KnightHome — Home
Automation System

Jeffrey Benoit, D’Voran Mclntosh, Roneal
Valmonte, Zachary Zapasnik

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract — The objective for this project is to create a
Home Automation System that allows consumers to not only
control different appliances in their home wirelessly, but also
allows them to view the energy consumption of these
appliances through either a smart phone application or web
application. This will be accomplished with a smart outlet,
smart wall switch, powerlock, and HVAC controller. This
paper will explain our motivations as well as the components
we have chosen and the methodology behind our software
programming.

Index Terms — Access control, energy measurement,
microcontrollers, relays, smart homes, thermostats.

1. INTRODUCTION

In this age we have more electronic devices in our
homes than ever before. People are also busier than ever
before, being either wrapped up in work, absorbed in
some form of entertainment, or overloaded with the
responsibilities of daily life. With all of these things going
on, sometimes you forget to turn off or unplug one of your
many electronic devices, or lights at home. Maybe you
can’t remember if you locked the door on your way out.
Maybe you just got into bed and realized you forgot to
turn off the lights in the kitchen. Perhaps you’re energy
conscious and want to make sure you’ve set your air
conditioning to turn off while you aren’t at home.

Our electronic home automation system seeks to fix all
of those problems with the help of the prevalence of smart
devices and computers in everyone’s lives today. We are
developing a number of devices to add to your home that
will give you control over the electricity you use every
day.

Our project is a home automation and power monitoring
system comprised of four different physical devices
connected to and controlled by a web based system. The
four physical devices are: a wall outlet, a wall switch, an
HVAC controller, and an electronic door lock hereafter
referred to as a powerlock. Primary interaction with all

four devices is done through a smartphone and web
browser application. This application will let you see how
much power any outlet or wall switch controlled fixture is
using. The application will also show you details on your
heating and air conditioning usage, and whether the
powerlock is currently locked or unlocked. The
application enables the user to fully control all of these
devices from a smart device or any computer with access
to the internet. A user will be able to turn on or off any
wall outlet or wall switch that is connect, lock or unlock
the power lock, and set the thermostat settings of the
HVAC controller. On top of this users will be able to set
weekly and daily schedules for these events to happen
automatically. This will be achieved through the use of
microcontrollers integrated in the circuits of each of the
devices that will bridge the gap between hardware and the
online software.)

II. GOALS AND MOTIVATION

This project started with the idea of being able to
control the electricity in your home from anywhere. The
idea for the smart wall outlet came first, a simple device
that would let you turn on and off appliances and devices
plugged into your home’s wall outlets from a simple app
on your smartphone or computer. We wish to make it so
that users would not have to worry about leaving
appliances turned on in their home if they left. This also
drove us to include our powerlock, as the anxiety of
forgetting to lock your home is very similar to forgetting
to turn off a device.

As our thoughts on the project solidified, we had a
realization. With how integrated into the home our project
had become, we decided to also focus on some aspects of
home automation. Being able to set schedules for when
your appliances and devices are on and off, monitoring
your power usage, and being able to control your air
conditioning as well became another part of the project.
Our two main motivations now are: not having to worry
about leaving electronics on, and managing the electricity
in your house from anywhere.

We have a number of goals that we would like to
accomplish with this project. Firstly, we are striving to
make products that are compact and easily fit where the
devices they are replacing already are. There should
ideally be no need to move furniture or change the wiring
of a building to accommodate our devices. Secondly, our
devices should not require a substantial amount of
electrical power. Thirdly, our devices should be easy and
simple to use, with an interface that can be quickly learned
by anyone. Fourthly, the response time of our devices
should be quick, with little noticeable delay between

selecting an action and that action occurring. Fifthly, we
aim to make our products inexpensive and little to no costs
required for upkeep. Sixthly, our products should be both
easy to install and not difficult to remove or replace.
Seventhly, adding additional devices to the system should
be not only possible, but simple.

III. HARDWARE — COMPONENTS

Because one of the goals of the home automation
system is to have all the devices be cheap and affordable
to the average consumer, it’s important for the
components inside the device to be universal and share
common circuitry. Doing so will drop the price of
production drastically as well as making the devices easier
to configure and set up during the fabrication process.
Below are the main components utilized. Common
components such as resistors, capacitors, and diodes aren’t
mentioned but will be shown in the schematic of the
devices.

A.MCU — PARTICLE PHOTON

In order for the website or smartphone app to control the
four devices, a signal needs to be sent to the device to turn
on or off and to collect any ongoing data such as energy
measurement or temperature. This requires a
microcontroller that will be the center hub of all of the
devices. This will allow all of the components surrounding
the microcontroller to act accordingly, such as the voltage
regulator in the powerlock or the temperature sensor on
the HVAC controller. Below is a model of the
microcontroller as well as a legend of the various parts
around the MCU. Labels for each of the pins are also
shown in Figure 1.

usB

SETUP BUTTON
RESET BUTTON
RGB LED

PO Wi-Fi MODULE
RF SWITCH

u.FL ANT CONN.
CHIP ANTENNA

99000 0®O®e

Figure 1. Particle Photon MCU

The microcontroller requires between 3.2V to 5V to
turn on, which is supplied by a USB power adaptor that is
connected to the microUSB port on the MCU. The GND
pin is a ground pin used for grounding many components
surrounding the MCU, such as the relay and current
sensor. AO-AS are analog I/O pins which the current
sensor utilizes to input data into these pins, having the
MCU read the voltage and currents, thus providing a
power output, as given by the power equation P = VI. DO-
D7 are used for connecting to the relay, turning on/off the
devices when needed. [1]

B.RELAY — SUNFOUNDER 5V RELAY SHIELD MODULE

Telling a device to turn on/off needs a relay module in
between the MCU and the device. Because the relay needs
5V to operate, the MCU’s Vin port would be able to
provide the relay with the voltage it needs to operate. The
relay runs using active-low, meaning a ‘0’ sent to the relay
will turn on the relay. When the relay is turned on, a red
LED lights on either side of the relay, depending on which
input the relay is turning on (because the wall outlet has
two sockets, a two channel relay is needed, thus having
two inputs IN1 and IN2).

C.POWER SENSOR — ECS1030-L72 SPLIT CORE CURRENT
TRANSFORMER

A vital component to the energy management home
automation system is easily the component that traces the
current and voltage going into the MCU and outputs this
data onto the website or smartphone. Because small
components can not take in huge current and voltages
coming from the wall (120V 30A), a bigger sensor would
be needed. Because of this, KnightHome utilizes a non-
invasive current sensor that is attached onto the wire going
into the relay. The wires of the sensor go through a series
of burden resistors for compatibility with the MCU and
finally goes to the analog pin on the MCU. Because this
non-invasive current sensor also measures voltage across
the wire, the power can be measured and this data
automatically pops up on the website or smartphone app.
As shown in Figure 2, the power is proportional to the
current and voltage in a linear fashion. [2]

D.LCD SCREEN — LUMEX LCM-S01602DSF/A

On top of showing the temperature of the room on the
website/app, there will also be a small LCD screen on the
HVAC Controller that will display that same temperature.
The digital I/O pins on the MCU are used to control the

segments on the LCD screen. The screen uses very
minimal power (4.7V-5.3V) and thus can use the Vin pin
on the MCU to power the device, just as the relay does.

[3]

Ip/Vout Curve Figure

Output Voltage(mV)

0 10 20 30 40 50

Primary Current{A)

Figure 2. Current Sensor Output Graph

IV. HARDWARE — DEVICES

KnightHome uses four basic components to a home
automation system that are all small, compact, and can be
kept in inconspicuous areas around the house to keep them
out of sight from dangers such as children and animals.
The four devices are all Wi-Fi enabled and controlled
through the KnightHome website or the KnightHome
smartphone application. These devices can be grouped
together according to what room it is if there are multiple
KnightHome devices around the house.

A.WALL OUTLET

Just as it is simple to plug your electronic devices into
the wall, the KnightHome Smart Outlet allows anyone to
plug whatever device they want into the wall outlet. Each
plug on the wall outlet is individually controlled by the
website/smartphone and the power monitoring can also be
seen.

The wall outlet incorporates the Particle Photon MCU,
2-channel relay (since there are two plugs), and two
current sensors (again, one for each plug). The current
sensor is bridged to the MCU through a burden circuit that
drops down the current and voltage to a level that can be
read by the MCU and interpret this data easier. The circuit
includes a voltage divider using 47kQ resistors, a 10uF

60

capacitor for filtering noise coming from the sensor, and a

Burden resistor that was calculated to the 77.79 ohms, so a

standard value of 750hms is used for this circuit. The wall

outlet is powered via microUSB by the microUSB port on
the MCU that is connected to a standard
USB wall adapter that is connected to the
wall plugs. This means when the Smart
Outlet is plugged in, the USB power
adapter provides power to the MCU, thus
turning on the Smart Outlet.

B. WALL SWITCH

Sometimes it isn’t possible to have the
website around or your smartphone around
to operate the wall outlet. This is why the
Smart Outlet is coupled with a wall switch
that can override the website/smartphone’s
control and turn on/off devices. The wall
switch acts like a typical light switch that is
in most houses nowadays; the switch
toggles between on and off. The switch is
connected to a circuit that replicates the
Smart Outlet.

70

C.POWER LoCK

Controlling the doorknob on the door wirelessly
requires an electric strike. An electric strike is a
mechanism between the door hinge and door knob that
disallows the doorknob to work when the strike is off. A
12V input to the electric strike will turn it on, allowing the
doorknob to be accessible. KnightHome utilizes an
electric strike connected to a 1 channel relay that is
connected to the MCU.

Because the electric strike uses 12 V and the MCU uses
5 volts, a voltage regulator is used between the 12V
source and the MCU. The voltage regulator is a 7805
positive voltage regulator that inputs any voltage below
20V and outputs a fixed 5V. This allows both the MCU
and electric strike to be on at the same time without any
power issues. The powerlock is cased in a small box that
hangs next to the door and uses 8 AA batteries (12V) that
can be easily replaced.

C.HVAC

KnightHome offers a mini thermostat that tracks the
temperature of the room and raises/lowers the temperature
according to user settings on the website/smartphone. The
HVAC Controller uses the Lumex LCM-S01602DSF/A
LCD Screen to display the temperature while the
website/smartphone controls the HVAC controller. The
LCD Screen has several pins for the segments on the

display. These are connected to the DO-D7 pins on the
MCU. In order to sense the temperature of the room, an
M35CZ temperature sensor IC is connected to the A0 pin
on the MCU to constantly track temperature and relay this
information to the MCU. Again, a two channel relay is
also connected in the same fashion as the Smart Outlet.
However, this is used to control a fan and heater to
simulate heating and cooling a room.

V. SOFTWARE — APPLICATION

In order to provide the best user experience possible,
automated devices should be able to be controlled
anywhere in the world, regardless of where you are.
Sometimes a light is left online or a door unlocked. There
is a piece of mind knowing that with a quick glance at an
app you can see the status of electronics in your home, and
if something is amiss be able to modify their status
remotely. Figure 3 gives an application design overview
of the entire application flow.

Cloud Servers Home

I
=7 CIwiFl

ooQ
DEVICES
Cell Network Mdqbile Pevice

Figure 3. Software Overview

Internet

To achieve a great user experience, the application is
divided into two separate applications, the backend
application running on cloud servers and the frontend
application running on mobile devices (as well as a cloud
hosted web-based control panel usable on desktops and
unsupported mobile devices that still have browsing
capabilities). By the term mobile device, we are referring
to a wireless device containing either cellular or WIFI
connection as well as Bluetooth connectivity. The backend
application will communicate with both the frontend
application as well as home automation devices. The
frontend application will connect with the backend
application over API to perform actions on home
automation devices.

A.BACKEND SOFTWARE

The home automation application, both frontend and
backend exist across multiple cloud servers. Using
multiple cloud servers across multiple locations increases

redundancy in the case a single virtual instance fails. It is
important that the service remain online at a near 100%
availability since every home automation system depends
upon a reliable API to function as intended.

For KnightHome, DigitalOcean is where the cloud is
hosted. It’s cost effective since each “droplet” (the term
DigitalOcean uses for each virtualized instance being ran)
costs at minimum $5/month. Since the point of this project
is a proof of concept, the amount of resources necessary to
run the service will not be much at all. At the base price of
$5 each droplet gives 512MB memory, 1 core of
processing power, 20GB SSD storage, and 1TB of data
transfer. This is more than enough for what is initially
needed to run this service. As the service grows the plans
can be increased vertically, and more instances can be
spun up to scale horizontally.

Each cloud server is configured with a minimal
installation of Debian 8 (Jessie), 64-bit. Since we have a
limited amount of memory, a minimal installation is
preferred. Under a minimal installation, only system
essentials are installed. This means that most services
need to be installed post-installation, including the web
server software, database software, and runtimes required
to run our application.

The webserver is reachable from the internet by both the
frontend clients as well as the automated devices. We are
using NGINX as the web server for this project. NGINX
is a light, barebones, and fast webserver that is widely
replacing Apache in many infrastructures. NGINX is
configured to reverse proxy traffic to the backend service
as well as serve the frontend cloud hosted web application.
Native apps for iOS and Android interface with only the
backend API, not the frontend application being served by
NGINX.

The backend of the application functions as an
accessible programming interface (API) for the frontend
clients and automated devices to communicate with. Since
the client applications are utilizing JavaScript, a
JavaScript Object Notation (JSON) API was created for
clients to utilize. To create our RESTful JSON API, we
used Node JS to create a backend service. Node JS was
compiled and runs under a restricted user account on each
cloud instance. This ensures that a vulnerability in our
software does not compromise the entire server instance.
Our backend service is deployed to the cloud servers using
GIT, a version control system for software development.

Our API primarily makes use of ExpressJS, a NodelS
open source web framework/routing library, in order to
create route modules to service the tasks necessary for our
home automation devices to function.

In addition to the standard JSON API we’ve created, we
also created a keep-alive socket API so that home
automation devices and send and receive commands and

stats in real-time without
constantly polling our

Internet

JSON API. For toggling
settings, setting changes
get emitted to the device
authenticated on the
socket when they are
changed. Vice versa, if
the device contains a
manual button (for
instance, to override the

Node 1

NGINX

[Frontend } { Backend]

Node 2 de 3

NGINX

[Frontend]

NGINX

{ Backend }

[Frontend } [Backend]

app setting) then the
device can also send the
setting change and it will
be saved to the database as a setting change. For stats, the
device can send stat updates an any interval to be logged
to our database to be analyzed. This is useful for power
monitoring, one of the main focuses of our home
automation system.

Speaking of databases, database design is a crucial
aspect of any web application. For our application, an
open source document storage database called MongoDB
is used. MongoDB allows us to store object models
directly into the database, which allows us to avoid
transforming database structure into object models within
the application. MongoDB is also highly scalable and
useful for its quick processing of writes (through use of
journaling) and its aggregation abilities for processing
real-time data streams (useful for graphing and analyzing
data for power use).

In order to ensure a stable cloud hosted database, we
needed to ensure our data storage was redundant.
MongoDB allows you to configure servers into replica
sets, which automatically assign a single instance as a
“primary” server and sync data to “secondary” servers. In
the event of a server outage, MongoDB automatically
chooses a new primary and everything continues
functioning normally.

For our cloud infrastructure, we chose to run 3 instances
of MongoDB in a replica set. This will ensure that even if
one or two of the database instances are down or succumb
to corruption the data will remain available for use by the
applications. Each of these instances communicate with
each other over a TLS encrypted socket using key-based
authentication. The entirety of our cloud-based backend
infrastructure is depicted in Figure 4.

B.FRONTEND SOFTWARE

The frontend is comprised of the Angular]JS Model
View Controller (MVC) framework coupled with the
Bootstrap theming framework.

In order to serve a variety of devices, the frontend is
served as a website as well as a mobile application for i0S

Figure 4. Cloud Infrastructure Overview

and Android devices. The frontend for both the website
and mobile applications relies on the same HTML/CSS/JS
application being developed, but slight differences occur
based on what device a user is using (mobile device or a
website). PhoneGap is used to package the application
into a native mobile app, and its APIs are used in order to
extend the functionality of the mobile apps.

Angular]S is used to render dynamic views for the
website and mobile applications. In Angular]S, the
template is composed of views controlled by controllers
and directives in JavaScript. These templates are split into
smaller sub-views using Angular Ul-Router, an open
source module for AngularJS that allows you to
dynamically load view templates and scope controllers to
them by routing. This allows AngularJS to be a single-
page application that loads new pages with JavaScript.
This type of client rendering for new pages is much more
efficient than server-side rendering of pages, saving on
bandwidth and more importantly: page rendering times
(giving users a quick, responsive app experience).

Since we are using eecoo aTaT =
Bootstrap as a theme base,
much of the CSS styling is
already finished. This
leaves the templates of
pages to be designed. Apart
from the login and

6:51AM 92% mm)

Devices =

Wall Switch

State: Off

; ; Wall Outlet
I'Cg.IStI:atIOIl page, the Outlet 1: Off Outlet 2: Off
majority of the control

. 1.0n | 2.0n [EEEEIEY
panel will be part of a
wrapper view with a
Door Lock

menubar (that has a
purpose of providing
navigation) as well as a
header (that has a purpose
of displaying the product &E
logo, any alerts the user has

State: Locked

HVAC

State: Off Temp: 66°/74°
Mode: Cool Fan: Off

received, and login/logout).

10t Figure 5. App Device
The rest of the application

Management

is composed of individual pages devoted to specific tasks:
configuring devices, configuring tasks, managing
schedules, and energy usage monitoring.

For the devices page, new devices can be added and
existing devices can have their common settings toggled at
a glance. Each device also reports its current state to the
screen, making it easy to see what devices are active. The
device managerment page is shown in Figure 5.

Managing individual devices can be tedious if you want
multiple to work together. We’ve added a grouping feature
that allows you to pair devices into a task. This allows you
to preconfigure settings you’d like for every device in the
task, making it easy to set devices in one swoop.

Sometimes you might want to also automate these tasks
on a schedule, so we’ve also integrated a scheduler that
allows you to schedule one-time or repeating tasks.

Energy monitoring is another great feature of our
application. It shows you to total energy consumption of
all devices, predicts your energy usage for the month, and
also allows you to show each individual devices energy
usage in a graph. Graphing energy use allows us to better
depict peak energy usage times during your average day,
which might help you to better reduce your energy
footprint during those events.

VI. SOFTWARE — MICROCONTROLLER

Software for the microcontroller is written in C using
Particle’s web IDE and their standard application library.
Each of the 4 devices in KnightHome is programmed with
the same structure in mind, but the code for each type of
device is unique to it.

A.START UP

All 4 of the KnightHome devices follow the same
procedure upon startup. The device will first connect to
the supplied Wi-Fi network, no other action will occur
until a Wi-Fi connection is established. Once connected
the device initializes all variables and settings to the off
position except for the enable setting, which is set to on.
Next the device sends authentication and identification
information to the server through a TCP socket. Once the
device is properly identified and the authentication is
accepted, the device receives settings data as a response
from the server and begins its main function. All main
functions begin with checking the connection status; the
procedures for handling disconnecting and reconnecting
are covered later in this section, these procedures aren’t
mentioned in the device sections as they are ideally never
triggered.

B. WALL OUTLET

The wall outlet is not the simplest of the 4 devices in
terms of the program running it, however, it serves well as
a skeleton for the code for the other devices to be molded
to.

The main phase of the wall outlet first checks for any
messages sent from the server. If a new message is
detected the device reads the message(s) from the server
as character arrays, parses the array, and takes the
appropriate action. For the wall outlet these messages
include receipts of authentication, server pings, and state
enables for each of the two wall sockets on the outlet.
When the device receives an enable signal from the server
it sends an appropriate output to the pin corresponding to
which wall socket was indicated by the message, changing
the state of the relay connected to that pin. Once all of the
messages have been read from the socket the socket the
socket is flushed to prevent old messages from remaining
in the socket.

The wall outlet then reads input from the current sensors
attached to the sockets. The input from these sensors is
sampled many times as an analog input which is then
averaged and converted into volts. The voltage measure is
between 0 and 3.3 V due to the limitations of the
microcontroller, so that voltage is converted back to its
original voltage before the stepdown. That voltage is the
input received from the current sensor, and as such is then
converted into a measure of current. The measured current
is converted to wattage under the basis that the wall outlet
device is connected to a standard home wiring of 120V.
This wattage is sent to the server as the measure of the
present power consumption of the outlet.

The main process then loops indefinitely. Should the
entire device lose power it will start again from the start
up process described earlier.

C. WALL SWITCH

The wall switch expands on the wall outlet code by
adding the ability to toggle the device’s state locally. As
such this device adds a variable that keeps track of the
current local state of the device by reading an input from
the relay controlling the electrical flow. The order of the
main function is important to make sure that a local input
is not immediately overwritten by the state of the server
before said change can be sent to the server.

The main function of the wall switch begins the same as
the wall outlet by checking for new messages from the
server and taking the appropriate action should a new
message be present. For the wall switch, only
authentication, ping, and enable messages are received.
The process for parsing these messages and the actions

taken are the same as for the wall outlet. Once all of the
messages have been read the socket is flushed to ensure
the removal of old messages.

After checking for messages from the server, the device
then reads the input from the relay to determine the local
state of the relay. This state is then sent to the server as a
message.

The same power monitoring procedure as the wall outlet
is used for the wall switch. The current is calculated based
on the voltage read from the input of the current sensor,
and said current is converted into watts. The watts
measurement is sent to the server in a message as the
devices present power usage. It is important that the power
management data is sent after the state data because the
server response to the power monitor data can include
enable messages which would overwrite the local change
if received before the server was set to the proper state.

D.POWER LOCK

The powerlock is the simplest of the 4 devices from a
code perspective. The power lock has its own power
supply, and since it does not draw power from the wall it
does not have the same power monitoring functionality as
the previously mentioned devices. As it is meant for
security it does require its own specific procedures. This
device also has a small change to the startup phase: the
LED on the MCU is initialized as on. This is done as a
power indicator of sorts since the power lock has its own
power supply, if the device has power the LED will be on.

The main function of the power lock begins the same as
the wall outlet by checking for new messages from the
server and taking the appropriate action should a new
message be present. For the power lock, only
authentication, ping, and enable messages are received.
The process for parsing these messages and the actions
taken are the same as for the wall outlet. Once all of the
messages have been read the socket is flushed to ensure
the removal of old messages.

The remainder of the main phase is procedures to ensure
security. If Wi-Fi connection is lost the device is set to be
locked to prevent a loss internet from leading to a breach
of security. When the device is connected or reconnecting
but has not yet received a message from the server it is set
to be locked. This time period is very short and the device
should never be in this state when this point in the main
phase is reached.

E.HVAC CONTROLLER

The HVAC controller is the most complicated of the 4
devices. Not only are there more states to keep track of
and more messages that can be received, the
microcontroller also controls an LCD screen display.

The main function of the HVAC controller begins the
same as the wall outlet by checking for new messages
from the server and taking the appropriate action should a
new message be present. For the HVAC controller
messages for ping, authentication, device enable, AC
enable, Heat enable, Fan state, and temperature are
received. The process for parsing these messages is the
same as for the wall outlet except that all state data is
stored in an array called Settings which keeps track of the
current state of the device rather than immediate action
being taken. Each enable controls a relay attached to the
HVAC system, the fan state has 3 possible states for
controlling the procedures of the HVAC controller, and
the temperature messages set the desired temperature of
the device. Once all of the messages have been read the
socket is flushed to ensure the removal of old messages.

AC enable and heat enable settings both control both the
heat and AC relays. When a message comes in to turn on
the AC, the AC relay is turned on and the heat relay is
turned off, making sure that only the AC is running. The
opposite occurs when a message is received to turn the
heat on. These two settings can never both be set to on,
and setting one of them to on sets the other to off. Both
settings can be set to off at the same time, meaning you
want neither heat nor AC running, which is why they exist
separately. It should be noted that the device enable
setting does not set these states to off, it causes the device
to not read them when determining which action it should
take, which allows the device to quickly return to its
previous state when it is enabled again.

After checking for messages the device reads the
temperature sensor. The temperature sensor input is
received as analog input through an analog pin. The
analog input arrives as an integer, which is then multiplied
by 0.0008 to convert it into a voltage between 0 and 3.3V.
This voltage is multiplied by 100 and then 50 is
subtracted, resulting in the current temperature in °C. Our
devices are intended for use in the United States, so the
temperature is then converted to °F before being stored in
the Settings array. The current temperature is then sent to
the server.

The main phase then moves to act on the data in the
Settings array. The device first reads the device enable
setting, if this setting is off it sends an off signal through
all relays. If the device enable is set to on the device
continues through this phase. The device then reads the
heat enable and AC enable states from the Settings array
and sends an appropriate signal to the corresponding
relays. The fan state setting is read next, and if it is set to
either on or off the appropriate signal is sent to the
corresponding relay. If the fan state is set to auto the
device checks the heat enable and AC enable states and
then the desired temperature against the current

temperature to determine whether the fan should be
blowing or not.

After taking proper action the device displays the
current contents of the Settings array on the LCD screen
as the state of the device. The device first displays either
heat, cool, or off in the top left, showing whether the heat
or AC is on or if both are off. In the top right the word
set: ” is displayed with the desired temperature in °F
displayed afterwards. On the bottom row on the far left the
word “fan: ” is displayed with the current fan state (on,
off, or auto) displayed afterwards. In the bottom right the
current temperature as read by the temperature sensor is
displayed.

113

F. HANDLING DISCONNECTS

Should the device ever become disconnected from the
socket, a reconnect needs to occur. At the start of every
main process there is a check for both the Wi-Fi
connection status and the status of the connection to the
socket. Should Wi-Fi ever be disconnected the device will
attempt to reconnect using the previously entered Wi-Fi
credentials until either new credentials are entered or a
connection is reestablished. If the device ever becomes
disconnected from the socket it will reconnect to the
socket. A ping message is received from the server every
30 seconds, so should a device go 31 seconds without
receiving a message from the server it will assume it has
lost its connection to the socket and close the connection
then reconnect. After the successful reconnection the
authentication and identification information is re-sent to
the socket so the device can be properly connected to its
owner and it receives the current state from the server as a
response.

VII. CONCLUSION

This project was an immense learning experience for all
the members involved. We gained valuable experience as
engineers, not only through the research and prototyping
we had to perform, but as well as experience in working as
a group for an extended period of time. This experience
will be invaluable as we go off into our careers.

One major thing that was learned through this project is
the importance of beginning early and working on a
consistent schedule throughout the project life. Our work
on the hardware aspect of the project was not on a regular
schedule at the beginning of the semester, and as a result
we fell behind and had to double up on our meetings in
order to catch back up to a good position. Thankfully, we
caught back up and are on schedule to complete all aspects
of our project in time for our demonstration.

ACKNOWLEDGEMENT

Our group would like to take this moment to thank the
help of the following professors for guidance and
instruction during our project. We kindly thank: Dr.
Samuel Richie, Dr. Lei Wei, Dr. Chungyong Chan, and
David Douglas. We would have have not been able to
accomplish this without their support.

REFERENCES

[1] Particle. (n.d.). Retrieved April 06, 2016, from
https://docs.particle.io/datasheets/photon-datasheet/

[2] Split Core Current Transformer ECS1030-L72.
(n.d.). Retrieved April 06,2016, from
http://cdn.sparkfun.com/datasheets/Sensors/Current/ECS1
030-L72-SPEC .pdf

[3] LCM-S01602DSF/A Datasheet. (n.d.). Retrieved
April 06, 2016, from
http://www .mouser.com/ds/2/244/LCM-S01602DSF A-
108827 .pdf

MEET THE ENGINEERS
- = Jeffrey Benoit, a senior student of the
computer engineering department at the

University of Central Florida, plans to pursue
ajob in the I.T. field after graduation.

D’Voran Mclntosh, a senior student of the
computer engineering department at the
University of Central Florida, plans to pursue
a career in the computer engineering field, as
well as returning to pursue a master’s degree
in business administration.

——=—1 |

Roneal Valmonte, a senior student of the
electrical engineering department at the
University of Central Florida, plans to pursue
a Master’s Degree in Electrical Engineering
with a focus in Control Systems and Wireless
Communication.

Zachary Zapasnik, a senior student of the
computer engineering department at the
University of Central Florida, is pursing a
career in the software engineering field.

