SMART*er* WATER

Bryan Mitchell, EE Vipol Sophonwatthanawichit, CpE Mauro Cordoba, EE

Group 36

MOTIVATION

"Water heaters account for nearly 17 percent of a home's energy use, consuming more energy than all other household appliances combined."

- To reduce energy consumption by modernizing a common appliance
- To provide more control

PROJECT goals

- Phase 1
 - Mimic current smart water heaters
 - Control it locally and remotely
 - Dynamically fine tune settings
- Phase 2
 - Tie into Nest API
- Phase 3
 - If time allows, write native nest interface
 - 3D printed enclosure

PROJECT requirements

- Comparable in size to modern water heater thermostats
- Able to control up to two heating elements and one heat pump
- Able to regulate temperature to +/- 1° C of desired temperature
- It will run from 240V mains
- It will be controlled directly though a touchscreen interface or remotely via WiFi

PROJECT overview

PROJECT overview

HARDWARE design

HARDWARE diagram

MAIN board

• 454MHz Freescale i.MX283 processor

- 4.3 inch 800*480 TFT touchscreen display
- 10/100 Ethernet port
- USB port
- 128MB DDR2 RAM
- µSD reader supports up to 64GB
- 24 GPIO on easy-access 0.1" center header
- Up to 108 GPIO on 1mm compression connector

EXPANSION board

Render of work in progress

- 240v AC 5v DC power supply
- Interface with CFA920-TS
- Sensor inputs
- Relay controlled heating element outputs

EXPANSION board

TEMPERATURE sensor

DS18B20

- •Usable temperature range: -55 to 125°C (-67°F to +257°F)
- •9 to 12 bit selectable resolution
- •Uses 1-Wire interface- requires only one digital pin for communication
- •Unique 64 bit ID burned into chip
- •Multiple sensors can share one pin
- •±0.5°C Accuracy from -10°C to +85°C
- •Temperature-limit alarm system
- •Query time is less than 750ms
- •Usable with 3.0V to 5.5V power/data

FLOW sensor

[•] Working Voltage: 5 to 18VDC

- Max current draw: 15mA @ 5V
- Working Flow Rate: 1 to 30 Liters/Minute
- Working Temperature range: -25 to 80°C
- Maximum water pressure: 2.0 MPa

YF-S201

CURRENT sensor

• Rated Current: 1-60A

- Current Ratio 30A/15mA
- D.C.Resistance at 20 °C 250 Ω
- Accuracy $@RL \leq 10\Omega 2\%$
- Linearity $@RL \leq 10\Omega \ 0.5\%$
- Phase error at rated current range $\leq 4^{\circ}$
- Operating Temperature Range -40~65°C
- Storage Temperature Range -45~85°C

SEN11005

MOTION sensor

Parallax 555-28027

- Built-in selectable trigger mode
- Detection angle: 120°
- Detection range: up to 7m
- Supply voltage: 5V-16V

RELAY

- Input: DC 3~32V
- Output: AC 24~380V
- Current: 25A
- Dimensions: 2.44 in x 1.77 in x 1.02 in
- Weight: 4.06 oz (115 g)

RELAY

- Master Controller Board controls relays
- Allows for isolation of AC and DC voltages

WIFI adapter

- Any USB dongle will work
- Can be 2.4 or 5 GHz

CFA-WIFI-01

SOFTWARE design

SOFTWARE design

OPERATING system

- Custom Linux OS made with Buildroot
- Based on kernel version 3.12.17.
- Will have the bare minimum we need
 - USB
 - GPIO
 - Networking/WPA supplicant
 - QT and python libraries

BACKEND

- Flask as a webserver/application framework
 - Python-based
 - API to communicate with android app
- SQLite Database
 - Perfect for single applications and embedded systems
 - Can be created from directly within Flask

FRONTEND

- QT application framework for UI development
 - Cross platform
 - It can output to our frame buffer without a window manager
 - It can interface with SQLite database created in flask

NATIVE app

NATIVE app

PATTERN recognition

- Store data as an image
- Sample data every 5 minutes
 - Each sample represented as a pixel
- Image processing to find the pattern
- Calculate threshold
- Use thresh hold to separate the data

MOBILE application

- Android App to communicate with water heater remotely
- Uses RESTful API
 - HTTP requests
 - JSON

APPLICATION features

- Displays
 - Statistical data
 - History of usage
 - Temperature
 - Energy usage
- Controls
 - Temperature
 - Turn on/off

ADMINISTRATIVE content

WORK distributions

	Hardware	Software backend	Software frontend
Mauro		Χ	
Bryan	Χ		
Vipol			Χ

BUDGET

	Quantity	Price	Extended	Cost
CFA920-TS	1	187	187	0
WiFi adapter	1	5	5	0
Temperature sensor	2	10	20	20
Flow meter	1	10	10	10
Current sensor	1	10	10	10
PIR sensor	1	7	7	0
Relays	3	12	36	36
РСВ	1	30	30	30
Miscellaneous components	1	40	40	40
		Total	345	146

PROGRESS

