
Tamper Automated Alert Gadget

(T.A.A.G)

Aiman Salih, Daniel Gibney and Leaphar Castro

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816

Abstract — An implementation of a security system for
household items which demonstrates the use of modern
Internet Of Things technologies is presented. The system

works by providing a small standalone device which, after
being set up through the user’s mobile device, can be
unobtrusively attached to a household item. Upon either

motion of the item or change of light around the item, the
device provides a notification to the user’s mobile device via a
web server in the cloud. The architecture of this system is

described in detail as well as the underlying motivation for the
design decisions made. The design presented here focuses
heavily on security, not only with regards to the systems stated

purpose of providing physical security, but also in the security
of information communicated by elements of the system.
Secure ways of transmitting information from the mobile

device to the detector device during the setup phase are
explored.

Index Terms — Tampering device, Detector, Tampering
event, IOT.

I. INTRODUCTION

 As a standalone product, the Tamper Automated Alert

Gadget can provide the user a novel and convenient way of

protecting some of their everyday objects found around the

household. These may range from the serious, for instance,

pharmaceuticals, a safe, or a gun cabinet, to the mundane

items, like a roommate’s goal of preventing someone from

eating all of their breakfast cereal. The goal here is to solve

all of these problems. This can be done by building a

wireless, low cost, and easy to use tamper detection system

which can be placed on a variety of items and can notify

you on your phone when that item has been interacted with.

A major application of this technology may be for parents

who are concerned with which items their children are

interacting with. The ability to know that your child has just

picked up or moved something they're not supposed to

would seem to be a thing of value to the concerned parent.

As such, the system should be consumer friendly and not

require much, if any, networking knowledge to set up and

should then require minimal interaction to maintain. Its user

interface should be easily understood as well.

 The data that are being sent in this system are

analogous to the data that can be transmitted in an IOT

system that would be used in a hospital. For instance, the

EKG information of a very important social or political

figure may be needed by their physician to constantly

monitor their condition especially if they have a tendency

for suddenly falling ill. As such, the information that is

being received by the physician in the hospital's computer

database must be communicated securely to protect it from

potential hackers that may want to steal some of this

important person’s medical information. This shows the

importance of software security and encryption in IOT

systems and the need to protect them from vulnerability.

The system in this senior design project is designed to give

an example of such a system.

 The remainder of this paper will give insight on the

systems design and operation, including the systems

hardware components and its software components.

Additionally, some of the methodologies that were used to

complete and test the project are described.

II. OVERALL SYSTEM DESIGN

At a system level, the project can be broken down into

the following major modules:

• Detector: This is the device placed on the user's

item of interest. Small and battery powered, this is a device

the user sets up by syncing it with their mobile phone or

tablet. This is also where all of the hardware integration for

this project was done.

• Web Service/Database: This is an application

running in the cloud. It is what the detector communicates

with in order to have notifications sent to the user. The web

service also logs internally all of the notifications sent out

by any detector and information regarding which user the

notification was for.

• Mobile application: The mobile application serves

as the user interface for the whole system. It is the tool for

the user to set up the detector, allowing the detector to

connect to the Wi-Fi network. It allows the user to program

the detector with their desired sensitivity settings for

detecting tampering. Notifications are received through this

application as well.

Figure 1 shows a block diagram of the system

architecture.

III. HARDWARE SYSTEM COMPONENTS

The entirety of the components that were used in this

system were circuited together. A single PCB was designed

making one concise circuit board for the entire detector

system.

Figure 2 shows a block diagram of the hardware.

A. Microcontroller- CC3200

With how our system is meant to be applied and

accomplished (IOT application, with Wi-Fi connectivity)

our search led us to an ideal candidate microcontroller, the

Texas Instruments' CC3200 SimpleLink™ Wi-Fi® and

Internet-of-Things solution, a Single-Chip Wireless MCU.

This MCU comes with its own Wi-Fi module embedded,

which prevented us from needing a dedicated module for

that purpose. This contributed to a compact system design.

Below are some of the MCU’s key features most relevant

for this project [5]:

 A dedicated Wi-Fi Network Processor: This was

useful for the reasons that are given above. And,

besides preventing an additional hardware module

from being needed, it offloads Wi-Fi and Internet

Protocols from the application microcontroller

leaving it free to do work for our application. The

software library support for networking the

CC3200, called SimpleLink, also provides for

easy, autonomous Wi-Fi connections.

 Embedded Memory:

o RAM (Up to 256KB)

o External Serial Flash Bootloader, and

o Peripheral Drivers in ROM

In particular, the ROM is required to store

information when the microcontroller is placed in

hibernation mode and information stored in RAM

is no longer retained, this is explained more in the

microcontroller software section.

B. Light and Motion sensing

Light sensing: The system employs a TAOS TSL2561,

which is an all in one light sensing circuit that employs a

light diode network in order to sense light. It is easy to use

and employs the usage of internal registers in order to

configure different parts of it. The IC contains within it the

light diode with the passive and active (namely MOSFETs

for amplification) elements surrounding it, a small scale

voltage regulator, and an analog to digital converter.

Motion sensing: The system employs the Bosch BMA222

3-axis digital accelerometer, which is able to detect

acceleration in all three planar axes. It is loaded with

registers which are used for programing the different

configuration settings. The accelerometer also has the

ability to generate interrupts, which can be very useful in

maintaining the system’s low power design by allowing the

MCU (the greatest source of power consumption in the

system) to go into sleep power mode.

C. Battery

The best option among the battery technologies we

looked into was a Lithium Polymer (LiPo) battery. They are

very useful in embedded electronics and small projects such

as ours. They also are said to have the highest density

available in the market. This technology can be found

predominately in cell phones, therefore is easy to find in the

market and can be found at a reasonable price. They also

require special charging units and not having the correct

one could be harmful for the battery, as well as the system

if your battery isn’t performing like it supposed to. The

LiPo battery has a low internal discharge rate. This means

that this makes them a good choice for low power

requirement projects such as our project that has to run for

many days consecutively. These batteries also can source

multiple amps continuously giving it major points as a

choice for our project. The short circuit protection feature

Figure 1: Overall System Block Diagram

Figure 2: Overall Hardware Block Diagram

that it has built in detects when there is a short in the system

and will automatically shut off the system

Power Monitoring system: The battery monitoring system

is a key element to producing a low maintenance device

with low power design. This will be helpful when you have

multiple devices connected to a network; instead of going

to each individual device and checking each battery to make

sure it has been charged one can use the battery monitoring

system. It would be beneficial to the user if a monitoring

system was in place in order to check for you charge, life,

and error in the system. This could relay the information

back to the user through their mobile device. This type of

system will be a key part of our project design because of

its capability to monitor the battery functionality and report

back any issues back to the user without the user ever

having to take apart the device and physically check.

Ensuring that the battery is working properly and charged

to its specified specifications to maximize the battery life of

the device. This battery management IC chip meets all of

our standards, requirements and would definitely save us

time in having to design and build the entire system

ourselves. [4] The single series cell Li-Ion battery fuel

gauge can be found on our board. With Patented Impedance

Track technology with the possibility to send reports of

remaining capacity, the state of charge (SOC), and time-to-

empty.

D. Battery Protection

After investing hours on designs for our project, we

wouldn’t want to have our battery, which is going to be

powering our system to suddenly cause harm to itself or our

system. The BQ29700 battery cell protection device

provides an accurate monitor and trigger threshold for

overcurrent protection for the duration of high

discharge/charge current operation or battery overcharge

conditions. The device provides the protection functions for

Li-Ion/Li-Polymer cells, and monitors across the external

power FETs for protection due to high charge or discharge

currents. In addition, there is overcharge and depleted

battery monitoring and protection. These features are

implemented with low current consumption in the normal

mode of operation. There is also a timer delay for the

recovery period once the threshold for recovery condition

is satisfied. These parameters are fixed once they are

programmed. There is also a feature called zero voltage

charging that enables depleted cells to be charged to an

acceptable level before the battery pack can be used for

normal operation. Zero voltage charging is allowed if the

charger voltage is above 1.7 V.

Charging Circuit: The battery that we will have in place in

the system will contain a battery that is rechargeable. The

rechargeable battery needs to have circuitry in place. The

circuitry in consideration contains an IC that has the ability

to monitor the battery and charge it from the 5 volts that it

receives from the USB connector. This section will

describe briefly the IC and reference circuits that we

considered during the design of the system. The figure 3

located below gives a reference schematic of the IC being

implemented into the system

Figure 3: Battery Charging Reference Circuit

This integrated circuit comes equipped with input voltage

dynamic power management. It can also provide thermal

regulation protection, output current protection, and battery

short protection. The figure 3 located above gives a

reference schematic for how to connect the IC to a system.

E. Voltage Regulator

The switching regulator is an important component because

our power efficient design requires it to convert voltage

efficiently. It also increases our design flexibility because

we do not have to worry about choosing components that

use the same voltage to operate. Basically, this means that

we can get a single output voltage from a varying input

voltage.

Figure 4: Buck Boost Voltage regulator from TI’s

Webench

In the figure 4 above we see that this circuit will be taking

a DC input voltage and producing a DC output voltage with

an inverted polarity. The output of the regulator is 3.3V

which is the operating voltage of all of the IC chips in the

system. The buck-boot topology is beneficial due to the fact

VinMin=2.5V

VinMax=5.5 V
Vout=3.3V

Iout1=600mA

R=
5.5

Ω

that the battery’s voltage rages from 4V-1.8V depending on

how full or depleted the battery is, as such the converter can

adapt to this voltage range and provide a consist output.

With this reference design we should be operating with an

Since one of the goals of the product was to be

inconspicuous when placed on one of the user’s objects of

interest, the PCB had to be compact. Figure 5 shows an

Eagle CAD board diagram of the printed circuit board. The

board dimensions are 52.5x40.3mm which is quite

comparable to the size of the Samsung SmartSence

multipurpose detector device which is 48.3x34.3mm

(magnet not included) [6].

IV. SOFTWARE SYSTEM

A. Microcontroller Software

 The microcontroller software system has several

responsibilities. It must successfully connect to the user’s

Wi-Fi network, detect tampering through the use of the

attached sensors, communicate the tampering event to

the web service, and to minimize the power consumption of

the battery by placing the microcontroller in hibernation

mode whenever possible. A program flow to accomplish

this is shown in Figure 6.

The first thing that the software running on the

microcontroller must do is to communicate with the mobile

application and receive the information it needs to continue

its execution, including the information needed to join

the user’ s Wi-Fi network. TI’ s SmartConfig technology

provides a solution for connecting the CC3200 to the

user’ s Wi-Fi network. Using the smart link library

provides a set of functions to set the CC3200 into a

default state and allows it to wait for an application

such as the Android application to transmit the

network information. On start up the CC3200 is

programmed to wait for this information. The user

initiates the connection using the mobile application.

Following the provisioning step, the detector is connected

to the Wi-Fi network.

Next, additional user information needs to be

communicated to the detector. Multicast domain name

system, or mDNS, is used to communicate this information.

The CC3200, immediately following the provisioning step,

becomes an mDNS listener. At the same time, the Android

application becomes an mDNS advertiser. The Android

application can then advertise the additional information to

the listener. The CC3200 responds by registering for the

service and then moving on to its next task of setting

its sensors. The Android Application when it sees that

the CC3200 has registered for its mDNS service can

assume that the CC3200 has successfully received the

information it needs and can stop advertising the service.

For sending notifications to the user application,

HTTP posts to Google Cloud Messaging, or GCM , are

used. These are HTTP post requests. This application layer

protocol is provided for us by TI’s HTTP Client Library.

The data used in the request body (the notification message)

is one of several predefined options, each corresponding to

a different event. Which option is chosen depends on the

circumstances under which the HTTP request is made. In

all cases, the data body is in JSON format and contains

the notification message for the mobile application.

Figure 5: PCB on EAGLE CAD

Figure 6: MCU Software Flow

Power consumption is reduced by placing the CC3200

into hibernation mode. In hibernation mode CPU context

and RAM are not retained, and the wake up source cannot

be identified. Because of the ram being lost, needed user

values must be stored in a file in flash. Because of the wake-

up source being undetectable, the gpio pins are checked to

detect which sensor caused the interrupt. The reason for

selecting this power mode was the 4 uA current draw of the

microcontroller [7]. Power consumption can be

additionally reduced by putting the accelerometer into

low power mode.

Threshold values programmed into the motion sensor

for triggering an interrupt are from a fixed set of values. The

threshold values used are based on which setting the user as

selected in the syncing process. The threshold values for the

light sensor are based on the lux values read from the sensor

during the syncing process. The upper value is found by

considering the current lux value multiplied by some factor

while the lower bound is found by considering the current

lux divided by some factor. This factor depends on the user-

selected sensitivity. These values were found through

experimentation.

B. Web service

The role of the web service is to ensure that the user has a

unique username and password, to forward the notification

to the appropriate user, and to log the tampering

notifications sent out by the detector into a database. The

web service can be broken down into two major

components. The first of these components is the API

which the web service provides to the detector for sending

notifications. The second of these is the database system.

 The API written for the system runs in the cloud

using a suite of services offered by Google, called Google

Cloud Services. In particular, it is a python application

running on top of a deployment application provided by

Google called Cloud App Engine. A framework called

Flask is used to make handling HTTP request easier. Using

this framework each route provided by the API becomes a

function. Each function does what is required of it in terms

of database access.

Notifications are sent by the web service when a

particular route is used. Inside the body of the request to

these routes are the username, password, and message

body. The correctness of the username and password is

verified in order to avoid unwanted parties from causing

notifications to be sent. After the web service checks these

credentials, it finds any Google Cloud messaging tokens

associated with that username and pushes notifications to

Google Cloud Messaging.

The database also runs on the services provided by

Google Cloud Services, Google Cloud SQL. Three tables

are used within this database. One is to store user

information, another is to store tampering logs, and the last

is to store the google cloud messaging tokens. These tokens

identify specific mobile devices belonging to the user and

are needed by the web service to push notifications to the

user’s device.

C. Mobile Application

The mobile application has two main functions. The first is

provisioning. The mobile application allows the detector to

join the wireless network. The second is as a Google Cloud

Messaging Client. The mobile application must allow the

user to receive notifications from the detector. In fact, the

goal of the application is that following the initial

provisioning step the user interacts with the application

very little. Rather, the application runs in the background

and receives notifications from the detector. Note that after

the initial setup, there is no way for the user to transmit

additional information to the detector. It can only receive

information in the form of notifications. Any changes that

the user may want to make to the system involve physically

pushing the button on the detector and restarting the initial

setup. This feature, although at first appearing

inconvenient, does provide a layer of security since no

person could remotely modify the settings on the detector.

In the detector startup phase, the mobile application

must get the detector to connect to the wireless network and

then transmit the information the detector needs to function

properly. The major steps taken for the provisioning part of

the program are the following.

1. Get the SSID and the password from text fields of

the user interface

2. Get the gateway by looking at the network which

the mobile device is currently connected to.

3. Put this information is information into a new

SmartConfig object, a class provided by Texas

Instruments for using the SmartConfig protocol.

4. Run method smartConfig.transmitSettings().

5. Use mDNS to identify the new device

At this point, assuming all of the above went well, the

detector is now connected to the network and through the

5th step, the mobile application is aware of this. The mobile

application is now ready to transfer the additional settings

to the detector.

As mentioned earlier, the sensor settings and user

information transfer to the detector is done through mDNS.

This is an additional mDNS step, different from the one

done in the steps above. Specifically, after the mobile

application identifies the detector, it starts broadcasting a

service through the mDNS. The name of this service is

predetermined and known by the detector. In this mDNS

advertisement, the text field includes the additional

information needed by the detector. This includes the

username, the password, and the sensor settings. This

broadcast lasts for 10 seconds before it is de-registered. It

was found that this is an adequate amount of time for the

detector to receive the information.

Figure 7. Mobile device interface for syncing detector

D. Encryption and security

There are two main vulnerabilities in the parts of the system

under our control (this excludes, for instance, securing

Google's Services beyond proper configuration). The first

is the mDNS step in which sensitive information such as

the username and password are advertised over the

network. The second is the transmission of the username

and password through HTTP requests to the cloud.

To abate the first issue, the plain text used in the text field

of the mDNS broadcast can be encrypted. A key contained

on the detector can be used to decrypt the plain text after it

is received. Assuming that symmetric key encryption is

used, keys on both the detector and the mobile application

can be periodically updated. The detector can update over-

the-air with some slight modification to its current code,

and the mobile application can be easily updated as well.

This is not currently implemented in the prototype, partly

because the original purpose of the system was as a

platform on top of which future security measures can be

implemented.

The second issue of how to securely transmit

usernames and passwords inside of HTTP requests has been

solved long ago. The CC3200 simple link library supports

HTTP over TLS. The TLS protocols supported by the

Texas Instruments CC3200 software library include 6

different ciphers one can use, including RSA with AES 256

and CBC_SHA.[8] Using this sort of solution for the

common operation of an HTTP request to a cloud API is

standard practice. This is not to say, that researchers cannot

add an additional layer of end-to-end encryption on top of

this.

Inherent Security Limitations in the Design

It is important to consider what the T.A.A.G. system

can do and cannot do in terms of security for the user. One

goal of the CC3200 is to send a notification out before any

person could disable the detector. It is impossible to ensure

that following this initial tampering notification that the

detector can continue to function. Additionally, even with

the sensor settings selected properly, it is still possible for

the system to fail to send this initial notification. The most

obvious way that this can happen is if there is no network

connectivity for the detector. A person looking to get

around the T.A.A.G system could do so by performing the

following steps.

1. Turn off the network

2. Perform the tampering

3. Destroy, of subtly disable, the detector

4. Turn back on the network

We saw no solution to detecting an attacker performing

all four of these steps. It is important that, at very least, the

detectors cannot be physically modified in a way that will

disable them but not be noticeable. This is outside of the

scope of the software design but is important when

considering how the detector is encased.

The system works best when the would-be attacker is

unaware of the system being in place. If the attacker lacks

the foresight to disable the network, then the user will

receive a notification and be aware of the tampering.

V. SYSTEM TESTING

A. Tamper Detection

How successful is the detector at detecting when someone

is tampering with an item? To test this, a prototype was

attached to several likely items that the system would be

used for. The first is the front door, the second is the inside

of a safe, and the third is the backside of a cardboard box.

For all of the experiments, settings were picked which

seemed intuitive for the given situation. Specifically, for the

door the motion sensitivity was set at high while the light

sensitivity was disabled; for the safe the light sensitivity

was set to high while the motion sensitivity was disabled;

and for the cardboard box both sensitivities were left at

low(in an effort to avoid false triggering from slight shaking

or changes in ambient light.) Each experiment was repeated

five or more times, and each of these times the nature of

movement applied to the object or the change in exposure

to light was varied slightly.

 For the door, it was discovered that on all the

experiments the detector successfully detected when the

door opened. However, the detector appeared slightly too

sensitive. Notifications were sometimes sent due to

unforeseeable movement, perhaps due to outdoor breezes

or nearby footsteps. Efforts to change the acceleration

thresholds on the accelerometer resulted in the detector

being unable to detect a very gradual opening of the door.

Improvement to acceptable levels of sensitivity was finally

Figure 5: Mobile App UI

reached by increasing the number of samples used in

calculating whether the threshold was crossed.

 The experiments conducted with the safe were

more successful. For every run, a notification was sent

when the safe was opened and no notifications were sent

while the safe was closed. This is most likely due to a large

difference in the lux readings found by the light sensor in

total darkness and ambient room light. As we see with the

next experiment slight changes in ambient room light are

far more difficult for the detector to perceive.

The last experiment with the cardboard box attempted

to test both the functionality of the light detection and the

motion detection. The box was placed in a somewhat darker

room with its door closed. The goal was that a notification

should be sent if either someone in the room moves the box,

or if someone opens the door to the room. In terms of

motion, it was found that the detector behaves well. No

false motion detection notifications were sent and

whenever the box was moved a motion detection

notification was sent. However, we were unable to cause a

light detection event by subtly changing the ambient

lighting in the room by opening the door or window blinds.

Shining a light directly at the detector was sufficient, but

this was not the desired result.

It appears as though it is indeed a very slight range of

thresholds, both in terms of light and motion which are well

suited for a particular purpose. One proposed extension is

the creation of a catalog of such accelerations and changes

in lux suited for a particular use. This could be built into the

product and would allow to user to select the appropriate

settings based on their needs. Such a catalog might be

useful in general since it measures physical quantities and

is not tied to any particular device.

B. Battery Life

Three scenarios are presented below along with their

expected amounts of time before the battery runs out of

charge. These expected times are then compared with some

experimental results.

The time that the CC3200 spends in active mode while

sending a notification is dominated by the time spent

waiting for Google Cloud to respond. This can be up to 30

seconds. This can vary greatly and be as short as 5 seconds

in some cases. We simplify the calculations by saying that

the CC3200 spends that entire 30 seconds in transmit mode

which pulls 272 mA according to TI’s documentation.

When the CC3200 is in receive mode it only draws 53 mA

[7].

Stuck at startup: If the detector is turned on, and the user

does not then use the mobile application to perform the

setup step, the detector will not go into hibernation mode.

Instead, it stays in active mode waiting for TI’s

provisioning to start. The expected CC3200 current draw is

53 mA. The other components, even in active mode, draw

comparably insignificant amounts and so are ignored here.

The battery life is therefore 1200 / 53 = 22.48 hours.

It was found through three 24 hour runs that average time

before the battery charge is too low to maintain operation is

between 23 and 24 hours, agreeing with this prediction.

No interrupts: At the other extreme, the detector might

never have an event to detect. In this case, it can remain in

hibernation mode. The CC3200 current draw here is a

meager .004 mA. At this point is useful to include the other

components in the calculation. The light sensor current

draw is .24 mA and the motion sensor .0345 mA. The total

battery life should be 1200 / .2785 = 4309 hours or 179.5

days.

Experimentally, this was clearly too long to wait for a test

to complete. Instead, data from after 24 hours was

extrapolated to give the expected battery life. This data was

collected using the gas gauge monitor built into the design.

It was found over 3, 24 hour runs with one of the early

development board prototypes that without interrupts the

battery life had dropped 2.7% within the day. This suggests

a battery life of 37 days instead of the expected 179.5 days,

a significant difference.

 One possible explanation for this discrepancy

comes from periodic waking up of the CC3200, the gas

gauge monitor, and the power needed for the UART

communication to print the result read from the gas gauge

to the terminal. Also possible, is that further configuration

steps are required to tune the gas gauge properly to get a

truly accurate reading from the battery.

Normal operation: This circumstance is described by

saying there is a network connection, and notifications are

sent off infrequently. We can define infrequently by saying

notifications are sent out twice a day, which gives us 60

seconds. Considering that there are 86,400 seconds in a day

and that we have a 1200 mAh battery. The expected

CC3200 current draw in a day is

(60/86,400) *272 + (85,340/86,400)*.2785 = 0.4640 mA

The battery life should be roughly 1200 / 0.4640 = 2586

hours or 107.75 days.

 This was checked experimentally on a prototype

board by programming the CC3200 to wake twice a day and

send a notification containing the percentage of battery

remaining. This was done three times, each time for one

day. Again the average drop in battery life was roughly

three percent.

These results suggest that either the way in which

we are estimating current consumption for the detector is

inaccurate, or that the gas gauge is not providing accurate

readings. Further work is still being done to explain these

results.

Casing: Figure 8 shows the prototype casing.

The dimensions for the 3D casing in the figure above for

our device are 50mm x 25mm x 65mm. We have decided

to go with a dark Plexiglas plastic that is durable, and strong

enough that it can withstand being placed on items that may

be pressed against hard surfaces. It is light and small

enough to be adhered to many different common objects.

VI. CONCLUSION

The Tamper Automated Alert Gadget (T.A.A.G) is a

product that can be used to protect the user's household

objects. It also serves as an example of a modern IOT

system. The T.A.A.G detector, which was designed and

implemented by the members of the senior design group,

acts as the heart of the alert system and is one of the main

pieces of hardware involved in the system’s operation.

It is important to consider security in terms of the

information transferred between elements of an IOT

system. The T.A.A.G system, as well as being useful,

hopefully, provides a platform on which researchers can try

to improve security even further, through the development

of new encryption methods well suited for an application

such as the T.A.G.G system.

.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of Dr. Jiann S. Yuan, the Co-Director of the MIST

Research Center at the Universal of Central Florida. We

would also like to recognize and acknowledge Dr. Richie

for his continued advice and student mentoring. The

authors would also like to congratulate Dr. Riche for his

retirement and would also like to congratulate him on

achieving the title of Professor Emeritus.

REFERENCES

[1] Texas Instruments, "bq24210 800-mA, Single-Input, Single-
Cell Li-Ion Battery Solar Charger," 2015.
[Online].Available:http://www.ti.com.cn/cn/lit/ds/symlink/b
q24210.pdf.

[2] Texas Instrument, "bq27510-G3 System-Side Impedance
Track™ Fuel Gauge with Direct Battery
Connection,"112015. [Online].Available:
http://www.ti.com/product/bq27510-g3.

[3] Texas Instruments, "bq27510-G3 System-Side Impedance
Track™ Fuel Gauge with Direct Battery Connection,"
Dallas, 2013.

[4] Texas Instruments, "Characteristics of Rechargeable
Batteries," 2011. [Online]. Available:
http://www.ti.com/lit/an/snva533/snva533.pdf.

[5] Texas Instruments, "CC3100/CC3200 SimpleLink™ Wi-
Fi® Interneton-a-Chip," 2014. [Online]. Available:
http://www.ti.com/lit/ug/swru368a/swru368a.pdf.

[6] Samsung, "Samsung SmartThings Multipurpose Sensor _
Things _ SmartThings Shop," 2016. [Online]. Available:
https://shop.smartthings.com/#!/products/samsung-
smartthings-multipurpose-sensor.

[7] Texas Instruments, "CC32xx Power Management
Framework," Dallas, 2015.

[8] Texas Instruments, " CC32xx SSL Demo
ApplicationDallas, 2014.
http://processors.wiki.ti.com/index.php/CC32xx_SSL_Dem
o_Application

Aiman Salih will graduate from the
University of Central Florida in May 2016
with his Bachelors in Electrical
Engineering. He currently works as an
undergraduate research assistant under the
supervision of Jiann S. Yuan where he
investigates novel structures for super-
junction power MOSFETs. He plans to
come back to Central Florida to complete his

Master’s degree in Electrical Engineering with a
specialization in Micro-Systems and Nano-Systems.

Dan Gibney will graduate from the
University of Central Florida in May 2016
with his Bachelors in Computer
Engineering. He works as a live sound
engineer. After graduation, he plans on
obtaining his Masters and Ph.D. in
mathematics.

 Leaphar Castro will graduate from the
University of Central Florida and receive his
Bachelors of Science in Electrical
Engineering in May of 2016. He worked as
an intern at OUC in the EMS/ Transmission
planning team. After Graduating Leaphar
Castro plans to continue studying in a
graduate School to specialize in Power.

Figure 6: Prototype 3D Model Casing

