
KnightHome – Home 
Automation System 

Jeffrey Benoit, D’Voran McIntosh, Roneal 
Valmonte, Zachary Zapasnik 

Dept. of Electrical Engineering and Computer 
Science, University of Central Florida, Orlando, 

Florida, 32816-2450 
 

Abstract  —  The objective for this project is to create a 
Home Automation System that allows consumers to not only 
control different appliances in their home wirelessly, but also 
allows them to view the energy consumption of these 
appliances through either a smart phone application or web 
application. This will be accomplished with a smart outlet, 
smart wall switch, powerlock, and HVAC controller. This 
paper will explain our motivations as well as the components 
we have chosen and the methodology behind our software 
programming. 

Index Terms  —  Access control, energy measurement, 
microcontrollers, relays, smart homes, thermostats. 

 

I. INTRODUCTION 

In this age we have more electronic devices in our 
homes than ever before. People are also busier than ever 
before, being either wrapped up in work, absorbed in 
some form of entertainment, or overloaded with the 
responsibilities of daily life. With all of these things going 
on, sometimes you forget to turn off or unplug one of your 
many electronic devices, or lights at home.  Maybe you 
can’t remember if you locked the door on your way out. 
Maybe you just got into bed and realized you forgot to 
turn off the lights in the kitchen. Perhaps you’re energy 
conscious and want to make sure you’ve set your air 
conditioning to turn off while you aren’t at home. 

Our electronic home automation system seeks to fix all 
of those problems with the help of the prevalence of smart 
devices and computers in everyone’s lives today. We are 
developing a number of devices to add to your home that 
will give you control over the electricity you use every 
day. 

Our project is a home automation and power monitoring 
system comprised of four different physical devices 
connected to and controlled by a web based system. The 
four physical devices are: a wall outlet, a wall switch, an 
HVAC controller, and an electronic door lock hereafter 
referred to as a powerlock. Primary interaction with all 

four devices is done through a smartphone and web 
browser application. This application will let you see how 
much power any outlet or wall switch controlled fixture is 
using. The application will also show you details on your 
heating and air conditioning usage, and whether the 
powerlock is currently locked or unlocked. The 
application enables the user to fully control all of these 
devices from a smart device or any computer with access 
to the internet. A user will be able to turn on or off any 
wall outlet or wall switch that is connect, lock or unlock 
the power lock, and set the thermostat settings of the 
HVAC controller. On top of this users will be able to set 
weekly and daily schedules for these events to happen 
automatically. This will be achieved through the use of 
microcontrollers integrated in the circuits of each of the 
devices that will bridge the gap between hardware and the 
online software.) 

II. GOALS AND MOTIVATION 

This project started with the idea of being able to 
control the electricity in your home from anywhere. The 
idea for the smart wall outlet came first, a simple device 
that would let you turn on and off appliances and devices 
plugged into your home’s wall outlets from a simple app 
on your smartphone or computer. We wish to make it so 
that users would not have to worry about leaving 
appliances turned on in their home if they left. This also 
drove us to include our powerlock, as the anxiety of 
forgetting to lock your home is very similar to forgetting 
to turn off a device.  

As our thoughts on the project solidified, we had a 
realization. With how integrated into the home our project 
had become, we decided to also focus on some aspects of 
home automation. Being able to set schedules for when 
your appliances and devices are on and off, monitoring 
your power usage, and being able to control your air 
conditioning as well became another part of the project. 
Our two main motivations now are: not having to worry 
about leaving electronics on, and managing the electricity 
in your house from anywhere. 

We have a number of goals that we would like to 
accomplish with this project. Firstly, we are striving to 
make products that are compact and easily fit where the 
devices they are replacing already are. There should 
ideally be no need to move furniture or change the wiring 
of a building to accommodate our devices. Secondly, our 
devices should not require a substantial amount of 
electrical power. Thirdly, our devices should be easy and 
simple to use, with an interface that can be quickly learned 
by anyone. Fourthly, the response time of our devices 
should be quick, with little noticeable delay between 



selecting an action and that action occurring. Fifthly, we 
aim to make our products inexpensive and little to no costs 
required for upkeep. Sixthly, our products should be both 
easy to install and not difficult to remove or replace. 
Seventhly, adding additional devices to the system should 
be not only possible, but simple. 

III. HARDWARE – COMPONENTS 

Because one of the goals of the home automation 
system is to have all the devices be cheap and affordable 
to the average consumer, it’s important for the 
components inside the device to be universal and share 
common circuitry. Doing so will drop the price of 
production drastically as well as making the devices easier 
to configure and set up during the fabrication process. 
Below are the main components utilized. Common 
components such as resistors, capacitors, and diodes aren’t 
mentioned but will be shown in the schematic of the 
devices. 

A. MCU – PARTICLE PHOTON 

In order for the website or smartphone app to control the 
four devices, a signal needs to be sent to the device to turn 
on or off and to collect any ongoing data such as energy 
measurement or temperature. This requires a 
microcontroller that will be the center hub of all of the 
devices. This will allow all of the components surrounding 
the microcontroller to act accordingly, such as the voltage 
regulator in the powerlock or the temperature sensor on 
the HVAC controller. Below is a model of the 
microcontroller as well as a legend of the various parts 
around the MCU. Labels for each of the pins are also 
shown in Figure 1. 
 

 
Figure 1. Particle Photon MCU 

 
 

The microcontroller requires between 3.2V to 5V to 
turn on, which is supplied by a USB power adaptor that is 
connected to the microUSB port on the MCU. The GND 
pin is a ground pin used for grounding many components 
surrounding the MCU, such as the relay and current 
sensor. A0-A5 are analog I/O pins which the current 
sensor utilizes to input data into these pins, having the 
MCU read the voltage and currents, thus providing a 
power output, as given by the power equation P = VI.  D0-
D7 are used for connecting to the relay, turning on/off the 
devices when needed. [1] 

B. RELAY – SUNFOUNDER 5V RELAY SHIELD MODULE 

Telling a device to turn on/off needs a relay module in 
between the MCU and the device. Because the relay needs 
5V to operate, the MCU’s Vin port would be able to 
provide the relay with the voltage it needs to operate. The 
relay runs using active-low, meaning a ‘0’ sent to the relay 
will turn on the relay. When the relay is turned on, a red 
LED lights on either side of the relay, depending on which 
input the relay is turning on (because the wall outlet has 
two sockets, a two channel relay is needed, thus having 
two inputs IN1 and IN2).  

C. POWER SENSOR – ECS1030-L72 SPLIT CORE CURRENT 
TRANSFORMER 

A vital component to the energy management home 
automation system is easily the component that traces the 
current and voltage going into the MCU and outputs this 
data onto the website or smartphone. Because small 
components can not take in huge current and voltages 
coming from the wall (120V 30A), a bigger sensor would 
be needed. Because of this, KnightHome utilizes a non-
invasive current sensor that is attached onto the wire going 
into the relay. The wires of the sensor go through a series 
of burden resistors for compatibility with the MCU and 
finally goes to the analog pin on the MCU. Because this 
non-invasive current sensor also measures voltage across 
the wire, the power can be measured and this data 
automatically pops up on the website or smartphone app. 
As shown in Figure 2, the power is proportional to the 
current and voltage in a linear fashion. [2] 

D. LCD SCREEN – LUMEX LCM-S01602DSF/A 

On top of showing the temperature of the room on the 
website/app, there will also be a small LCD screen on the 
HVAC Controller that will display that same temperature. 
The digital I/O pins on the MCU are used to control the 



segments on the LCD screen. The screen uses very 
minimal power (4.7V-5.3V) and thus can use the Vin pin 
on the MCU to power the device, just as the relay does. 
[3] 

IV. HARDWARE – DEVICES 

KnightHome uses four basic components to a home 
automation system that are all small, compact, and can be 
kept in inconspicuous areas around the house to keep them 
out of sight from dangers such as children and animals. 
The four devices are all Wi-Fi enabled and controlled 
through the KnightHome website or the KnightHome 
smartphone application. These devices can be grouped 
together according to what room it is if there are multiple 
KnightHome devices around the house. 

A. WALL OUTLET 

Just as it is simple to plug your electronic devices into 
the wall, the KnightHome Smart Outlet allows anyone to 
plug whatever device they want into the wall outlet. Each 
plug on the wall outlet is individually controlled by the 
website/smartphone and the power monitoring can also be 
seen. 

The wall outlet incorporates the Particle Photon MCU, 
2-channel relay (since there are two plugs), and two 
current sensors (again, one for each plug). The current 
sensor is bridged to the MCU through a burden circuit that 
drops down the current and voltage to a level that can be 
read by the MCU and interpret this data easier. The circuit 
includes a voltage divider using 47kΩ resistors, a 10µF 

capacitor for filtering noise coming from the sensor, and a 
Burden resistor that was calculated to the 77.79 ohms, so a 
standard value of 75ohms is used for this circuit. The wall 
outlet is powered via microUSB by the microUSB port on 

the MCU that is connected to a standard 
USB wall adapter that is connected to the 
wall plugs. This means when the Smart 
Outlet is plugged in, the USB power 
adapter provides power to the MCU, thus 
turning on the Smart Outlet. 

B. WALL SWITCH 

Sometimes it isn’t possible to have the 
website around or your smartphone around 
to operate the wall outlet. This is why the 
Smart Outlet is coupled with a wall switch 
that can override the website/smartphone’s 
control and turn on/off devices. The wall 
switch acts like a typical light switch that is 
in most houses nowadays; the switch 
toggles between on and off. The switch is 
connected to a circuit that replicates the 
Smart Outlet. 

C. POWER LOCK 

Controlling the doorknob on the door wirelessly 
requires an electric strike. An electric strike is a 
mechanism between the door hinge and door knob that 
disallows the doorknob to work when the strike is off. A 
12V input to the electric strike will turn it on, allowing the 
doorknob to be accessible. KnightHome utilizes an 
electric strike connected to a 1 channel relay that is 
connected to the MCU. 

Because the electric strike uses 12 V and the MCU uses 
5 volts, a voltage regulator is used between the 12V 
source and the MCU. The voltage regulator is a 7805 
positive voltage regulator that inputs any voltage below 
20V and outputs a fixed 5V. This allows both the MCU 
and electric strike to be on at the same time without any 
power issues. The powerlock is cased in a small box that 
hangs next to the door and uses 8 AA batteries (12V) that 
can be easily replaced. 

C. HVAC 

KnightHome offers a mini thermostat that tracks the 
temperature of the room and raises/lowers the temperature 
according to user settings on the website/smartphone. The 
HVAC Controller uses the Lumex LCM-S01602DSF/A 
LCD Screen to display the temperature while the 
website/smartphone controls the HVAC controller. The 
LCD Screen has several pins for the segments on the 

Figure 2. Current Sensor Output Graph 



display. These are connected to the D0-D7 pins on the 
MCU. In order to sense the temperature of the room, an 
M35CZ temperature sensor IC is connected to the A0 pin 
on the MCU to constantly track temperature and relay this 
information to the MCU. Again, a two channel relay is 
also connected in the same fashion as the Smart Outlet. 
However, this is used to control a fan and heater to 
simulate heating and cooling a room. 
 

V. SOFTWARE – APPLICATION 

In order to provide the best user experience possible, 
automated devices should be able to be controlled 
anywhere in the world, regardless of where you are. 
Sometimes a light is left online or a door unlocked. There 
is a piece of mind knowing that with a quick glance at an 
app you can see the status of electronics in your home, and 
if something is amiss be able to modify their status 
remotely. Figure 3 gives an application design overview 
of the entire application flow. 

To achieve a great user experience, the application is 
divided into two separate applications, the backend 
application running on cloud servers and the frontend 
application running on mobile devices (as well as a cloud 
hosted web-based control panel usable on desktops and 
unsupported mobile devices that still have browsing 
capabilities). By the term mobile device, we are referring 
to a wireless device containing either cellular or WIFI 
connection as well as Bluetooth connectivity. The backend 
application will communicate with both the frontend 
application as well as home automation devices. The 
frontend application will connect with the backend 
application over API to perform actions on home 
automation devices. 

A. BACKEND SOFTWARE 

The home automation application, both frontend and 
backend exist across multiple cloud servers. Using 
multiple cloud servers across multiple locations increases 

redundancy in the case a single virtual instance fails. It is 
important that the service remain online at a near 100% 
availability since every home automation system depends 
upon a reliable API to function as intended. 

For KnightHome, DigitalOcean is where the cloud is 
hosted. It’s cost effective since each “droplet” (the term 
DigitalOcean uses for each virtualized instance being ran) 
costs at minimum $5/month. Since the point of this project 
is a proof of concept, the amount of resources necessary to 
run the service will not be much at all. At the base price of 
$5 each droplet gives 512MB memory, 1 core of 
processing power, 20GB SSD storage, and 1TB of data 
transfer. This is more than enough for what is initially 
needed to run this service. As the service grows the plans 
can be increased vertically, and more instances can be 
spun up to scale horizontally. 

Each cloud server is configured with a minimal 
installation of Debian 8 (Jessie), 64-bit. Since we have a 
limited amount of memory, a minimal installation is 
preferred. Under a minimal installation, only system 
essentials are installed. This means that most services 
need to be installed post-installation, including the web 
server software, database software, and runtimes required 
to run our application. 

The webserver is reachable from the internet by both the 
frontend clients as well as the automated devices. We are 
using NGINX as the web server for this project. NGINX 
is a light, barebones, and fast webserver that is widely 
replacing Apache in many infrastructures. NGINX is 
configured to reverse proxy traffic to the backend service 
as well as serve the frontend cloud hosted web application. 
Native apps for iOS and Android interface with only the 
backend API, not the frontend application being served by 
NGINX. 

The backend of the application functions as an 
accessible programming interface (API) for the frontend 
clients and automated devices to communicate with. Since 
the client applications are utilizing JavaScript, a 
JavaScript Object Notation (JSON) API was created for 
clients to utilize. To create our RESTful JSON API, we 
used Node JS to create a backend service. Node JS was 
compiled and runs under a restricted user account on each 
cloud instance. This ensures that a vulnerability in our 
software does not compromise the entire server instance. 
Our backend service is deployed to the cloud servers using 
GIT, a version control system for software development. 

Our API primarily makes use of ExpressJS, a NodeJS 
open source web framework/routing library, in order to 
create route modules to service the tasks necessary for our 
home automation devices to function. 

In addition to the standard JSON API we’ve created, we 
also created a keep-alive socket API so that home 
automation devices and send and receive commands and 

Figure 3. Software Overview 



stats in real-time without 
constantly polling our 
JSON API. For toggling 
settings, setting changes 
get emitted to the device 
authenticated on the 
socket when they are 
changed. Vice versa, if 
the device contains a 
manual button (for 
instance, to override the 
app setting) then the 
device can also send the 
setting change and it will 
be saved to the database as a setting change. For stats, the 
device can send stat updates an any interval to be logged 
to our database to be analyzed. This is useful for power 
monitoring, one of the main focuses of our home 
automation system. 

Speaking of databases, database design is a crucial 
aspect of any web application. For our application, an 
open source document storage database called MongoDB 
is used. MongoDB allows us to store object models 
directly into the database, which allows us to avoid 
transforming database structure into object models within 
the application. MongoDB is also highly scalable and 
useful for its quick processing of writes (through use of 
journaling) and its aggregation abilities for processing 
real-time data streams (useful for graphing and analyzing 
data for power use). 

In order to ensure a stable cloud hosted database, we 
needed to ensure our data storage was redundant. 
MongoDB allows you to configure servers into replica 
sets, which automatically assign a single instance as a 
“primary” server and sync data to “secondary” servers. In 
the event of a server outage, MongoDB automatically 
chooses a new primary and everything continues 
functioning normally. 

For our cloud infrastructure, we chose to run 3 instances 
of MongoDB in a replica set. This will ensure that even if 
one or two of the database instances are down or succumb 
to corruption the data will remain available for use by the 
applications. Each of these instances communicate with 
each other over a TLS encrypted socket using key-based 
authentication. The entirety of our cloud-based backend 
infrastructure is depicted in Figure 4. 

B. FRONTEND SOFTWARE 

The frontend is comprised of the AngularJS Model 
View Controller (MVC) framework coupled with the 
Bootstrap theming framework. 

In order to serve a variety of devices, the frontend is 
served as a website as well as a mobile application for iOS 

and Android devices. The frontend for both the website 
and mobile applications relies on the same HTML/CSS/JS 
application being developed, but slight differences occur 
based on what device a user is using (mobile device or a 
website). PhoneGap is used to package the application 
into a native mobile app, and its APIs are used in order to 
extend the functionality of the mobile apps. 

AngularJS is used to render dynamic views for the 
website and mobile applications. In AngularJS, the 
template is composed of views controlled by controllers 
and directives in JavaScript. These templates are split into 
smaller sub-views using Angular UI-Router, an open 
source module for AngularJS that allows you to 
dynamically load view templates and scope controllers to 
them by routing. This allows AngularJS to be a single-
page application that loads new pages with JavaScript. 
This type of client rendering for new pages is much more 
efficient than server-side rendering of pages, saving on 
bandwidth and more importantly: page rendering times 
(giving users a quick, responsive app experience). 

Since we are using 
Bootstrap as a theme base, 
much of the CSS styling is 
already finished. This 
leaves the templates of 
pages to be designed. Apart 
from the login and 
registration page, the 
majority of the control 
panel will be part of a 
wrapper view with a 
menubar (that has a 
purpose of providing 
navigation) as well as a 
header (that has a purpose 
of displaying the product 
logo, any alerts the user has 
received, and login/logout). 
The rest of the application 

Figure 4. Cloud Infrastructure Overview 

Figure 5. App Device 
Management 



is composed of individual pages devoted to specific tasks: 
configuring devices, configuring tasks, managing 
schedules, and energy usage monitoring. 

For the devices page, new devices can be added and 
existing devices can have their common settings toggled at 
a glance. Each device also reports its current state to the 
screen, making it easy to see what devices are active. The 
device managerment page is shown in Figure 5. 

Managing individual devices can be tedious if you want 
multiple to work together. We’ve added a grouping feature 
that allows you to pair devices into a task. This allows you 
to preconfigure settings you’d like for every device in the 
task, making it easy to set devices in one swoop. 

Sometimes you might want to also automate these tasks 
on a schedule, so we’ve also integrated a scheduler that 
allows you to schedule one-time or repeating tasks. 

Energy monitoring is another great feature of our 
application. It shows you to total energy consumption of 
all devices, predicts your energy usage for the month, and 
also allows you to show each individual devices energy 
usage in a graph. Graphing energy use allows us to better 
depict peak energy usage times during your average day, 
which might help you to better reduce your energy 
footprint during those events.  

VI. SOFTWARE – MICROCONTROLLER 

 Software for the microcontroller is written in C using 
Particle’s web IDE and their standard application library. 
Each of the 4 devices in KnightHome is programmed with 
the same structure in mind, but the code for each type of 
device is unique to it.    

A. START UP 

 All 4 of the KnightHome devices follow the same 
procedure upon startup. The device will first connect to 
the supplied Wi-Fi network, no other action will occur 
until a Wi-Fi connection is established. Once connected 
the device initializes all variables and settings to the off 
position except for the enable setting, which is set to on. 
Next the device sends authentication and identification 
information to the server through a TCP socket. Once the 
device is properly identified and the authentication is 
accepted, the device receives settings data as a response 
from the server and begins its main function. All main 
functions begin with checking the connection status; the 
procedures for handling disconnecting and reconnecting 
are covered later in this section, these procedures aren’t 
mentioned in the device sections as they are ideally never 
triggered.   

B. WALL OUTLET 

 The wall outlet is not the simplest of the 4 devices in 
terms of the program running it, however, it serves well as 
a skeleton for the code for the other devices to be molded 
to. 
 The main phase of the wall outlet first checks for any 
messages sent from the server. If a new message is 
detected the device reads the message(s) from the server 
as character arrays, parses the array, and takes the 
appropriate action. For the wall outlet these messages 
include receipts of authentication, server pings, and state 
enables for each of the two wall sockets on the outlet. 
When the device receives an enable signal from the server 
it sends an appropriate output to the pin corresponding to 
which wall socket was indicated by the message, changing 
the state of the relay connected to that pin. Once all of the 
messages have been read from the socket the socket the 
socket is flushed to prevent old messages from remaining 
in the socket. 
 The wall outlet then reads input from the current sensors 
attached to the sockets. The input from these sensors is 
sampled many times as an analog input which is then 
averaged and converted into volts. The voltage measure is 
between 0 and 3.3 V due to the limitations of the 
microcontroller, so that voltage is converted back to its 
original voltage before the stepdown. That voltage is the 
input received from the current sensor, and as such is then 
converted into a measure of current. The measured current 
is converted to wattage under the basis that the wall outlet 
device is connected to a standard home wiring of 120V. 
This wattage is sent to the server as the measure of the 
present power consumption of the outlet. 
 The main process then loops indefinitely. Should the 
entire device lose power it will start again from the start 
up process described earlier. 

C. WALL SWITCH 

 The wall switch expands on the wall outlet code by 
adding the ability to toggle the device’s state locally. As 
such this device adds a variable that keeps track of the 
current local state of the device by reading an input from 
the relay controlling the electrical flow. The order of the 
main function is important to make sure that a local input 
is not immediately overwritten by the state of the server 
before said change can be sent to the server. 
 The main function of the wall switch begins the same as 
the wall outlet by checking for new messages from the 
server and taking the appropriate action should a new 
message be present. For the wall switch, only 
authentication, ping, and enable messages are received. 
The process for parsing these messages and the actions 



taken are the same as for the wall outlet. Once all of the 
messages have been read the socket is flushed to ensure 
the removal of old messages. 
 After checking for messages from the server, the device 
then reads the input from the relay to determine the local 
state of the relay. This state is then sent to the server as a 
message. 
 The same power monitoring procedure as the wall outlet 
is used for the wall switch. The current is calculated based 
on the voltage read from the input of the current sensor, 
and said current is converted into watts. The watts 
measurement is sent to the server in a message as the 
devices present power usage. It is important that the power 
management data is sent after the state data because the 
server response to the power monitor data can include 
enable messages which would overwrite the local change 
if received before the server was set to the proper state.  

D. POWER LOCK 

 The powerlock is the simplest of the 4 devices from a 
code perspective. The power lock has its own power 
supply, and since it does not draw power from the wall it 
does not have the same power monitoring functionality as 
the previously mentioned devices. As it is meant for 
security it does require its own specific procedures. This 
device also has a small change to the startup phase: the 
LED on the MCU is initialized as on. This is done as a 
power indicator of sorts since the power lock has its own 
power supply, if the device has power the LED will be on.  
 The main function of the power lock begins the same as 
the wall outlet by checking for new messages from the 
server and taking the appropriate action should a new 
message be present. For the power lock, only 
authentication, ping, and enable messages are received. 
The process for parsing these messages and the actions 
taken are the same as for the wall outlet. Once all of the 
messages have been read the socket is flushed to ensure 
the removal of old messages. 
 The remainder of the main phase is procedures to ensure 
security. If Wi-Fi connection is lost the device is set to be 
locked to prevent a loss internet from leading to a breach 
of security. When the device is connected or reconnecting 
but has not yet received a message from the server it is set 
to be locked. This time period is very short and the device 
should never be in this state when this point in the main 
phase is reached. 

E. HVAC CONTROLLER 

 The HVAC controller is the most complicated of the 4 
devices. Not only are there more states to keep track of 
and more messages that can be received, the 
microcontroller also controls an LCD screen display. 

 The main function of the HVAC controller begins the 
same as the wall outlet by checking for new messages 
from the server and taking the appropriate action should a 
new message be present. For the HVAC controller 
messages for ping, authentication, device enable, AC 
enable, Heat enable, Fan state, and temperature are 
received. The process for parsing these messages is the 
same as for the wall outlet except that all state data is 
stored in an array called Settings which keeps track of the 
current state of the device rather than immediate action 
being taken. Each enable controls a relay attached to the 
HVAC system, the fan state has 3 possible states for 
controlling the procedures of the HVAC controller, and 
the temperature messages set the desired temperature of 
the device. Once all of the messages have been read the 
socket is flushed to ensure the removal of old messages. 
 AC enable and heat enable settings both control both the 
heat and AC relays. When a message comes in to turn on 
the AC, the AC relay is turned on and the heat relay is 
turned off, making sure that only the AC is running. The 
opposite occurs when a message is received to turn the 
heat on. These two settings can never both be set to on, 
and setting one of them to on sets the other to off. Both 
settings can be set to off at the same time, meaning you 
want neither heat nor AC running, which is why they exist 
separately. It should be noted that the device enable 
setting does not set these states to off, it causes the device 
to not read them when determining which action it should 
take, which allows the device to quickly return to its 
previous state when it is enabled again. 
 After checking for messages the device reads the 
temperature sensor. The temperature sensor input is 
received as analog input through an analog pin. The 
analog input arrives as an integer, which is then multiplied 
by 0.0008 to convert it into a voltage between 0 and 3.3V. 
This voltage is multiplied by 100 and then 50 is 
subtracted, resulting in the current temperature in oC. Our 
devices are intended for use in the United States, so the 
temperature is then converted to oF before being stored in 
the Settings array. The current temperature is then sent to 
the server. 
 The main phase then moves to act on the data in the 
Settings array. The device first reads the device enable 
setting, if this setting is off it sends an off signal through 
all relays. If the device enable is set to on the device 
continues through this phase. The device then reads the 
heat enable and AC enable states from the Settings array 
and sends an appropriate signal to the corresponding 
relays. The fan state setting is read next, and if it is set to 
either on or off the appropriate signal is sent to the 
corresponding relay. If the fan state is set to auto the 
device checks the heat enable and AC enable states and 
then the desired temperature against the current 



temperature to determine whether the fan should be 
blowing or not. 
 After taking proper action the device displays the 
current contents of the Settings array on the LCD screen 
as the state of the device. The device first displays either 
heat, cool, or off in the top left, showing whether the heat 
or AC is on or if both are off. In the top right the word 
“set: ” is displayed with the desired temperature in oF 
displayed afterwards. On the bottom row on the far left the 
word “fan: ” is displayed with the current fan state (on, 
off, or auto) displayed afterwards. In the bottom right the 
current temperature as read by the temperature sensor is 
displayed. 

F. HANDLING DISCONNECTS 

 Should the device ever become disconnected from the 
socket, a reconnect needs to occur. At the start of every 
main process there is a check for both the Wi-Fi 
connection status and the status of the connection to the 
socket. Should Wi-Fi ever be disconnected the device will 
attempt to reconnect using the previously entered Wi-Fi 
credentials until either new credentials are entered or a 
connection is reestablished. If the device ever becomes 
disconnected from the socket it will reconnect to the 
socket. A ping message is received from the server every 
30 seconds, so should a device go 31 seconds without 
receiving a message from the server it will assume it has 
lost its connection to the socket and close the connection 
then reconnect. After the successful reconnection the 
authentication and identification information is re-sent to 
the socket so the device can be properly connected to its 
owner and it receives the current state from the server as a 
response. 

VII. CONCLUSION 

This project was an immense learning experience for all 
the members involved. We gained valuable experience as 
engineers, not only through the research and prototyping 
we had to perform, but as well as experience in working as 
a group for an extended period of time. This experience 
will be invaluable as we go off into our careers. 

One major thing that was learned through this project is 
the importance of beginning early and working on a 
consistent schedule throughout the project life. Our work 
on the hardware aspect of the project was not on a regular 
schedule at the beginning of the semester, and as a result 
we fell behind and had to double up on our meetings in 
order to catch back up to a good position. Thankfully, we 
caught back up and are on schedule to complete all aspects 
of our project in time for our demonstration.  

ACKNOWLEDGEMENT 

Our group would like to take this moment to thank the 
help of the following professors for guidance and 
instruction during our project. We kindly thank: Dr. 
Samuel Richie, Dr. Lei Wei, Dr. Chungyong Chan, and 
David Douglas. We would have have not been able to 
accomplish this without their support. 

REFERENCES 

[1]  Particle. (n.d.). Retrieved April 06, 2016, from 
https://docs.particle.io/datasheets/photon-datasheet/ 

[2]  Split Core Current Transformer ECS1030-L72. 
(n.d.). Retrieved April 06, 2016, from 
http://cdn.sparkfun.com/datasheets/Sensors/Current/ECS1
030-L72-SPEC.pdf 

[3]   LCM-S01602DSF/A Datasheet. (n.d.). Retrieved 
April 06, 2016, from 
http://www.mouser.com/ds/2/244/LCM-S01602DSF A-
108827.pdf 

MEET THE ENGINEERS 

Jeffrey Benoit, a senior student of the 
computer engineering department at the 
University of Central Florida, plans to pursue 
a job in the I.T. field after graduation. 

 
D’Voran McIntosh, a senior student of the 
computer engineering department at the 
University of Central Florida, plans to pursue 
a career in the computer engineering field, as 
well as returning to pursue a master’s degree 
in business administration. 

 
Roneal Valmonte, a senior student of the 
electrical engineering department at the 
University of Central Florida, plans to pursue 
a Master’s Degree in Electrical Engineering 
with a focus in Control Systems and Wireless 
Communication. 
 
Zachary Zapasnik, a senior student of the 
computer engineering department at the 
University of Central Florida, is pursing a 
career in the software engineering field. 

 
 
 
 
 
 
 

 


