The Super Doubler Group 31

Kenneth Richardson BSCpE Gilson Rodrigues BSEE John Shepherd BSEE Stephen Williams BSEE

Motivation

- Digital TVs have limited analog video support
- Typically only support composite video
- Situation will worsen with time

Analog video (240p) processed by a digital TV Analog video (240p) on a digital TV with a video pre-processor

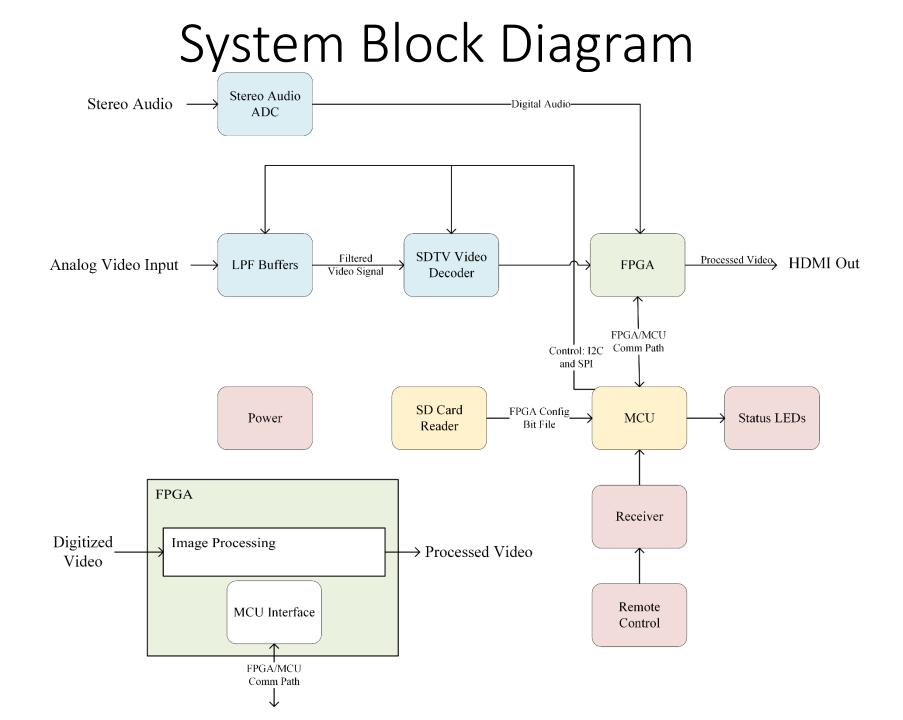
Video System Compatibility

- Using RGB video output via SCART offers large improvement over composite video
- Need device to bridge the gap between analog SCART and digital HDMI

XRGB mini- Framemeister

Features of the Framemeister

- Improved 240p handling
- Supports SCART
- Fine grain control of image settings


Flaws of the Framemeister

- No dedicated line double mode
- Results in higher latency
- 240p <-> 480i mode switch time
- \$340 shipped

The Super Doubler

- Low cost high-speed scaling device
- Versatile input selection
- Digital audio/video via HDMI output
- Fills gap between cheap scalers and Framemeister
- FPGA video scaling hardware design can be updated via SD card

Requirements
Scaling factor ≥ 2
$BOM \leq 150
FPGA block latency < 28ms
240p <-> 480i mode switch < 33ms
Supported input: VGA, SCART, component, s-video

Input Signals

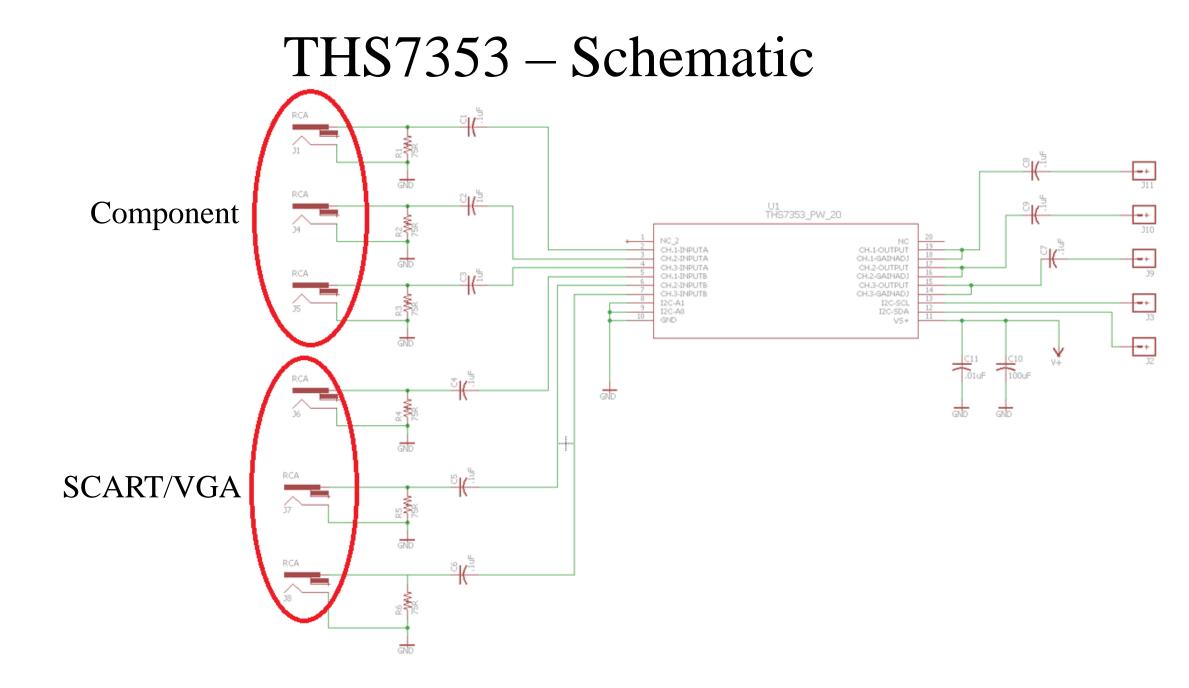
- Wide input selection
- Support most common retro consoles
 - SEGA Genesis SCART
 - SEGA Dreamcast VGA
 - Nintendo 64 S-Video
 - etc...

SCART (RGB)

S-VIDEO

COMPONENT(YPbPr)

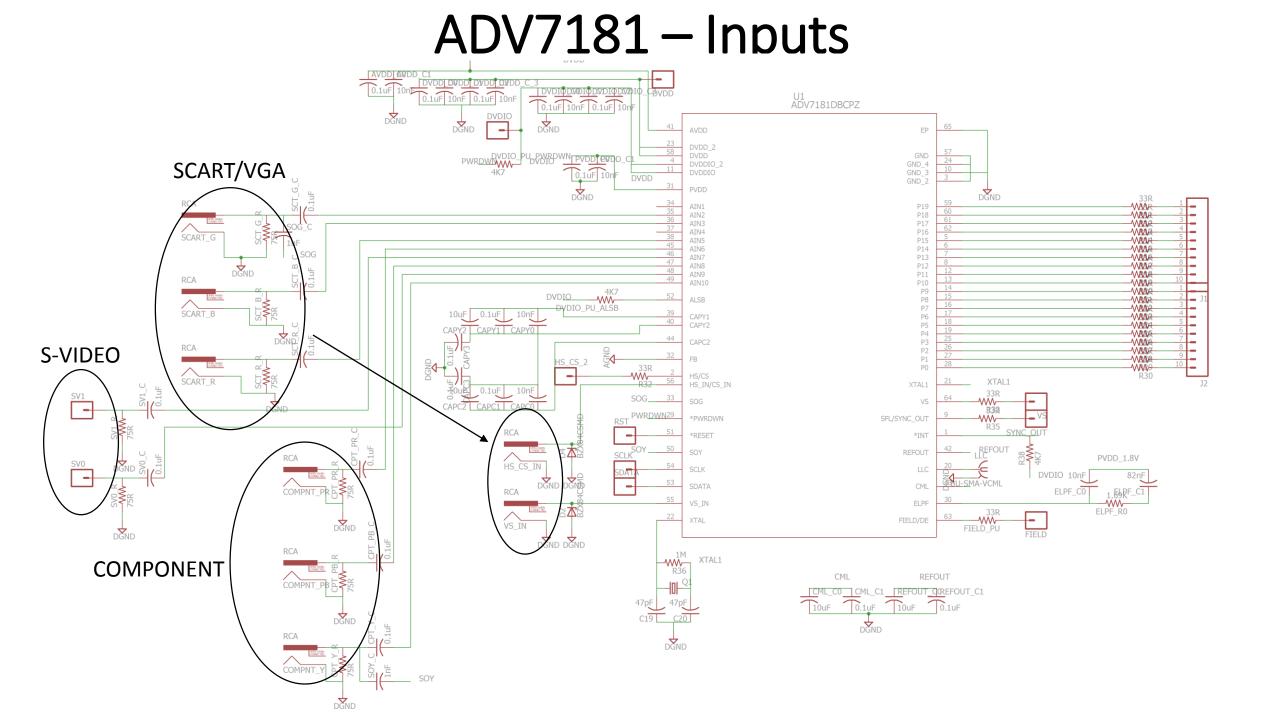
VGA 🧕


Input Video Filtering

- 2 3-Channel Input Low Power Video Amp with I2C Control
 - Channels individually configurable
- 5th Order Butterworth Characteristics
 - Configurable cutoff frequency

Texas Instruments - THS7353

THS7353 Low pass filter									
Device Control Method	I2C (Individually configurable)								
Number of channels	3								
Gain(dB)	Adjustable								
Size	$4.4 \times 6.5 \sim 42 \ mm^2$								
Price	\$1.49								


ADV7181 - Video Decoder

- Detects and converts analog video signals to digital format
- Compatibility with various video standards NTSC, PAL and SECAM
- Six analog video input channels
- Accepts: SCART (RGB), Component (YPbPr), S-Video and VGA video signals
- Video decoding and conversion in line-locked clock-based systems

ADV7181 Video decoder

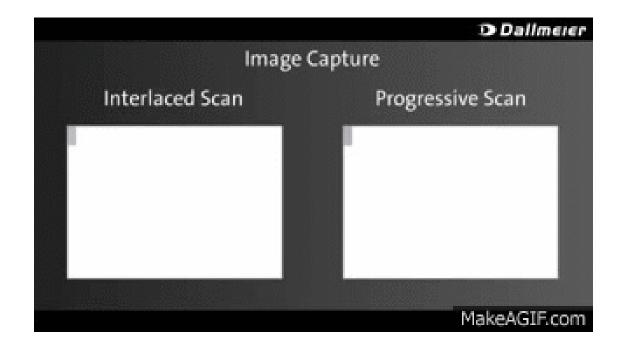
ADV7181							
Family	Interface - Encoders, Decoders, Converters						
Cost	\$12.51						
Category	Integrated Circuits (ICs)						
Voltage - Supply, Analog	3.15 V ~ 3.45 V						
Voltage - Supply, Digital	1.65 V ~ 2 V						
Package / Case	64-LFCSP (9mm x 9mm)						

AD1871 – Audio Decoder

- 5.0 V Stereo Audio ADC
- Supports 96 kHz Sample Rate
- I2S audio data interface support
- Programmable-Gain Amplifier
- SPI compatible serial control port

AD1871							
Family	Data Acquisition - ADCs/DACs - Special Purpose						
Cost	\$10.27						
Mounting Type	Surface Mount						
Package / Case	28-SSOP (10.50 x 8.20 mm)						
Resolution	24 bits						
Data Interface	SPI						


Scan type - Interlaced


Field 1 + Field 2 = Frame (Complete Image)

Scan type - Progressive

- Single field contains the entire frame
- 1 Field = 1 Frame
- New "Fixed resolution" displays (such as LCD, LED) all use progressive scan.

Interlaced versus Progressive

FPGA Audio/Video Processing Unit

- Xilinx Artix-7 FPGA Family
 - Low-cost FPGA giving access to latest tools
 - Wide range of devices to choose from
- Verilog HDL
- Vivado Design software
- Performs video scaling
- Manages digital audio data

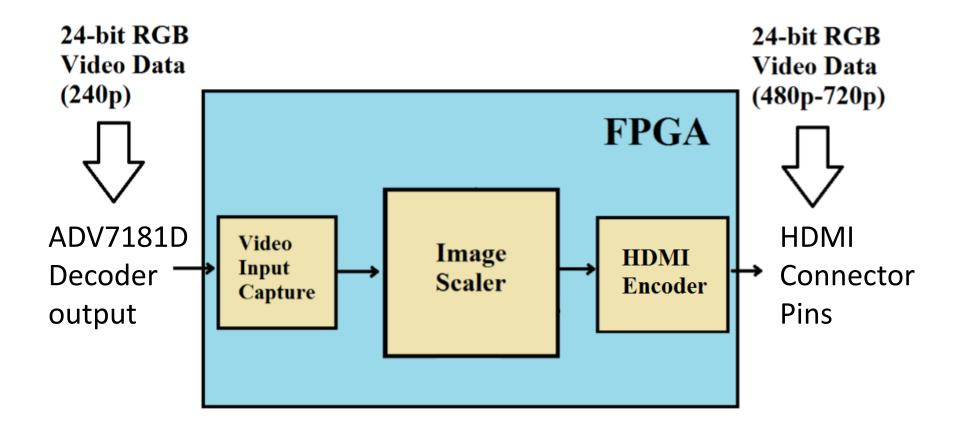
FPGA Family	Artix-7
Cost	\$32.13 - \$251.25
FPGA Package	Various BGA
Logic Slices	2,600 - 33,650
Block Memory	900Kb – 13.14Mb
PLL	5 - 10

Nexys Video FPGA Development Board

- HDMI Output (1080p capable)
- "Bare metal" HDMI pin access
- Large number of high-speed I/O
- LPC FPGA Mezzanine Connector (FMC)

FPGA	Artix-7 XC7A200T
Cost	\$320
Size	5.25in x 5.50in
FPGA Package	484-BBGA
Logic Slices	33,650
Block Memory	13 Mbits
PLL	10

FMC I/O Access

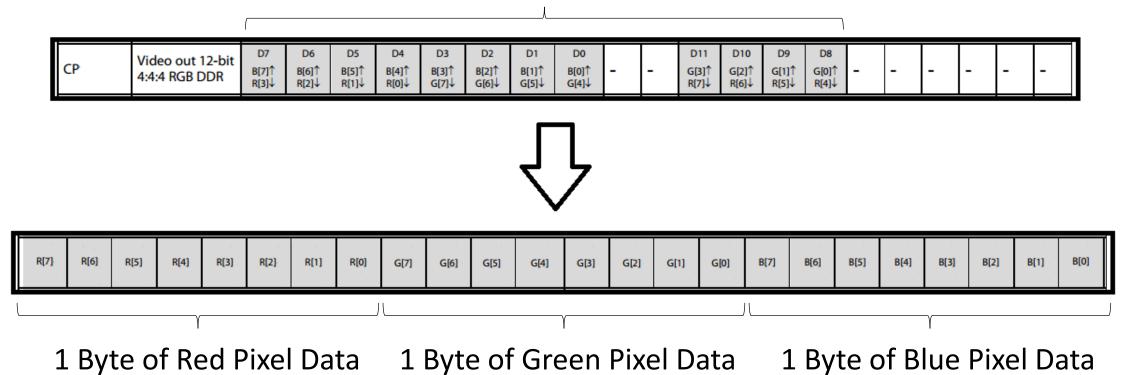


XM105 Debug Card

- Gives access to FPGA FMC I/O
- Dedicated clock I/O
- Supports multiple I/O standards
- Signal breakout for debugging

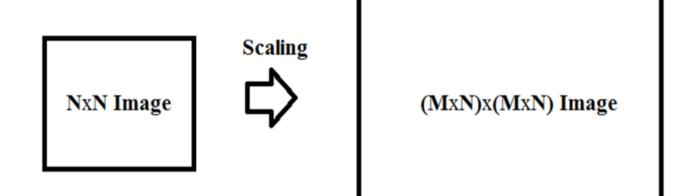
Cost	\$182.50
Size	4.50in x 2.75in
I/O	68 accessible
Oscillator	Si570, 10 – 945MHz

FPGA Block Diagram

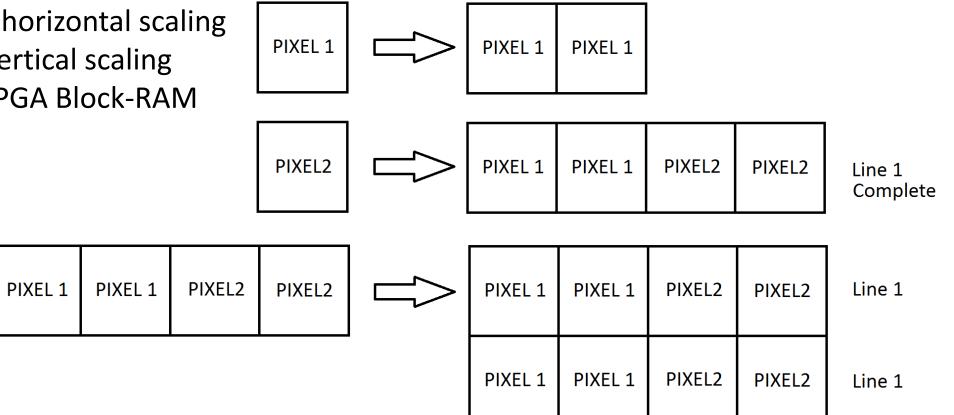

Video Formatting

- FPGA receives video data in 12-bit RGB DDR format
- FPGA needs to reorder data before scaling

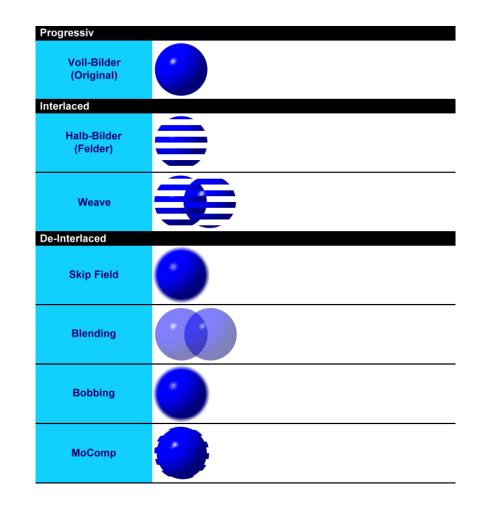
Proce	essor, Format,	Pixel Port Pins [P19:0]																			
	and Mode	19	19 18 17 16 15 14 13 12 11 10							9	8	7	6	5	4	3	2	1	0		
SDP	Video out 8-bit 4:2:2		YCrCb[7:0]out						-	-	-	-	-	-	-	-	-	-	-	-	
SDP	Video out 10-bit 4:2:2		YCrCb [9:0]out					-	-	-	-	-	-	-	-	-	-				
SDP	Video out 16-bit 4:2:2		Y[7:0] out						-	СrCb[7:0] _{оит} – –						-					
SDP	Video out 20-bit 4:2:2		Y[9:0] out							CrCb[7:0] _{оит}											
СР	Video out 12-bit 4:4:4 RGB DDR	D7 B[7]↑ R[3]↓	D6 B[6]↑ R[2]↓	D5 B[5]↑ R[1]↓	D4 B[4]↑ R[0]↓	D3 B[3]↑ G[7]↓	D2 B[2]↑ G[6]↓	D1 B[1]↑ G[5]↓	D0 B[0]↑ G[4]↓	-	-	D11 G[3]↑ R[7]↓	D10 G[2]↑ R[6]↓	D9 G[1]↑ R[5]↓	D8 G[0]↑ R[4]↓	-	-	-	-	-	-
СР	Video out 16-bit 4:2:2		CHA[7:0] оит (for example, Y[7:0]) – –						CHB/C	[7:0] ou	r (for ex	ample	, Cr/Cl	o[7:0])		-	-				
СР	Video out 20-bit 4:2:2		CHA[9:0] оит (for example, Y[9:0])					-			CHB/C	[9:0] олт	(for ex	ample	, Cr/Cl	o[9:0])	-				


Video Formatting

12-bit DDR RGB Pixel Data up to 75MHz

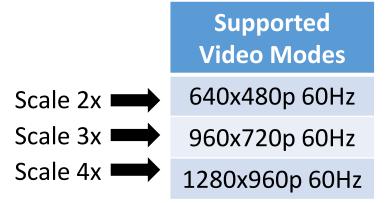

Scaling Methods

- Video sources dynamically change video output between 240p and 480i
- 240p for fast motion, 480i for static menus
- Require mode for interlaced and mode for progressive content
- FPGA must be able to quickly switch between scaling modes


240p Video Scaling

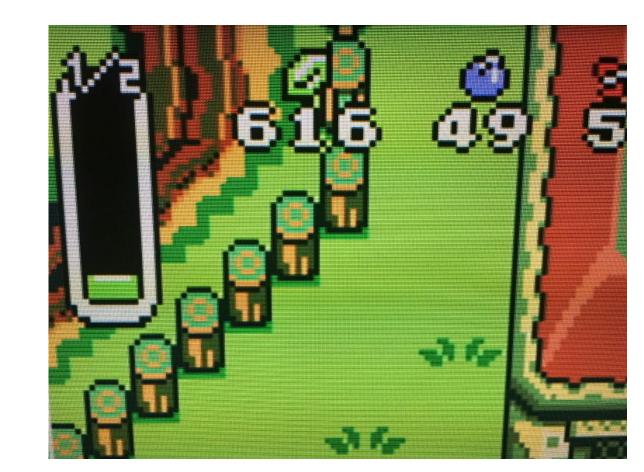
- Pixels duplication for horizontal scaling
- Line duplication for vertical scaling
- Pixel data stored in FPGA Block-RAM

Dealing with 480i


- No ideal deinterlacing algorithm for field sequences with fast motion
- Luckily game consoles typically use 480i for static things like menus
- Therefore we choose method based on computational requirements, the lower the better
- Blending and bobbing will be supported

HDMI Output

- HDMI uses 8 FPGA I/O versus 26 for VGA
 - Reduces PCB complexity
- Single Cable for both audio and video
- HDMI signal encoding performed in FPGA logic
 - Reduces BOM and PCB complexity



Scaling and HDMI Test

Gameboy Advance: 15-bit RGB 240x160p

HDMI: "line doubled" 15-bit RGB 480x320p

MCU Integration

Key Responsibilities

- FPGA programming from binary config file on uSD card
- Initialization of video buffer ICs, video decoder (I2C) and audio decoder (SPI)
- Handling user IR control requests
- Reconfiguring input stage ICs per user requests
- On-device feedback via LEDs

Microcontroller Comparison

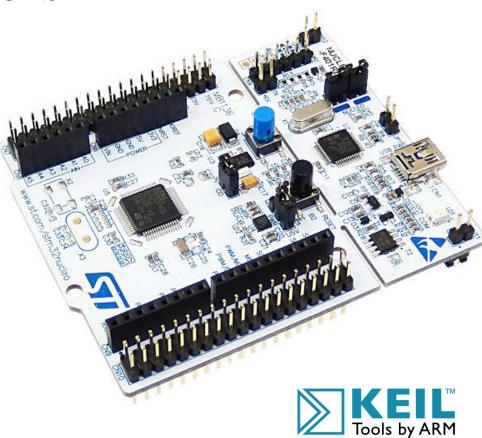
Device	MSP430	TM4C123	STM32F030	STM32F070	STM32F103
Clock	16 MHz	80 MHz	48 MHz	48 MHz	72 MHz
Bus Width	16 bits	32 bit	32 bit	32 bit	32 bit
Package	Various	LQFP64	LQFP64	LQFP64	LQFP64
Code Mem	16 kB	256 kB	64 kB	128 kB	128 kB
Data Mem	512 B	32 kB	8 kB	16 kB	20 kB
I/O Pins	Up to 24	Up to 43	55	51	51
Timers	2	12+	7	7	7
Price	\$2.80	\$11.00	\$2.11	\$4.70	\$7.14

- MSP430 considered for low cost and prior familiarity
- TM4C123 offers TI ecosystem and tools in a Cortex M4 design
- Several STMicro offerings, all ARM (F0 Cortex M0 and F1 Cortex M3

STM32F070RBT6

- Significant performance gain over MSP430
- Middle-ground in cost-performance
- Extensive peripheral support
 - Up to 51 GPIOs
 - 2 I2C hardware interfaces
 - 4 USART hardware interfaces
 - 2 SPI blocks
 - SWD (Serial Wire Debug) ready via ST-LinkV2
 - ST factory bootloader for program flashing over UART (enabled via single pin jumper configuration)
- Nucleo development boards

12mm x 12 mm


STM32 Development Tools

Nucleo Development Boards

- Full pin breakout from the LQFP64 package
- STLinkV2 emulation for SWD access
- Extremely low cost, typically < \$10
- Available with our specific F070RBT6 MCU

Keil MDK and uVision IDE

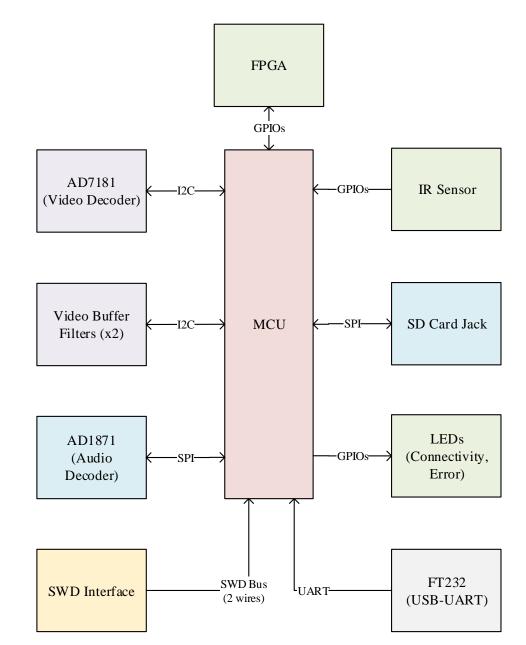
- Professional development platform
- Compiler toolchain and RTOS kernel
- Large code size license (256k) for use with STM32 Cortex M0 devices

Reprogramming Options

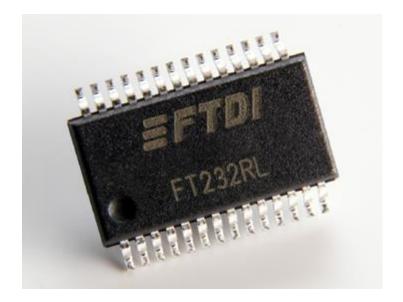
Serial Wire Debug

- ARM standard programming and debugging interface
- ST provides interface via ST-LinkV2
- Small board footprint, only 5 pins required
- Adapter via Adafruit at right (\$12.50), similar can be had for ~\$5 on ebay
- Nucleo boards can also be configured as programmers

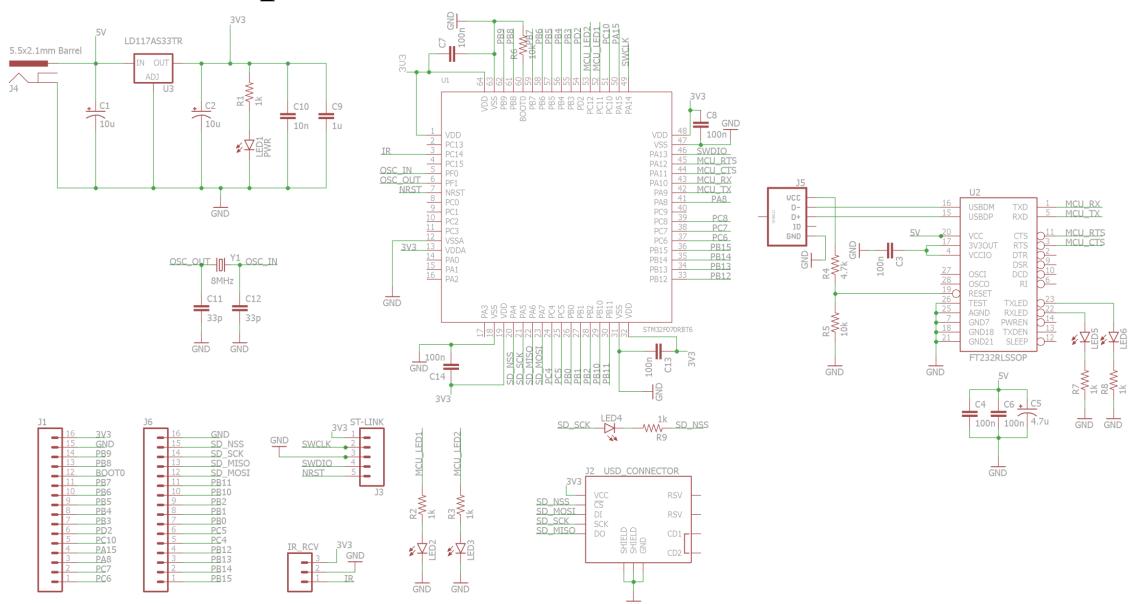
ST Bootloader


- Factory programmed boot option for STM32 devices
- Allows flashing chip via UART interface, no debug
- ST provided Flash Loader Demonstrator application

Microcontroller Interfaces

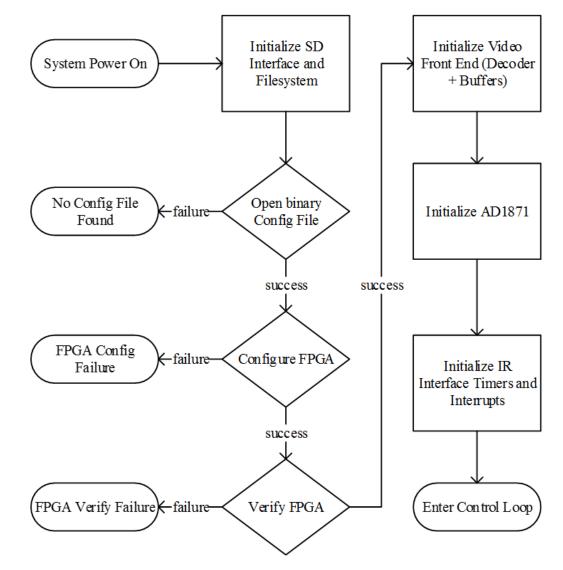

MCU chief responsibilities are system initialization, integration, and interface control

- GPIOs
 - IR receiver, LEDs, FPGA
- I2C bus
 - Video decoder, video buffers
- SPI
 - Audio decoder, uSD in SPI mode
- Reprogramming interfaces
 - SWD, UART-USB via FT232



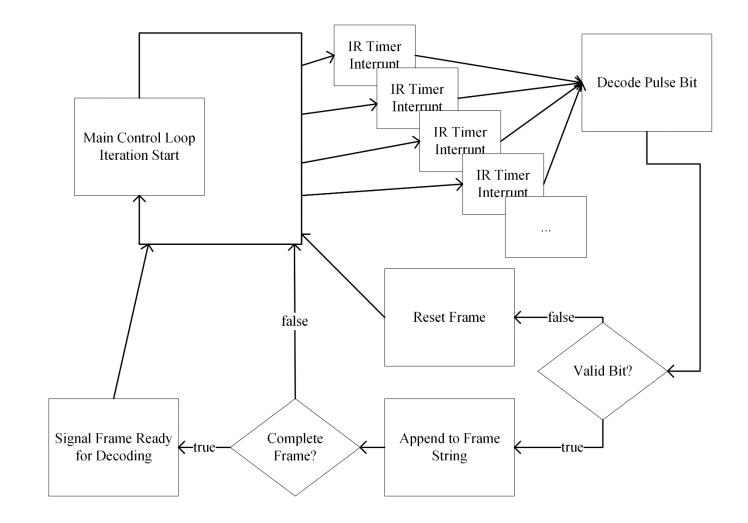
USB-UART IC (FT232RL)

- Translation from USB <-> UART
- Built in regulator to (optionally) convert logic levels from 5V to 3.3V. Configurable to other logic levels
- Used in previous projects and breakouts on hand
- Small board footprint, approx. 10x8 mm in SSOP-28 package (shown right)
- ~\$4.50


MCU Peripheral Board (Schematic)

System Initialization

- FPGA programming via slave serial method described in XAPP583
- Input select for video buffers, signal format select and other settings for video decoder (> 100 registers)
- Serial data format, mute control, etc for audio decoder


Failure modes indicated by LEDs

IR Receiver Configuration

- Interrupts generated on signal transition using timers in input capture mode
- Pulse length measured and used to decode IR stream bits and build IR frame
- Poll for complete IR frame during control loop and handle appropriately

Existing implementations for RC5 and SIRC, modifications to support other protocols

Control Summary

- Basic Control Loop
 - Check for user input
 - Update devices accordingly
 - Update relevant status data from special purpose ICs
 - Update output

•

. . .

Decode IR Iteration Start Command Signal FPGA Update Decoders Update Buffers Update Device Refresh IC Statuses Displays (LEDs)

Library Support

STM32 Standard Peripheral Library

- Register configuration abstraction for peripherals (I2C, SPI, Timers, etc)
- Not particularly well documented, existing examples and ecosystems focus on F1 and F4 (Cortex M3 and M4 respectively) devices with different implementation

STM32 EVAL Examples

- Example implementations of extended functionality using STM32 devices
 - e.g. infrared receiver
 - Application notes/guidance on modifying for general purpose

Library Support

FatFS

- FAT implementation for embedded devices
- Provides filesystem abstraction for user application with a handful of user implemented device interface functions
 - disk_status()
 - disk_initialize()
 - disk_read()
 - disk_write()
 - disk_ioctl()
 - get_fattime()
- Interface provided to uSD via SPI interface

4	Application
1	FatFs Module
1	Device I/F
;	Storage device controls

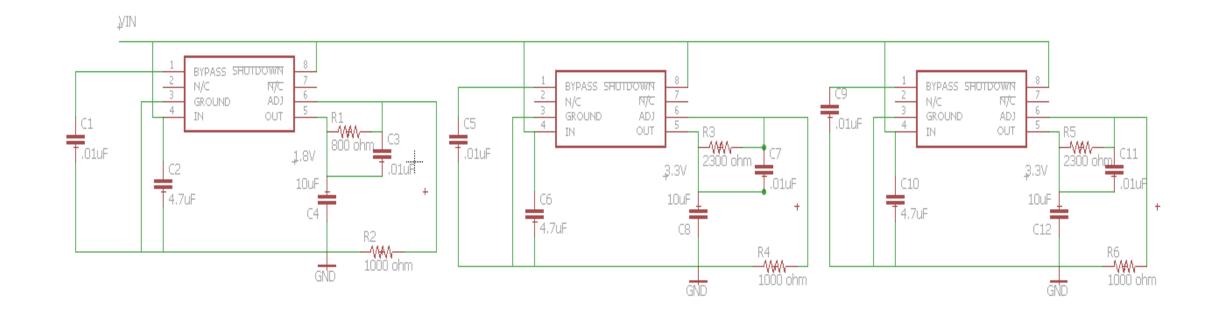
Power Considerations

The Super Doubler requires a well maintained DC power supply

- Digital circuits are very NOISY.
- Analog circuits are very sensitive to noise.
- Supplies and Grounds of Analog and Digital circuits will be seperated from each other.
- Physical challeges arise when providing power to devices using multiple power supplies (Board space).
- Many mixed signal IC's require power sequencing to prevent damage to the chip.
- Switching versus linear regulation

AC-DC wall adapter

- 5 Volt 3 Amp Power Adapter.
- 2.1mm X 5.5mm plug.
- Used to power prototype PCB's and final PCB.
- \$11.96

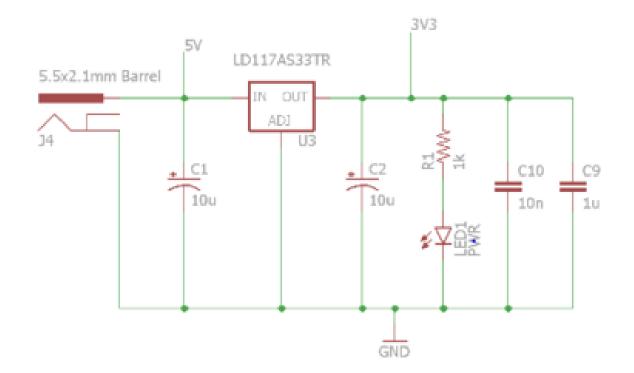


Analog Video Input Board

- Board used for prototyping Analog Devices ADV7181 Video Decoder
- 5 Volt input
- 3.3 Volt and 1.8 Volt Analog and Digital supplies

Supply	Level
Digital Core Supply Voltage	1.8V
Digital I/O Supply Voltage	3.3V
PLL supply Voltage	1.8V
Analog supply Voltage	3.3V

Analog Video Input Board Power Schematic.



MCU Board

- Board used for prototyping
- 5 Volt input
- 5 Volt and 3.3 Volt supplies

Supply	Value	
STM32F070RBT6 MCU	Analog 3.3V, Digital 3.3V	
FT232RL USB <-> UART	5V	
IR Receiver, MicroSD.	3.3V	

MCU Board Power Schematic

Final PCB

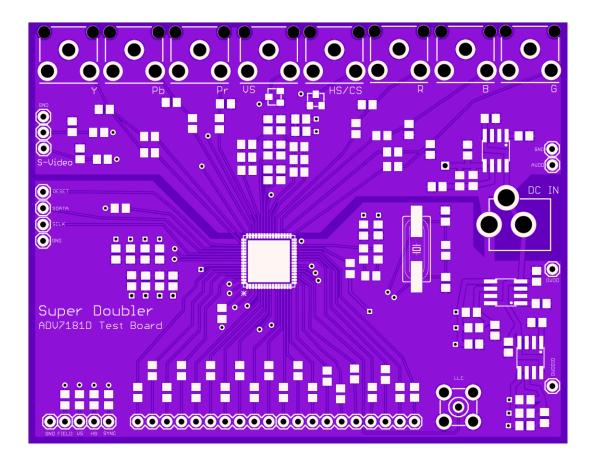
- Prototype boards will be integrated into one final PCB.
- Appropriate systems will share power supplies.
- Appropriate supplies will be sequenced to ensure system stability and safety.

LP3878-adJ Low-Dropout Regulator

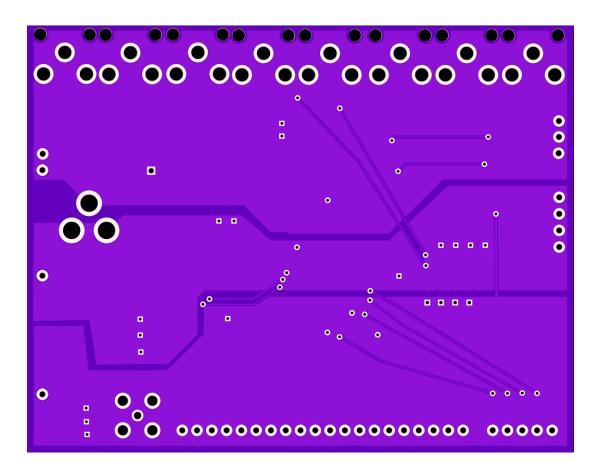
- Input Supply Voltage: 2.5 V to 16V.
- Output Voltage Range: 1 V to 5.5 V.
- 4.89mm × 3.90mm SO-PowerPad (8).
- Precise, low noise output voltage.
- Easy implementation / "Ceramic Stable".
- \$1.96

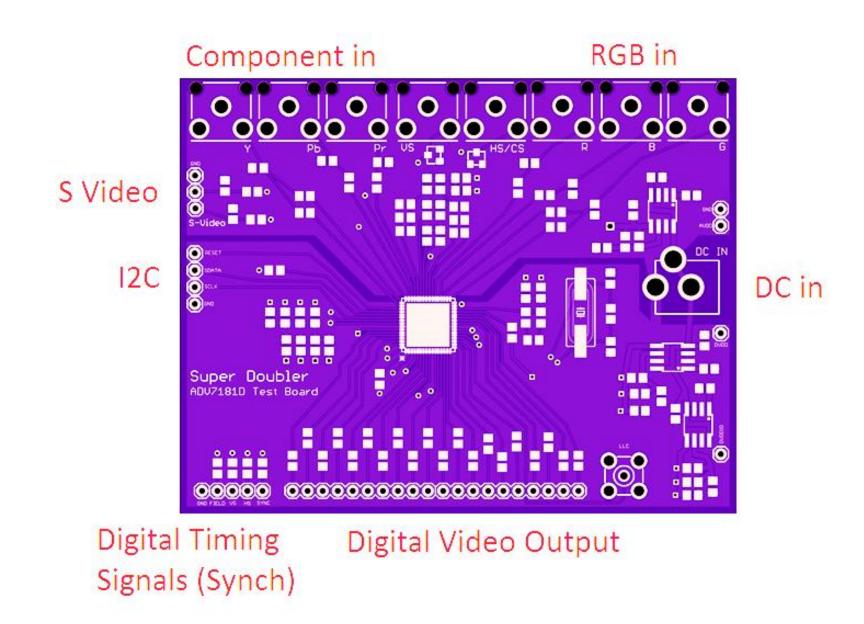

TPS54527 Synchronous Step-Down Converter

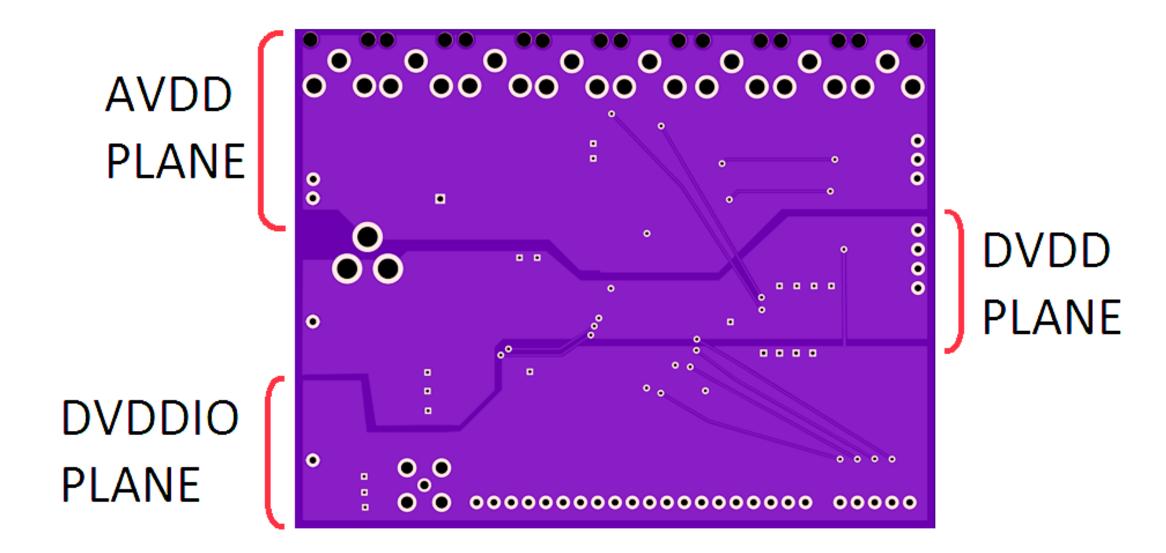
- Input voltage range: 4.5V to 18V.
- Output Voltage Range: 0.76 V to 6 V.
- Regulator to be used to power systems with substantial noise immunity (digital circuits).
- 4.5mm X 6mm DDA (8) package
- \$3.25

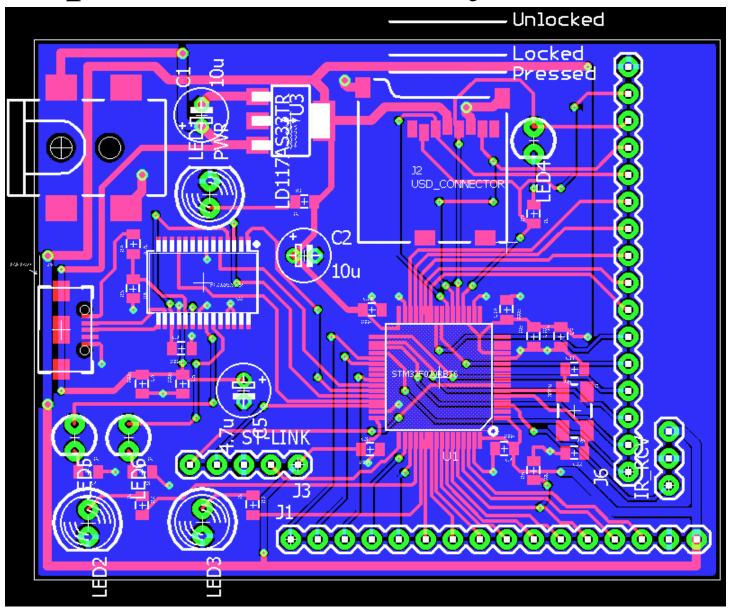

LM3880 Power Sequencer

- Input Voltage Range of 2.7 V to 5.5 V
- 3 Channel power Sequencer
- Power-Up and Power-Down Control
- Sends flags to enable inputs of regulators.
- 2.9mm X 1.6mm DDA (8) package
- \$1.42




Analog Video Input PCB


• Front


• Back

MCU Peripheral Board (Layout)

Final PCB Summary


- Protypes will be integrated
- Audio Chip will be integrated
- Final unit will connect to FPGA via FMC connector

Device enclosure

- 5.50 x 5.25 x 1.63 in.
 - Other sizes available
- \$9.31 from polycase.com

Current Progress

Estimated Budget

Part Name	Unit Cost	Quantity	Total
Power System Components Set	~\$30	3	\$90
THS 7353 Video Buffer	\$3	3	\$9
AD1871 Audio Decoder	\$10	3	\$30
ADV7181 Video Decoder	\$14	3	\$42
STM32F070RBT6 MCU IC	\$2	3	\$6
Miscellaneous ICs	-	Varies	\$50
Barrel Jacks (RCA, Power, etc)	\$1	10+	\$10
Miscellaneous Jacks	-	Varies	\$50
Miscellaneous Components	-	Varies	\$50
PCB Fab/acquisition	\$50	1	\$50
Enclosure	\$10	1	\$10
Remote/Receiver Components	\$10	1	\$10
SD Card	\$10	1	\$10
Development Boards and Tools	~\$150	Varies	\$150
Total			\$567

Current Expenses

Part Name	Total
Power System Components Set	\$10
THS 7353 Video Buffer	\$9
AD1871 Audio Decoder	\$30
ADV7181 Video Decoder	\$36
STM32F070RBT6 MCU IC	\$6
Miscellaneous ICs	\$10
Barrel Jacks (RCA, Power, etc)	\$10
Miscellaneous Jacks	\$15
Miscellaneous Components	\$50
РСВ	\$55
Soldering Materials	\$35
Remote/Receiver Components	\$10
SD Card	\$10
Development Boards and Tools	\$550
Total Budget	\$836

Division of Labor

- Stephen: FPGA development, video processing
- Kenneth: MCU interfacing, peripherals, MCU programming
- Gilson: video filtering, video decoder, audio decoder
- Tyler: power, manufacturing, testing, administrative

Questions?