The Super Doubler Group 31

Kenneth Richardson BSCpE Gilson Rodrigues BSEE John Shepherd BSEE Stephen Williams BSEE

Motivation

- Digital TVs have limited analog video support
- Typically only support composite video
- Situation will worsen with time

Analog video (240p) processed by a digital TV Analog video (240p) on a digital TV with a video pre-processor

Video System Compatibility

- Using RGB video output via SCART offers large improvement over composite video
- Need device to bridge the gap between analog SCART and digital HDMI

XRGB mini- Framemeister

Features of the Framemeister

- Improved 240p handling
- Supports SCART
- Fine grain control of image settings

Flaws of the Framemeister

- No dedicated line double mode
- Results in higher latency
- 240p <-> 480i mode switch time
- \$340 shipped

The Super Doubler

- Low cost high-speed scaling device
- Versatile input selection
- Digital video via HDMI output
- Fills gap between cheap scalers and Framemeister
- System firmware can be updated with reprogramming options

Requireme	ents
Scaling fact	$cor \ge 2$
$BOM \le $1!$	50
FPGA block	a latency < 28ms
240p <-> 48	80i mode switch < 33ms
Supported componen ⁻	input: VGA, SCART, t, s-video

Input Signals

- Wide input selection
- Support most common retro consoles
 - SEGA Genesis SCART
 - SEGA Dreamcast VGA
 - Nintendo 64 S-Video
 - etc...

SCART (RGB)

COMPONENT(YPbPr)

S-VIDEO

Input Video Filtering

- 2 3-Channel Input Low Power Video Amp with I2C Control
 - Channels individually configurable
- 5th Order Butterworth Characteristics
 - Configurable cutoff frequency

Texas Instruments - THS7353

THS7353 Low pass filter							
Device Control Method	I2C (Individually configurable)						
Number of channels	3						
Gain(dB)	Adjustable						
Size	$4.4 \times 6.5 \approx 42 \ mm^2$						
Price	\$1.49						

ADV7181D - Video Decoder

- Detects and converts analog video signals to digital format
- Compatibility with various video standards NTSC, PAL and SECAM
- Six analog video input channels
- Accepts: SCART (RGB), Component (YPbPr), S-Video and VGA video signals
- Video decoding and conversion in line-locked clock-based systems

ADV7181 Video decoder

ADV7181						
Family	Interface - Encoders, Decoders, Converters					
Cost	\$12.51					
Category	Integrated Circuits (ICs)					
Voltage - Supply, Analog	3.15 V ~ 3.45 V					
Voltage - Supply, Digital	1.65 V ~ 2 V					
Package / Case	64-LFCSP (9mm x 9mm)					

Scan type - Interlaced

Field 1 + Field 2 = Frame (Complete Image)

Scan type - Progressive

- Single field contains the entire frame
- 1 Field = 1 Frame
- New "Fixed resolution" displays (such as LCD, LED) all use progressive scan.

Interlaced versus Progressive

FPGA Video Processing Unit

- Xilinx Artix-7 FPGA Family
 - Low-cost FPGA giving access to latest tools
 - Wide range of devices to choose from
- Verilog HDL
- Vivado Design software
- Performs video scaling

FPGA Family	Artix-7
Cost	\$32.13 - \$251.25
FPGA Package	Various BGA
Logic Slices	2,600 - 33,650
Block Memory	900Kb – 13.14Mb
PLL	5 - 10

Nexys Video FPGA Development Board

- HDMI Output (1080p capable)
- "Bare metal" HDMI pin access
- Large number of high-speed I/O
- LPC FPGA Mezzanine Connector (FMC)

FPGA	Artix-7 XC7A200T
Cost	\$320
Size	5.25in x 5.50in
FPGA Package	484-BBGA
Logic Slices	33,650
Block Memory	13 Mbits
PLL	10

FPGA Block Diagram

Video Formatting

- FPGA receives video data in 12-bit RGB DDR format
- FPGA needs to reorder data before scaling

Proce	ssor. Format.		Pixel Port Pins [P19:0]																		
a	nd Mode	19	19 18 17 16 15 14 13 12 11 1					10	9	8	7	6	5	4	3	2	1	0			
SDP	Video out 8-bit 4:2:2		YCrCb[7:0] _{out}					-	-	-	-	-	-	-	-	-	-	-	-		
SDP	Video out 10-bit 4:2:2		YCrCb [9:0] _{out}					-	-	-	-	-	-	-	-	-	-				
SDP	Video out 16-bit 4:2:2		Y[7:0] оит – –				-	CrCb[7:0]out					-	-							
SDP	Video out 20-bit 4:2:2		Y[9:0] _{OUT}						CrCb[7:0]оит												
СР	Video out 12-bit 4:4:4 RGB DDR	D7 B[7]↑ R[3]↓	D6 B[6]↑ R[2]↓	D5 B[5]↑ R[1]↓	D4 B[4]↑ R[0]↓	D3 B[3]↑ G[7]↓	D2 B[2]↑ G[6]↓	D1 B[1]↑ G[5]↓	D0 B[0]↑ G[4]↓	-	-	D11 G[3]↑ R[7]↓	D10 G[2]↑ R[6]↓	D9 G[1]↑ R[5]↓	D8 G[0]↑ R[4]↓	-	-	-	-	-	-
СР	Video out 16-bit 4:2:2		CHA[7:0] оит (for example, Y[7:0]) –				-	-		CHB/C	[7:0] ол	(for ex	ample,	, Cr/Cb	o[7:0])		-	-			
СР	Video out 20-bit 4:2:2		CHA[9:0] оит (for example, Y[9:0])						CHB/C[9:0] out	(for exa	ample	, Cr/Cb	o[9:0])							

Video Formatting

12-bit DDR RGB Pixel Data up to 75MHz

Scaling Method

240p Video Scaling

- Pixels duplication for horizontal scaling
- Line duplication for vertical scaling
- Pixel data stored in FPGA Block-RAM

HDMI Output

- HDMI uses 8 FPGA I/O versus 26 for VGA
 - Reduces PCB complexity
- Single Cable for both audio and video
- HDMI signal encoding performed in FPGA logic
 - Reduces BOM and PCB complexity

MCU Integration

Key Responsibilities

- Initialization of video buffer ICs, video decoder (I2C)
- Handling user IR control requests
- File IO for settings save/load
- Reconfiguring input stage ICs per user requests
- On-device feedback via LEDs
- FPGA video processing real time control

Microcontroller Comparison

Device	MSP430	TM4C123	STM32F030	STM32F070	STM32F103
Clock	16 MHz	80 MHz	48 MHz	48 MHz	72 MHz
Bus Width	16 bits	32 bit	32 bit	32 bit	32 bit
Package	Various	LQFP64	LQFP64	LQFP64	LQFP64
Code Mem	16 kB	256 kB	64 kB	128 kB	128 kB
Data Mem	512 B	32 kB	8 kB	16 kB	20 kB
I/O Pins	Up to 24	Up to 43	55	51	51
Timers	2	12+	7	7	7
Price	\$2.80	\$11.00	\$2.11	\$4.70	\$7.14

- MSP430 considered for low cost and prior familiarity
- TM4C123 offers TI ecosystem and tools in a Cortex M4 design
- Several STMicro offerings, all ARM (F0 Cortex M0 and F1 Cortex M3

STM32F070RBT6

- Significant performance gain over MSP430
- Middle-ground in cost-performance
- Extensive peripheral support
 - Up to 51 GPIOs
 - 2 I2C hardware interfaces
 - 4 USART hardware interfaces
 - 2 SPI blocks
 - SWD (Serial Wire Debug) ready via ST-LinkV2
 - ST factory bootloader for program flashing over UART (enabled via single pin jumper configuration)
- Nucleo development boards

12mm x 12 mm

STM32 Development Tools

Nucleo Development Boards

- Full pin breakout from the LQFP64 package
- STLinkV2 emulation for SWD access
- Extremely low cost, typically < \$10
- Available with our specific F070RBT6 MCU

Keil MDK and uVision IDE

- Professional development platform
- Compiler toolchain and RTOS kernel
- Large code size license (256k) for use with STM32 Cortex M0 devices

Reprogramming Options

Serial Wire Debug

- ARM standard programming and debugging interface
- ST provides interface via ST-LinkV2
- Small board footprint, only 5 pins required
- Adapter via Adafruit at right (\$12.50), similar can be had for ~\$5 on ebay
- Nucleo boards can also be configured as programmers

ST Bootloader

- Factory programmed boot option for STM32 devices
- Allows flashing chip via UART interface, no debug
- ST provided Flash Loader Demonstrator application

Microcontroller Interfaces

MCU chief responsibilities are system initialization, integration, and interface control

- GPIOs
 - IR receiver, LEDs, FPGA
- I2C bus
 - Video decoder, video buffers
- SPI
 - uSD in SPI mode
- Reprogramming interfaces
 - SWD, UART-USB via FT232

USB-UART IC (FT232RL)

- Translation from USB <-> UART
- Built in regulator to (optionally) convert logic levels from 5V to 3.3V. Configurable to other logic levels
- Used in previous projects and breakouts on hand
- Small board footprint, approx. 10x8 mm in SSOP-28 package (shown right)
- ~\$4.50

MCU Peripheral Board (Schematic)

System Initialization

- Settings load from uSD
- Input select for video buffers, signal format select and other settings for video decoder (> 100 registers)
- Initialize MCU internal peripherals for IR/Interrupts
- Start main control loop

IR Receiver Configuration

- Interrupts generated on signal transition using timers in input capture mode
- Pulse length measured and used to decode IR stream bits and build IR frame
- Poll for complete IR frame during control loop and handle appropriately

Existing implementation for NEC protocol and supplied remote

Remote Control Interface

Supported Controls:

- Freeze Frame
- Brightness Adjustment
- Contrast Adjustment
- Save Brightness/Contrast to uSD
- Load Brightness/Contrast from uSD
- Reload Default Brightness/Contrast
- Input Selection
- Toggle Scanline Emulation
- Refresh FPGA Sync

Control Summary

- Basic Control Loop
 - Check for user input
 - Update devices accordingly
 - Update relevant status data from special purpose ICs
 - Update output
- LEDs
 - Yellow Decoder detected
 - Red FPGA held in reset

Library Support

STM32 Standard Peripheral Library

- Register configuration abstraction for peripherals (I2C, SPI, Timers, etc)
- Not particularly well documented, existing examples and ecosystems focus on F1 and F4 (Cortex M3 and M4 respectively) devices with different implementation

STM32 EVAL Examples

- Example implementations of extended functionality using STM32 devices
 - e.g. infrared receiver
 - Application notes/guidance on modifying for general purpose

Library Support

FatFS

- FAT implementation for embedded devices
- Provides filesystem abstraction for user application with a handful of user implemented device interface functions
 - disk_status()
 - disk_initialize()
 - disk_read()
 - disk_write()
 - disk_ioctl()
 - get_fattime()
- Interface provided to uSD via SPI interface

A	oplication
Fa	atFs Module
D	evice I/F
St	torage device controls

Device Prototyping

- Initially designed system to incorporate MCU, input buffers, and video decoder on a single PCB
- PCBs prototyped as standalone boards for testing before expected integration
- Three PCBs for testing each major component
 - Video Decoder
 - MCU
 - Video Filter

Analog Video Input PCB

• Front

• Back

Low Pass Filter/Buffer PCB

• Front

• Back

MCU Peripheral Board (Layout)

Board Manufacturing/Assembly

- All boards ordered via OSH Park
- Non hand-solderable components mounted by Quality Manufacturing Services thanks to Sam Hanna
 - ICs, uSD socket, USB socket
- All other components populated using group owned equipment

Challenges

- Significant issues with group-designed video decoder PCB
- Board could not support the required settings for our operation mode (RGB DDR using component processor)
- One setting using standard definition processor worked, but gave erratic behavior
- Decoder output pixel clock performing nothing like expected behavior, extreme effort to modify configuration to produce expected output resulted in no improvements even over new board revisions

Challenges

Example output from Decoder board Pixel Clock

- Should be a consistent 13.5 MHz roughly square wave
- Any setting using the component core results in this output across multiple revisions

Challenges

- Microcontroller programming via UART was designed to function with ST Flash Loader Demonstrator
- Initial testing done with STM32F030RB (almost pin compatible, smaller memory design similar to F070RB
- ST's software appears to have not been updated to support the release of F070 and so doesn't work with our current board
- Video buffer/filter board proved unreliable
- Intermittent communications issues for board configuration
- In proper configuration, arrangement with rest of system resulted in unreliable output or significant alterations of input signals to the point of degrading quality

ADV7181D Development Board

- Known good hardware configuration for testing ADV7181D
- Purchased after initial revisions of video decoder board failed
- Ultimately allowed prototyping of full system to continue
- ~\$600

Super Doubler Output

Composite Output

Super Doubler Output

XRGB-mini Output

Super Doubler Scanlines

Real Scanlines

Estimated Budget

Part Name	Unit Cost	Quantity	Total
Power System Components Set	~\$30	3	\$90
THS 7353 Video Buffer	\$3	3	\$9
AD1871 Audio Decoder	\$10	3	\$30
ADV7181 Video Decoder	\$14	3	\$42
STM32F070RBT6 MCU IC	\$2	3	\$6
Miscellaneous ICs	-	Varies	\$50
Barrel Jacks (RCA, Power, etc)	\$1	10+	\$10
Miscellaneous Jacks	-	Varies	\$50
Miscellaneous Components	-	Varies	\$50
PCB Fab/acquisition	\$50	1	\$50
Enclosure	\$10	1	\$10
Remote/Receiver Components	\$10	1	\$10
SD Card	\$10	1	\$10
Development Boards and Tools	~\$150	Varies	\$150
Total			\$567

Current Expenses

Part Name	Total
THS 7353 Video Buffer	\$9
ADV7181 Video Decoder	\$36
STM32F070RBT6 MCU IC	\$6
Miscellaneous ICs	\$10
Barrel Jacks (RCA, Power, etc)	\$10
Miscellaneous Jacks	\$15
Miscellaneous Components	\$50
PCB	\$300+
Soldering Materials	\$35
Remote/Receiver Components	\$10
SD Card	\$10
Development Boards and Tools	\$1150
Total Budget	\$1650+

Division of Labor

- Stephen: FPGA development, video processing
- Kenneth: MCU interfacing, peripherals, MCU programming
- Gilson: video filtering, video decoder
- Tyler: manufacturing, testing, administrative

Questions?