H.A.S. Project

Group 5
Fall 2015

Jeffrey Benoit
D’Voran Mcintosh
Roneal Valmonte
Zachary Zapasnik

Sponsored By Leidos

Table of Contents

1. Executive Summary
2. Project Description
2.1. Motivation
2.2. Goals
2.3. Objectives
3. Related Standards and Constraints
3.1. Standards
3.1.1. Hardware Standards
3.1.1.1. Wall Outlet
3.1.1.2. Wall Switch
3.1.1.3. HVAC Controller
3.1.2. Software Standards and Libraries
3.1.2.1. Microcontroller Software Libraries
3.1.2.2. Mobile/Web Application Libraries

3.2. Constraints
3.2.1. Hardware Constraints
3.2.1.1. Wall Outlet
3.2.1.2. Wall Switch
3.2.1.3. HVAC Controller
3.2.1.4. Powerlock
3.2.2. Software Constraints
3.2.2.1. Microcontroller Software Constraints
3.2.2.2. Mobile/Web Application Constraints
4. Project Research
4.1. Research of Similar/Related Projects and Products
4.1.1. Wall Outlet
4.1.2. Wall Switch
4.1.3. Powerlock
4.1.4. HVAC Controller
4.1.5. Related Projects
4.2. Relevant Technology
4.2.1. Power Monitoring
4.2.2. Wireless Communication
4.2.3. Power Supplies
4.2.4. Relays
4.2.5. Electric Strike
4.2.6. LCD Displays
4.2.7. Temperature Sensor
4.2.8. Microcontroller

O© O NNANODOOOOGO OO PR, PDPPRWWWWWWDNDN-_A_A-

N N N QS i T G G L G
0 00000 NNNOOO O~ W--~0

5. Project Design

5.1. Hardware Design Plan

5.1.1.

5.1.2.

Wi-Fi/Bluetooth Module

5.1.1.1. WL18xxMOD 8 Single Band Combo Module
5.1.1.1.1. WLAN and BLuetooth
5.1.1.1.2. Power Requirement and Dimensions
5.1.1.1.3. Comparison to Other Modules

Microcontroller Module

5.1.2.1. Atmel SAM C ARM Cortex MCU

5.1.2.1.1. Power Requirement

5.1.2.1.2. Communication with Software
5.1.2.1.3. Comparison to Other Modules

5.1.3 Power/Energy Management

5.1.4.

5.1.5.

5.1.6.

5.1.7.

5.1.3.1. 78M6613 AC Power-Measurement IC
5.1.3.1.1. Power Management Operation

Wall Outlet

5.1.4.1. Dimensions

5.1.4.2. Power Requirement

5.1.3.2. Communication with Software
Wall Switch

5.1.5.1. Requirements

5.1.5.2. Specifications

5.1.5.3. Components

5.1.5.4. Communication with Software
Powerlock

5.1.6.1. Requirements

5.1.6.2. Specifications

5.1.6.3. Components

5.1.6.4. Communication with Software
HVAC Controller

5.1.7.1. Dimensions

5.1.7.2. Power Requirements

5.1.7.3. Communication with Software

5.2. Microcontroller Software Design Plan

5.2.1.

5.2.2.

Wall Outlet
5.2.1.1. First Design: Interrupt Based

5.2.1.2. Second Design: Procedurally Based
5.2.1.3. Third Design: Multithreading Based

Wall Switch
5.2.2.1. First Design: Interrupt Based

19
19
19
19
21
21
22
23
24
26
27
27
28
28
30
30
32
34
34
35
37
38
39
43
44
46
46
47
49
50
53
53
53
54
55
55
56
58
60
60

5.2.2.2. Second Design: Procedurally Based
5.2.2.3. Third Design: Multithreading Based
5.2.3. HVAC Controller
5.2.3.1. First Design: Interrupt Based
5.2.3.2. Second Design: Multithreading Based
5.2.4. Powerlock
5.2.4.1. First Design: Procedurally Based
5.2.4.2. Second Design: Interrupt Based
5.2.4.3. Third Design: Multithreading Based
5.3. Application Software Design Plan
5.3.1. Cloud Servers
5.3.2. Backend
5.3.2.1. API Design
5.3.2.2. Interfacing with Microcontrollers
5.3.2.3. Database Design
5.3.3. Frontend
5.3.3.1. AngularJS Setup
5.3.3.2. Page Design
5.3.3.3. Microcontroller Setup
6. Testing
6.1. Hardware Testing
6.1.1. Testing Plan
6.1.2. Testing Environment
6.1.3. Wall Outlet Testing
6.1.3.1. Prototype Construction
6.1.3.2. Electrical Input/Output
6.1.3.3. Wireless Communication
6.1.4. Wall Switch Testing
6.1.5. Powerlock Testing
6.1.5.1. Primary Testing
6.1.5.2. Wireless Communication
6.1.6. HVAC Controller Testing
6.1.6.1. Prototype Testing
6.1.6.2. User Input Testing
6.1.6.3. Wireless Communication
6.2. Software Testing
6.2.1. Automated Tests
6.2.2. Software with Devices Testing
7. Administrative Content
7.1. Milestones

61
63
65
65
67
69
69
71
72
74
74
75
76
82
83
88
89
90
96
98
98
98
100
101
101
101
101
103
104
105
106
106
108
110
111
113
113
117
117
119

7.2. Proposal
7.3. Budget
8. Appendices
8.1. Appendix A: Works Cited
8.2. Appendix B: Permissions

119
121
123
123
125

1. Executive Summary

In this age we have more electronic devices in our homes than ever before.
People are also busier than ever before, being either wrapped up in work,
absorbed in some form of entertainment, or overloaded with the responsibilities
of daily life. With all of these things going on, sometimes you forget to turn off or
unplug one of your many electronic devices, or lights at home. Maybe you can’t
remember if you locked the door on your way out. Maybe you just got into bed
and realized you forgot to turn off the lights in the kitchen. Perhaps you're energy
conscious and want to make sure you've set your air conditioning to turn off while
you aren’t at home.

Our electronic home automation system seeks to fix all of those problems with
the help of the prevalence of smart devices and computers in everyone’s lives
today. We are developing a number of devices to add to your home that will give
you control over the electricity you use every day.

Our project is a home automation and power monitoring system comprised of
four different physical devices connected to and controlled by a web based
system. The four physical devices are: a wall outlet, a wall switch, an HVAC
controller, and an electronic door lock hereafter referred to as a powerlock.
Primary interaction with all four devices is done through a smartphone and web
browser application. This application will let you see how much power any outlet
or wall switch controlled fixture is using. The application will also show you
details on your heating and air conditioning usage, and whether the powerlock is
currently locked or unlocked. The application enables the user to fully control all
of these devices from a smart device or any computer with access to the internet.
A user will be able to turn on or off any wall outlet or wall switch that is connect,
lock or unlock the power lock, and set the thermostat settings of the HVAC
controller. On top of this users will be able to set weekly and daily schedules for
these events to happen automatically. This will be achieved through the use of
microcontrollers integrated in the circuits of each of the devices that will bridge
the gap between hardware and the online software.

2. Project Description

2.1. Motivations

This project started with the idea of being able to control the electricity in your
home from anywhere, this was our initial motivation. The idea of the smart wall
outlet came first, a simple device that would let you turn on and off appliances
and devices plugged into your home’s wall outlets from a simple app on your
smartphone or computer. Not everything in the home is plugged into a wall outlet
however, and we latched onto the thought of the simple paranoia of forgetting

1

whether you turned something off. That is our main motivation: not having to
worry about leaving devices and appliances in your home turned on when you
leave. Our main motivation then lead the way for us to decide to make the
electronic powerlock, as the anxiety of forgetting to lock your home is very similar
to forgetting to turn off a device.

As our thoughts on the project solidified, we had a realization about another
motivation. With how integrated into the home our project had become, we
decided to also focus on some aspects of home automation. Being able to set
schedules for when your appliances and devices are on and off, monitoring your
power usage, and being able to control your heating and air conditioning as well
became another part of the project. Our two main motivations now are: not
having to worry about leaving electronics on, and managing the electricity in your
house from anywhere.

2.2. Goals

We have a number of goals that we would like to accomplish with this project.
Firstly, we are striving to make products that are compact and easily fit where the
devices they are replacing already are. There should ideally be no need to move
furniture or change the wiring of a building to accommodate our devices.
Secondly, our devices should not require a substantial amount of electrical
power. Thirdly, our devices should be easy and simple to use, with an interface
that can be quickly learned by anyone. Fourthly, the response time of our devices
should be quick, with little noticeable delay between selecting an action and that
action occurring. Fifthly, we aim to make our products inexpensive and little to no
costs required for upkeep. Sixthly, our products should be both easy to install
and not difficult to remove or replace. Seventhly, adding additional devices to the
system should be not only possible, but simple.

2.3. Objectives

Our objectives for this project help us to maintain our motivations and comply
with our goals. The size of our devices, how quickly they respond to changes
made by the mobile and web applications, and their cost are all quantifiable
aspects of our devices that will have an effect on the ability of our project to meet
our goals.

Size is important for making our devices fit well within homes. For our wall outlet
device our objective is to keep it to a size of 5" W x 5" H x 1.5” D at most. We
have the same objective for the size of the wall switch: a maximum size of 5” W x
5" H x 1.5” D. Our objective for the size of the HVAC controller is a maximum of
6” W x 5" H x 2” D. Our objective for the size of the powerlock is a maximum size
of 5" W x4"H x1.5”D.

Response time and cost are more universal to our devices than size is. For all of
our devices our objective is to have a response time under 2 seconds. A
response time of less than 1 second would be more desirable, but 2 seconds is
the longest response time we feel is acceptable for our products. For the cost of
our devices, no individual device should cost more than 30 US dollars in parts.
$20 is more ideal, however $30 is our highest acceptable price to meet our goal
of being able to easily replace or add devices in or to our system.

3. Related Standards and Constraints

3.1. Standards

3.1.1. Hardware Standards

The following sections contain standards relating to the hardware components of
the various devices within the project. Each device with relevant standards will be
listed in its own section.

3.1.1.1. Wall Outlet

The wall outlet hardware will use the NEMA 5-15 grounded plug standard, also
referred to as type B. This plug type accommodates all forms of plugs used in our
primary market of North America. This plug standard is also recommended by
IEC standard 60906-2 for installations of 120 volts and 60 Hz, as is the case with
standard North American installations. In addition to this, as our wall outlet device
is intended for indoor use, for the enclosure of the wall outlet we will use the
standard for a NEMA Type 1 enclosure.

3.1.1.2. Wall Switch

The wall switch will adhere to IEC standard 60669 Switches for household and
similar fixed-electrical installations. Our wall switch falls within the requirements
range of this standard, which is a voltage not exceeding 440 volts, and a current
not exceeding 63 amps. In addition to this, as our wall switch device is intended
for indoor use, for the enclosure of the wall switch we will use the standard for a
NEMA Type 1 enclosure.

3.1.1.3. HVAC Controller
For the HVAC controller we will use the NEMA DC 3-2013 standards and

guidelines for Residential Controls—Electrical Wall-Mounted Room Thermostats.
As we are aiming for a smart programmable system, and power management is

a core philosophy for us, we will also use NEMA DC3, Annex A-2013,
Energy-Efficiency Requirements for Programmable Thermostats.

3.1.2. Software Standards and Libraries

The following sections contain any standards and/or libraries relevant to the
software components of the project that will be adhered to. The sections are split
between the microcontroller and the web and mobile application. The web/mobile
application section also contains all standards and libraries relevant to all web
based systems used within the project not just those for the base application.

3.1.2.1. Microcontroller Software Libraries

In all microcontrollers, the C standard library will be used. The ATSAMC21J18A
firmware will also be used, which allows for the use of the features included on
the microcontroller. In order to obtain an encrypted TLS connection with the
online server the TLS mbed open source SSL library 2.2.0 will be used. The TLS
mbed open source SSL library is compliant with the TLS version 1.2 standards,
and the SSL version 3 standards.

3.1.2.2. Mobile/Web Application Libraries

The home automation system will be controlled using a custom cloud-hosted API
with a user friendly interface. In order to provide a seamless cross device user
experience, we will be using libraries and standards which can work on all
modern day devices.

1. AngulardS — angularjs.org

AngularJS is an open source model-view-controller (MVC) framework
sponsored by Google that allows in-client rendering of dynamic HTML views
rendered from data models served directly by an application program
interface (APIl) by a JavaScript controller. In layman’s terms, an MVC
framework like AngularJS allows for client-side applications in HTML and
JavaScript. It's similar to jQuery, which just handles view manipulation in
JavaScript. AngulardS will allow for code reusability across all web and
mobile devices.

2. PhoneGap — phonegap.com

PhoneGap is an open source framework sponsored by Adobe that allows
development of HTML, CSS, and JavaScript mobile applications for Apple’s
i0S, Google’s Android OS, and Microsoft's Windows Phone OS. It primarily
serves as a built script that makes use of each phone’s existing operating
system APIs for building web views. This allows for code reusability across all

4

mobile devices, and will allow all mobile apps to look and function identically
regardless of the operating system.

3. Bootstrap — getbootstrap.com

Bootstrap is an open source HTML and CSS starter framework sponsored by
Twitter that allows for websites to more easily develop modern, responsive
interfaces that work on both desktop and mobile sized devices.

4. Node JS - nodejs.org

Node JS is an open source JavaScript runtime sponsored by the Linux
Foundation. It allows for server-side execution of JavaScript to develop event
driven and non blocking 10 requiring applications, like a home automation
system may need. Runtimes like Java and PHP are 10 blocking, which means
that incoming requests would block until completion, severely limiting the
throughput a single server could handle.

5. Express JS — expressjs.com

Express JS is an open source HTTP routing framework for Node JS
sponsored by StrongLoop, an IBM company. It allows for authentication,
parameters, and other data to be assigned to routes, which is useful for
making a robust API. A cloud-based API will be developed using Node JS
and Express JS to serve data to the client-side applications.

6. MongoDB — mongodb.com
MongoDB is an open source document storage database sponsored by
MongoDB, Inc. It's a highly scalable database primarily used for real-time
apps that require data logging and aggregation, which is useful for a home

automation app that is trying to monitor power usage and serve multiple
devices from the cloud in real-time.

3.2. Constraints

3.2.1. Hardware Constraints

The following sections contain constraints that will be considered during the
creation of the hardware components of the project.

3.2.1.1. Wall Outlet

Wall outlets are placed in numerous different locations, often behind furniture,
and this leads to limitations in form factor. Size is a very important limitation, and
to fit with our goals and objectives we have a constraint on the wall outlet device
that it should extend out no further than 1.5 inches from the wall when attached
to an existing wall outlet. The wall outlet device must be able to handle the North
American standard 120 volt, 60Hz while also accounting for the 2.7 to 5.5 volt
operating range of the microcontroller.

3.2.1.2. Wall Switch

The wall switch device, unlike the wall outlet, replaces the currently installed
device, so it must account for being set into a wall and mounted. The wall switch
microcontroller software and enclosure must account for the device to be
operated manually, as well as with the mobile or web application. The design of
the device must account for the required operating voltage range of 2.7 to 5.5
volts for the microcontroller.

3.2.1.3. HVAC Controller

The HVAC controller device is the most complex of the devices in the project.
The microcontroller software and device enclosure must account for the device to
be operated directly as well as operated by the mobile and web applications. The
enclosure must also account for the device to be mounted on the wall, but due to
the standard location of HVAC controllers being on open walls there are no size
constraints of the full device. The HVAC controller must have a display that is
accurate to the current conditions of the HVAC system, and the display must
update from either manual input, or input from the mobile or web application. The
power consumption of the HVAC controller must account for the required
operating voltage range of 2.7 to 5.5 volts of the microcontroller, and the
operating voltage of the display.

3.2.1.4. Powerlock

The powerlock is unique amongst the devices in this project in that it is not
directly mounted on a wall. A major limitation for this device is that, since it is
mounted on a door, it needs either proper cabling connected to a power source,
or a battery. The power source must account for the operation of the mechanical
features that will activate or deactivate the lock when prompted by the online
service, and the microcontroller. The powerlock must be able to be operated
manually, and the microcontroller software must account for that possibility as
well as the enclosure and mechanical components. The microcontroller has a
required operating voltage range of 2.7 to 5.5 volts. Another constraint of this
device being mounted on a door is that the enclosure needs to account for
proper mounting of the entire device, rather than the device being able to attach
to a wall fixture.

3.2.2. Software Constraints

The following sections contain constraints relating to the software components of
the project. The sections are split between the microcontroller and the web and
mobile application. The web/mobile application section also contains all
constraints relevant to all web based systems used within the project.

3.2.2.1. Microcontroller Software Constraints

The main constraints for the microcontroller software come from the limitations of
working on an embedded system. The Atmel Sam C ARM Cortex
ATSAMC21J18A device has limitations in memory, RAM, and CPU that affect
any code to be written for it.

The Atmel Sam C ARM Cortex ATSAMC21J18A has a flash memory size of
256KB. This limits the amount of code that can be written for the device and
stored on it. 256KB is the largest memory size available for the Sam C ARM
Cortex series of microcontrollers. 256KB allows for a comparatively large amount
of data to be stored on the microcontroller; however it still has influence on the
length of any code to be written for the device.

The Atmel Sam C ARM Cortex ATSAMC21J18A has 32KB of SRAM for
programs to us while running, limiting the number of simultaneous processes and
variables. 32KB is the largest RAM size available for the Sam C ARM Cortex
series of microcontrollers. This largest amount of RAM is desirable for the
multithreaded approaches of the microcontroller software design, but it is still
limiting in its size.

Although The Atmel Sam C ARM Cortex ATSAMC21J18A supports
multithreading, it only has a single core CPU to do so with, which limits the actual
implementation of multithreading. The CPU has a speed of 48MHz, and a
maximum operating temperature of 85 C. These limit the maximum load that
should be placed on the processor by the code.

3.2.2.2. Mobile/Web Application Constraints

The home automation system will be controlled using a custom cloud-hosted API
with a user friendly interface rendered on the client side. In order to provide a
secure, seamless, and reliable cross device user experience, we will must
conform to the following standards:

e Screen Resolution

Screen resolutions play a large factor in the design of user interfaces. For
mobile devices, there is only a small area of space to work with. For many
mobile devices the resolution is 640px by 360px, although newer devices with
larger screens have allowed for a slightly larger resolution. The application
must be responsive to different size displays, which means it must scale Ul
elements like menus, buttons, and forms to be mobile capable.

e Cross-Platform

Because potential users use a myriad of different devices, we must support
both iOS, Android OS, as well as a web-based control panel in order to
support all possible use cases.

e Security

With cloud-based services suffering from constant hacking attempts and other
forms of malicious attacks, security is of most importance for a cloud-based
home automation system. All servers will be firewalled with the exception of
web and ssh ports, and ssh will require key-based authentication rather than
passwords. All server communications with devices will be encrypted with
TLS. This may prove troubling for devices, since the microcontrollers also
need to encrypt and decrypt in real-time, which could use additional
processing power and prove difficult to program.

e Cloud Limitations

Since this is a cloud-based service, the service cannot execute arbitrary
commands on devices. Each device must be programmed to accept a signal
from the service to execute specific actions. This increases development time
since every separate device must be separately programmed to accept these
specific signals to perform specific actions.

e Response Times & Reliability

The service must have some form of redundancy in case of hardware or
networking outages, since all clients are dependent upon the cloud-based API
this service provides.

4. Project Research

In order to determine what kind of competition exists, how each aspect of our
project should perform, and to choose parts that will allow us to accomplish this,
we begin by looking at already existing projects and products that are similar to
our project. There are many products that perform tasks similar to our project, but

not many are as expansive as ours seeks to be. The different products that we
compare will serve as a starting point for our project, and will show how we plan
to merge several products into one cohesive Home Automation System.

4.1. Research of Similar/Related Projects and Products

In this day and age, people wish to be able to control more and more aspects of
their lives from the palm of their hand. So it is no wonder that smart homes are
becoming more and more desired. One product we will look at is the
ConnectSense Smart Outlet, which allows the user to remotely monitor appliance
usage, turn them on or off, or even schedule times when appliances should be
turned on or off. Another product we will look at is the Belkin WeMo Insight
Switch, which allows the user to monitor the actual energy usage of their
appliances, as well as control whether or not they are turned on or off. Next for
similar wall switches, we will look at the GE Z-Wave Wireless Lighting On/Off
Switch , which is used to wirelessly control the lights in one’s home. We will also
look at the Belkin WeMo Light Switch, which can function in tandem with the
Belkin WeMo Insight Switch. Next, we will discuss the Kwikset Kevo Smart Lock
developed by Unikey, which allows residents to unlock their front door once their
smartphone is in range of the receiver, and also allows them to send keys to
other users as well. We will also look at the August Smart Lock, a similar product.
After, we will look at the Honeywell Lyric Smart WiFi thermostat. This device
allows users to control their home’s central cooling system via their smart device,
and also has built in protocols to help adjust for energy conservation for the user
during times such as when they are sleeping or not in their home. We will also
look at the Ecobee Smart WiFi thermostat as well, which is very similar to the
Honeywell Lyric thermostat. Finally, we will look at two similar previous projects
done by Senior Design groups, the Smart Home Energy Monitoring System, and
the Smart Home Management System, which both sought to provide users with
more control over their household while simultaneously helping them to lower
energy consumption.

4.1.1. Wall Outlet

We will begin by doing an in depth analysis of the two smart outlets we have
researched, the ConnectSense Smart Outlet, and the Belkin WeMo Insight
Switch. We will seek to determine the advantages and disadvantages of each
device, and determine the aspects of each device that we wish to maintain in our
design and final product. To start, the ConnectSense Smart Outlet works by first
plugging it into a standard outlet and then connecting any appliances you wish to
monitor to it. The user then can open the application, which allows them to
configure the Smart Outlet. The outlet displays key information about each
appliance connected to it, such as whether it is on or off, how long it has been on
for, etc. as well as recent activity, such as when the appliances were turned off or

9

on, whether it was manually or through the application. Users can also set timers
for when their appliances should be turned on or off, as well as rules that can
alert the user when some activity happens. The ConnectSense Smart Outlet also
supports voice control using Siri on any compatible Apple device. Some key
differences with our planned device and the ConnectSense Smart Outlet are that
the ConnectSense Smart Outlet is only compatible with Apple devices, while our
application will be able to run on both Android and Apple operating systems, as
well as on any personal computer. The ConnectSense Smart Outlet also does
not display any information on energy usage whatsoever, which is crucial to our
project as we seek to help users lower energy consumption with our product.
Finally, their device does not support connections via Bluetooth, only wireless.
With our device we plan to support both WiFi and Bluetooth. The specifications
for the ConnectSense Smart Outlet follow. With our outlet, we plan to only have
one outlet instead of two, so our dimensions should be significantly smaller,
hopefully with a height of around 2.5 inches instead of 4.9. Figure 4.1.A shows
the specifications for the ConnectSense Smart Outlet.

Input Power 120 VAC, 60 Hz

Max Current 15 Amps

Max Voltage 120 Volts

Max Power 1800 Watts (resistive)

Dimensions 4.9 inches tall x 3.0 inches wide x
1.2 inches thick

Weight 11.2 ounces

Figure 4.1.A - Specifications: ConnectSense Smart Outlet

The Belkin WeMo is another smart outlet that is similar to the ConnectSense
outlet, but with the added benefit of allowing users to see their actual energy
usage, which is a key aspect to our project. It works very similarly to the
ConnectSense outlet, as all you have to do is plug it into any standard outlet and
then plug in your appliance. It also has a free application that allows the user to
monitor and manage any outlet, allowing them to set schedules for appliances as
well as get a reading on how much energy that appliance is using. The user can
also see the cost generated by that appliance for the day, and get a monthly
estimate for how much that appliance will use. This product has appliances for
both Android and Apple devices, which is more in line with or project, although it
is still missing a web based application like we plan to have. A very important
aspect of the Belkin WeMo is that it is fully modular, meaning that you can add as
many smart outlets as you like, as well as other smart products by Belkin, like the
WeMo LED Lighting and WeMo Light Switch. We plan to develop an application

10

that will allow for full modularity as well. As both the ConnectSense and Belkin
WeMo have the same specifications when it comes to things like input power and
current, we plan to match our design to these specifications as our research
shows it to be the de-facto standard for smart outlets. The dimensions for the
WeMo more closely match what we plan to do for our design, as it fits and covers
only one outlet instead of two. The Belkin WeMo also does not support
Bluetooth, a key aspect in our design plan. Specifications are shown in Figure
4.1.B.

Input Power 120 VAC, 60 Hz

Max Current 15 Amps

Max Voltage 120 Volts

Max Power 1800 Watts (resistive)

Dimensions 1.5 inches tall x 2.9 inches wide x
2.9 inches thick

Weight 3.7 ounces

Figure 4.1.B - Specifications: Belkin WeMo Insight Switch

4.1.2. Wall Switch

The next component to our project is the wall switch we plan to design. The first
wall switch we will look at is the GE Z-Wave Wireless Lighting On/Off Switch.
Installing this wall switch requires a bit more work from the user, as in order for it
to operate with your in home lighting you will need to do an in wall installation
with hard wired connections. However, once installed the GE Wall Switch allows
users to wirelessly control their lighting via their smart phone, tablet or computer.
The application allows users to see what lights may be turned on, and wirelessly
turn them off and vice versa. The user also has the ability to create custom
lighting scenes for different situations, such as having the lights turn off at a
certain time in night for sleep or even a scene for when the user is away to have
the lights intermittently turn on or off to deter thieves. Instead of using WiFi has
the communication protocol, the GE wall switch uses a communication
specification called Z-Wave. While this approach does minimize power
consumption compared to WiFi and Bluetooth, having a standardized
communication protocol is important for our project to allow for easier
communication between the devices and our application. The GE wall switch
also supports all light bulbs, but assuming that your light socket supports these
light bulbs that is to be expected. The dimensions of our device should somewhat
closely match the dimension of the GE wall switch. The specifications are shown
in Figure 4.1.C.

11

Next is the Belkin WeMo Light Switch. Installation is similar to the GE wall switch,
requiring the user to remove their existing wall switch and wire the connections to
this instead. It shares many key features with the GE wall switch, like an
application that allows the users to see what lights are currently turned on,
wirelessly turn them on or off, and set schedules for when the lights should be
turned on or off. One unique feature that the WeMo switch has that the GE
switch doesn’t is that the user can enter their city on the application which will set
the user’s porch lights to turn on as the sun sets and to turn back on again once
the sun rises. The WeMo light switch also operates on WiFi, which is what we
plan for our wall switch to use. The WeMo does not however support a web
based application as the GE wall switch does. Neither product supports
Bluetooth communication either. As was the case with the smart outlet, both
products have the same electric specifications. As such, we will design our wall
switch around these specifications. We plan to have the dimensions for our wall
switch be somewhere between the two existing wall switches discussed. The
specifications are shown in Figure 4.1.D.

Max Current 15 Amps

Max Voltage 120 Volts

Max Power 1800 Watts (resistive)

Maximum Incandescent Load 600 Watts

Dimensions 8.2 inches tall x 7.3 inches wide x 2.3
inches thick

Weight 8 ounces

Figure 4.1.C - Specifications: GE Z-Wave Wireless Lighting On/Off Switch

Max Current 15 Amps

Max Voltage 120 Volts

Max Power 1800 Watts (resistive)

Maximum Incandescent Load 600 Watts

Dimensions 5.1 inches tall x 3.3 inches wide x 2.1
inches thick

Weight 4.8 ounces

Figure 4.1.D - Specifications: Belkin WeMo Light Switch

12

4.1.3. Powerlock

The smart powerlock that we will analyze first is the Kwikset Kevo Smart Lock.
Installation is somewhat simple, only requiring a screwdriver and four AA
batteries. After installing, the product comes with a mobile application download
that provides the user with their eKeys, which are used to unlock the door.
Whenever a user comes into close proximity with the door, if they are in
possession of either the included FOB or have the application downloaded and
are in possession of an eKey, the door will unlock upon touching the lock.
Through the application, the user can also share eKeys with other owners of the
application to grant them access. The application is compatible with both Apple
and select Android devices. One major difference between our intended project
design and the Kevo smart lock is that the Kevo does not support remote locking
and unlocking, as the only way for the door to unlock is through someone with a
valid eKey or FOB to touch the lock when in proximity, while we had planned for
users to be able to wirelessly unlock their door through our application. The
dimensions for this lock are also much larger than we intend for our lock to be.
Specifications are shown in Figure 4.1.E.

Power Source 4 AA Batteries

Dimensions (interior) 7.4 inches tall x 3.25 inches wide x
1.75 inches thick

Dimensions (exterior) 2.75 inches tall x 2.75 inches wide x
1.2 inches thick

Lock Type Single cylinder deadbolt

Figure 4.1.E - Specifications: Kwikset Kevo Smart Lock

Power Source 4 AA Batteries

Dimensions 3.3 inches tall x 3.3 inches wide x
2.2 inches thick

Lock Type Single cylinder deadbolt

Weight 16 ounces

Figure 4.1.F - Specifications: August Smart Lock

The next powerlock we will look at is the August Smart Lock. Installation is
similar to the Kevo smart lock, not requiring any tools aside from a screwdriver.
After installation, the user can download the application to begin configuring their

13

settings. The application allows the user to remotely lock and unlock their door
via Bluetooth. The application also allows the user to actively track who enters
and exits your home at different times of the day. Since each user has a unique
key, you will also know who is opening the door and when. The lock uses the
user's location to determine whether or not you have left home, and will
automatically unlock when you approach the door. Our implementation of the
powerlock will be much less dynamic, simply allowing the user to remotely lock
and unlock the door via the application. Our reasoning for this is that many users
state that because of the application running in the background of their
smartphone constantly, they are finding their phone batteries dying more quickly.
The dimensions for this lock more closely match what we plan for our design to
be. Figure 4.1.F shows the specifications.

4.1.4. HVAC Controller

The final component of our project is the HVAC Controller. The first one we will
look at is the Honeywell Lyric thermostat. Installation for this component will be
the most complex of all four, as it requires wiring to your HVAC system, and
different systems will have different wiring. However, once connected, the Lyric is
an extremely user friendly thermostat. The Lyric does allow the user to control via
application when the system is turned on/off and allows for scheduling. The Lyric
also can use the user's smartphone location to determine to adjust the
temperature for comfort while the user is home, and for decreasing energy
consumption while the user is away. The Lyric also considers both inside and
outside temperatures and humidity, so that the user is more comfortable in their
home. The thermostat comes with a built in LCD display to allow users without a
smartphone or tablet to still control their system. This thermostat does not
support a web application, which is a key difference from our planned design, nor
does it support Bluetooth communication. The Lyric also does not actually show
the user how much energy their system may be consuming, which is a major
aspect of our project. The specifications are shown in Figure 4.1.G.

Display Digital

Dimensions 7 inches tall x 7.2 inches wide x 4
inches thick

Weight 22.4 ounces

Figure 4.1.G - Specifications: Honeywell Lyric Thermostat

The next HVAC controller we will look at is the Ecobee Smart WiFi Thermostat.
Installation for the Ecobee thermostat is similar to that of the Honeywell Lyric.
Once installed, the application allows the user to monitor and control the
temperature from their smartphone, tablet, or computer. It also can adjust to

14

either heat or cool depending on the weather outside to assure the user is
comfortable. A major difference between this HYAC controller and the Honeywell
Lyric, as well as our proposed design, is that the ecobee thermostat comes with
an included remote sensor that can detect temperatures and motion in separate
rooms to determine which rooms are occupied so that you can save energy when
appropriate. The built in LCD display allows users to control the temperature from
the thermostat as intuitively as the application. Figure 4.1.H shows specifications
for the Ecobee Smart Wifi Thermostat.

Power Consumption < 3.5 Watts

Temperature Sensitivity +/- 1°F

Humidity Sensitivity +/- 5% RH

Dimensions 3.93 inches tall x 3.93 inches wide x
0.9 inches thick

Figure 4.1.H - Specifications: Ecobee Smart WiFi Thermostat

4.1.5. Related Projects

One previous Senior Design group’s project was called the Smart Home Energy
Management System. Their project motivation was very similar to ours, but they
chose to focus more singularly on a product that could be compared to our smart
outlet. Their product is a number of small devices that can be used to monitor
and track the power usage of your appliances. The devices would all then send
information to a centralized HUB, which would analyze all of this information,
calculate the energy used by each appliance, and display it to the user on an
LCD screen. These devices would also be able to remotely disconnect your
appliances from power if you chose to do so, via a Bluetooth mesh network. For
our project, we opted to have an application instead of a centralized HUB, as it is
more economic for users, since they can run the app on their smartphone, tablet,
and/or computer. This application also allows for a more modular product, as
adding additional modules can be made very simple. We also expanded much
more on the energy conservation idea that they had, including both a smart wall
switch for light fixtures, and an HVAC controller to regulate the air conditioning.
These additions make for a much more robust energy conservation system. Our
project also includes WiFi in addition to Bluetooth, which makes our web
application possible.

Another Senior Design group’s project was the Smart Home Management
System, with the same motivation as ours, to monitor and reduce the user’s
energy consumption. They use multiple modules that will monitor current, as well
as have the ability halt or allow power to flow to the attached device. They then

15

have a central unit which will have a touch screen display, which will be one way
in which the user can interface with the system. This central unit would allow the
user to view information on all the modules as well as turn on or off the
appliances connected to them. Each module will send information about the
appliance connected, such as whether or not it is turned on, and how much
power it may be drawing. They also planned on having this central unit
connected to the internet via an Ethernet cable, allowing the unit to be controlled
remotely via the internet. They then planned on having sensors stationed that
sense the presence of someone in some area of the household. Having a central
hub with an LCD display that can communicate to a computer seems extraneous,
which is why we forgo that for an application instead. They also do not allow for
the central hub to communicate with a computer wirelessly, as their hub requires
an Ethernet connection in order to communicate with computers. Once again
this group also only focused on simpler appliances for their energy conservation
tasks, while we seek to conserve in multiple aspects of the home, like lighting
and cooling. We also choose not to include sensors for our design, as it adds a
level of difficulty to our project that would not have an effect worth the effort,
since we allow for the users to schedule when appliances should be turned on or
off.

4.2. Relevant Technology

After analyzing a number of similar products and projects, and comparing their
advantages and disadvantages, we begin to determine exactly what components
and technologies we will need in order for this project to be a success. We know
that for the smart outlet, we will need a few components. We will need AC to DC
converters in order to use the AC current coming in from the outlets. We will
need a power sensing IC in order to measure the current flowing out to the
appliance, a WiFi and Bluetooth module in order for the outlet to communicate
with the application, a relay in order to stop the current or allow the current to
flow, and a microcontroller that will allow all of the components to communicate
with each other. For the wall switch, the needs will be basically the same, as it
will have a similar functionality to the smart outlet. For the powerlock, we will
need a WiFi and Bluetooth module, a simple microcontroller, a relay, and a
power source. Then, for the HVAC controller, we will need a microcontroller, WiFi
and Bluetooth module, a relay, and a power meter to measure how much energy
the HVAC system is using.

4.2.1. Power Monitoring

One of the most important aspects for our project is the ability to monitor exactly
how much energy any particular appliance is using at a given time. For the smart
outlet, we have chosen to go with a Power Sensing IC in order to determine the

voltage and current being drawn from the appliances. As we are trying to help

16

users lower their energy consumption, we would like for the IC to be extremely
accurate in its measurements, with an error rate of at least < 0.5%. The IC would
then have to be able to send the measured data to the microcontroller, which
would then process that data, and finally send it to the application via the WiFi
and Bluetooth module to be displayed on the application. The power usage will
be displayed in different time variations, such as amount of usage per hour, or
usage per day.

4.2.2. Wireless Communication

Another important aspect of our project is the ability for all the separate
components to be able to communicate wirelessly to any device running the
application. We plan on using both WiFi and Bluetooth in order for
communication. WiFi allows users to communicate with the system even when
they are at extended ranges, such as work or school, while Bluetooth allows for
low power consumption at closer ranges. WiFi also allows us to build a web
application for users to access on their computers without the need for a
Bluetooth dongle. A low power alternative could be Z-wave, which was designed
with home automation in mind. However, it is a younger technology with not
much open source development support and this would add another layer of
difficulty to our project, so Bluetooth is the preferred option.

4.2.3. Power Supplies

All aspects of our project will need some kind of power supply in order to function
correctly. For the smart outlet, the power supply will be the electricity coming
from the outlet they are plugged into, after being transformed and converted with
our AC to DC converters. The wall switches will use the neutral wire as a power
supply. For the electric strike, we will use a simple AC power supply. For the
HVAC controller, the power supply will be the wiring for the existing thermostat.
The power supplies will have to be enough to drive all components for each
product. This should not be a problem in for any product though, as the highest
energy draw will be the microcontroller in most cases.

4.2.4. Relays

Yet another important aspect of our project is for the user to have the ability to
turn on and off any appliance, as well as schedule when an appliance should turn
on and off. Whether this is down wirelessly through the application or manually
with a button on either the smart outlet or HVAC controller, these features will be
accomplished using a relay. Since both products will be able to wirelessly
communicate with the application, a schedule can be set up with the application,
and when the time comes for the appliance to be either turned on or off, a signal

17

will be sent to the proper component and the relay will either halt the flow of
energy or allow it to flow once more.

4.2.5. Electric Strike

In order for the powerlock to work, we will need to incorporate an electric strike
as a component. An electric strike is a simple component that can either lock or
unlock when a current is sent to it depending on its configuration. This will be
used in tandem with a power supply, a WiFi and Bluetooth module, a relay, and
some simple microcontroller in order to receive a signal to either lock or unlock,
then have the relay allow for power to be sent from the power supply to the strike
to lock or unlock the door.

4.2.6. LCD Displays

For our HVAC controller, the user will be able to monitor and configure the
settings via the application, or the LCD display. The interface should display the
current temperatures, and should update accordingly based on whatever options
the user may select via the buttons below. It should also be able to display
whether or not the HVAC system is operating at this time, as well as the power
consumption of the system, and the average cost of the system. The LCD
Display should also be able to have some kind of sleep function so that it does
not display anything while it is not currently being used.

4.2.7. Temperature Sensor

In order for the HVAC controller to function as specified, we will need a
temperature sensor. This sensor should be able to send the temperature to the
microcontroller, which processes it and sends it to both the application and the
LCD display. It is important that the temperature sensor is very accurate, so that
the HVAC controller can properly determine when the user should turn on or off
their system so that they can save on energy consumption. ldeally, the
temperature sensor would have an accuracy of +/- 1°F, to match the accuracy of
the Ecobee Smart WiFi thermostat.

4.2.8. Microcontroller

All these previously stated components are equally important to the proper
function of our project; however they would not be able to work together at all if
we did not have some type of microcontroller. The microcontroller will be the
component that allows for the other components to communicate with each
other, as well as process the data that will be sent via the WiFi and Bluetooth
module to the application. The microcontroller will have to be able to do all of this
simultaneously to allow for timely updates to the user.

18

5. Project Design

5.1. Hardware Design Plan

The following sections will discuss the specific hardware components needed to
run and implement the various aspects of the home automation system. This
includes the designs for the wall outlet, HVAC controller, powerlock, and wall
switch. The various advantages and disadvantages will be discussed for each
component as well as comparisons to other existing modules available.
Constraints and Standards were taken into consideration when building the
components, making sure the correct AC and DC voltages were according to
IEEE standards.

5.1.1. WiFi/Bluetooth Module

For a good, well established communication between the home automation
hardware and the smartphone app, a choice of wireless communication needed
to be made. There are many out there with certain advantages and
disadvantages. For the home automation system, the wireless communication
module must be able to have a constant connection while not using much power
consumption when not transmitting. Because this specific home automation
system is for an average sized room, the module doesn’t need to have a wide
range of access. There is also only need for one antenna in the module since
transmission/receiving is only going to one place, which in this case is the central
hub.

5.1.1.1. WL18xxMOD 8 Single-Band Combo Module

In a new line of products from Texas Instruments for combo WiFi/Bluetooth
modules, the WL18xxMOD WiLink 8 Single-Band Combo Module incorporates all
of the UART wireless communication needed for instant transmission and
receiving while consuming low amounts of power.Having both WiFi and
Bluetooth allows for a more stable connection between the central hub and the
smartphone. A constantly on Bluetooth pairing to the home automation
components allows for fast and easier access as well as easier connect and
disconnect to the central hub. Figure 5.1.A shows the functional block diagram of
the module. The basic input for WLAN and Bluetooth are shown as well as the
process the inputs go into. The pinout schematic is shown in Figure 5.1.B, where
the inputs are shown being wirelessly received and transmitted using UART
communication. Most of the pins are grounded and unused. The important parts
of the schematic include pins 50-53 (connecting to host HCI interface), pins
56-60 (connecting to host Bluetooth PSM Bus), and pins 6-14 (connecting to host

19

SDIO interface). All of the pins stated are needed for a transmit/receive 1/O
between the digital and bluetooth interfaces.

Figure 5.1.A - WL18xxMOD Functional Block Diagram
(permission granted from Texas Instruments)

. -‘I-_ll-ll
" S
ik o ks : ﬁ_:: ,:ﬂ-— L
1 s = H
e == 2
o e o Py Ittt e s
e wn Shgs feoe e
L e S 2]
ic e E-124X15.3-N100_075-TOP -ﬂtt St
o s e s
whommat s Y g, o
P Ll = ik
wafr g &
1 i cu
== =
i S
N
:EI%Eitgiiéﬁ R
T T
mlli il %» Jrenmems

Figure 5.1.B - WL18xxMOD Pinout Schematic
(permission granted from Texas instruments)

20

5.1.1.1.1. WLAN and Bluetooth

The module offers integrated 2.4 GHz power amplifiers. This assures that the
module is able to fulfill all TX/RX signals without any need for other components
or modules.This radio also includes a low noise amplifier, which is important if
the signal received is very weak due to the smartphone transmitting at a large
distance or away from the main room. The WLAN also contains a small
embedded ARM CPU. This CPU contains encryption and decryption for the
module, allowing for a WiFi with special encryption (either WPA or WPA2) to be
fully compatible with the WLAN part of the module.

5.1.1.1.2. Power Requirement and Dimensions

The module occupies a very small portion of the breadboard, only 13.3 x 13.4 x
2 mm in size, allowing for more space for other components, such as the relay
and power monitoring chip. This allows for use of a smaller PCB for all of the
components, which is vital for the requirement of small and non-invasive
components that won’t be too noticeable in a standard sized room.

According to the Texas Instruments datasheet for the WiFi/Bluetooth module,
there is a minimum startup voltage of 4.8 V. Each pin on the module requires a
1.8V start up voltage. This is done by connecting three internal DC/DC voltage
converters already included in the module, allowing for a controlled voltage to
access the pins. The functional block diagram can be seen below, showing the
top level design of the DC/DC power supplies. In order to obtain an efficient
power management system, VBAT and VIO are off while no signals are sent to
the module, aside from the low power timer that acts like an LPM4 Timer.
WL_EN is used to power-up the module and the DC/DC internal converter,
clocks, and LDQO’s are slowly enabled and stabilized. These processes can be
shown in Figure 5.1.C

WL 15 TOP LEVEL

WIO_IN
(o)
VEAT
. T M DA ;
VEAT_IN_P#&_DCI0C VEAT
| : I |
MAIN_DCZDE_OUT aw | o sw | PADC2DC_OUT
r LOO_M_DG =l [et DCZDC = FE_IN_P#_DCIns
A J
I 2227V I
18¢
D8GE_DC20C_OUT W
Z Digital DCZ0C

Figure 5.1.C - DC/DC Power Supply Functional Block Diagram

21

5.1.1.1.3. Comparison to Other Modules

This module was chosen specifically because of the utility and ease of having
both Bluetooth and WiFi inside a signal small module that operates on low
power. There are many modules out there now currently that use either WiFi or
Bluetooth; there are not many combo modules that utilize both. A few have been
found and, in comparison to the WL18xxMOD WiLink Low Energy Combo
Module, they either lack in performance or do not fit the ideal specifications of the
overall final PCB layout. In total there were three Wifi/Bluetooth combo modules
that were considered. The price, range, dimensions, and other features of the
module were all considered. Figure 5.1.D shows the comparison with each
module.

Price Dimensions Range Startup/Signaling | Special
Voltage I/O Features
LSR TiWi-BLE $26.77 | 18 x13x 1.9 24 GHz | 1.8/4.8VDC Full support for
Bluetooth mm ANT
Classic & Reverse polarity
Bluetooth Low antenna
Energy + WiFi
802.11 b/g/n
Module
TIWL18xxMOD | $23.33 | 13.3x134x2 | 24 GHz | 1.8/4.8VDC Integrates RF,
WiLink™ 8 mm PA, Power
Single-Band Management,
Combo Module etc.
Used
specifically for
Automation
Systems
Summit N/A 15x15x2mm | 24 GHz | 1.8/3.3VDC Collision
SDC-SSD40NBT Avoidance

Figure 5.1.D - WiFi/Bluetooth Module Comparison Table
Summit SDC-SSD40NBT

The SDC-SSD40NBT was not only too big for the size requirement, but this
specific module has been discontinued and is no longer sold. The module came
out around 2013 and it was a first of its kind. Not many modules have both WiFi
and Bluetooth in a single package that was also power efficient as well as cost
efficient. The physical interface was a typical quad flat pack with no leads.
However, the most standout feature would have to be the carrier sense multiple

22

access with collision avoidance. This allows for multiple signals coming in and
out at the same time without interference or distortion caused by signals mixing
with each other. The input voltage was only 3.3 VDC and contained up to 5GHz
frequency bands, which was unnecessary for the home automation system, but
is a very nice feature to have regardless. Back then this would have been a great
module to use. However, there was no method of sampling to purchasing this
module.

LSR TiWi-BLE Bluetooth Classic & Bluetooth Low Energy + WiFi 802.11
b/g/n Module

With the Summit SDC-SSD40NBT available for consideration, the only two
options were the Tl WL18xxMOD WiLink™ 8 Single-Band Combo Module and
the LSR TiWi-BLE Bluetooth Classic & Bluetooth Low Energy + WiFi 802.11
b/g/n Module. Upon inspection, these modules are seemingly similar and
identical. They both offer the same amount of practical application, close
dimension specs, superb wi-fi connectivity as well as bluetooth connectivity, and
most importantly low power operations for standby mode. However, the LSR
module also utilizes the ANT wireless sensor network technology, which is a
wireless communications protocol stack used primarily for sensors. The home
automation system does not need this type for wireless technology and would not
be used. The dimensions and cost also played a minor role in choosing the
module. the LSR module was minutely bigger in length, which could be a
problem in fitting the components unto the breadboard. The cost, although
insignificant, drove the decision to use the TI Combo Module. This is why the
LSR module was not considered in the design of the home automation
components.

5.1.2. Microcontroller Module

For most of the components of the home automation system, an MCU is needed
to operate the component. All of the other modules in the PCB (relay, power
sensing IC, bluetooth module) will be connected to this MCU to operate these
modules. Inside the MCU will be a pre-made program used to interface with the
smartphone and the central hub. The MCU also needs to be able to easily
migrate with other peripheral modules and store a considerable amount of data
using flash as well as SRAM.

Figure 5.1.E is the basic layout that will be used for all microcontrollers used in
each of the devices. The microcontroller will receive data from the device as to its
current state, and send that data to the wifi module to be sent to the cloud server,
and in turn also receives data from the cloud, via the wifi module, as to which
state the processor will tell the device to be in. The microcontroller will also
receive input from mobile devices via the bluetooth module, however this will
only be input and will only be used to configure the wifi module for connecting to

23

the desired wifi network and allow connection to a private or protected wifi
network. The processor will convert the received data to the correct format for
output, and send the output to the correct destination, while still being able to
receive new data. Efficiency and accuracy of the process will be the most valued
metrics, there should be very little if any delay between a command being
entered from the app/cloud and the microcontroller, less than 1 second of delay
is the desired goal.

Device

Power Source /

4)

Processor Wifi module

Cloud

Microcontroller

Mobile device Bluetooth module

N Py

Figure 5.1.E - Microcontroller Layout

There are many MCU'’s out there that can perform all of these actions and more.
However, for the purpose of this project, the MCU will most importantly need to
be universal with all of the components of the home automation system. This
means that the MCU will need to be practical for the wall outlet, wall switch,
powerlock, and HVAC Controller and be able to accomplish of the needed duties
without wasting unnecessary power or being too big/small for the PCB. With all of
this in mind, typical IEEE standards and constraints need to be followed when
interfacing the MCU with the other modules on the PCB.

5.1.2.1. Atmel SAM C ARM Cortex MCU

In order to have an ideal home automation system, it is important to have an
MCU that is pre-optimized for tasks brought upon by home automated
peripherals. The Atmel SAM C ARM Cortex MCU is the latest in MCU'’s that are
designed specifically for industrial automation, appliances, and other 5V
applications related to home automation. One of the main features of this MCU
that stand out from other MCU’s is the support for capacitive touch button, slider
and wheel user interfaces. This allows the use for a smartphone app that can
utilize these capabilities for a more user-friendly interface that can be used by
anyone.

24

P

OSCILLATORS CONTROLLER

xour || X0SC | [FoOPLLoeM |

PORT

Boticloyr.o CONTROLLER

| WATCHDDG

| EXTWTIS 0] [EYTERMAL INTERRUPT
.. — CONTROLLER

POWER
MAMAGER

s 0SC32K CONTROLLER
wowtxm[| x0SCcak | [oscOLPazk]

SUPPLY CONTROLLER
| eobss | [wrer]

RESETN RESET
CONTROLLER

REAL TIME
COUNTER

=

FREQUENCY
METER

=

Figure 5.1.F - Atmel SAM C Arm Cortex MCU Functional Block Diagram
(permission granted from Atmel)

b4

EEEE

3|8

3

WO

Amij1a.0]

VREFA

N7

#[15.0]

15

The MCU system contains both internal and external clock options with a 48 MHz
to 96MHz Fractional Digital Phase Locked Loop. This PLL has an adjustable
proportional integral controller that allows for increase/decrease to the frequency.

25

The reference clock can go from 32 kHZ to 2 MHz that can be chosen from
multiple sources. This is important for the output of the signal that will be sent to
the WiFi/Bluetooth module and relay.

In regards to the processor, with a peak speed of 48MHz, the ARM Cortex is able
to process and complete tasks at a very fast rate. The processor contains a
single-cycle hardware multiplier, which means that completing a binary operation
only takes about 10 nanoseconds. Certain operations such as division use early
termination in order to minimize cycles. The processor utilizes both Little-Endian
and Big-Endian for storing into memory, although Little-Endian is mostly used in
this case. There are 32 interrupts for stacked processing, which allows for a
number of operations to be completed via smartphone. This is unnecessary for
the purpose of this project because the workload of the MCU will be minimal.
Figure 5.1.F shows a functional block diagram of the MCU. The power sources
and timers can be shown in the figure, as well as the necessary comparators and
controllers for the system to attain the high speed multiplier.

5.1.2.1.1. Power Requirement

The MCU contains several power supply pins that operate on different voltages.
The functional block diagram for the power supply is shown in the figure below.

E

VDDAMA
GNDANA,

4
3
g
>

GND
VDDIN
PB[31:22]
PA[31:27]
VODIO

v
Ll

Pa7:2) [
PE[9:0] |

PB[17:10]

Digital Logic
{CPU, Peripherals)

PA[25:8]
DPLL

Figure 5.1.G - Atmel SAM C Arm Cortex MCU Power Supply Pinout Schematic
(permission granted from Atmel)

26

Operating voltages are 2.7 V to 5.5 V. The main supply could either be a single
supply or a dual supply that is taken from VDDIN. This voltage is applied to 4
pins to power the core, memory, peripherals, oscillators, etc. This is done with a
built in voltage regulator that is on standby low power mode until CPU and
peripherals start running. Failsafe features are also included, such as power-on
reset and brown-out detection. This assures that, in case of a power outage or
error, there is no damage to the MCU. The pinouts and components can be seen
in Figure 5.1.G.

5.1.2.1.2. Communication with Software

The Atmel Sam C ARM Cortex microcontroller does not have built in WiFi
communication capabilities. To be able to connect to WiFi a separate module is
needed. To do this we are using the Tl WiLink 8 series WL1835MOD module.
This module will be connected to the microcontroller directly and the software will
be used to configure and operate the module. The configuration data will be
received via a Bluetooth connection between a Bluetooth module attached to the
microcontroller, and a Bluetooth enabled input device, most likely a smartphone
or tablet computer.

We plan to use an encrypted TLS connection to send and receive data between
the microcontroller and server. In order to do this, the TLS mbed open source
SSL library 2.2.0 will be used. TLS mbed open source SSL library 2.2.0 is
designed to work with ARM Cortex microcontrollers, and is purposefully very
small in size so that it can be used directly from embedded processors. This
library is TLS 1.2 compliant and contains encryption algorithms suitable for
embedded systems.

Data is sent and received from the server every cycle of the software to maintain
the connection. Data is sent to the server first and then received from the server
in every instance of the communication. Data will be encrypted by the TLS mbed
library before being sent, and decrypted once received, with no steps between
encryption and sending or between receiving and decryption.

5.1.2.1.3. Comparison to Other Modules

When beginning to search for compatible MCU’s for home automation, the Atmel
SAM C ARM Cortex MCU was the first MCU to pop up. Because this specific
MCU contained everything needed and built almost exclusively for home
automation, this was the obvious MCU of choice for the project. No other MCU’s
were considered and no other MCU’s are needed since the SAM C ARM Cortex
MCU is universal with all of the home automation’s components.

27

5.1.3. Power/Energy Management

Because one of the main purposes of the home automation project is to better
conserve energy and power by measuring them across certain intervals, every
component that is controlled under the smartphone app needs to incorporate
some sort of power measuring tool. The measurement then needs to be stored
and sent to the smartphone after a certain interval i.e. at the end of the week or
end of the month. In order to have a constant measurement of power, a
measurement of current and voltage need to be obtained first.

As far as the hardware module is concerned, the requirements for a quality
power sensor needs to be optimal for saving space as well as simple connection
and implementation. There needs to be a considerable amount of storage,
preferably flash storage, that can be configured, processed, formatted, and
interfaced onto the smartphone.

5.1.3.1. 78M6613 Single-Phase AC Power-Measurement IC

The Maxim Integrated 78M6613 Single-Phase AC Power-Measurement IC is an
integrated circuit that implements single-phase AC power measurement and
computes using a 32-bit compute engine and a 22-bit delta-sigma ADC. This
component is used specifically in power supplies and appliances that can be
wirelessly controlled. There are four analog inputs that interface to voltage and
current sensors. Also included is an integrated microprocessor core that
post-processes any input from the voltage and current sensors. A temperature
sensor is also included in the IC, but is not necessary for the purposes of this
project. 32 KB of flash memory is included in the package, which is plenty of
storage for data receiving, processing, and transmission.

As stated in ‘Power/Energy Management’, the power sensor needed to be very
small and discreet so there would be more space on the PCB. The 78M6613
Single-Phase AC Power-Measurement IC is 5 x 5 mm, which is incredibly small
and compact. Included in the small form factor are 32 pins for a variety of input
and output options. For the purposes of this project, most of the pins will not be
used and the important pins, such as voltage sensor and current sensor input,
will be used. Figure 5.1.H is a functional block diagram of the power
measurement IC, which includes pinouts and internal converters and
communication peripherals. There are many components inside the IC that are
important for power operation, such as the 32 bit compute engine and the mini
MPU. The steps on how the power is achieved can be seen under the “Power
Management Operation” section.

28

'u'r'R_|E'F WE“' GN'_|D.P| U'3E|3D GNDD
| - | - | - [
-
- AZADE
:‘:) CONVERTER
A2 - WESAS WERAE |
A3l L B T
VIFI—p
;E g
WREF { | ¥REF r. 8
MLIX :]
CROES
MLEE
— ! cm e
VOLT
osc WK Dt .
RTCLK [@2Hz) Craz
XN [] » o 1 BT e
HOUT [e
EEIEIMHE
" A CHFR
SKTEST _Q" l-t.msamz [T
] R
CK_OEN
CE RAM
0SB}
un:g:m::._i =
CHCE o “‘f
N }
<4 5152MHz
m 32 i Compute DATA L
TEST []}'E Engina MEMORY SHARE T
FROG
T 000-TFF ADOBAFF e
o
CONTROL ar
[5]0a]
=l & DIGITAL bD DIy ia
% E OIS
L]
H DI 6
CHMPU g
<4 D152z I DT
N "
2 | SDCs g [uiladE]
R |_=ocem
UART |4 & SO
T DATA
WPU A
i DOO0O7FF ML XRAM
By
0000-
FROG memory | 0 | FLasH
DO00-TFFF SHAAE {E2KEY
MELL_RETZ EMULATOR
PORT
TEET
Ec TEET s] TMUKOUT
E_TCLE
J_| I ECFST (mpen Drain)
Lt Lt =
RESET E_FOTH 4] ICE_E
E_TCLK 40—
E_RET st—p

Figure 5.1.H - 78M6613 Single-Phase AC Power-Management IC Functional Block Diagram

29

5.1.3.1.1. Power Management Operation

Power output for the 78M6613 is given by the following expression:

E= J'lf'[r]!(r}dr
i

At constant intervals, the sensor captures constant changes in voltage, current,
phase, and harmonic current. In order to provide an accurate reading, the
78M6613 processes sample of current and voltage through an ADC under a
frequency w, which is constant. These samples are then multiplied by the
sampling period to get a stable voltage and current, which is then multiplied and
integrated as the above expressions shows and a momentary energy is yielded.
These energies can be added up to obtain an accumulated energy, which is then
transmitted from the 78M6613 to the output. Figure 5.1.1 is a graph showing the
possible trends in voltage, current, momentary and accumulated energy.

- Engrgy per nlerval W]
00 e —m AUUIEeE ENergy [Wa] (-t e
500 .

Figure 5.1.1 - 78M6613 Single-Phase AC Power-Management IC Power Trends

5.1.4. Wall Outlet

One of the main components of this home automation system is the smart wall
outlet. Many smart wall outlets have been made, as shown in the Related
Projects section. One of the main influences of the design of the smart wall outlet
was the WeMo Insight Switch. Its small form factor and compact design made it
stand out from the other bulky smart wall outlets that other competitors offer.
However, the WeMo Insight Switch only accounted for one electrical appliance
per module. Having dual wall outlet that can both be programmable while
containing a slim and discreet profile was the goal in designing our wall outlet.

30

PLACEHOLDER FOR FINISHED WALL OUTLET DESIGN

Figure 5.1.J - Wall Outlet Final Design

AC/DC
Converter

AC/DC
Converter

£ 1 MCU

Energy Meter
IC

ral "\‘
Relay ——{ 120 AC Out).

 EE—

Figure 5.1.K - Wall Outlet Hardware Block Diagram

Figure 5.1.J shows the final design of the smart wall outlet. The design requires a
minimum voltage of 7.8 V and must be able to handle temperatures up to 100°F.
Although temperatures should realistically never go up to this much, it is

31

important to ensure the casing and modules inside should not malfunction under
extremely high temperatures. The same is asserted for temperatures going as
low as 40°F, although the casing as well as the modules inside should not be
affected as easily as under hot temperatures.

An input of 120 V goes through an AC/DC converter (and the resulting DC
current is degraded to the exact voltage needed to activate the microcontroller
(the exact model is still being picked out). The microcontroller, at rest, would not
output an AC voltage unless a wireless signal from the app on the smartphone or
the tablet turns on the microcontroller. If so then a 120V AC is output, thus
turning on the wall outlet and the energy meter IC records this continuously until
the state is changed. Figure 5.1.K. is a basic visual hardware block diagram of
the above process.

5.1.4.1. Dimensions

Using the Eagle Software, a PCB design was created that contains all of the
necessary circuitry needed to power and maintain the wall outlet. It is important
that the PCB is small enough to be packaged inside a small casing as desired in
the form factor of the wall outlet. The plug is a standard plug of dimensions
1.34375 x 1.125 inches and the size of the entire casing is 4.5 x 2.75 inches.
The reasoning for these dimensions was to create an almost inconspicuous
piece of hardware that melds into an existing wall outlet without any bulky pieces
sticking out. For this reason the PCB will be using a single sided copper layer of
size 4 x 2 inches. All of the resistor and capacitor values can be seen in the PCB
design below in Figure 5.1.L.

Placeholder for PCB Design

Figure 5.1.L - Wall Outlet PCB Design

32

Figure 5.1.M displays a table of components that are on the PCB along with the
purpose of that component. Also given below in Figure 5.1.N is a table of the
electrical characteristics of the wall outlet as well as general info regarding the
wall outlet, such as operating temperatures, operating voltages, dropout voltage,

etc.

Placeholder for Table of PCB Components

Figure 5.1.M - Wall Outlet Table for PCB Components

Placeholder for Datasheet and Electrical Characteristics

Figure 5.1.N - Wall Outlet Datasheet and Electrical Characteristics

33

5.1.4.2. Power Requirement

The smart wall outlet will replace any existing wall outlet, meaning that the power
requirement for the smart wall outlet is the same as a normal wall outlet. The
smart wall outlet does not use a grounded pin, meaning the standard NEMA 1-15
ungrounded plug is used in the smart wall outlet to cover up both plugs on the
wall. An ungrounded plug is used because some houses as well as some
building have wall outlets that don’t have grounded pins. This way the smart wall
outlet is compatible with all houses and buildings. The NEMA 1-15 ungrounded
plug uses up to 15 A current and 125 V volts.

5.1.4.3. Communication with Software

The wall outlet device’s communication with the server and web and mobile
applications is handled through the software in the microcontroller using the WiFi
module. The procedure for the wall outlet device to send and receive data to and
from the server and mobile and web applications has 2 forms. These two forms
are an upkeep form and an update form.

The upkeep form of the procedure occurs every cycle of the microcontroller
software process. The purpose of this form is to maintain a constant stream of
data between the device and the server to prevent the connection from being
dropped by the ISP for being idle. The second purpose of the upkeep cycle is to
maintain up to date power usage data. The final purpose of the upkeep form is to
check for updates to the state from the mobile and web applications.

The state data sent by the upkeep form is always the same as the previous data
that was sent to the server. This allows the software to save cycles by not
updating all of the information being sent every time. Since the upkeep form is
used far more often than the update form, the few cycles saved by splitting the
two forms and excluding updating the data add up significantly. The data on the
power usage through the device is sent as part of this form, in order to keep that
information current and up to date.

The data received by the upkeep form is always checked against the data that
was just sent to the server. The received data is then decrypted. If the received
data is different, the software will go through its update process, which is
dependent on and unique to the design of the software, as detailed in section
5.2.1. The update process always includes updating the data to be sent to the
server during the next upkeep communication.

The update form of the procedure occurs only when the state of the device has
changed since the last time data was sent to or received from the server. This
case is specifically for when the device’'s state was changed manually. This
designation allows the server to know that the device was changed manually.

34

This second form also allows for information to be sent at a constant rate using
the upkeep form and still be able to instantly send an update to the server when
the state of a device is changed manually.

The data sent by the update form is always the same as the previous info sent to
the server, except for the state which will always be different. The update form
updates the current state variable in the information being sent to the server, and
then sends that data to the server. The only new data being sent is the updated
state of the wall outlet. The reason the rest of the data besides the state does not
need to be updated in this form is because regardless of whenever this form is
triggered the upkeep form still occurs in the cycle, which will update that other
data.

The data received by the update form is largely the same as the upkeep form,
the difference being the update form only pays attention to the state information.
A fast response time to any changes made using the mobile and web
applications is an important part of our goals and objectives. As such, checking
for updates more often improves this response time, and fits with our goals and
objectives. After the data is decrypted it is checked against the current state data
for the device. If the newly received state data is different, the wall outlet goes
through its update process, which is different depending on the software design
used. The different software designs being considered for the wall outlet are
detailed in section 5.2.1.

5.1.5. Wall Switch

After we completed our preliminary research, we have decided on a single wall
switch that will allow users to wirelessly control their lighting. The wall switch will
be connected directly to the neutral wire that is usually standard with all light
switches. The wall switch will also be connected to a wireless network via the
WiFi and Bluetooth module. The wall switch will also be able to measure the
amount of current and voltage the lighting source will use, and transmit this data
so that we can calculate the power that the lights use.

Components/features of the wall switch will include:

AC-DC Conversion

In order for the microcontroller, WiFi module, and energy measuring IC to
function correctly, the incoming AC voltage will have to be converted into a DC

voltage.

Energy Measurement Circuitry

35

An energy measuring integrated circuit will be used in order to measure the
continuous current and voltage signals so that we can calculate the amount of
power the lighting uses.

Wireless Module

The WiFi and Bluetooth module will allow for the wall switch to transmit data to
the application, and allow the wall switch to receive transmissions to turn on or
off the lighting. It will also use low energy to transmit data.

Relay

In order to actually turn the lights on or off, a relay will be used. The relay will act

as a switch that will either allow a current to flow through the circuit, or cease any
flow that is currently happening.

WiFi Signal

AC/DC
Converter

pc/bc
Converter

MCU

Energy Meter
IC

—_—
Relay 4.,_/120 ACOut |

e

/N
/ \\

120 AC In
(Switch/
Button)

Figure 5.1.0 - Smart Wall Switch Hardware Block

36

Microcontroller

The microcontroller will be responsible for allowing all the other components of
the wall switch to operate in tandem. It will also be responsible for any basic
calculations we may need done, such as talking the current and voltage and
calculating power consumption.

Manual Button

The wall switch will also include a manual button to turn on or off the lights if the
user does not wish to use the application.

Figure 5.1.0 shows a basic input/output of the wall switch of the home
automation system. After the user presses the wall switch or toggles the switch in
the application, the signal goes through an AC/DC converter and through a
DC/DC converter to reduce voltage. The MCU accepts the signal and goes
through an energy meter IC that records the voltage being put it over an infinite
period of time or until the wall switch is turned off. The output inverts the wall
switch’s current state.

Placeholder for Final Wall Switch Design

Figure 5.1.P - Final Wall Switch Design

5.1.5.1. Requirements
The wall switch will have the following requirements:

1. Allow for an input of 120V AC

37

. Connect to the user's existing switch and neutral wires and use these

connections as a power supply

Turn the lighting source on or off

3
4
5.
6. Interface wirelessly with the application
5.

1.5.2. Specifications

. Output the correct voltage to operate the lighting

. Measure the current and voltage that travels to the lighting source

via WiFi or Bluetooth

Listed in Figures 5.1.Q - 5.1.U are the specifications for the wall switch device.

Input Voltage 120V AC
Input Frequency 60 Hz

Max Current 15A
Connection Neutral Wire
Maximum Incandescent Load 600 W

Figure 5.1.Q - Electri

¢ Specifications

Current Yes
Voltage Yes
Temperature No
Humidity No

Figure 5.1.R - Sensor Specifications
Wired No
Wireless Yes
Protocols WiFi, Bluetooth
Band Frequency 2.4 GHz
MAC/PHY specifications 802.11bgn

Figure 5.1.S - Communication Specifications

38

Dimensions 2.75 inches wide x 4.5 inches high
x 1.5 inches thick
Weight 3.5 ounces
Color White
Figure 5.1.T - Physical Specifications
Temperature 32°F to 122°F
Humidity 5% to 85% Relative Humidity
Elevation 0 - 6000 feet

Figure 5.1.U - Operation Conditions

5.1.5.3. Components

AC to DC Converter (Rectifier)

Since the input voltage coming from the neutral wire will be an AC voltage, the
components of the wall switch will not be able to use this directly as a power
source. In order for the components to be powered, the AC voltage will have to
be converted to a regulated DC voltage, and to do that, we will need to employ --

Forward Voltage 1.3V
Forward Current 1A
Leakage Current 1 mA
Reverse Recovery 15 ns
Forward Recovery 30 ns
Junction Capacitance 70 pF
Minimum Operating Temperature 0°C
Maximum Operating Temperature 70°C

Dimensions 9.81 mm length x 6.35 mm x 4.57
mm height
Weight 0.019 ounces

Figure 5.1.V - UC3610N Specifications

39

-- some type of circuitry that will perform this. One method that we can use is an
AC to DC converter, or as it is also known, a rectifier.

In order for the wall switch to work correctly, the rectifier will first have to take in
the 120V input voltage, convert that into a DC voltage, and then filter that DC
voltage so that it is smoothed, as the unfiltered DC voltage will still have pulses.
The input voltage will also have to be stepped down so that it can be used by the
components of the wall outlet. There are two methods of rectification that can be
employed: half wave rectification and full wave rectification. We plan on using a
rectifier that uses full wave rectification, as full wave rectification produces less
ripple voltage than half wave, which could lead to incorrect functionality of the
circuitry. Full wave rectification also requires less filtering in order to eliminate
harmonics. The rectifier that we decided to use is the Tl UC3610N, and
specifications are shown in Figure 5.1.V.

Energy Measurement Circuitry

In order for us to calculate how much energy the user consumes with their
lighting, our wall switch will have to employ some type of circuitry that will be able
to measure the voltage and current that flows through the device. To accomplish
this, we plan on employing energy measurement integrated circuits, or ICs, that
will measure the current and voltage that is being consumed, and send this data
to the microcontroller for processing.

Measurement Error 0.1%
Bandwidth 14 kHz

Input Range 22-26V

Input Impedance 3.2 kQ

Input Capacitance 10 pF
Operating Voltage 4555V
Operating Temperature Range -40°C to 125°C
Storage Temperature Range -65°C to 150°C

Figure 5.1.W - MCP3909 Specifications

There are some projects which used multiple components for this, such as
combining an AC voltage meter and a current meter, then calculating the energy
used based on both those measurements. However, we choose to use an energy

40

measurement IC instead, as it cuts down on necessary components. It is
important that the measurement is extremely accurate, so that we can display
accurate information to the users. The IC should also be compact so that our wall
outlet will not have to be overly large in order to compensate. The energy
measuring IC we planned on implementing is the MCP3909, whose
specifications are located in Figure 5.1.W.

Wireless Module

To facilitate the wireless communication between the wall outlet and the user’s
smart device or computer, we will employ a module that supports both Wifi and
Bluetooth communication. The reason we chose to employ this was so that if the
user was in close proximity to their device, they could use Bluetooth, while if they
were away from home, they could instead use Wifi. With Bluetooth, any device
using this communication protocol can connect with any user, as long as they are
within a certain proximity of each other. Any device in a piconet (Bluetooth
network of multiple devices) can connect to up 7 other devices. The maximum
range for a Bluetooth technology is 10 meters or 30 feet, but there is no limit so
the manufacturers can implement or set their own range for the specific device.
Bluetooth devices have a lot of benefits including: robustness, low power, and
low cost. Bluetooth operates in an ISM (Industrial, Scientific, and Medical) band
at 2.4 to 2.485 GHz. Also, Bluetooth use the adaptive frequency hopping, which
is nothing more than detecting other devices nearby and avoiding their
frequencies so their own signal won't be interfere. And because this technology
uses low power consumption, the radios are powered down when inactive, which
is a plus for this project because the main objective is to lower power.

Relay

One of the key features of our project is the ability to power on or off any of the
products we develop connected wirelessly. They are three states that the wall
switch will operate in: on, off, or standby. Many electronic devices and appliances
will continue to draw power even if they are powered off but are still plugged in.
This power that is consumed is called standby power or phantom energy. In
average every household has a number of appliances that are constantly
drawing phantom energy, eventually making the electric bill higher. Phantom
energy can account for five to ten percent of an energy bill each month.

Many methods exist in order to verify that the power will be shut off completely in
our wall outlet. We will have three different methods in which the power will be
shut off too the device. The first method will be done through the application,
where we will determine certain times of the day where the appliance connected
to the outlet should be completely shut off. This automated control is regularly
used in many designs turning on and off, lights, air conditioners, and other
appliances. The next method will allow the user to shut off the device remotely

41

by use of a cell phone. The last method will be a minimum voltage control. In this
method, when the measurements of voltage used fall below certain level, the
actuator will shut of the device completely until is wirelessly activated. Many
recent power strips and surge protectors employ technology that does this, to

save on energy.

Rated Voltage

100-240 VAC

Operating Voltage

75-264 VAC

Impedance 72 kQ £ 20%
Must Operate Voltage 75 VAC max
Must Release Voltage 20 VAC min

Rated Load Voltage 400-600 VAC
Load Voltage Range 360-660 VAC

Operate time

2 of load power source cycle + 1
ms max (DC input)

Output ON voltage drop

1.8 V (RMS) max

Leakage Current

10 mA max (at 400 VAC)
20 mA max (at 600 VAC)

Insulation Resistance

100 MQ min

Dielectric Strength

4,000 VAC, 50/60 Hz for 1 min

Vibration Resistance

Destruction: 10-55-10 Hz, 0.75mm
single amplitude (1.5mm double
amplitude)

Shock Resistance

Destruction: 1,000 m/s?

Ambient Temperature

Operating: -30°C to 80°C
Storage: -30°C to 100°C

Ambient Humidity

Operating: 45% to 85%

Weight

120 g

Figure 5.1.X - Omron G3NA-6 Series Specifications and Characteristics

The relay is the type of electronic component that we will use in our design.
There are two types of relays that are commonly used: the mechanical relay and

42

the solid state relay. The mechanical relay is a simpler and safer method to
implement than other types of relays that are used, but it comes with the
disadvantage of being very bulky and inconvenient for our small project. Other
types of relays that we had up for consideration were: zero crossing silicon
controlled rectifier (SCR), intelligent solid state contactor, SSC or solid state
contactor, phase angle silicon controlled rectifier (SCR), mosfet solid state relay,
IGBT(insulated Gate bipolar transistor), solid state relay and the opto-couple
Triac. We decided to implement the solid state relay, as it would be the most
suited for our project. Solid state relays are low cost, and since it does not
contain any moving parts, it is ideal for a circuit. One risk of a solid state relay is
that they tend to fail when they are shorted, meaning that when they fail a current
still flows throughout the circuit, whereas mechanical relays tend to fail when
‘open”, meaning no current is flowing. They also become expensive to build in
high current ratings, but since our project will not be using very high currents this
negative is not very impactful. One major benefit of using a solid state relay is the
speed at which the switch can open and close, which is much faster than that of
the mechanical relay, as there is an armature that must move in order for it to
open and close. Solid state relays also use low current, produce very little noise
when switching, are significantly smaller than other types of relays, and are less
sensitive to the environment (humidity and magnetic fields). For our project, we
decided to go with an Omron G3NA-6 series solid state relay, with specifications
shown in Figure 5.1.X.

5.1.5.4 Communication with Software

The wall switch device’s communication with the server and web and mobile
applications is handled through the software in the microcontroller using the WiFi
module. The procedure for the wall switch device to send and receive data to and
from the server and mobile and web applications has 2 forms. These two forms
are an upkeep form and an update form.

The upkeep form of the procedure occurs every cycle of the microcontroller
software process. The purpose of this form is to maintain a constant stream of
data between the device and the server to prevent the connection from being
dropped by the ISP for being idle. The second purpose of the upkeep cycle is to
maintain up to date power usage data. The final purpose of the upkeep form is to
check for updates to the state from the mobile and web applications.

The state data sent by the upkeep form is always the same as the previous data
that was sent to the server. This allows the software to save cycles by not
updating all of the information being sent every time. Since the upkeep form is
used far more often than the update form, the few cycles saved by splitting the
two forms and excluding updating the data add up significantly. The data on the
power usage through the device is sent as part of this form, in order to keep that
information current and up to date.

43

The data received by the upkeep form is always checked against the data that
was just sent to the server. The received data is then decrypted. If the received
data is different, the software will go through its update process, which is
dependent on and unique to the design of the software, as detailed in section
5.2.2. The update process always includes updating the data to be sent to the
server during the next upkeep communication.

The update form of the procedure occurs only when the state of the device has
changed since the last time data was sent to or received from the server. This
case is specifically for when the device’s state was changed manually. This
designation allows the server to know that the device was changed manually.
This second form also allows for information to be sent at a constant rate using
the upkeep form and still be able to instantly send an update to the server when
the state of a device is changed manually.

The data sent by the update form is always the same as the previous info sent to
the server, except for the state which will always be different. The update form
updates the current state variable in the information being sent to the server, and
then sends that data to the server. The only new data being sent is the updated
state of the wall switch. The reason the rest of the data besides the state does
not need to be updated in this form is because regardless of whenever this form
is triggered the upkeep form still occurs in the cycle, which will update that other
data.

The data received by the update form is largely the same as the upkeep form,
the difference being the update form only pays attention to the state information.
A fast response time to any changes made using the mobile and web
applications is an important part of our goals and objectives. As such, checking
for updates more often improves this response time, and fits with our goals and
objectives. After the data is decrypted it is checked against the current state data
for the device. If the newly received state data is different, the wall switch goes
through its update process, which is different depending on the software design
used. The different software designs being considered for the wall switch are
detailed in section 5.2.2.

5.1.6 Powerlock

For our powerlock, we plan on developing a lock that will employ an electric
strike that will allow the user to wirelessly lock and unlock whatever door the lock
in installed in. This product will also employ a Wifi & Bluetooth module to allow
for wireless use, but we will not be including any energy measurement circuitry,
as this will operate off of it's own independent power source.

44

Components/features of the Powerlock will include:
Wireless module

The WiFi and Bluetooth module will allow for the powerlock to transmit data to
the application, and allow the powerlock to receive transmissions to either lock or
unlock the door. It will also use low energy to transmit data.

Electric Strike

The electric strike is the component that will actually control whether or not the
door is unlocked or locked. It has a ramped surface that can pivot upon given a
command to do so, allowing the user to operate a door without a mechanical lock
or key.

Power Source

In order to power the electric strike and the circuitry required for the powerlock,
we will employ a small DC power source, as it will make it so that we do not have
to worry about converting from AC to DC for the other aspects of the powerlock,
such as the Wifi & Bluetooth Module.

Powerlock Hardware Block

Figure 5.1.Y below is a basic input/output of a tablet command of the powerlock
system used for the doors. The door can accept a wireless signal using the app
that goes through a WiFi signal. The signal then opens/closes a latch that will
allow a 3.3 DC voltage to go through, opening or closing the electric striker. This
can all be circumvented if the door is opened normally.

— 1 WiFi Signal

T/R Switch

'd ™
Relay ———{ 3.3V Out)

-

Figure 5.1.Y - Block Diagram
45

Final Powerlock Design Placeholder

Figure 5.1.Z - Final Powerlock Design

5.1.6.1. Requirements

The powerlock will have the following requirements:

4.

1. Operate with a DC power supply
2.
3.

Allow for easy installation in place of an existing lock on a door

Be controlled wirelessly via the application to either lock or unlock the
user’s door

Communicate with the application to update the status of the door (locked
or unlocked)

5.1.6.2. Powerlock Specifications

Listed below in Figures 5.1.AA - 5.1.AD are the specifications for the powerlock.

Input Voltage 12 VDC
Max Current 2A

Input Frequency n/a
Power supply mode Switching

Figure 5.1.AA - Electric Specifications

46

Wired No

Wireless Yes

Protocols Wifi, Bluetooth
Band Frequency 2.4 GHz
MAC/PHY Specifications 802.11 bgn

Figure 5.1.AB - Communication Specifications

Dimensions 3 inches tall x 2.75 inches wide x
0.8 inches thick

Weight 6 ounces

Strike material Stainless steel

Figure 5.1.AC - Physical Specifications

Temperature 32°F to 122°F
Humidity 5% to 85%
Elevation 0-6000 feet

Figure 5.1.AD - Operation Conditions

5.1.6.3. Components

Electric Strike

An electric strike is a low voltage access control device that can be used in place
of traditional locks to provide added security and conveniences such as traffic
control, specific and limited access as well as remote lock/unlock. Electric strikes
generally have at most +/- 10% voltage tolerances and most electric strikes will
require 12 DC volts to function, meaning to lock and/or unlock the hinge. Another
common configuration for electric strikes requires 24 AC volts instead.

Electric strikes can come in two types of security configurations, “fail secure” and
“fail safe”. A fail-secure electric strike, which is also commonly referred to as
normally opened (NO switch) function type, is a configuration where by applying
an electric current to the strike will cause it to unlock. They can be powered by
alternating current (AC) or direct current (DC). Electric strikes that operate on AC
can have a slight buzzing noise when a current is applied, where DC is virtually
noiseless. In case of a power failure the strike would remain locked. A fail safe
type also called normally closed (NC switch) is one in which applying an electric

47

current to the strike will cause it to lock, meaning that it needs power to keep it
locked. Fail safe locks always use direct current DC. In case of a power failure
the door could be opened by being pushed or pulled. A fail secure (normally
opened) type electric strike will most likely be used for this type of project
because it is more ideal for security purposes. The electric strike we decided to
implement is the EDL-SL-YS131-NO, whose specifications are listed in Figure
5.1.AE.

Operating Mode NO (Fail Secure)

Voltage 12 VDC

Current 200 mA

Operating Temperature -10°C to 55°C

Holding Strength 500kg

Strike Structure Stainless Steel

Dimensions 160 mm length x 25 mm width x 31
mm height

Figure 5.1.AE - EDL-SL-YS131-NO Specifications

Power Supply

For the powerlock, we decided to go with a DC voltage power supply over an AC
power supply for a number of reasons. The biggest reason was that with a DC
power supply, we would not have to worry about converting to DC so that all the
components would be able to use power. Using a DC power supply over an AC
power supply will also reduce heat and power dissipation, which leads to higher
energy savings.

There are two types of power supplies that we can consider for this project:
switching and linear. Switching power supplies convert the main power to a load
by changing the voltage and current characteristics. The switching supply
constantly switches from low dissipation to high dissipation, but does not linger
while it is in high dissipation. Idealy, the switching device does not dissipate
power, whereas a linear power supply is constantly dissipating power in the pass
transistor. Another advantage of a switching power supply over a linear one is
physical dimensions. Switching power supplies most of the time are smaller and
lighter, which will help make our design more compact. Switching regulators are
generally used when higher efficiency, smaller size and lighter weight is
necessary for the design. Figure 5.1.AF shows a comparison between the two
types. The power supply that we decided to go with is the ACUS-12V, whose
specifications are shown in Figure 5.1.AG.

48

Specification Linear Switching
Line regulation 0.02-0.05% 0.05-0.1%
Load regulation 0.02-0.1% 0.1-1.0%
Output ripple 0.5-2 mV RMS 10-100 mV
Input voltage range £10% 120%
Efficiency 40-55% 60-95%
Power Density 0.5W/cu in 2-10 W/cu in
Transient Recovery 50 us 300 us

Hold up time 2ms 34 ms

Figreu 5.1.AF - Switching vs. Linear Specifications

Input Range 90-240 VAC
Output Voltage 12 VDC
Output Current 1A

Power Consumption 12W

Figure 5.1.AG - ACUS-12V Specifications
5.1.6.4 Communication with Software

The powerlock’s communication with the server and web and mobile applications
is handled through the software in the microcontroller using the WiFi module. The
procedure for the powerlock to send and receive data to and from the server and
mobile and web applications has 2 forms. These two forms are an upkeep form
and an update form.

The upkeep form of the procedure occurs every cycle of the microcontroller
software process. The purpose of this form is to maintain a constant stream of
data between the device and the server to prevent the connection from being
dropped by the ISP for being idle. The second purpose of the upkeep cycle is to
maintain up to date power usage data. The final purpose of the upkeep form is to
check for updates to the state from the mobile and web applications.

The state data sent by the upkeep form is always the same as the previous data
that was sent to the server. This allows the software to save cycles by not

49

updating all of the information being sent every time. Since the upkeep form is
used far more often than the update form, the few cycles saved by splitting the
two forms and excluding updating the data add up significantly. The data on the
power usage through the device is sent as part of this form, in order to keep that
information current and up to date.

The data received by the upkeep form is always checked against the data that
was just sent to the server. The received data is then decrypted. If the received
data is different, the software will go through its update process, which is
dependent on and unique to the design of the software, as detailed in section
5.2.4. The update process always includes updating the data to be sent to the
server during the next upkeep communication.

The update form of the procedure occurs only when the state of the device has
changed since the last time data was sent to or received from the server. This
case is specifically for when the device’s state was changed manually. This
designation allows the server to know that the device was changed manually.
This second form also allows for information to be sent at a constant rate using
the upkeep form and still be able to instantly send an update to the server when
the state of a device is changed manually.

The data sent by the update form is always the same as the previous info sent to
the server, except for the state which will always be different. The update form
updates the current state variable in the information being sent to the server, and
then sends that data to the server. The only new data being sent is the updated
state of the powerlock. The reason the rest of the data besides the state does not
need to be updated in this form is because regardless of whenever this form is
triggered the upkeep form still occurs in the cycle, which will update that other
data.

The data received by the update form is largely the same as the upkeep form,
the difference being the update form only pays attention to the state information.
A fast response time to any changes made using the mobile and web
applications is an important part of our goals and objectives. As such, checking
for updates more often improves this response time, and fits with our goals and
objectives. After the data is decrypted it is checked against the current state data
for the device. If the newly received state data is different, the powerlock goes
through its update process, which is different depending on the software design
used. The different software designs being considered for the powerlock are
detailed in section 5.2.4.

5.1.7. HVAC Controller

A vital part of a standard home automation system is being able to control the air
conditioning around the house. For the purpose of this project, a simulated air

50

conditioning system will be used and placed onto a plexiglass board for testing
and presentation. The HVAC controller be built from scratch; an existing HVAC
controller will be used and the insides will be customized to be compatible with
the project’s software and applications. A basic layout of the HVAC controller can
be seen in Figure 5.1.AH.

Relays

Cloud

Display

Power Source /

7 77\

Processor Wifi module

Microcontroller

Mobile device Bluetooth module

Ve P

Figure 5.1.AH - HVAC Controller Block Diagram

The controller that will be modified is the Vent-Miser 91668 Programmable
Energy Saving Vent. The vent is already programmed to synergize with the timer
module. What we’re interested in is the timer module. After removing the back of
the timer module, the PCB and 3V motor can be easily removed. The PCB is a
single layer board that is powered by two AAA batteries, as shown in Figure
5.1.Al. One of the advantages of this timer module is that a lot of space in the
casing is empty and isn’'t used for anything. This allows for extra circuitry and
components.

In order to have this module be compatible with our home automation system,
the module needs to be wirelessly controlled by the smartphone app. The original
timer module contains a basic LCD screen with buttons to program the vent to
open and close at certain intervals. The LCD screen displays the current time,
start time, and end time for the vent to open/close. This functionality will be kept
and not tampered with. Adding our components to this PCB would require the
need of the WiFi/Bluetooth module used in the other components of the home
automation system. This is done by simply replacing the existing MCU with our
custom made MCU, connecting the WL18xxMOD 8 Single-Band Combo Module
to the Atmel SAM C ARM Cortex MCU and adding the LM134 3-Terminal
Adjustable Current Source to monitor power. The electrical characteristics can be
seen in Figure 5.1.AJ

51

Figure 5.1.Al - HVAC Controller PCB

Placeholder for Datasheet and Electrical Characteristics

Figure 5.1.AJ - HVAC Controller Datasheet and Electrical Characteristics

52

5.1.7.1. Dimensions

Because of the big size of the casing, there is no need to make any custom
casing and the original dimensions of the package. Combining the vent and timer
module, the dimensions are 14.4 x 8 x 2.6 inches. This specific vent is meant for
a standard bedroom on the wall near the ceiling in a position that the cool air
could cover the room. Other Vent-Miser products show that there are variations
in the size of the vent, such as 14.4 x 4.3 x 2.6 inches and 10.0 x 4.0 x 2.6
inches. For installing these kind of vents throughout an entire house, different
size vents would need to be used. However, the same custom timer module can
be used throughout.

5.1.7.2. Power Requirement

The HVAC controller does not plug into the wall for power, so the standard 120 V
AC voltage is not needed. Instead, the controller uses 2 AA batteries for power.
Each AA battery contains up to 2500 milliamp-hours which, in series, causes a
5000 milliamp-hours charge as well as 2.4 volts, 1.2 volts coming from each AA
battery. With this in mind, this means the HVAC controller can operate for,
theoretically, about 1000 hours. Converting this number to days, the HVAC
controller can operate for about 41 days with 2 full AA batteries, which is roughly
over a month.

5.1.7.3. Communication with Software

The HVAC controller's communication with the server and web and mobile
applications is handled through the software in the microcontroller using the WiFi
module. The procedure for the HVAC controller to send and receive data to and
from the server and mobile and web applications has 2 forms. These two forms
are an upkeep form and an update form.

The upkeep form of the procedure occurs every cycle of the microcontroller
software process. The purpose of this form is to maintain a constant stream of
data between the device and the server to prevent the connection from being
dropped by the ISP for being idle. The second purpose of the upkeep cycle is to
maintain up to date power usage data. The final purpose of the upkeep form is to
check for updates to the state from the mobile and web applications.

The state data sent by the upkeep form is always the same as the previous data
that was sent to the server. This allows the software to save cycles by not
updating all of the information being sent every time. Since the upkeep form is
used far more often than the update form, the few cycles saved by splitting the
two forms and excluding updating the data add up significantly. The data on the
power usage through the device is sent as part of this form, in order to keep that
information current and up to date.

53

The data received by the upkeep form is always checked against the data that
was just sent to the server. The received data is then decrypted. If the received
data is different, the software will go through its update process, which is
dependent on and unique to the design of the software, as detailed in section
5.2.3. The update process always includes updating the data to be sent to the
server during the next upkeep communication.

The update form of the procedure occurs only when the state of the device has
changed since the last time data was sent to or received from the server. This
case is specifically for when the device’s state was changed manually. This
designation allows the server to know that the device was changed manually.
This second form also allows for information to be sent at a constant rate using
the upkeep form and still be able to instantly send an update to the server when
the state of a device is changed manually.

The data sent by the update form is always the same as the previous info sent to
the server, except for the state which will always be different. The update form
updates the current state variable in the information being sent to the server, and
then sends that data to the server. The only new data being sent is the updated
state of the HVAC controller. The reason the rest of the data besides the state
does not need to be updated in this form is because regardless of whenever this
form is triggered the upkeep form still occurs in the cycle, which will update that
other data.

The data received by the update form is largely the same as the upkeep form,
the difference being the update form only pays attention to the state information.
A fast response time to any changes made using the mobile and web
applications is an important part of our goals and objectives. As such, checking
for updates more often improves this response time, and fits with our goals and
objectives. After the data is decrypted it is checked against the current state data
for the device. If the newly received state data is different, the HVAC controller
goes through its update process, which is different depending on the software
design used. The different software designs being considered for the HVAC
controller are detailed in section 5.2.3.

5.2. Microcontroller Software Design Plan

All of the software written for the microcontrollers is written in the C language
using the Atmel Studio 7.0 integrated development platform with the
ATSAMC21J18A firmware. In each section the design patterns to be tested for
the indicated device will be detailed. The final design for each device will likely
use a combination of all designs detailed within the sections for each device.

54

5.2.1. Wall Outlet

The design of the microcontroller software for the wall outlet device serves as the
basis for all of the other devices. The basic designs of the wall outlet software
can be seen as the foundation that the software for the rest of the devices is built
on. 3 different design patterns will be tested for the wall outlet device.

5.2.1.1. First Design: Interrupt Based

The first design of the software for the microcontroller in the wall outlet will be
based around interrupt service routines. When the software begins execution, it
will begin by reading the current state of the outlet, which will be either on or off.
The software then sets that state as a variable and enters the initial waiting
phase. During this initial waiting phase, the device is idling until a Bluetooth
connection is made and data detailing the WiFi connection is received. The
microcontroller will use this data received from the Bluetooth module to configure
the WiFi module and attempt a connection. The Bluetooth module will then send
the results of the WiFi module’s connection test to the device that made the
Bluetooth connection. If the WiFi module failed to connect properly, the software
will re-enter the waiting phase and wait for a new set of configuration settings to
be sent for the WiFi module via the Bluetooth module. If the connection test is
successful, the software will notify the device that made the Bluetooth
connection, send the information detailing the device’s current state to the
database, and enter the main phase.

While in the main phase the software will periodically check and, if needed,
update its state while waiting for an interrupt from either a WiFi or Bluetooth
connection. Along with the current state of the device, data for the power usage
of that outlet will be stored. Within the process of updating the current state of the
wall outlet device, the software will send that updated state to the WiFi module to
be sent to the database. At the end of the main phase upkeep data will be sent to
the server. An interrupt will occur whenever either the Bluetooth or WiFi module
receives data. If the Bluetooth module is the module that received data, the
software will trigger an interrupt and follow the same process as the initial waiting
phase. If the WiFi module is the module that received data, the software will
trigger an interrupt and enter the update phase.

During the update phase the software will take the data received from the WiFi
module and send signals to the circuit that will alter the state of the hardware
accordingly (either from on to off, or from off to on). The software will then
confirm the state of the circuit, update its own variable as to the new current
state, and then send data containing the updated state to the database. The
software will then re-enter the main phase, and wait for another interrupt to
occur.

55

Figure 5.2.A shows a flowchart of the first microcontroller software for the wall
outlet device as detailed above. This design pattern makes use of the
microcontroller’'s low power mode during the main phase, and very infrequently
sends data to the database, only doing so when the state of the wall outlet device
is updated. Interrupts triggered by the receipt of data from the WiFi module would
be given priority over those triggered by a Bluetooth connection so that all circuit
state changes will occur and the database will be updated properly. By doing so,
state changes also occur as soon as they are requested, reducing response
time. Issues with this design pattern arise with the infrequency of updates to the
database and the possibility of an interrupt from the WiFi module occurring
during an update to the WiFi module’s configuration during an interrupt from data
received by the Bluetooth module.

Yes
Siag}: Bluetooth Receive Wi-Fi
r?a connection? configuration Connection
slore data test
state |
Mo
/ Successful Unsuccessful
N
Begin Bluetooth
i interrupt!
phase Begin
\ Wi-Fi ——~| update
interrupt! phase
L Update \l/
state if Send /save
Check N needed, upkeep Set new
state store data hardware
data state

Figure 5.2.A - Flowchart for wall outlet microcontroller software design 1
5.2.1.2. Second Design: Procedurally Based

The second design pattern for the wall outlet device follows the same procedures
as the first design when the software is first executed, checking the state and
entering a waiting phase while waiting for data from the Bluetooth module. Where
this second design differs is in its main phase. The main phase of design pattern
two combines the main and update phase of design pattern one. Design pattern
2 does this by not using any interrupts for the main phase. Instead, design
pattern 2 does every step of the process every cycle through the main phase.

56

The main phase begins by checking the current state of the circuit. If the current
state of the circuit is different than the state in the software’s state variable, then
the software sends update data to the database and updates its local variable.
The main phase then reads the current power output of the of the wall outlet, and
stores that data. The stored power output data is then sent to the database. The
main phase then checks if there is a connection from a Bluetooth device. If there
is a connection from a Bluetooth device then the software receives the data and
moves to the update WiFi module configuration function. This function will
configure the WiFi module, and then test the connection to the internet. If the
connection test is unsuccessful it will notify the device connected via Bluetooth,
get new data from the Bluetooth device, and try the connection again, repeating
until the connection test is successful. After checking for a Bluetooth connection
and taking the appropriate course of action (either do nothing or update the WiFi
module), the software then checks for data received from the WiFi module. If new
data was received via the WiFi module it changes the state of the circuit
accordingly. The main phase then sends upkeep data to the server and loops
back to the start, and begins again by checking the current state of the circuit
against its local state variable.

?;:g; Bluetooth Yes Receive Wi-Fi
; connection? configuration Connection
store data test
state |
No /?
Successful Unsuccessful
Begin Yes No
main Bluetooth New data
phase connection? from Wi-Fi?
Mo
Yes
Update
statde g Set new Send/
Check neededq, Send power hardware save
state [Store [and state state \ upkeep

Figure 5.2.B - Flowchart for wall outlet microcontroller software design 2

Figure 5.2.B shows a flowchart for wall outlet microcontroller software design
pattern two as it is detailed above. The benefits of design pattern two are that the
database is constantly updated to ensure current data, and there’s no possibility
for interrupts to change data at inopportune times. The negatives of this pattern,
however, are many. This design pattern constantly sends data back to the

57

database, which uses significantly more data than design pattern one. Design
pattern 2 also allows for no idle or low power time, increasing the power
consumption of the device. The main phase of design two also has many
unnecessary steps, such as checking for a Bluetooth connection, that increase
the cycle time of the process. Due to design two being entirely procedural, the
software must reach a specific point in the main cycle before it can perform an
action, causing a delay in response time.

5.2.1.3. Third Design: Multithreading Based

The third design for the wall outlet device incorporates aspects of both previous
designs. The third design does not focus on phases like the previous two
designs; instead it will incorporate multithreading to keep the database as up to
date as possible, while still monitoring the device.

The initial waiting phase from the previous two designs returns for the third
design, although in the third design it is incorporated into the startup of the device
and not referenced later in the program. Upon startup, the device will wait for a
Bluetooth connection. When a Bluetooth connection is made, the program will
wait for WiFi configuration data to be input. When the configuration data is
received the program will perform a connection test, if the connection test fails
the program will wait for another connection. When a connection is made
successfully the program will store the configuration settings, and read both the
current power output of the device and the current state of the device (on or off),
then store that data locally. The program then splits into two threads: the
monitoring thread, and the updating thread. To prevent reading a variable while it
is being written to, variables will be locked while being written to. If a thread
attempts to read a locked variable, it will wait until the variable is unlocked to
read the variable.

The first thread will be referred to as the monitoring thread, because it monitors
the current state of the device and updates data accordingly. The monitoring
thread begins by checking both the state and power output of the device, and
updating both of those variables. While updating both of those variables, they will
be locked to prevent the updating thread from reading them while they are being
written to. The variables are then unlocked, allowing them to be read. The
monitoring thread then moves to check if there is a Bluetooth connection. If a
connection is found, the program locks the WiFi configuration variable,
preventing the updating thread from sending data to the database. The program
waits for WiFi configuration information from the Bluetooth connection. Upon
receiving WiFi configuration information, a connection test will be performed. If
the connection test is successful, the WiFi configuration data will be updated, the
variable unlocked, and the thread will resume. Should the connection test fail or
the Bluetooth connection be lost, the thread will unlock the WiFi configuration

58

variable without updating it, and then resume. Upon resuming, the thread loops
back to the beginning and checks the current state of the device again.

The second thread will be referred to as the updating thread, because it both
updates the database and updates the device. Upon startup, the updating thread
reads the WIiFi configuration variable, sets its own local WiFi configuration
variable, and then moves to the main loop. Within the main loop, the thread
reads the main WiFi configuration variable, and checks it against its own. If the
two variables are different, the variable local to the updating thread will be
updated to match the WiFi configuration variable. The WiFi configuration variable
local to the updating thread is the data used for the connection to the database.
The thread then reads the state and power output variables and sends them to
the database using the WiFi configuration settings stored in the configuration
variable local to the updating thread. Next the updating thread checks if data was
received from the online application to change its state. If state change data was
received, the thread sends a signal to the circuit to change its state. The thread
then repeats back to the beginning of the main loop.

ﬁ;:gj Bluetooth Yes Receive Wi-Fi
i connection? configuration Connection
e data test
state |
No /]\
Successful Unsuccessful
J/ Yes Receive Wi-Fi J/
Start configuration Start
monitoring | No [Bluetooth | 7| data updating
thread connection? thread
' J/ Unsuccessful
Successful \ Connection
test
— Read/set Wi-Fi
OCK an confiauration
Check Update state, Unlock
state i iie data variables
I Check and
Send/receive | Read current update Wi-Fi
Sk siale sile e i [state configuration
data

Figure 5.2.C - Flowchart for wall outlet microcontroller software design 3

Figure 5.2.C shows a flowchart for the third design of the microcontroller software
for the wall outlet device. The main benefit of the third design is that it keeps the

59

database constantly up to date with the state and power usage of the wall outlet.
The main drawback to this design is that the multithreading has high potential to
cause unforeseen errors due to how often the variables are being written to and
read from. The third design has very little down time overall, however, both
threads will frequently stall due to the other locking a variable.

5.2.2. Wall Switch

The design of the software for the wall switch device is one step more
complicated than the design for the wall outlet due to the possibility of the state of
the circuit changing at any time from via the physical switch. Three designs will
be tested for the wall switch device.

5.2.2.1. First Design: Interrupt Based

The first design for the wall switch software is based on the first design for the
wall outlet software. When the software begins execution, it will begin by reading
the current state of the wall switch, which will be either on or off, and the current
power usage. The software then sets the state as a variable and enters the initial
waiting phase. During this initial waiting phase, the device is idling until a
Bluetooth connection is made and data detailing the WiFi connection is received.
The microcontroller will use this data received from the Bluetooth module to
configure the WiFi module and attempt a connection. The Bluetooth module will
then send the results of the WiFi module’s connection test to the device that
made the Bluetooth connection. If the WiFi module failed to connect properly, the
software will re-enter the waiting phase and wait for a new set of configuration
settings to be sent for the WiFi module via the Bluetooth module. If the
connection test is successful, the software will notify the device that made the
Bluetooth connection, send the information detailing the device’s current state to
the database, and enter the main process.

While in the main process the software will continuously check the current state
of the circuit against its own local state variable. If the state of the circuit does not
match the local state variable in the software, the software will update its local
variable. Within the process of updating the current state of the wall switch
device, the software will send that updated state and the current power usage to
the WiFi module to be sent to the database. At the end of the main process,
upkeep data will be sent to the server. An interrupt will occur whenever either the
Bluetooth or WiFi module receives data. If the Bluetooth module is the module
that received data, the software will trigger an interrupt and follow the same
process as the initial waiting phase. If the WiFi module is the module that
received data, the software will trigger an interrupt and enter the update phase.

During the update phase the software will take the data received from the WiFi
module and send signals to the circuit that will alter the state of the hardware

60

accordingly (either from on to off, or from off to on). The software will then check
the state of the circuit, update its own variable as to the new current state, and
then send data containing the updated state and current power usage to the
database. The software will then re-enter the main phase, and wait for another
interrupt to occur.

Figure 5.2.D shows a flowchart for the first software design of the wall switch
device. This first design does not differ much from the first design of the wall
outlet. The main difference between the two is that the hardware can easily
change states outside of the influence of the software. This difference is most
apparent during the update phase, where, instead of simply confirming that the
desired change happened the software checks the state of the circuit again and
updates the software’s local state variable to the new state, which could be
different than the state that the circuit was just updated to due to the interrupt.
The priorities for the interrupts in this design are the same as the first design for
the wall outlet, WiFi interrupts are higher priority than Bluetooth interrupts. The
downside for this first software design is the interaction of the interrupts with the
hardware can be complicated with the hardware able to easily change states at
any time.

Yes
Siag}: Bluetooth Receive Wi-Fi
r?a connection? configuration Connection
store data test
state |
No
/ Successful Unsuccessful
J N\
Begin Bluetooth
i interrupt!
phase Begin
L Wi-Fi ——~| update
interrupt! phase
L Update \l/
state if Send fsave
Check N needed. upkeep Set new
state store data hardware
data state

Figure 5.2.D - Flowchart for wall switch microcontroller software design 1
5.2.2.2. Second Design: Procedurally Based

The second design for the wall switch device software is similar to the second
design for the wall outlet software. When the software is first executed it checks
the current state of the circuit and updates its local state variable accordingly,

61

then enters the same initial waiting phase as design one, waiting for an interrupt
triggered by the Bluetooth module. Once an interrupt from triggered by the
Bluetooth module has resulted in a successful configuration of the WiFi module,
the software enters the main phase.

The main phase for the second software design of the wall switch is procedural,
and combines the update and main phases from designs one. The main phase
begins by checking the current state of the circuit against the software’s local
state variable, and if they differ then the software updates its local variable. The
software then reads the power usage of the circuit. The software then sends the
local state variable and current power usage to the WiFi module to update the
database with the most current state of the circuit. The main phase then checks if
there is a connection from a Bluetooth device. If there is a connection from a
Bluetooth device then the software receives the data and moves to the update
WiFi module configuration function. This function will configure the WiFi module,
and then test the connection to the internet. If the connection test is unsuccessful
it will notify the device connected via Bluetooth, get new data from the Bluetooth
device, and try the connection again, repeating until the connection test is
successful. After checking for a Bluetooth connection and taking the appropriate
course of action (either do nothing or update the WiFi module), the software then
checks for data received from the WiFi module. If new data was received via the
WiFi module it changes the state of the circuit accordingly. The main phase then
sends upkeep data to the server and loops back to the start, beginning again by
checking the current state of the circuit against its local state variable.

?;:g; Bluetooth e Receive Wi-Fi

; connection? configuration Connection
store data test
state |

MNo /P
Successful Unsuccessful

|7/
Yes No

Begin
ma?in Bluetooth New datq
phase connection? from Wi-Fi?
No
Yes

Update

statde g Set new Send/
Check needed, Send power hardware save
state [=| store and state state \ upkeep

Figure 5.2.E - Flowchart of wall switch microcontroller software design 2

62

Figure 5.2.E shows a flowchart for the wall switch microcontroller software design
two as it is detailed above. The procedural nature of this second design makes
sure that only one action is occurring at a time with no possibility of an interrupt
suddenly taking over. Design two’s simplicity is its greatest benefit; there are no
extra cases to consider where an interrupt occurs at an exact point during
execution. The downsides come from the constant updating of the data, which
uses a greater amount of data and cycles than design one. However, this
constant updating is very important for the wall switch as the assurance of an up
to date state in the database is of higher importance when the state of the circuit
can easily change at any moment. The constant updating also causes a lot of
unnecessary instructions, such as always checking for a Bluetooth connection
instead of waiting for one to occur.

5.2.2.3. Third Design: Multithreading Based

The third software design for the wall switch device incorporates ideas from the
previous two designs. The third design uses multithreading to keep the database
constantly up to date while simultaneously staying up to date with the current
state of the device. The third design ends up being nearly identical to the third
design for the wall switch device. The main difference is that the wall switch
device needs an extra check to ensure the physical switch has not been used to
change the state of the device since the state was last checked before the
process of updating the database.

The third design implements an initial waiting phase similar to the previous two
designs. Upon startup, the device will wait for a Bluetooth connection. When a
Bluetooth connection is made, the program will wait for WiFi configuration data to
be input. When the configuration data is received the program will perform a
connection test, if the connection test fails the program will wait for another
connection. When a connection is made successfully the program will store the
configuration settings, and read both the current power output of the device and
the current state of the device (on or off), then store that data locally. The
program then splits into two threads: the monitoring thread, and the updating
thread. To prevent reading a variable while it is being written to, variables will be
locked while being written to. If a thread attempts to read a locked variable, it will
wait until the variable is unlocked to read the variable.

The first thread will be referred to as the monitoring thread, because it monitors
the current state of the device and updates data accordingly. The monitoring
thread begins by checking both the state and power output of the device, and
updating both of those local variables. While updating both of those variables,
they will be locked to prevent the updating thread from reading them while they
are being written to. The variables are then unlocked, allowing them to be read.
The monitoring thread then moves to check if there is a Bluetooth connection. If a
connection is found, the program locks the WiFi configuration variable,

63

preventing the updating thread from sending data to the database. The program
waits for WiFi configuration information from the Bluetooth connection. Upon
receiving WiFi configuration information, a connection test will be performed. If
the connection test is successful, the WiFi configuration data will be updated, the
variable unlocked, and the thread will resume. Should the connection test fail or
the Bluetooth connection be lost, the thread will unlock the WiFi configuration
variable without updating it, and then resume. Upon resuming, the thread loops
back to the beginning and checks the current state of the device again.

?;:gf Bluetooth Yes Receive Wi-Fi
i connection? configuration Connection
i data test
state |
No /]\ |
Successful Unsuccessful
J/ Yes Receive Wi-Fi
Start configuration Start
monitoring | Ng Bluetooth / b updating
thread connection? thread
’ J/ Unsuccessful
Successful \ Connection
test
— Read/set Wi-Fi
OCK an confiauration
Check Update state, Ur_llnck
state store data variables
I Check and
Send/receive .| Read current update Wi-Fi
e shole state and upkeep state configuration
data

Figure 5.2.F - Flowchart of wall switch microcontroller software design 3

The second thread will be referred to as the updating thread, because it both
updates the database and updates the device. Upon startup, the updating thread
reads the WIiFi configuration variable, sets its own local WiFi configuration
variable, and then moves to the main loop. Within the main loop, the thread
reads the main WiFi configuration variable, and checks it against its own. If the
two variables are different, the variable local to the updating thread will be
updated to match the WiFi configuration variable. The WiFi configuration variable
local to the updating thread is the data used for the connection to the database.
The thread then reads the state and power output variables. The thread then
checks the current state of the device against the state variable it just read, and if
they differ the software locks the state variable and updates it. If the two do not

64

differ this update is skipped. The thread then sends the state and power usage
variables to the database using the WiFi configuration settings stored in the
configuration variable local to the updating thread. Next the updating thread
checks if data was received from the online application to change its state. If
state change data was received, the thread sends a signal to the circuit to
change its state, then locks and updates the state variable. The thread then
repeats back to the beginning of the main loop.

Figure 5.2.F shows a flowchart for the third design of the microcontroller software
for the wall outlet device. The main benefit of the third design is that it keeps the
database constantly up to date with the state and power usage of the wall outlet.
The main drawback to this design is that the multithreading has high potential to
cause unforeseen errors due to how often the variables are being written to and
read from. The third design has very little down time overall, however, both
threads will frequently stall due to the other locking a variable.

5.2.3. HVAC controller

The HVAC controller is the most complex of the devices due to the greater
amount of variables to consider as part of the state of the device and the
increased number of outputs needed to update all of the parts of the device
correctly. 2 designs will be tested for the software of the HVAC controller.

5.2.3.1. First Design: Interrupt Based

The first design for the HVAC controller utilizes interrupt service routines. There
will be an interrupt for when any button is pressed on the device, an interrupt for
a Bluetooth connection, and an interrupt for data received from the database via
WiFi. Priority will be given first to the interrupt triggered by button presses, then
to Bluetooth connection interrupts, then to WiFi data interrupts. A data structure
will be created to hold all of the current settings.

Upon startup the device will look for a Bluetooth connection. When a Bluetooth
connection is established, the software will read the current state and wait to
receive WiFi configuration data. Once WiFi configuration data is received, an
internet connection test will be attempted. If the connection test fails, the software
will wait for new WiFi configuration data and perform another connection test with
the new data. After a successful connection test, the WiFi connection data will be
saved. The software will then initialize the display to show all sections on, and
wait to receive initial settings from the Bluetooth device. Once initial settings are
received, the settings data structure will be updated to those initial settings. The
display will then be updated to show these new settings. Then a signal will be
sent to the circuit to set the circuit to the initial settings. The software will then
transition to the main phase.

65

In the main phase, the software will read the settings data structure and send the
current settings to the database using the saved WiFi configuration. If the
connection to the database is lost, the display will be updated to notify the user
such an error has occurred. The main phase repeats this action while waiting for
one of the three interrupt service routines to occur.

When a button is pressed on the device, it triggers the button press interrupt
service routine. Which button was pressed is stored in a temporary variable, and
then a switch statement determines the proper action. Whichever button was
pressed, the settings data structure will be updated to reflect the proper change.
The microcontroller will then send a signal to the circuit to set the state of the
device to the settings in the settings data structure. The display function will then
be called and the display will be updated to reflect the new changes in the
settings data structure.

When a Bluetooth connection is found, it triggers the Bluetooth connection
interrupt service routine. The software begins by waiting to receive new WiFi
configuration data. Once the WiFi configuration data is received a connection test
is performed. If the connection test fails, the software returns to waiting for new
WiFi configuration data. When the connection test is successful, the software
saves the new WiFi configuration data. If the Bluetooth connection is lost at any
point, the interrupt service routine ends without updating the WiFi configuration
data.

Yes
f;:gf Bluetooth Receive Wi-Fi
i connection? configuration Connection
ROEe data test
state |
No
[0)]
: Unsuccessful §
Button press i dat?) -
interrupt! interrupt! Bluetooth connection Begin 7]
interrupt! main c
\l/ " phase |je—
5
Save correct o Receive Wi-Fi
button press Update & configuration
setfings data ¥ data Check
¥ & state
)
Update /
settings data Connection v
XJ test Uit Seunpdk;se%ve ||
Update hardware and display Successful > Wi-Fiinfo data

Figure 5.2.G Flowchart of HYAC Controller microcontroller software design 1

66

When update data is received from the database via the WiFi module, it triggers
the WiFi data interrupt service routine. The software overwrites the settings data
structure with the newly received settings data. The microcontroller then sends a
signal to the circuit to update the state of the circuit to what is defined in the
settings data structure. Then the display function is called and the display is
updated to reflect the changes made to the settings data structure.

Figure 5.2.G shows a flowchart for the first design for the HVAC controller
microcontroller software. The benefit of the interrupt service routine based design
is that the device is never stuck performing an action that will turn up false,
leaving the software ready for any possible action to occur. The downside to this
is that the software cannot perform more than one action at a time, which can
leave the software stuck in a high priority interrupt.

5.2.3.2. Second Design: Multithreading Based

The second design for the HVAC controller incorporates multithreading to
process all actions simultaneously. The settings data structure and the WiFi
configuration variable will both be locked by threads to prevent reading from and
writing to them while they are being written to. If a thread attempts to read from
or write to a locked variable, then the thread will wait until the variable is
unlocked to interact with it. The settings data structure in particular requires being
locked for longer than its initial write due to it being altered by multiple threads.

On startup the software reads the current state then waits for a Bluetooth
connection to be found, following the same procedure as the first HVAC
controller design. When a Bluetooth connection is established, the software will
wait to receive WiFi configuration data. Once WiFi configuration data is received,
an internet connection test will be attempted. If the connection test fails, the
software will wait for new WiFi configuration data and perform another
connection test with the new data. After a successful connection test, the WiFi
connection data will be saved. The software will then initialize the display to show
all sections on, and wait to receive initial settings from the Bluetooth device.
Once initial settings are received, the settings data structure will be updated to
those initial settings. The display will then be updated to show these new
settings. Then a signal will be sent to the circuit to set the circuit to the initial
settings. The software will then split into 3 threads: the WiFi thread, the Bluetooth
thread, and the button thread.

The WiFi thread handles all communication with the database. The thread starts
by reading the WiFi configuration variable. Then the thread reads the settings
data structure, and sends the data to the database. The thread then checks for
any received state change data. If state change data was received then the new
settings data structure is copied to a local temporary version of the settings data
structure, then the main settings data structure is locked, and then the main

67

settings data structure is updated to reflect the changes. The microcontroller then
sends a signal to the circuit to set the circuit state to the state detailed in the
temporary settings data structure. After the circuit is updated the display is
updated to match the current state of the temporary settings data structure. Then
the main settings data structure is unlocked. The thread then loops back to the
start and begins reading the WiFi configuration data and settings data structure.

Start, Yes > -
readf Etluem:_:lth Receive ‘u'\.l_rl-Fl -
t connection? configuration Connection
2;2;2 data test
No '? %
Unsuccessful 24
0
c
Initialize display
and system
Begin Begin Begin Lock Wi-Fi
= Wi-Fi button Bluetooth configuration,
thread thread thread Receive Wi-Fi
7 & configuration
J/ Save " - wila 2
Read -
settings button Bluetooth @
and data press connection? g
v \/ - -
Update Successful Connection -
Send \1, test
ke and lock
e settings Save Wi-Fi
\l/ data configuration Loop back to
start of
New state thread
data Yes
No | received? /
Update hardware and display Unlock variables

Figure 5.2.H Flowchart of HVYAC Controller microcontroller software design 2

The Bluetooth thread handles all Bluetooth connection communications. The
thread starts by checking if there is a Bluetooth connection. If a Bluetooth
connection is found, then the software locks the WiFi configuration variable and
waits to receive new WiFi configuration data from the connected Bluetooth
device. Once the thread has received WiFi configuration data it will perform a
connection test. If the connection test fails the thread will wait for new WiFi
configuration data and will run the connection test again. When a connection test
is successful, the thread updates the WiFi configuration data and unlocks it. The

68

thread then loops back to the start and waits for a Bluetooth connection to be
found.

The button thread handles all interactions with the buttons on the device. When a
button is pressed, which button was pressed is stored in a temporary variable.
Then a switch statement uses the temporary variable to determine the correct
action. For whichever button was pressed, the new settings data is copied to a
temporary local version of the settings data structure. The main settings data
structure is then locked and updated to match the new settings. Next the
microcontroller reads the temporary settings data structure and sends a signal to
the circuit to update its state to match those settings. The display is then updated
to the current settings using the temporary settings data structure. The main
settings data structure is then unlocked. The thread then loops back to the start
and waits for a button to be pressed.

Figure 5.2.H shows a flowchart for the HVAC controller microcontroller software
design two. The main advantage of this design is that by using multithreading the
software is able to respond to any action immediately. The greatest drawback is
that due to the need to share the settings data structure, if one of the threads
gets locked up, the software comes to a halt. Like the first design this one is able
to frequently and constantly update the database, ensuring all data shown in the
online application is current.

5.2.4. Powerlock

The powerlock is the simplest of the devices in this project from the viewpoint of
the microcontroller software. There is no power usage monitoring tied to the
powerlock as only the state of the device (locked or unlocked). Three designs will
be tested for the powerlock.

5.2.4.1. First Design: Procedurally Based

The first design for the powerlock software is entirely procedural. There are only
two phases to this design: the initial waiting phase, and the main phase. The
initial waiting phase is purely for the startup of the software, and once the
software enters the main phase it will never return to the initial waiting phase
unless the device is disconnected from electrical power or restarted.

On startup, the software begins with the initial waiting period, reading the current
state and checking for a Bluetooth connection. Once a Bluetooth connection is
established, the software waits for WiFi connection configuration data to be sent.
Once the WiFi configuration data is received a connection test is performed. If
the connection test fails, the software returns to waiting for new WiFi
configuration data. When the connection test is successful, the software reads

69

the current state of the device and stores it in a local variable. The software then
moves to enter the main phase.

In the main phase the software checks the state of the device, and updates its
local variable to the current state. The software then sends the current state
variable to the database using the WiFi configuration data. Next the software
checks if any change of state data was received from the database. Then the
software checks for a Bluetooth connection. If a Bluetooth connection is found,
the software waits for WiFi configuration data to be received. When WiFi
configuration data is received the software follows the same procedure as the
initial waiting phase, performing a connection test and only updating the data if
the test is successful. If change of state data was received the microcontroller
sends a signal to the circuit to change the state of the device. The software then
returns to the start of the main phase, checking the current state of the device. At
the end of the main phase upkeep data is sent to the server and the process
loops back to the beginning of the main phase.

Figure 5.2.1 shows a flowchart for the first design of the powerlock microcontroller
software. The simplicity the first design is its greatest advantage. The software is
quick to write, easy to understand, and thus easy to debug. The main
disadvantage of this design is that it has a comparatively slow response time for
changes done by the online application.

ﬁ;:g; Bluetooth o Receive Wi-Fi
i ; connection? configuration Connection
e data test
state |
No /P
Successful Unsuccessful
Begin Yes No
main Bluetooth MNew data
phase connection? from Wi-Fi?
No
Yes
Update
Statde g Set new Send/
Check needed, Send power hardware save
state [store = and state state \ upkeep
/I\ data data daia

Figure 5.2.1 - Flowchart for powerlock microcontroller software design 1

70

5.2.4.2. Second Design: Interrupt Based

The second design for the powerlock uses interrupt service routines to signal any
change in the device. This design allows for minimal interaction with the online
application, and cuts down on the number of unnecessary checks from the first
design. The second design has 3 phases: Bluetooth connection phase, main
phase, and WiFi update phase. Interrupt priority is given to the Bluetooth
connection phase interrupt over the WiFi update phase interrupt.

Upon startup the software reads and stores the current state, then waits for a
Bluetooth connection. When a Bluetooth connection is found, the software enters
the Bluetooth connection phase. The Bluetooth connection phase is similar to the
initial waiting phase from the first design. In the Bluetooth connection phase the
software waits to receive WiFi configuration data. When WiFi configuration data
is received, an internet connection test is performed. If the connection test fails,
the software waits to receive new WiFi configuration data and repeats the test.
Once a connection test is successful, the software stores the WiFi configuration
data. The software then checks the current state of the device, stores that state
in a local variable, and moves to the main phase.

The main phase is where the software will spend a majority of its running time. At
the start of the main phase the software checks the state of the device and
compares it to the state it has stored in its own variable. If the state of the device
is different from the state stored in the variable, then the main phase updates its
current state variable. The main phase then sends the updated state data to the
database. If the state of the device and the state in the variable are not different,
or the main phase has just sent updated state information to the database, the
main phase sends upkeep data to the server and loops back to the start,
checking the state of the device again. Should a Bluetooth connection be
established at any point, an interrupt service routine will trigger, and the software
will enter the Bluetooth connection phase detailed previously. When state change
data is received via the WiFi module, an interrupt service routine will trigger, and
the software will enter the WiFi update phase. When either interrupt service
routine has finished, the main phase will be restarted.

The WiFi update phase occurs when state change data is received from the
online application. During the WiFi update phase, the software sends a signal to
the circuit to change the state of the device. The WiFi update phase then checks
the state of the device and updates the current state variable.

Figure 5.2.J shows a flowchart for the second design of the powerlock
microcontroller software. This design holds the advantage of only acting and
updating data when necessary. That key advantage causes this designs main
disadvantage, which is infrequent updates to the database that lead to the
possibility of outdated data. Due to the structure of this design, if an error with the

71

WiFi connection should occur, there would be no immediately apparent way to
notice it.

?;:g; Bluetooth Yes Receive Wi-Fi
; connection? configuration Connection
store data test
state |
No /?
Successful Unsuccessful
Begin Yes No
main Bluetooth New data
phase connection? from Wi-Fi?
Mo
Yes
Update
statde g Set new Send/
Check needed, Send power hardware save
state [Store [and state state \ upkeep

Figure 5.2.J - Flowchart for powerlock microcontroller software design 2

5.2.4.3. Third Design: Multithreading Based

The third design for the powerlock microcontroller software incorporates
multithreading in order to make frequent communication the database. Threads
will lock common variables when they are being written to to ensure that they
cannot be read from while being written to. If a thread attempts to read from a
locked variable, the thread will wait until the variable is unlocked to read from it.

Upon startup the software will enter an initial waiting phase, reading the current
state and waiting for a Bluetooth connection to occur. When a Bluetooth
connection is found the software waits to receive WiFi configuration data from the
connected Bluetooth device. Once WiFi configuration data is received, an
internet connection test will be attempted. Should the connection test fail, the
software will wait for new WiFi configuration data and repeat the connection test.
When the connection test is successful, the WiFi configuration data is stored.
The software then splits into two threads: the Bluetooth thread, and the WiFi
thread.

In the Bluetooth thread the software checks for a Bluetooth connection. If a

Bluetooth connection is found the thread locks the WiFi configuration data
variable and waits for new WiFi configuration data to be received. When new

72

WiFi configuration data is received an internet connection test is attempted. If the
connection test is successful the WiFi configuration data variable is updated and
unlocked. If the test is unsuccessful, the thread waits to receive new WiFi
configuration data, and then runs a connection test using the new data. The
thread then loops back to the beginning, checking for a Bluetooth connection.

In the WiFi thread, the software reads the WiFi configuration data variable. The
thread checks the current state of the device. The thread then sends that current
state to the database using the WiFi configuration data. Then the thread checks
for any received state change data. If state change data was received, the
microcontroller sends a signal to the circuit to change the state of the device.

Figure 5.2.K shows a flowchart for the third software design for the powerlock
microcontroller. This design allows for constant communication with the database
that is not halted by checking for a Bluetooth connection. The database is always
up to date using this design, and should an error occur, the extended lack of
communication would be a quickly noticeable sign.

f;:[,‘, Bluetooth | 2> .| Receive Wi-Fi
Eoce connection? configuration Connection
data test
state |
Mo /]\ |
Successful Unsuccessful
J/ Successful J/
Start Unlock Start Wi-Fi
Bluetooth variable \ Cérnaetinn thread
thread test
No
- : - Read/set Wi-Fi
Bluetooth o ii‘r}l;wsr:??;' Lock and configuration
connection? g Update Wi-Fi
data
\ Check and
Send/receive Read current update Wi-Fi
< :
. state and upkeep state configuration
data

Figure 5.2.K - Flowchart for powerlock microcontroller software design 3

73

5.3. Application Software Design Plan

In order to provide the best user experience possible, automated devices should
be able to be controlled anywhere in the world, regardless of where you are.
Sometimes a light is left online or a door unlocked. There is a piece of mind
knowing that with a quick glance at an app you can see the status of electronics
in your home, and if something is amiss be able to modify their status remotely.
The following figure gives an application design overview of the entire application
flow.

To achieve a great user experience, the application is divided into two separate
applications, the backend application running on cloud servers and the frontend
application running on mobile devices (as well as a cloud hosted web-based
control panel usable on desktops and unsupported mobile devices that still have
browsing capabilities). By the term mobile device, we are referring to a wireless
device containing either cellular or WIFI connection as well as Bluetooth
connectivity. The backend application will communicate with both the frontend
application as well as home automation devices. The frontend application will
connect with the backend application over API to perform actions on home
automation devices. The extent of this division is shown in the application
overview in figure 5.3.A.

Cloud Servers Home

— /N
=7 Internet

Cell Network Mabile Pevice

Figure 5.3.A - Application Overview

5.3.1. Cloud Servers

The home automation application, both frontend and backend will exist across
multiple cloud servers. Using multiple cloud servers across multiple locations
increases redundancy in the case a single virtual instance fails. As noted in our
constraints, it is important that the service remain online at a near 100%
availability since every home automation system depends upon a reliable API to
function as intended.

74

For this home automation system, DigitalOcean is where the cloud will be
hosted. It's cost effective since each “droplet” (the term DigitalOcean uses for
each virtualized instance being ran) costs at minimum $5/month. Since the point
of this project is a proof of concept, the amount of resources necessary to run the
service will not be much at all. At the base price of $5 each droplet gives 512MB
memory, 1 core of processing power, 20GB SSD storage, and 1TB of data
transfer. This is more than enough for what is initially needed to run this service.
As the service grows the plans can be increased vertically, and more instances
can be spun up to scale horizontally.

In figure 5.3.B, the general layout of each virtualized cloud instance is given.
Each cloud server will be configured with a minimal installation of Debian 8
(Jessie), 64-bit. Since we have a limited amount of memory, a minimal
installation is preferred. Under a minimal installation, only system essentials are
installed. This means that most services need to be installed post-installation,
including the web server software, database software, and runtimes required to
run our application.

Internet

Node 1 Node 2 de 3
NGINX NGINX NGINX
[Frontend J [Backend] [Frontend] [Backend] [Frontend] [Backend]

Figure 5.3.B - Cloud Servers Overview

The webserver will be reachable from the internet by both the frontend clients as
well as the automated devices. We are choosing to use NGINX as the web
server for this project. NGINX is a light, barebones, and fast webserver that is
widely replacing Apache in many infrastructures. NGINX will be configured to
reverse proxy traffic to the backend service as well as serve the frontend cloud
hosted web application. Native apps for iOS and Android will interface with only
the backend API, not the frontend application being served by NGINX.

5.3.2. Backend

The backend of the application will be run solely on cloud servers and functions
as an accessible programming interface (API) for the frontend clients and

75

automated devices to communicate with. The backend is separated between API
and database operations, as shown in figure 5.3.C.

™ '

1

Mongoose

Database J

A .

ExpressJS H API }

Figure 5.3.C - Backend overview

Backend
{ModeJS App)

5.3.2.1. API Design

In order to produce a modern API that can be ingested easily by the client side
applications, the API will be architected in a Representational State Transfer
(REST) way.

A REST API has the following characteristics:

Uniform Interface — The server responds in a practical and predictable
way when accessing isolated resources on the API.

Client-Server — In order to more easily share data across clients in
real-time, clients do not store long term data (only current
stateful data). Since the server doesn’t render content for
the client and only provides data, it allows the server to

more easily scale
Stateless — The server never has to store any state data apart from
authentication credentials in a session. Clients hold their own
states and fetch information from the server to update their

states as needed.
Cacheable — The API can be cached when frequently accessed in order to
conserve processing power and bandwidth.

Layered System — The API may run a layered system where multiple
servers handle requests. Responses from these
different servers should not be discernable by the client.

Since the client applications are utilizing JavaScript, JavaScript Object Notation

(JSON) formatting will be used for API output since it is a native format to the
runtime.

76

Simple Example of JSON format:

{

“key” : “string value”,
“number” : 1,
“float” : 1.1,
“key” : [“array”, “values”],
“nested_object” : {
“key” : “value”
}
}

As you can see from the example above, the formatting of JSON is native in
JavaScript and it allows for good performance when encoding and decoding data
in this format within JavaScript. Almost all languages have JSON libraries as
well, since JSON is now the most widely used API format. With a fully RESTful
JSON API, the client side frontend application will be able to run separately from
the backend with ease.

To create our RESTful JSON API, we’ll be using Node JS to create a backend
service.

Node JS will be compiled and ran under a restricted user account on each cloud
instance. This will ensure that a vulnerability in our software does not
compromise the entire server instance. Our backend service will be deployed to
the cloud servers using GIT, a version control system for software development.

In the GIT code repository for our backend NodedS application, dependencies for
the codebase will be listed in an Node Package Manager (NPM) “package.json”
file, which when deployed will automatically install all dependencies to run the
application.

oo}
e P)
e A e
ey F oo %)

Express)JS &

77

Figure 5.3.D - ExpressJS Route Path Progression

As shown in figure 5.3.D, the codebase will primarily consist of the Express JS
library, which is a web application routing framework. This will allow us to create
a RESTful API by generating multi-stage routes for each resource we wish to
modify. By nesting paths, each of the resources are scoped to their own
modules. Each resource on the API will consist of specific data models that are
being retrieved, modified, and deleted.

Below is a list of the APl data models that will be integrated for our API. Each
data model lists supported HTTP verbs as well as the resource endpoint it can be
accessible from. In the endpoint, brackets are optional and parameters are
prefixed with a colon.

API Data Resource Models:
1. User— HTTP GET/POST/PUT/DELETE /user

The user data model will consist of personal information pertaining to the
registered user. This means information like email address, name, password,
and other personally identifiable information that is needed for the home
automation system.

In addition to private, personal information, the data model for users will also
hold an array of sub-users. More than one person usually exists in a
household. Rather than having everyone share an account, we can have
household owners invite other people to join their household.

To create a user, an HTTP POST request is sent to the endpoint. The body of
the request would contain an email address and password, which is what will
be used for signing in users. The password will be encrypted using bcrypt on
the server side for secure password storage. An API access token will be
returned upon successful login, which will be used to negotiate future
requests. The client is then responsible for finishing the user account setup by
letting them add devices to their account.

To login as a user, an HTTP Post request is sent to the endpoint. The body of
the request would contain an email address and password. Upon successful
login, an API access token will be returned upon successful login, which will
be used to negotiate future requests.

The user model can be a retrieved using an HTTP GET request. The
password is not returned in the data model response for security purposes.

78

To update a user, a simple HTTP PUT request can be sent to this endpoint
containing updated fields for the data model.

To delete a user account (that is to say deregister from the service), a simple
HTTP DELETE request can be sent to this endpoint.

. Device — HTTP GET/POST/PUT/DELETE /devices][/:id]

The device data model will consist of automated device information and
settings.

For each device, the data model will contain a unique hardware identifier.
This identifier will be used to negotiate commands to each automated device
as well as update state information from these hardware devices (like if a light
is on or off).

Each device can have a variety of state settings that can be toggled, so the
APl is responsible for handling each of the different cases it might encounter
when swapping the states of many different devices. For the light switch as
well as the wall outlet, the manual switch has a state as well as the device
attached to the switch. For the door lock, the door is only a temporary unlock,
so state is not a permanent change. For the HVAC, the temperature, fan, and
cooling/heating settings are all different states that must be taken into
consideration.

A paginated list of devices can be retrieved with an HTTP GET of /devices.

To add a new device, a POST request is sent to /devices containing the
hardware identifier of the device being added. The API will then communicate
with the automated device in order to finish setup.

To update a device, a PUT request is sent to /devices/:id, where “:id” is the
database ID of the device. When a stateful value of the device changes, the
API will then communicate with the automated device in order to update the
state on the device (to perform an action like turning on a light).

To delete a device, a DELETE request is sent to /devices/:id, where “:id” is
the database ID of the device.

. Task —HTTP GET/POST/PUT/DELETE /tasks[/:id[/run]]
There is a need for grouping together devices into particular tasks since each

device can only control items directly plugged into them. Because of this, a
tasks data model is used to group devices into user configurable tasks.

79

Each task model contains an array of device objects. Each of these device
objects contain the database ID of each device being controlled by the task,
as well as states being changed for each device. This allows users to define
specific stateful values for each and every device in the list, since each device
may have different states that can be controlled (for example, someone could
potentially mix a door lock with a light switch, and then lock the door and turn
on an outdoor light with the task).

A paginated list of tasks can be retrieved with an HTTP GET of /tasks. An
array of task models will be returned by this endpoint, and each task model
will contain a nested populated device object containing detailed information
about the devices in each task as well as the task and device states.

To add a new task, a POST request is sent to /tasks containing an array of
devices objects formatted similarly to the above device object description.
The user interface will need to populate a list of devices to to choose from
using the devices endpoint documented above.

To update a task, a PUT request is sent to /tasks/:id, where “:id” is the
database ID of the task. The body of the request should contain the full array
of device objects being modified as well as the status of the task.

To run a task, a POST request is sent to /tasks/:id/run, where “id” is the
database ID of the task.

To delete a task, a DELETE request is sent to /tasks/:id, where “:id” is the
database ID of the task.

. Schedule — HTTP GET/POST/PUT/DELETE /schedules]/:id]

Hardware timers are still in use by many households still to this day. They
usually hold a daily or weekly routine on which to turn a device on or off. In
the case of our home automation system, the schedule is created to run a
task (the data model mentioned above). These schedules will repeat on
whatever interval desired by the user.

A paginated list of schedules can be retrieved by sending a GET request to
/schedules. An array of schedule data models will be returned. Each schedule
model gives information about when it will next run as well as the current
state of the task and devices in the task. The task and devices for each
schedule will be populated into nested objects of each schedule data model in
the array.

80

To add a new schedule, a POST request is sent to /schedules. The body of
the request must contain the interval on which to repeat the task as well as
the task database ID that is to be executed.

To update a schedule, a PUT request is sent to /schedules/:id, where “:id” is
the database ID of the schedule. The body of the request should contain the
updated schedule model.

To delete a schedule, a DELETE request is sent to /schedules/:id, where “:id”
is the database ID of the schedule.

. Energy — HTTP GET/POST/PUT/DELETE /energy[/goals|[/:id]]

Energy management is an important part of reducing energy footprint of
households. Our home automation system automatically monitors the power
usage being reported by automated devices in a home and allows users to
set goals, graph power usage, and set alerts for when they break a defined
limit.

A list of energy management graphs and limits can be retrieved by sending a
GET request to /energy. The graphs are returned in an array that can be
rendered into a graph client side.

To update energy management limits and alerts settings, a PUT request is
sent to /energy with the changes set in the request body.

Goals are a bit more complex in the API. Every goal has a set value of energy
usage used over a specified time period. These goals will be computed based
on the energy usage per day, and feedback will be able to be generated
based on goal progress. For example, if you set a goal of 2000 kWh for a
month and are using 150 kWh a day, the goal can provide you feedback that
you will not meet the goal at the current rate of usage, and then try offering
feedback on how to conserve electricity for the remainder of the time frame
left.

By allowing users to setup multiple goals dynamically, they can set long term
goals for themselves to gradually reduce their environmental footprint.

To list energy management goals, a GET request is sent to /energy/goals. An
array of goal objects is then returned. Each goal object contains an array of
graph data for each goal progress thus far, percentage elapsed until goal
completion, and other settings like whether to alert if a goal may not be
reached.

81

To update a goal, a PUT request is sent to /energy/goals/:id, where “id” is the
database ID of the goal. The body of the request should contain the updated
energy goal model.

To delete a goal, a DELETE request is sent to /energy/goals/:id, where “:id” is
the database ID of the goal.

5.3.2.2. Interfacing with Microcontrollers

Each microcontroller will interface with both the client-side application and the
server-side backend application.

For the server-side backend interface, the microcontrollers will connect to the API
using a persistent keepalive socket over a secure TLS encrypted connection.
The communication between the API and automated devices is shown in figure
5.3.E.

Device 1

Realime keepalive sockel

Iransmitling actions and graph data .
Backend API — Device 2

Device 3

e

Figure 5.3.E - Visual Depiction of API <-> Device Communication
The format of data sent through this socket is as follows:
[device_id] [action] [state_name] [state_value]\n
where:
device id — the hardware device ID
action — the action type to perform, possible values are set and log
state_name — the name of the stateful data being set or logged

state_value — the value of the stateful data being set or logged
\n — new line character (used as a boundary between messages)

82

For the API to update states on microcontrollers, it would set action to “set” and
then send the state name and value that needs to be changed.

For the automated device to report usage (like power usage), it would set the
action to “log” and then send the state name and value that needs to be logged.

While the REST-ful API is serving JSON, because the data sent to and from the
microcontrollers is very basic there is not a need for extravagant data types here.
We can conserve bandwidth and make parsing the data easier for
microcontrollers by simplifying the communication between them and the API.

The microcontroller is responsible for establishing and keeping maintained a
stable connection to the API. In order for the microcontroller to establish a
connection to the API over a socket, it needs to authenticate using a “set” action
request. This would require the device to share the secret value that was given
during device registration. If the secret value is incorrect, the device will be
disconnected from the socket with an invalid secret error. If the secret value
provided is correct, the device will stay connected.

Once connected, the automated device will report usage information on an
interval to the server. This allows us to aggregate time series graphs for energy
usage as well as maintain goals and limits set by the user in the application. In
addition, internet service providers (ISPs) like to close idle connections. If data
isn’t constantly going through the connection, many ISPs will close the
connection to free up another port on their routers for someone else to use. In
order to keep the connection alive, data must be reported somewhat frequently
(like once every minute).

Some automated devices also change state outside of the application. For
example, the light switch may be turned on at any time manually. In order to
retain the state of automated devices within apps, microcontrollers will log these
state changes back to the API. As a result, the API will be able to maintain each
device's state reliably in the database.

5.3.2.3. Database Design

Database design is a crucial aspect of any web application. For our application,
an open source document storage database called MongoDB will be used.
MongoDB allows us to store object models directly into the database, which
allows us to avoid transforming database structure into object models within the
application. MongoDB is also highly scalable and useful for its quick processing
of writes (through use of journaling) and its aggregation abilities for processing
real-time data streams.

83

In order to ensure a stable cloud hosted database, we need to ensure our data
storage is redundant. MongoDB allows you to configure servers into replica sets,
which automatically assign a single instance as a “primary” server and sync data
to “secondary” servers. In the event of a server outage, MongoDB automatically
chooses a new primary and everything continues functioning normally.

For our cloud infrastructure, we will be choosing to run 3 instances of MongoDB
in a replica set. This will ensure that even if one or two of the database instances
are down or corrupts the data will remain available for use by the applications.
Each of these instances will communicate with each other over a TLS encrypted
socket using key-based authentication. The operation of MongoDB both in
normal operation as well as failover is depicted in figure 5.3.F.

One important caveat to using MongoDB is that it does not enforce a document
schema structure. In order to ensure consistent object representation, object
model classes must be designed to maintain the structure for each collection of
data we wish to store in the database.

Normal Operation Database Instance Failover

DB1 DB2 DB3 DB2 DB3
primary secondary secondary primary secondary
Backend Backend

Figure 5.3.F - MongoDB Replica Sets

Rather than spend a lot of time dealing with object representation in our
application by creating object model classes manually, we will be using
Mongoose JS, which is a MongoDB Object Document Model (ODM) module for
JavaScript. Mongoose will allow us to define schemas for our data objects, which
is not something that is built into MongoDB.

In addition to schemas, Mongoose will allow our application to resolve references
between collections (the equivalent of a SQL JOIN call, but implemented in the
application level instead of the database level) through “population.” This means
that if “populate” is called on a field user storing a user’s ID, then Mongoose
would grab that user from the database and fill in its user key with the user’s
object. This is extremely useful since MongoDB doesn’t have the ability to
perform collection JOINs (since with MongoDB the less relational your data, the
better).

84

Mongoose will also play a large role in validation of user input from the frontend
applications. Mongoose has a convenient asynchronous validation callback API,
which allows you to ensure that data being stored in the database is of both the
correct type of data as well as an appropriate value. With both standard SQL and
MongoDB databases, data validation and data typing is the responsibility of the
application. Mongoose makes it much easier by allowing us to define validation
requirements on a schema level (for example, a data value in the schema must
be a number less than 12, not a string).

With the features of Mongoose defined, the object schema models being planned
for use can now be explained.

Database Schema Models:
1. User Model

The user model will contain user information and global settings pertaining to
the user. More specifically, it will primarily contain a unique id that can be
used for referencing the user object in other models, the user's email
address, and the user’s password.

Within the database, we will be indexing the user model by id as well as email
address. This will allow O(log n) lookups (since indexes are a binary tree in
MongoDB) on email addresses and ids. User ids will be resolved within
references of other models and email addresses will be used for logging in.

In addition, because we will be supporting sub-users (that is users created
under the main user for use by family members to prevent account login
information sharing), there will be an array of sub-users in this user data
model. The array will contain user ids of sub-users, and each added sub-user
will have its own user model loaded via Mongoose’s population API. Each
sub-user account contains a flag to lock down these nested accounts to only
access their parent user’s account.

2. Device Model

The device model contains a device’'s name, unique id, and any setting
toggles that the device may have. Since the home automation system will
support multiple types of devices, there will have to be a device type field in
our database model. This field value will be one of a list of enumerated values
from a configured validation array. The enumerated values will correspond to
the multiple different devices we offer (wall outlet, wall switch, power lock,
hvac).

85

Within the database, we will be indexing the device model by id as well as
user id. The user id field will be used to compile a list of devices per user, and
the device id will be used for updating device information as well as via
reference within other models (like the task, schedule, and goal models).

The backend APl will be responsible for determining what values are
available for configuration on a per-device-type basis. This will be made
possible by defining device type on each per-field configuration within the
model schema. The API can use this information by looking at the schema’s
definition for the value being set and comparing device type. For example, the
API should distinguish that the temperature cannot be set on a wall outlet and
return an error response in the event someone tries to set that value. The API
should also hide all schema values that are not applicable to the device type
selected. This will allow the frontend to render forms to change only
applicable values.

. Task Model

The task model contains an array of device actions that are grouped into a
user’s task. The task will also contain a name field (used as a personal
identifier of the task’s purpose by the user), a task id (used for executing and
updating tasks), and user id (used to compile a list of tasks per user). The
tasks model will be indexed by task id and user id.

The array of device actions is a list of all devices and the setting changes
being performed on each device. For example, if a task has a device set to
turn a light on, the device action would keep an object of that setting’s new
value as well as a reference id to the device the action is being performed on
(the light device). For the array of device actions, Mongoose population will
be used to replace the reference ids with the device model. Since the device
id references are resolved in a O(log n) operation, it's a relatively efficient
query in MongoDB despite the amount of excess queries generated by the
population API.

. Schedule Model

The fields for the model consist of the schedule id (to perform updates on this
resource), user id (the user who owns this scheduled task), task id (that’s
being run) nextRunAt, and the interval.

The schedule model allows users to set an interval by which tasks
automatically run. In order to do this in the most efficient way possible, the
schema will be designed to allow the application to stateless-ly execute timers
by pulling only tasks from the database which are ready to be executed. To
achieve this there will be a nextRunAt field in the model which will store the

86

next time the schedule is to be ran. The application will then query the
database every minute for scheduled tasks where nextRunAt is less than the
current date and time. Upon execution of a scheduled task, the nextRunAt is
computed based on the interval configured.

The interval will either be an exact date and time (for a one-time scheduled
task) or a schedule based on Unix cron syntax. Cron syntax will only be used
internally, and a Ul will be created in the frontend for ease of use for users
(who most likely do not know cron syntax).

The task id will be populated with the task model (and sub-populated with the
devices within the task model, as described under the task model
description). This will allow the user to preview the schedule actions being
performed when adding and editing scheduled tasks.

. Energy Management Goal Model

The fields for the goal model consist of the goal id (to perform updates on the
goal as well as retrieve goal graphs), user id (the user who owns the goal),
device id (the device whose data is being calculated), and the goal
information such as a goal name and threshold to beat (like kWh).

The device id and device stats are both populated on retrieval by Mongoose.
The device stats will be an aggregate population, which is not supported by
Mongoose at this time. A custom function to aggregate stats will be created
for this model.

. Device Stats Model

The fields for the device stats model consist of the user id (the user who the
stats belong to), device id (the device the stats belong to), and the date the
stats correspond to. The model also includes a day total aggregation stat as
well as an array of smaller time increment stats for the device.

In order to easily and efficiently aggregate data into graphs from devices,
there will be a new stats document per device per day. Each stats model will
have a stats array. Each index of this array represents an hour of the day
(0-23) and each hour index will store another array representing each minute
of the hour (0-59).

The stat being recorded (like power usage) will update the device stat
document corresponding to the current day. It will increment the stat
according to the current hour and minute. It will also increment the day total
aggregation stat.

87

The API will be responsible for aggregating all stats data from this collection
within the date-range requested by the frontend into a format that the frontend
can best process. For graphs ranging a timespan greater than a day, the daily
total values within the stats model can be used to generate an API response.
For a shorter timespan (less than a day), the API should return the arrays of
the device’s usage during the entire day.

When data is pulled from the database for graphic purposes, the frontend will
then be responsible for transferring this data into a graph-able data array
once retrieving it from via the API.

As is evident from the explained database models, there is quite a bit of relation

between some of these models. Particularly users and devices are heavily
depended upon. A full relation graph between models is provided in figure 5.3.G.

MongoDB

Mongoose
{ Users 1 { Devices l { Tasks l ‘ Schedules 1 { Goals w { Device Stats }
(Energy Mgmt)
_id: Objectld <—— _id: Objectld =1 _id: Objectld — _id: Objectld id: Objectid _id: Objectld
email: String user: Objld — user: Objld —‘ —usar: Objld user: Objld user: Obijld
pass: Hash name: 3tring actions: [{ task: Objectld —device: Objld -device: Objld
childOf: Objld type: Enum device: Objld nextRun: Date type: String
settings: Obj seltings: Obj interval: Str total: Number
stats: [
Number

]

Figure 5.3.G - Database relation graph
5.3.3. Frontend

The frontend will be comprised of the AngularJS Model View Controller (MVC)
framework coupled with the Bootstrap theming framework.

In order to serve a variety of devices, the frontend will be served as a website as
well as a mobile application for iOS and Android devices. The frontend for both
the website and mobile applications will rely on the same HTML/CSS/JS
application being developed, but slight differences will occur based on what
device a user is using (mobile device or. website). PhoneGap will be used to
package the application into a native mobile app, and its APIs will be used in
order to extend the functionality of the mobile apps.

88

5.3.3.1. AngularJS Setup

AngulardS will be used to render dynamic views for the website and mobile
applications. In AngulardS, the template is composed of views controlled by
controllers and directives in JavaScript. These templates will be split into smaller
sub-views using Angular Ul-Router, an open source module for AngulardS that
allows you to dynamically load view templates and scope controllers to them by
routing. This allows AngularJS to be a single-page application that loads new
pages with JavaScript. This type of client rendering for new pages is much more
efficient than server-side rendering of pages, saving on bandwidth and more
importantly: page rendering times (giving users a quick, responsive app
experience). An overview of the function of our AngulardS application with
Ul-Router is given in figure 5.3.H.

[AngulardS App }

Routes

Directives (Factories J (Services }

Figure 5.3.H - AngularJS Overview

The Angular Ul-Router will be configured to have a specific path dedicated to
each page being accessed. For each of the pages, a different controller will be
used to bind data pulled from the API to the views (like populating a table of
devices, buttons to edit specific devices, and populating forms with pre-filled
information). Since data is two-way data bound in AngulardS (through the
$scope), submitting forms is also handled within route controllers. This allows
users to correct form errors without leaving the page or having to press the back
button on their browsers.

Directives are modularized functions for manipulating the view's HTML with
AngularJS. It allows you to create wrappers for modules not supported in

89

AngularJS, like graphing libraries. For our project, we’ll be using Chart.js, an
open source graphing library, in order to produce graphs for the energy usage
stats aggregated for each of the devices being tracked.

AngularJS also has services and factories, which are able to be included as a
dependency to all controllers. For this application, we will have one of each: a
user service and an API factory.

The user service will hold the state of the user throughout their usage of the
control panel. It is responsible for ensuring the user is logged in, has access to
the page being requested, and holds all the user’s stateful information (like email,
name, etc.).

The API factory is a bit more complicated. AngularJS has helper methods for
grabbing data from JSON APIs. However, these helper methods are barebones
and do not support authentication over APIs without appending each request with
login credentials. For better code reusability, the API factory will essentially be an
API caller class structure. It will define methods get, post, delete, and put. These
methods will get the user's APl credentials from the user service and
automatically fill in the credentials with all API requests. Since AngulardS uses an
ES6 promise-like API for its APl methods, the outgoing API requests are simply
wrapped and returned (allowing our API factory to act as a negotiator rather than
a middle-man for API requests).

5.3.3.2. Page Design

Since we will be using Bootstrap as a theme base, much of the CSS styling is
already finished. This leaves the templates of pages to be designed. Apart from
the login and registration page, the majority of the control panel will be part of a
wrapper view with a sidebar (that has a purpose of providing navigation) as well
as a header (that has a purpose of displaying the product logo, any alerts the
user has received, and login/logout). The figure in 5.3.1 is a basic mockup for the
website wrapper design.

The Ul View is the remaining portion of the wrapper to be explained. The Ul View
is controlled by Angular Ul Router, and is populated based on the current route
that is loaded. Angular Ul Router loads the view HTML and the view controller
and then runs them. Each of these views correspond to individual page views.
The container will also scale appropriately for mobile devices (since the same
HTML/CSS/JS will be used in the mobile apps as well). Because space is very
limited for mobile devices, the sidebar will hide and become a toggle when the
screen region is small. The toggle functionality is depicted in figure 5.3.J.

90

nowledgebase elcome, Name! erls ogin/Logout
Knowledgeb Wel MName! Al Login/L

Devices
Tasks
Schedules

Energy Use

Ul View

Figure 5.3.1 - Page Design Wrapper

LOGO LOGO

Alerts Login/Logout Alerts Login/Logout

Devices
Tasks
Schedules

Energy Use

Ul View - /iew

Figure 5.3.J - Scaling the Navigation Menu for Mobile Devices

91

1. Account Settings

The account settings page will feature the ability to update name, email, and
password. It will also allow users to delete their account and add or remove
child users to and from their account.

The design of this page will be fairly straightforward. The page will be
organized vertically such that there is a form panel for updating settings, a
delete account panel, and a child users panel.

The delete account panel will pop up a window requesting confirmation to
delete the user's account. This will issue a DELETE API request to the API,
which will then set the account to be “soft deleted” (that is to say it can be
recovered manually should this have been a mistake).

The child users panel will feature a simple table populated by the child users
array served from the users API endpoint. There will be line-by-line delete
icons as well as a plus icon atop the table to add new child users. The delete
icon will prompt for confirmation before allowing child users to be deleted.

2. Devices

The devices page will list all of the devices retrieved from the devices API
endpoint within a table. Each device in the table will have an edit and delete
button listed line-by-line. At the top of the table will be a button to add a new
device.

The edit icon will popup a configuration window within the page (called a
modal). The modal will be a form allowing users to edit the device information
as well as configure all of the device’s settings.

The delete icon will popup a confirmation window before deleting the device.

In addition to edit and delete icons for each device, the device’s primary
setting will be configurable within the list too. For example, On/Off for a light
or setting temperature for the HVAC. This will give users an at-a-glance ability
to change their devices.

The ability to add a new device is more complicated. Devices will only be able
to be setup from the mobile application. This is a limitation due to needing
Bluetooth to configure the WiFi settings on the device as well as negotiate
API configuration to the device. On non-mobile apps, an error message will
be returned letting users know that they must use the mobile app. When on a
mobile app, there will be a setup guide to help the users link the device via

92

Bluetooth to their phone and subsequently configure WiFi and finish setting
up the device. This setup is detailed in §5.3.3.3.

. Tasks

Tasks are a preconfigured setup for a grouped-together devices. They can be
used to turn everything off when you leave home, or turn off lights and turn
down the air conditioning when you go to bed. There’s virtually endless
possibilities for tasks.

The tasks page will list all of the tasks retrieved from the tasks API endpoint
within a table. Each task entry will have line-by-line run, edit, and delete
buttons, and at the top of the table will be a button to add a new task.

The run button will run the saved task.
The delete icon will popup a confirmation window before deleting the task.

The add a new task button will popup a modal and ask for a name for the new
task. After submission, the users’ page will redirect to the edit page for that
task.

The edit icon will also direct people to an edit page for the task. Instead of
using modals for editing tasks, there is too much configuration needed so a
modal would not be a large enough space to work with.

Because of the amount of configuration required for tasks, there will be a
devices list on the editing page. Each task contains an array of device
actions. These actions are pre filled into the edit page by the tasks API
endpoint. The devices list will allow users to add, edit, and remove devices
from the task.

The add button will prompt the user to select a device from a list of unused
devices for that task. AngulardS will load the user's’ available devices from
the devices API endpoint and filter the returned list to exclude those already
assigned to the task. After adding a device, the user will see the device
appear in the list and they will be able to configure the device’s settings to be
set when the task is run.

The devices in the list can be edited or removed. When removing a device,
the delete icon will popup a confirmation window before deleting the device.
The edit icon will popup a similar modal window used for editing device
settings from the devices page, with the exception of the ability to edit things
like the device name. Device settings changed here will be applied to the

93

device action’s settings object, not the device’s settings object, so changes
are unique only to the task being performed.

. Schedules

Schedules allow users to automate the running of tasks. This could mean on
an interval (like Monday through Friday at 6pm) or a specific, one-time date
and time like (Dec. 15", 2015 at 6pm).

A list of schedules will be imported from the schedules APl endpoint into a
table. Users will be able to add, edit, and remove scheduled tasks. Tasks will
also have the ability to be toggled on or off (in the case where you don’t want
to remove a schedule and only need it to be temporarily disabled).

When removing scheduled tasks, the user will be prompted to confirm the
action to ensure they don’t accidentally click the button.

Adding and editing schedules tasks will rely on the same HTML to create a
modal. The modal will have a spot to name the schedule, select the task to
run for the schedule, and then allows the user to select either a static date or
an interval.

To select a static date, the open source JavaScript library DateTimePicker will
be used within an AngularJS directive to allow users an easy graphical
interface to select a static date.

If the user opts to select an interval, a custom interval selection directive will
be used since the API endpoint requires cron syntax for the interval. The cron
syntax is explained in figure 5.3.K.

The syntax also supports dashes (-) for ranges, commas (,) for selecting
multiple, and asterisks (*) for all. For the implementation being designed, we
will only be selecting with commas or asterisks or neither.

minute (© - 59)
hour (@ - 23)

|
|
o day (1 - 31)
||| month (1 - 12)
| | | | ———— day of week (0 - 6)

Figure 5.3.K - The cron syntax format
There will be 5 input multiple select form elements, each corresponding to the
minute, hour, day, month, and day of week. For each input, the ranges
specified in the syntax from figure 5.3.K will be loaded for selection (but

94

instead of using numbers for month and day of week the numbers will be
translated into their verbose terms (month names and day names). The
design of the cron interval selection form is provided in figure 5.3.L.

Day of Week Month Day Hour Minute
Sunday January 1 0 0
Monday February 2 1 1
Tuesday March 3 2 2
Wednesday April 4 3 3
Thursday May 5 4 4
Friday June 6 5 5
Saturday July 7 6 6

Figure 5.3.L - Cron Interval Selector

The AngulardS directive being created will watch each form input for a
change, and then compile the list of selected elements into the cron syntax. If
all of the values in the input are selected, the directive will set that input’s
value in the cron syntax to an asterisk. Otherwise, the directive will make a
comma-separated list of the selected values in the input and place it in the
cron syntax output.

. Energy Management

The energy management page will allow users to monitor their energy usage
and make goals to keep them on track to reduce their energy footprint.

The layout of the energy management page will be just a bunch of graph
panels. The default loaded graphs will include total energy consumption
within varying time periods (day, month, year) and will show the goals (with
their graphs) of any configured goals. You will be able to select individual
devices to get stats for single devices rather than grouped totals.

We will be utilizing the open source graphing library Chart.js to create line
graphs for energy consumption. There is an open source Chart.js AngularJS
directive called Angular Chart which we will be including to speed up
development time.

The graphs will be loaded with data from the energy API endpoint. Since
Chart.js requires each graph to have data formatted into arrays of purely
integers, the data will be processed client side into a label and data value
format where label is the X axis value and data value is the Y axis value.

95

{

labels: [“January”, “February”],
datasets: [{
data: [100, 105]

1]
}

The goals will be able to be managed right from the energy management
page. For existing goals, there will be a delete icon in the upper right of the
graph panel for the goal. There will be a confirmation prompt if a user
attempts to remove a goal, acting as a safeguard to accidental deletion. To
add a new goal, there will be a button in the upper right of the page.

When adding new goals, a modal will pop up prompting for information like a
goal name, the device/task/total being tracked, as well as the goal limit (the
value that you are attempting to achieve). After adding a goal, the graph
panel for the goal will appear on the page.

If a goal gets broken or the system detects you will not be able to meet a
goal, it generates an alert. Alerts will show at the top of the control panel as
entries for the dropdown alert icon. When there is an unread alert, there will
be an unread message count next to the alert icon. An email will also be
dispatched to the user to notify them they will not be able to meet their goal.

5.3.3.3. Microcontroller Setup

The microcontroller setup will only occur when setting up new devices. If a device
needs to be reconfigured, it will need to be removed and then re-added.
Additionally, setup can only be performed on mobile devices due to the
requirement of Bluetooth being needed to program the device for use.

For mobile devices, we will be using PhoneGap to merge our HTML/CSS/JS
AngularJS application into a native mobile app for Android and iOS. PhoneGap
has an official plugin for Bluetooth, that, once included in the configuration,
injects a JavaScript Bluetooth API into the scope of the AngulardS application.
This allows the AngulardS application full control over the Bluetooth module
within the mobile device being used to configure the microcontroller.

The setup process begins by pressing a button on the automation device to pair
the Bluetooth module on the automation device with the Bluetooth on the mobile
device. Once the button is pressed, the mobile device can find and connect to
the automation device.

Once connected, the application will negotiate with the device to ready it for
programming the WiFi module. The user will then type in their WiFi connection

96

settings that the automated device needs to access the Internet. The automated
device will receive these connection settings and then test the connection to
ensure proper connectivity.

Once the automated device confirms that the cloud service is reachable over the
Internet, it will exchange its device ID and device type back with the server and
obtain an API token for the API server. The API token will allow to to establish a
TLS keep-alive socket with the API server to both transmit usage data to the API
to be used for graphing purposes as well as receive commands from the API (like
turning on and off the light).

After the device completes setup, it disconnects from Bluetooth and the mobile
device displays a message of success with configuring the networking. The
mobile app will then force the user to test out the newly added device to ensure
that it is functioning normally.

o oYy o
Initiate Bluetooth Automated device
@ pairing on L::,;_fi Férrc;rg:rﬁgéo negotiates API
automated device credentials from API
R . J R
o 0y]
_— . Automated device
WiFi credentials)
User searches for t to aut ted exits setup and
and pairs to device sent to automnate connects to socket
device AP

AN

User prompted to test
device through App

Connect
Success?
Troubleshooting

Figure 5.3.M - Microcontroller Setup Flow

The mobile app will ask the user to set the temperature for HVAC, unlock the
door for a powerlock, and toggle on and off a switch or plug, depending on which
device that is being configured.

After the application sends a test action to the device, the mobile application will
prompt the user to ask if the device performed the test as expected. If the user
agrees that the test functioned properly, the mobile application exits device

97

microcontroller setup and heads back to the devices page. If the user denies that
the test functioned properly, the mobile application tries to run through
troubleshooting steps to resolve the issue with the user.

The entire setup process is depicted by a flowchart with figure 5.3.M, which will
give a more visual understanding of the setup process needed to configure a
microcontroller.

6. Testing

The following section covers all of the testing necessary to ensure every
component of the home automation system was functional and performed as
expected. There are two sections of testing, one for hardware and one for
software. The following sections will cover the plan for testing, environments in
which testing was done, and the results of testing, including data collected and
observations made during testing. All testing was done under supervision for
safety purposes.

6.1. Hardware Testing

In order to test the hardware components, each individual module needs to be
tested first before assembling everything together. Each module needs to
perform according to the datasheet as well as according to the project
specifications and requirements. Because this is only hardware testing,
interfacing with software was not necessary and thus the final code for the
components are not needed. Testing Plan will discuss the testing for the
individual components of the PCB. Testing Environment will explain the
environment in which the components were testing as well as the ideal conditions
that are needed for the home automation system to work in complete
functionality.

6.1.1. Testing Plan

For the electrical components (WiFi Bluetooth module, Power Sensor IC, Relay),
because of the nature of these components, it is not possible to individually test
each component, as they can not operate without acting on another module. For
example, the power sensor IC can not transmit a signal to nothing; the power
sensor needs to be connected to a WiFi/Bluetooth module to transmit the signal
to the central and also needs to be connected to a microcontroller in order to
know when to turn on and off. However, a microcontroller is easy to test because
all MCU’s can act on their own and can take in a code input and output a signal.
Testing the MCU requires a quality assurance check of the timers and registers
for basic function of the MCU. For example, a code for basic input of a keyboard
input to the MCU was used to make sure the code was properly input into the

98

MCU and a proper output from the MCU was asserted. Afterwards, a simple
routine code was created to test the interrupt service routines of the MCU.
Results of the test can be seen in Figure 6.1.A.

Placeholder for Prototype MCU Testbench Data

Figure 6.1.A - MCU Testbench Data

When all preliminary tests were passed and completed, the other electrical
components needed to be tested, one at a time. For the WiFi/Bluetooth module,
a simple connection to the MCU and testing via smartphone is needed to assure
the module works. This is done by connecting the WiFi/Bluetooth module to the
MCU. The MCU contains a code that detects the wireless module and has a
connection to the WiFi access point that is the central hub. A smartphone can
also connect to this central hub. This central hub access point can receive a
signal from the smartphone and transmit the signal to the WiFi/Bluetooth module,
which then goes to the MCU for further instruction. In order to make sure this
routine works, a computer, connected to the access point, asserted an input to
acknowledge the MCU to the access point. The central hubs receives this input
and forwards the signal to the WiFi/Bluetooth module, which is sent to the MCU.
If everything works as planned, the MCU should output a signal via sending a
confirmation message back to the computer via the reverse process. Because
this is simply testing for the MCU and WiFi/Bluetooth module and both of these
modules are being used for every component of the home automation system,
the above procedure only need to be done once. The same results will produce
for the same MCU inside other components, such as the wall outlet or powerlock.
Figure 6.1.B shows data for these tests.

The above process can be repeated for the power sensor IC. While the MCU is
operating, the power sensor is constantly receiving the power output and
collecting the data over several intervals. This data is periodically sent to the

99

central and forwarded to the main website/smartphone app. For testing
purposes, simply testing the power sensor IC only requires the sensor to display
the current power onto the smartphone. If the correct power is shown, the power
sensor IC is functional. The relay sensor can be easily tested by connecting the
MCU to the relay. Inside the MCU, a sample code to operate the relay is used
and an asserted output will show if the relay is functional.

Placeholder for WiFi/Bluetooth Connectivity to MCU Testbench Data

Figure 6.1.B - MCU WiFi/Bluetooth Connectivity Testbench Data

After all of the individual electrical modules are tested, it is time to put everything
together and test if the overall setup functions properly. This is explained further
under the next sections, where each component of the home automation system
is implemented and tested.

6.1.2. Testing Environment

The home automation system needs to be able to operate under everyday
conditions inside a typical room. A normal bedroom was used to test the final
product of the home automation system. Because this particular bedroom is
located in Florida, the constant change in weather needs to be considered. The
components need to be able to operate under temperatures between 60T to
100TF. The casing that covers the PCB needs to be able to withstand hot
temperatures over a long period of time without any hindrance to the
performance.

Testing the individual components as described in the testing plan requires a lab
that contains a breadboard for basic wiring and a multimeter for testing voltages
across certain pins. There also needs to be computers that have the necessary
software to create and run code for the MCU. These softwares include Code

100

Composer Studio and any C programming IDLE. The Senior Design laboratory
and Tl Innovation Lab were used for these purposes.

6.1.3. Wall Outlet Testing

One of the most important components of the home automation to test would be
the wall outlet. Since a lot of the other components rely on the wall outlet, making
sure the wall outlet functions as expected is the primary goal. This is why the wall
outlet will be the first to be tested.

6.1.3.1. Prototype Construction

A very basic prototype of the wall outlet was created in the Tl Innovation Lab
using MCU'’s and relay sensors that are not part of the final product. This is due
to availability of the components at the time and a need to explore a more variety
of components. For this demonstration a Tl Launchpad MCU was used,
connected to a WL18xxMOD 8 Single-Band Combo Module and a simple relay
was connected to the MCU. For testing purposes the power sensor was not
needed and will be excluded from this section for now. Figure 6.1.C shows a
functional block diagram of the prototype wall outlet. Figure 6.1.D and Figure
6.1.C shows a functional block diagram and picture of the prototype wall outlet
used for testing purposes, respectively.

6.1.3.2. Electrical Input/Output

After building the prototype an electrical test was used to test if this wall outlet
was able to accept an input of 120V AC into the plug, convert this AC voltage into
DC, and output the correct voltage by measuring the output using a multimeter. If
done correctly the MCU will be turned on without any complications or issues.
Figure 6.1.E shows a table of outputs measured using the multimeter provided in
the Tl Innovation Lab. The outside temperature is also recorded for datasheet
purposes, although temperature did not have any affect on these tests.

6.1.3.3. Wireless Communication

When the MCU passed the above test, a communications test is needed to make
sure the MCU is correctly wired to the WiFi/Bluetooth module and that a signal
can be transmitted and received to this wireless module. For testing purposes,
the wall outlet prototype will be connected to the computer and a test for a good,
established connection will be utilized. Figure 6.1.F shows the setup used to test
this functionality. Following an input from the user on the computer, the wall
outlet should respond by successfully activating the MCU and the relay turning
on a light bulb. Multiple runs of this test will be run, making sure the user input is
able to turn on and off the light bulb plugged into the wall outlet. Figure 6.1.F
shows the runs completed as well as a success/fail for each run.

101

Placeholder for Prototype Wall Outlet Functional Block Diagram

Figure 6.1.C - Wall Outlet Functional Block Diagram

Placeholder for Prototype Wall Outlet Testing Setup

Figure 6.1.D - Wall Outlet Testing Setup

Test Number Outside Temperature (in F) | Output Voltage (in V)

(62 I I~ B OSTN B G

Figure 6.1.E - Wall Outlet Temperature and Voltage Table

102

Test Number Light Bulb Status Expected Light Bulb
(ON/OFF) Status

1

2

3

4

5

Figure 6.1.F - Wall Outlet Wireless Communications Test for Proper Execution

6.1.4. Wall Switch Testing

Because the wall outlet is wirelessly connected to the wall switch using
WiFi/Bluetooth, the tests for the wall switch will be very similar to those of the
wall outlet. Figure 6.1.G and Figure 6.1.H shows a functional block diagram of
the prototype wall switch as well as a picture of the basic setup used for testing
the wall switch, respectively. Assuming the wall outlet works as intended, testing
the wall switch simply requires the button to be pressed/flipped. This should
transmit to the wall outlet and activate the MCU and relay to either turn on or off
the light bulb. Again, a success/fail run was implemented for the wall switch.

Results can be seen on Figure 6.1.1

Placeholder for Prototype Wall Switch Functional Block Diagram

Figure 6.1.G - Wall Switch Prototype Functional Block Diagram

103

Placeholder for Prototype Wall Switch Testing Setup

Figure 6.1.H - Wall Switch Prototype Testing Setup

Test Number

Light Bulb Status
(ON/OFF)

Expected Light Bulb
Status

a (s [0 DN

Figure 6.1.1 - Wall Switch Table for Button Testing

6.1.5. Powerlock Testing

Testing the powerlock is different from the other components in the sense that
the powerlock utilizes a mechanical part, which is the electric strike needed to
open and close the powerlock. Because of this, there will be a delay between
user input and execution of instruction. This is covered further under the
“Wireless Communication” section in “Powerlock Testing”. Figures 6.1.J and
6.1.K show the functional block diagram of the prototype powerlock and the
testing setup, respectively.

104

Placeholder for Prototype Powerlock Functional Block Diagram

Figure 6.1.J - Powerlock Prototype Functional Block Diagram

Placeholder for Prototype Powerlock Testing Setup

Figure 6.1.K - Powerlock Prototype Testing Setup
6.1.5.1. Primary Testing

Testing the prototype powerlock requires ensuring that the powerlock is able to
accept a user input from the computer to the powerlock as a basis. This will be
done with the same test as used for the wall outlet. The MCU will be directly
connected to the computer via micro-USB cable. A user keystroke should send a
message to the powerlock’s MCU. This allows the MCU to activate the
powerlock, either opening or closing depending on its current state. This test is
simply to see if the MCU was properly connected to the powerlock. Figure 6.1.L
shows the results of this test.

105

Test Number Powerlock Status Intended Status
(Open/Close)

1

2

3

4

5

Figure 6.1.L - Powerlock Testing for Initial Setup
6.1.5.2. Wireless Communication

The next step is to have the MCU interact with the WiFi/Bluetooth module.
Because the power lock mechanism is directly connected to the MCU, there is no
need for a relay. Another factor for the wireless communication aspect of testing
is the time that it takes between user input and execution. The desired time for
execution should be a very small and insignificant. For example, a time of at least
1 second would be considered non ideal and very slow for what is desired. A
time between 0.25 seconds to 0.5 seconds means a very good connection and
time, but not exactly ideal. Figure 6.1.M shows the results of this testing.

Test Number Powerlock Status Time to Complete (in
(Open/Close) sec)

1

2

3

4

5

Figure 6.1.M - Powerlock Wireless Communication Test For Response Time
6.1.6. HVAC Controller Testing

Perhaps one of the most challenging components of the home automation
system to test will be the HVAC controller. This is due to the component being
built from scratch and being compatible with the proprietary system of the home

106

automation system. There are three aspects that will be tested in the HVAC
controller include prototype, user input, and wireless communication testing.
Figures 6.1.N and 6.1.0 show the functional block diagram of the prototype
HVAC controller and the testing setup, respectively. Because the prototype does
not contain any inputs other than power and physical input, the received wireless
signal of the final result HYAC controller is not shown. However, the final design
functional block diagram of the HVAC controller will have these inputs.

Placeholder for Prototype HVAC Controller Functional Block Diagram

Figure 6.1.N - HVAC Controller Prototype Functional Block Diagram

Placeholder for Prototype HVAC Controller Testing Setup

Figure 6.1.0 - HVAC Controller Prototype Testing Setup

107

6.1.6.1. Prototype Testing

This section covers the basic testing of the prototype HVAC controller. Because
this component is still in its early stages of development, there are no casing or
special LCD screens to account for. These tests will only test if the completed
prototype is able to lower, raise, and set temperatures using the buttons on the
device. Completing these tests would fulfill the duty of a basic HVAC controller.
Specific functions unique to the home automation system will be covered under
the “User Input Testing” section of “HVAC Controller Testing”.The prototype
testing will only use the physical buttons on the HVAC controller itself. Testing for
a user input via computer will covered under “User Input Testing”.

The tests will involve what the user pressed and the result of what happened.
The goals of the tests are as follows:

Up Arrow correctly increases temperature/ time of schedule

Down Arrow correctly decreases temperature/ time of schedule

Power Button turns on/turns off the device

Center Button correctly confirms set temperature

The table will include the desired result after pressing the button as well as what
actually occurred. For example, if the desired result was to increase the
temperature from 44 degrees Fahrenheit to 45 degrees Fahrenheit and the
observed result was a decrease in temperature, then there was an error in either
the wiring of the buttons or the coding. Figures 6.1.P, 6.1.Q, 6.1.R, and 6.1.S
shows the results of the testing.

Test for Up Button

Test Number Observed Result Desired Result

1

a (s [0 DN

Figure 6.1.P - HVAC Controller Prototype Test for Up Button

108

Test for Down Button

Test Number Observed Result

Desired Result

1

(S I I~ B OSTN I \

Figure 6.1.Q - HVAC Controller Prototype Test for Down Button

Test for Power Button

Test Number

Observed Result

Desired Result

a |~ WO DN

Figure 6.1.R - HVAC Controller Prototype Test for Power Button

Test for Center Button

Test Number

Observed Result

Desired Result

a | |OWIDN

Figure 6.1.S - HVAC Controller Prototype Test for Center Button

109

6.1.6.2. User Input Testing

The main aspect of the HVAC controller is to be able to wirelessly control the
HVAC controller from a smartphone. However, before a WiFi/Bluetooth
connection can be made, the HVAC controller needs to be able to accept input
from another source. The inputs will be similar to the physical buttons on the
device itself and a replica screen would be shown on either the computer or
smartphone.

This section covers using a computer connected to the HVAC controller in order
to attain an established connection and confirm that the MCU inside the HVAC
controller can accept input from an outside source. When the user inputs from
the computer a specific command, the command should reflect that of pressing
the physical buttons on the controller itself. The test covers all of the buttons
shown in the “Prototype Testing” section under “HVAC Controller Testing”.
Figures 6.1.T, 6.1.U, 6.1.V, and 6.1.W shows the results of testing.

Test for Up Button

Test Number Observed Result Desired Result

a | DN

Figure 6.1.T - HVAC Controller User Input Test for Up Button

Test for Down Button

Test Number Observed Result Desired Result

1

a | |OWIDN

Figure 6.1.U - HVAC Controller User Input Test for Down Button

110

Test for Power Button

Test Number Observed Result Desired Result

1

a |~ WO DN

Figure 6.1.V - HVAC Controller User Input Test for Power Button

Test for Center Button

Test Number Observed Result Desired Result

a |~ W DN

Figure 6.1.W - HVAC Controller User Input Test for Center Button
6.1.6.3. Wireless Communication

The final step of testing the HVAC controller is testing the WiFi/Bluetooth portion.
As stated in the previous “Wireless Communication” sections, the time of
execution is important in determining the efficiency and responsiveness of the
WiFi/Bluetooth module inside the HVAC controller. However, it is more
understandable to have a slightly longer response time than that of the
powerlock. This is because of the HVAC controller processing the data received
as well as being able to execute the task in such a short time. Because of this,
acceptable response times would be around 0.5 seconds to 1 second. Tables
6.1.X and 6.Y shows the results of testing. A significant number of tests is
needed to account for every possible option included in the smartphone app.
Each action was recorded on top of response time and if the instruction was
executed properly. Each response time also includes an expected response time
and if the time recorded compared to expected time is close or vastly different
from each other, as shown by a percent error.

111

Test Number Command Executed

Did It Execute
Properly?

O I N | ol]lw DN

10

Figure 6.1.X - HVAC Controller Wireless Communication Test For Proper Execution Of Commands

Test Number Response Time Expected Time

% error

1

N[l |0 DN

© |

Figure 6.1.Y - HVAC Controller Wireless Communication Test F

or Response Time

112

6.2. Software Testing

The testing of our software will be primarily focused on automated tests, and
testing by hand will only be used to ensure the application frontend and
hardware/software communication functions properly.

6.2.1.Automated Tests

Since the majority of the software components rely on the API, it is important that
the APl is functioning properly and without errors.

Automated testing is something relatively new with development workflows, and
has come as a result of increasingly complex applications being built regularly
and by large teams of developers. When there’s multiple people working on a
project at the same time, mistakes can happen and functionality can break.

In order to prevent group members from writing code that can break functionality
that is already working, automated tests can be created to ensure proper support
for all new code changes being added to the project’s API software.

There are a many ways people choose to run tests, but mostly people either
utilize a test server with populated data to test code changes against or test data
is generated per-method (matching expected input for the method being tested)
to ensure proper functionality.

Because of time constraints on this project, writing per-method tests can be
expensive in terms of time it takes to write accurate and complete per-method
tests. We will be going with the test server method instead, which should free up
more time to work on the rest of the software development cycle.

We will be using a test server (running locally in a virtual machine) to test code
changes on. It will be a server mimicking the configuration of the standard cloud
server for our application, with the exception of it being configured to run in a
single instance mode instead of distributed across multiple nodes (for example,
standalone MongoDB instead of running it in a replica set). It will be
preconfigured with a test user account in the database to allow automated tests
to run on their own.

For the automated tests themselves, we will be utilizing Postman, a freeware tool
by Postman Labs. It has a low-cost paid upgrade that allows you to create and
run automated tests with their open source companion command line tool called
Newman. Newman can be added to the package.json of the API software in
order to easily run tests with the “npm test” command.

113

In Postman, collections of tests can be created. For the API, this will consist each
of the major modules of the API: users, devices, tasks, schedules, and energy.

Each collection will contain multiple API calls to the test APl server running
locally. These API calls will try out every test case necessary to ensure that the
resource being tested covers all potential problems that could happen, ranging
from invalid information being returned to invalid input data being submitted into
a form by the user.

User Test Cases

e User Registration — PUT /user
o Valid/Invalid Email Address (ensure email address is only allowed chars)
o Valid/Invalid Password (enforce minimum password length)
o Valid/Invalid User Parent (for child users, optional)
= User Parent must also be verified in the GET /user response after
creating a child user account
o Valid Success Response (returns API credentials for APl authentication)
o Valid Error Response (returns error response object)
e User Login — POST /user
o Valid/Invalid Email and Password (checked in combination)
o Valid Success Response (returns API credentials for API authentication)
o Valid Error Response (returns error response object)
e User Info — GET /user
o Invalid API credentials
o Valid Success Response (returns user object model)
o Valid Error Response (returns error response object)

Device Test Cases

e Add New Device — POST /devices
Invalid API credentials
Valid/Invalid Device ID (unique device identifier)
Valid/Invalid Device Type (enumerated value of supported device types)
Valid Success Response (returns API credentials for the device)
Valid Error Response (returns error response object)
e List Devices — GET /devices
o Invalid API credentials
o Valid Success Response (returns list of device object models)
o Valid Error Response (returns error response object)
e Delete Device — DELETE /devices/:id
Invalid API credentials
Valid/Invalid Device ID
Valid Success Response (empty page, status code 204)
Valid Error Response (returns error response object)

O O O O0Oo

O O OO

114

e Modify Device — PUT /devices/:id

(0
(0]
(@)

(0]
(0

Invalid API credentials

Valid/Invalid Device ID

Valid/Invalid Setting Changes (like setting an integer to a string or modifying
an inapplicable setting for the device type)

Valid Success Response (returns modified device object model)

Valid Error Response (returns error response object)

Task Test Cases

o Add New Task — POST /tasks

(@)
(0
(0]
(0

Invalid API credentials

Valid/Invalid Task Name

Valid Success Response (returns task object model)
Valid Error Response (returns error response object)

e List Tasks — GET /tasks

(0]
(0
(0]

Invalid API credentials
Valid Success Response (returns list of task object models)
Valid Error Response (returns error response object)

e Delete Task — DELETE /tasks/:id

(0
(0]
(0
(0]

Invalid API credentials

Valid/Invalid Task ID

Valid Success Response (empty page, status code 204)
Valid Error Response (returns error response object)

e Modify Task — PUT /tasks/:id

(0
(0]
(@)

(0]
(0
(0]

Invalid API credentials

Valid/Invalid Task ID

Valid/Invalid Setting Changes (like setting an integer to a string or modifying
an inapplicable setting for the device type)

Valid/Invalid Devices (ensuring no duplicate devices are added to a task)
Valid Success Response (returns modified task object model)

Valid Error Response (returns error response object)

Schedule Test Cases

e Add New Schedule — POST /schedules

O O O0OO0OO0OOo

Invalid API credentials

Valid/Invalid Schedule Name

Valid/Invalid Schedule Interval

Valid/Invalid Task ID

Valid Success Response (returns schedule object model)
Valid Error Response (returns error response object)

e List Schedules — GET /schedules

(@)
(0]

Invalid API credentials
Valid Success Response (returns list of schedule object models)

115

(0]

Valid Error Response (returns error response object)

e Delete Schedule — DELETE /schedule/:id

(0]
(@)
(0
(0]

Invalid API credentials

Valid/Invalid Schedule ID

Valid Success Response (empty page, status code 204)
Valid Error Response (returns error response object)

e Modify Schedule — PUT /schedule/:id

O O0OO0OO0OO0OO0OOo

Invalid API credentials
Valid/Invalid Schedule ID
Valid/Invalid Schedule Name
Valid/Invalid Schedule Interval
Valid/Invalid Task ID

Valid Success Response (returns modified schedule object model)

Valid Error Response (returns error response object)

Energy Management Test Cases

e List Energy Graphs — GET /energy

(0]

o Valid Success Response (returns list of energy usage stats models)

(0]

Invalid API credentials

Valid Error Response (returns error response object)

e List Goals — GET /energy/goals

(0
(0]
(0]

Invalid API credentials
Valid Success Response (returns list of energy goal models)
Valid Error Response (returns error response object)

e Add New Goal — POST /energy/goals

O O0OO0OO0OO0OO0OO0o0OOo

Invalid API credentials

Valid/Invalid Device (one of device, task, default graph type)
Valid/Invalid Task (one of device, task, default graph type)
Valid/Invalid Graph Type (one of device, task, default graph type)
Valid/Invalid Goal Name

Valid/Invalid Goal Threshold

Valid Success Response (returns goal object model)

Valid Error Response (returns error response object)

e Delete Goal — DELETE /energy/goals/:id

(@)
(0]
(0]
(0

Invalid API credentials

Valid/Invalid Schedule ID

Valid Success Response (empty page, status code 204)
Valid Error Response (returns error response object)

e Modify Goal — PUT /energy/goals/:id

O O O0OO0Oo

Invalid API credentials

Valid/Invalid Device (one of device, task, default graph type)
Valid/Invalid Task (one of device, task, default graph type)
Valid/Invalid Graph Type (one of device, task, default graph type)
Valid/Invalid Goal Name

116

o Valid/Invalid Goal Threshold
o Valid Success Response (returns modified goal object model)
o Valid Error Response (returns error response object)

6.2.2. Software with Devices Testing

Since the automated tests can only check if the API is functioning, each device
must be tested manually to ensure it is functioning properly.

For each device, it will be connected manually to the mobile app to be tested.
Once linked, the device will be tested by sending commands to it through the API
within the app on the devices page. Since the API reuses the same classes
internally for sending data to each of the automated devices, only the devices
page needs to be tested here (it is pointless to also test whether tasks and
scheduled tasks also run).

For wall outlets and light switches, this involves turning them on and off. For
HVAC, the app must successfully turn the system on and off, set its fan and auto
modes, set the temperature, and swap between heating and cooling. For the
powerlock, the app must be able to unlock a door. If all of the devices perform as
desired, then the entire system is operating as expected.

7. Administrative Content

The way we chose to break down the workload was to have two members
working on the electrical aspect of the project, and two members working on the
software development aspect. This made it so that each part of the project had
two members working on it, as having only one member assigned to a part would
have been a daunting task. Since our group was comprised of three computer
engineers and only one electrical engineer, one of the computer engineering
majors who had more of an interest in hardware was assigned to work on the
electrical aspect. This allowed all members to expand their knowledge in fields
they may be interested in working in the future.

Labor on the project is divided amongst the four team members according to the
nature of the task. Zachary Zapasnik is in charge of writing the web and mobile
applications, creating and managing the database, and testing all of the
applications. Jeffrey Benoit is in charge of all microcontroller programming and its
communication to the web and mobile applications, as well as testing the
microcontroller itself. D’Voran Mclntosh and Roneal Valmonte are in charge of all
tasks related directly to the hardware. D’Voran is in charge of purchasing and
parts research, which Roneal is in charge of circuit and device design. Both
D’Voran and Roneal together are in charge of hardware construction and circuit
testing. The entire responsibilities list is provided in figures 7.A and 7.B.

117

Main Component Subcomponents Members Responsible
Wall outlet
PCB Roneal Valmonte/D’Voran
Mclntosh
Microcontroller Jeffery Benoit then
Roneal Valmonte/D’Voran
Mclintosh
Relays Roneal Valmonte/D’Voran
Mclntosh
WiFi and Bluetooth Module Roneal Valmonte/D’Voran
Mclntosh
Rectifier Roneal Valmonte/D’Voran
Mclintosh
Energy Measurement Integrated Roneal Valmonte/D’Voran
Circuit Mclntosh
Wall switch

PCB

Roneal Valmonte/D’Voran
Mclntosh

Microcontroller

Jeffery Benoit then
Roneal Valmonte/D’Voran
Mclntosh

Relays

Roneal Valmonte/D’Voran
Mclntosh

WiFi and Bluetooth Module

Roneal Valmonte/D’Voran
Mclntosh

Rectifier

Roneal Valmonte/D’Voran
Mclntosh

Energy Measurement Integrated
Circuit

Roneal Valmonte/D’Voran
Mclntosh

Figure 7.A - Group Member Responsibilities

118

Main Component

Subcomponents

Members Responsible

Powerlock

Electric Strike

Roneal
Valmonte/D’Voran
Mclntosh

Relay

Roneal
Valmonte/D’Voran
Mclntosh

WiFi and Bluetooth Module

Roneal
Valmonte/D’Voran
Mclntosh

Power supply

Roneal
Valmonte/D’Voran
Mclntosh

Microcontroller

Jeffery Benoit then
Roneal
Valmonte/D’Voran
Mclintosh

Application

Application

Zachary Zapasnik

7.1. Milestones

Figure 7.B - Group Member Responsibilities

Below is a timeline that discusses our projected milestones. We estimated the
time we believed each part would take based on projects that we had completed
in the past. These predicted times are tentative, and our final timeline may have
to be adjusted depending on how we actually proceed with the project.

7.2 Proposal

Below is a copy of our proposal to Leidos.

Project Description

Home automation has been seen as a futuristic idea, mostly inspired by movies
and cartoons over the years. Only recently has it become a possibility to actually
create such automation through the rise of the Internet of Things (IoT). The loT is
the idea that all devices can be networked to work together seamlessly, each
having its own purpose and tasks.

119

Event

Expected Time to
Complete Event

Expected Start Dates and
Expected Completion Dates

Form Group/Pick Desired 1 week August 24™ — August 31"
Project

Research Existing 2 months September 3" — November 10"
Products/Projects

Decide on Project Aspects 1 month September 3" — October 2"
Research Necessary 2 months September 3" — November 10%"
Technologies

Research Necessary 2 months September 3" — November 10™
Components

Decide on Components 3 months September 3™ — December 1
Leidos Proposal Due September 24"

Order Samples 2 months September 3™ — November 19"
Order Parts 1 month December 1%t — January 11"
Design Wall Outlet 1 month December 1t — January 111"
Design HVAC Controller 1 month December 1%t — January 111"
Design Powerlock 1 month December 1%t — January 111"
Design Wall Switch 1 month December 1t — January 111"
Design Circuit Board 1 month December 1%t — January 11"
Test Circuit Board 2 months December 1% — February 1%
Application Development 4 months December 15t — April 15!
Application Testing 4 months December 1%t — April 1%
Microcontroller Coding 2 months December 1% — February 1%t
Microcontroller Testing 3 months December 1t — March 10"
Senior Design 1 Paper Due December 10"

Construct First Prototypes 1 month January 11" — February 12"
Test First Prototypes 1 month January 11" — February 12"
Construct Second Prototypes 1 month February 12" — March 11"
Test Second Prototypes 1 month February 12" — March 11"
Construct Third Prototypes 1 month March 11" — April 15"

Test Third Prototypes 1 month March 11" — April 15t

Final Presentation 1 week April 28" — May 4"

Figure 7.1.A - Timeline

120

For this project, loT technology is being embraced to make a simplified home
automation system. Independently designed hardware devices will be hooked up
to the Internet over in-home WiFi networks. Over WiFi, these devices will connect
to a cloud-hosted infrastructure allowing households to register accounts on a
platform by which devices can be managed and configured through web and
mobile apps in addition to a provided in-home tablet.

With the cloud-hosted infrastructure, these devices can be turned on and off
individually or as assigned virtual groups (like to perform a specific task like
turning an entire room’s lights off). Due to limited time and resources, the primary
use case of these devices will be to control lights and fans in a home. This
project could be extended to control air conditioning, door locks, appliances, and
other devices.

Project Goals

The main goal of this project is to create a cheap and efficient home automation
system through multiple wireless devices designed for specific tasks (such as
turning a switch on and off).

These devices will be used to allow homeowners to control lights and fans from
any room in their house, in addition to remotely via a web application or mobile
device.

In addition to added control, these devices will also monitor, record, and graph
power usage. This will allow homeowners to better account for their energy use.

To further limit the amount of energy used, motion detection and audio recording
devices can be used to automatically turn off the power to devices in empty
rooms.

Project Specifications

There are some constraints for this project. It must be assumed that the user will
have a wireless network and Internet in their home. Additionally, the user must
be capable of installing wall switches, which involves basic household wiring.

As for competing products, commercial in-home technologies exist like Vera,
Wink, Control4, and many more. These competing products offer a similar setup,
although some are not cloud based services like the one proposed for this
project.

7.3 Budget

Below is a copy of our projected budget. In order to come up with these figures,
we used information we gained from our research of components, as well as past

121

experience with project budgets. This budget is also tentative, and may not
reflect the actual budget of our final product.

Item Quantity Expected Cost

Microcontroller 4 $50

WiFi and Bluetooth Modules 4 $100

Energy Measurement 3 $10

Integrated Circuit

Electric Strike 1 $50

Relays 3 $10

Wiring n/a $20

Housing for Wall Outlet 1 $15

Housing for Wall Switch 1 $15

Housing for Powerlock 1 $15

Housing for HVAC Controller 1 $15

Rectifiers 4 $30

Shipping and Handling n/a $100

Soldering Materials n/a $50

Web Hosting n/a $60

Printing/Binding for Senior 1 $20
Design |

Total Estimate $560

Figure 7.3.A - Projected Budget

122

8. Appendices

8.1. Appendix A: Works Cited

AngulardS Developer Guide. (n.d.). Retrieved November 23, 2015, from
https://docs.angularjs.org/guide

Angular Ul-Router Wiki. (n.d.). Retrieved November 23, 2015, from
https://github.com/angular-ui/ui-router/wiki

Atmel Corporation. (2015, September). SAM C20E Datasheet Preliminary.
Retrieved from
http://www.atmel.com/images/Atmel-42364-SAMC20_Datasheet.pdf.

Bootstrap Documentation. (n.d.). Retrieved November 15, 2015, from
http://getbootstrap.com/

ExpressJS Documentation. (n.d.). Retrieved November 15, 2015, from
http://expressjs.com/en/

Maxim Integrated. (2012, January). 78M6613 Single-Phase AC Power
Measurement |IC Datasheet. Retrived from
http://www.datasheets.maximintegrated.com

MongoDB Documentation. (2015, December 3). Retrieved December 1, 2015,
from https://docs.mongodb.org/manual/MongoDB-manual-v3.0.pdf

MongoosedJS Documentation. (n.d.). Retrieved December 1, 2015, from
http://mongoosejs.com/docs/guide.html

PhoneGap Bluetooth Plugin. (n.d.). Retrieved November 27, 2015, from
https://github.com/bcsphere/bluetooth

Postman Documentation. (n.d.) Retrieved December 3, 2015, from
http://www.getpostman.com/docs/

Texas Instruments. (2015, December). WL18xxMOD WiLink 8 Single-Band
Combo Module. Retrieved from http://ti.com/lit/swrs152l/swrs152|.pdf

Smart Outlet Handbook. (n.d.). Retrieved November 23, 2015, from
http://postscapes.com/smart-outlets

Smart Air Vents. (2014, September 11). Retrieved December 7, 2015, from
https://community.smartthings.com/t/smart-air-vents/4913

123

mbed TLS Core Features. (n.d.). Retrieved December 1, 2015, from
https://tls.mbed.org/core-features

NEMA DC 3 - 2013. (2014, January 27). Retrieved December 1, 2015, from
https://www.nema.org/Standards/Pages/Residential-Controls-Electrical-Wall-Mou
nted-Room-Thermostats.aspx

NEMA DC 3 Annex A - 2013. (2014, January 27). Retrieved December 1, 2015,
from
https://www.nema.org/Standards/Pages/Energy-Efficiency-Requirements-for-Pro
grammable-Thermostats.aspx

NEMA 5-15 grounded plug. (2013, July 31). Retrieved December 1, 2015, from
http://www.nema.org/Standards/Pages/Wiring-Devices-Dimensional-Specification
s.aspx

NEMA Enclosure Types. (n.d.) Retrieved December 1, 2015, form
https://www.nema.org/Products/Pages/Enclosures.aspx

Atmel SAM C specifications (n.d.) Retrieved December 1, 2015, from
http://www.atmel.com/products/microcontrollers/arm/sam-c.aspx

WeMoA® Insight Switch. (n.d.). Retrieved November 20, 2015, from
http://www.belkin.com/us/p/P-F7C029/

Smart Outlet | ConnectSense. (n.d.). Retrieved November 20, 2015, from
https://www.connectsense.com/smart-outlet

WeMo® Light Switch. (n.d.). Retrieved November 20, 2015, from
http://www.belkin.com/us/p/P-F7C030/

GE12722 Z-Wave Wireless Lighting Control On/Off Switch. (n.d.). Retrieved
November 20, 2015, from
http://www.amazon.com/GE12722-Z-Wave-Wireless-Lighting-Control/dp/B0035Y
RCR2

The Key Evolved. (n.d.). Retrieved November 20, 2015, from
http://www.kwikset.com/kevo/default.aspx#.VmcO01rgrdhE

ACUS-12V - AC 90-240V input power adapter for FRM220, FIB1 and FMC series

converters. (n.d.). Retrieved November 20, 2015, from
http://datainterfaces.com/ACUS-12V.aspx

124

August Smart Lock | August. (n.d.). Retrieved November 20, 2015, from
http://august.com/products/august-smart-lock/

Honeywell Home. (n.d.). Retrieved November 20, 2015, from
http://lyric.noneywell.com/thermostat/

MCP3909 Datasheet. (n.d.). Retrieved November 20, 2015, from
http://ww1.microchip.com/downloads/en/DeviceDoc/22025C.pdf

Narrow-Type Electric Strike Lock for Home Office Wood Metal Door NO Mode
Fail Secure DC 12V Access Control. (n.d.). Retrieved November 20, 2015, from
http://www.amazon.com/Narrow-Type-Electric-Strike-Office-Control/dp/BO10SWE
FBW

Relay Construction. (n.d.). Retrieved November 20, 2015, from
http://www.allaboutcircuits.com/textbook/digital/chpt-5/relay-construction/

UC3610N Datasheet. (n.d.). Retrieved November 20, 2015, from
http://pdf.datasheetcatalog.com/datasheet2/8/0i5ziwr5ja76xi7e93t3p17w2ayy.pdf

Ecobeed, HomeKit-Enabled. (n.d.). Retrieved November 20, 2015, from
https://shop.ecobee.com/products/ecobee3-homekit

8.2. Appendix B: Permissions

Atmel

Jessen, Ralph <Ralph.Jessen@atmel com=

to me [~

Roneal,

We approve this request provided that they are credited.
Thank you for choosing Atmel Corporation

Ralph Jessen

Account Manager-Global Key Accounts [/ Atmel Corporation

Tel: (+001) (408) 436.4120 / Mobile: (+001) (408) 4589.4496 / Fax: (+001) (408) 436.4200
Ralph.lessen@atmel.com / www.atmel.com

Atmel Enabling Unlimited Possibilities

125

Texas Instruments

support@ti.com Dec 2 {4 days ago) -
tome |~

Thank you for contacting Texas Instruments Technical Support. Your email has been received and a Service Request# 1-1981476043 has been
assigned to your inquiry.

Hello Roneal,

Thank you for contacting Tl Technical Support

Please refer to the link below. As long as your within the guidelines stated in the Terms of Use, you will be able to use Tl pictures. If you have any
questions or concemns please feel free to contact us.

http:{fwww ti. com/corp/docs/legaltermsofus e shtml

Regards,

Devon Curry

TI Customer Support

Americas Customer Support Center
512-434-1560

Maxim Integrated (Pending)

maxim English |3z |B&ESE [T Share marks
integrated =
SOLUTIONS Contact Us: Other Issues
BE Send us your comments and we will respond as soon as possible
ORDER . 3 . ‘
SUPPORT ki Emai|:57ronva7\monte@gmaH.Com
ABOUT US * Email (Confirm):|ronvalmonte @gmail.com

* Last Name:l-\;;];ﬁonﬂe

|
|
“ First Name:|Roneal |
|

) CompanV:EUniversi‘Ey_of Central Florida
* Country: ATES v
B SUbJ'e':t::_Permis_sfcn to us_e-\mages_onj?ﬁé%ii-batasheet

* Comments: Hello, my name is Roneal Valmonte. | am part of the Electrical Engineering
department at the University of Central Florida. | am currently undergoing a
senior design project relating to home automation with my colleagues and
we are using your 78M6613 Single Phase AC Power Measurement IC as
part of this project. We'd like to use some of your images included in the
datasheet here:
|https://www.maximintegrated.com/en/products/industries/metering-

Eb_mit_\ Previous SPR Id::_—-_- __1

126

