
- 1500W
- up to 500F
- Nichrome
- Vs=IR -> 2500W?

Element

Burner Terminals

Bimetal Thermostat

Making things fit OK

Motor Requirements

- 1 5rpm with phase control
- CW/CCW
- Synchronous

Rotisserie motor push switch

 toggles direction every time turned OFF

- SSR TRIAC
- faster but hotter
- DPDT

FOTEK SSR-25 DA

Input = 3-32 VDC

Output = 24-380 VAC

Max Current = 25A

Op. J.Temp. = 80C = ~180F

Switching ON/OFF Speed = <10ms

Temperature Measurement - Requires 3 Temperature sensors

(3) Accuon ACU0235 Temperature Probes

- A. Ambient Temperature
- B. Burner Food Temperature
- C. Rotisserie Food Temperature

- (3) Thermistor Temperature Sensors
- (3) 3/32" Panel Mount phone Jacks
- (3) 1M ohm Resistors

Thermistor - What is it? How is it used?

A Thermistor is a resistor whose resistance is dependant on temperature

$\Delta R = k \Delta T$

- $\Delta \mathbf{R}$ = Change in Resistance
- **△T** = Change in Temperature
- **k** = First order Temperature Coefficient of Resistance

Thermistor - What is it? How is it used?

$\Delta R = k \Delta T$

k = First order Temperature Coefficient of Resistance

If k is positive $R^{\scriptscriptstyle {\rm th}}T^{\scriptscriptstyle {\rm th}}$

Positive Temperature Coefficent (PTC)

If k is negative R^DT^D

Negative Temperature Coefficent (NTC)

Thermistor - What is it? How is it used?

$\Delta R = k \Delta T$

k = First order Temperature Coefficient of Resistance

- For our project our Thermistor Temperature sensors are **Negative Temperature Coefficient** (NTC) sensors
- As the Temperature 🌣 the Resistance 🕈
- Linear relationship, Not very accurate, Small Temp ranges

- We determined we needed;
 - A Larger Temperature Range
 - More Accurate Measurements

Used Steinhart-Hart equation instead as a 3rd order approximation instead of a 1st order approximation.

a, b and c are called the Steinhart-Hart parameters

$$\frac{1}{T} = a + b \ln(R) + c \left(\ln(R)\right)^3 \qquad R = \exp\left[\left(x - \frac{1}{2}y\right)^{\frac{1}{3}} - \left(x + \frac{1}{2}y\right)^{\frac{1}{3}}\right]$$

• We used the Steinhart-Hart equation in our code for the Temperature sensors

tempK = 1 / (0.001129148 + (0.000234125 * tempK) +
(0.0000000876741 * tempK * tempK * tempK))

$$\frac{1}{T} = a + b \ln(R) + c (\ln(R))^3$$

- There is a change in voltage between the resistors where it is read on the analog pin at the signal line
- At $75^{\rm T}$ the Thermistor Resistance measures $1M\Omega$
- This is Baseline for most Thermistors to have a resistance at 75[°]F
- 75°F is room temperature

Temperature Sensor Circuit

- 1M ohm resistor
- 1M ohm Thermistor @75F
- Funduino Uno (prototyping)
- ATmega328 Microcontroller

Temperature Sensor Circuit


```
#include <Math.h>
const int TestLT = 13; //Test LED const int sensorPin = A0; //Temp Sensor int temp; //Temp Variable double
tempK, tempC, tempF;
void setup() {
 // put your setup code here, to run once: Serial.begin(9600); delav(1000);
 digitalWrite(TestLT, HIGH);
}
void loop() {
  // put your main code here, to run repeatedly:
  temp = analogRead(sensorPin); //read sensor pin and save in temp variable
  // get the Kelvin temperature tempK = log(((10240000/temp) - 10000));
  tempK = 1 / (0.001129148 + (0.000234125 * tempK) + (0.000000876741 *
                                                                             tempK * tempK * tempK));
 // convert to Celsius and round to 1 decimal place
  tempC = tempK - 273.15;
  tempC = round(tempC*10)/10;
  // get the Fahrenheit temperature, rounded tempF = (tempC * 1.8) + 32;
  tempF = round(tempF*10)/10;
  Serial.print("Current Temperature: "); //Print the temp text to screen
  Serial.println(tempF); //Print the temp value to screen delay(500); //wait 500ms
}
```


- When test measurements were taken results very accurate

• • •			/dev/cu.usbmc	odem1411 (Ardu	ino Leonardo)				
								s	end
current rei	iperacare.	100.00							
Current Ter	mperature:	132.00							
Current Ter	mperature:	141.00							
Current Ter	mperature:	150.00							
Current Ter	mperature:	159.00							
Current Ter	mperature:	167.00							
Current Ter	mperature:	176.00							
Current Ter	mperature:	183.00							
Current Ter	mperature:	188.00							
Current Ter	mperature:	195.00							
Current Ter	mperature:	204.00							
Current Ter	mperature:	212.00							
Current Ter	mperature:	213.00							
Autoscroll						No line ending	0	9600 baud	1

- -Primary way for user to interact with the Smart Grill.
- -Main Menu allows user to choose from a variety of food options
- -3 Steps: Preheat/Prep/Cook

Part Number	uLCD-70DT
Price	\$179.95
Supplier	www.sparkfun.com
Screen Size	7in

Grill Preheating

- -Thermometer and red LED digits display burner temperature
- -Green LED digits display time remaining for preheating

<u>Grill Prep</u>

-Enable/Disable rotisserie

Adjust final
cooking temp for
food being made
Place food on
grill with temp
probe inserted

Grill Cooking

- -Monitor current ambient, burner, and food
 - temperatures
- -Estimated time until food needs turned over or is finished

Back of LCD Overview

- -5V,GND,TX,RX,Reset
- -Optional 5V DC Jack
- -2GB Micro SD Card
- -Speaker
- -Programming Header

MOBILE APPLICATION

- Which mobile operating system: Windows, Android, or iOS
 O Winner: Android
- Wireless Connections: ZigBee, Bluetooth, and/or Wi-Fi
 - Winner: Bluetooth
- Features
 - Display Temperatures
 - Display Timers
 - \circ Set emergency alerts
 - \circ $\,$ Create User Accounts: Using Parse

WHY ANDROID OVER IOS ... AND OTHERS

- Android makes it easier to constantly update apps
 - Quick feedback from users
- Developer entry
 - Already paid \$25 fee to register for Google Play Store
 - iOS requires \$99 annual fee
- iOS requires a Mac for development
- Android dominate the market share

CLASS DIAGRAM

PARSE

- Database
- Email Verification
- Current User
- Anonymous User
- Secured Information
- Password Reset
- Twitter Login
- Facebook Login
- Google Login
- Push Notification
- Documentation
- Automatically Scaling
- Works Offline

PARSE: January 28, 2017

BLUETOOTH MODULE

Device: BlueSMirf Silver

- FCC Approved Class 2 Bluetooth Radio Modem
- Extremely small radio 0.15x0.6x1.9"
- Very robust link both in integrity and transmission distance (18m)
- Hardy frequency hopping scheme operates in harsh RF environments like WiFi, 802.11g, and Zigbee
- Encrypted connection
- Frequency: 2.4~2.524 GHz
- Operating Voltage: 3.3V-6V
- Serial communications: 2400-115200bps
- Operating Temperature: -40 ~ +70C
- Built-in antenna

Dimensions: 45x16.6x3.9mm

Alternative Module

- HC-06 RS232 TTL
- BLE Mini
- ITEAD BT
- BlueFruit EZ-Link

PCB LAYOUT

<u>Breadboard</u> <u>Prototype</u> <u>View</u>

PCB LAYOUT

<u>Schematic</u> <u>View</u>

BLOCK DIAGRAM

WORK DISTRIBUTION

Group Member	Primary Focus	Secondary Focus		
Jeff Mueller	Power Management	PCB		
Jon Graff	Temperature Sensing	Bluetooth		
Thierry Alerte	Mobile App/Bluetooth	LCD User Interface		
Jonathan Schooley	LCD User Interface/PCB	Temperature Sensing		

BUDGET

17

Part	Quantity	Price/Unit	Total Cost	Part	Quantity	Price/Unit	Total Cost
Grill Housing	1	\$1 74.99	\$174.99	3/32" Connector	3	\$1.26	\$3.78
Funduino UNO	1	\$9.99	\$9.99	DC Barrel Power	1	\$1.96	\$1.96
7" Touchscreen LCD	1	\$1 79.95	\$179.95	22 pF Capacitor	2	\$0.17	\$0.34
Wifi/Bluetooth Shield	1	\$24.95	\$24.95	16MHz Crystal	1	\$0.96	\$0.96
Thermistor	3	\$10.00	\$30.00	USB to Serial	1	\$24.95	\$24.95
Power System		\$1.69	\$16. <mark>4</mark> 0	Bridge			
PCB	1	\$60.00	\$60.00	0.1 mF Capacitor	1	\$0.17	\$0.17
10K Resistor	3	\$0.12	\$0.36	10 uF Capacitor	1	\$0.10	\$0.10
Andraid Dhana	5	ψ0.1Z	ψ0.00	Diode	1	\$0.44	\$0.44
Android Phone	9	n/a	n/a	Total Diamond European (\$004 40L
Food for Testing	10	\$5.00	\$50.00	Total Planned Expenses \$601.			
Breadboard/Wire	1	\$20.00	\$20.00				

 \rightarrow

-Food temperature sensing without cable getting tangled around rotisserie

-Providing accurate estimated cooking times to user

QUESTIONS

