
Visually Entertaining Smart

Prism (V.E.S.P)

Alejandro Torroella, Leonardo Achutegui, Chris

Hubbard, Tyler Drack

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The Visually Entertaining Smart Prism, or
VESP for short, is intended to be a luxury entertainment and
utility device that works in conjunction with readily available
internet services and smartphone devices. The project was
chosen for its broad range of hardware and software
specifications, demonstrating the use of LCD display drivers,
sensors, ARM, Arduino, Linux, Wi-Fi and Bluetooth wireless
communication, battery powering, charge controllers, power
distribution, and audio processing. The goal of the project
was to have a working prototype with as much functionality
as the team could implement during the period of Senior
Design, along with the potential of including more features in
the future.

Index Terms — VESP, LCD Display, ARM, Arduino,
HDMI, RGB, Wi-Fi, Bluetooth, Battery power, Smart device,
Sensors, OpenGL, Embedded Linux, Qt.

I. INTRODUCTION

The world of technology is progressing in such a way

that gizmos and gadgets are popping up everywhere for a

variety of purposes, all to help mankind’s daily routine be

more efficient and enjoyable. Most notable of these

gadgets are tablets, smartphones, gaming consoles, and

smart TVs. This is the motivation behind the idea for the

Visually Entertaining Smart Prism, or VESP. The goal was

to make a fun, autonomous notification center that could

easily find its place on any desk or table, in either a home

or workplace environment. This technology would help

assist the user stay notified of upcoming calendar events,

current weather conditions, or simply the time. It would

also provide entertainment for the user through 3D

animation imagery and music playback from the user’s

phone. In addition, the ability to operate the device

portably was desired, and so the VESP was split into two

portions, the VESP device, and the dock. The following

figure (Fig. 1) illustrates this feature.
Working on this project offered the chance for the

project engineers to apply their undergraduate coursework

and get experience in areas such as PCB design, wireless

communications, power distribution design, computer

graphics, sensor, and Linux/ARM development, just to

name a few.. It also helped to develop other professionally

applicable skills such as technical research, data analysis,

team work, project management, and working under strict

deadlines.

II. SYSTEM COMPONENTS

The VESP is composed of various hardware

components, purchased or designed, that work in unison to

give the VESP its essential functions. Each of the

components will be briefly described in this section.

A. Main Processing Unit

At the heart of the VESP lies the Main Processing Unit

(MPU). The VESP MPU is what runs all of the software

for the project. In addition, the MPU takes in incoming

orientation data from the MCU, as well as touch data from

the touchscreen controller. It was anticipated that the

VESP would have to be able to handle all of this

processing, while also minimizing the amount of lag that

the user might experience. With that in mind, the

ODROID XU3 from HardKernel was chosen for the MPU.

The device was within our size constraints and is a very

high performance ARM development platform that could

more than satisfy all of our current and potential future

requirements.

B. LCD Displays

The LCD displays are an essential part to the VESP’s

aesthetic and form factor. For that reason, the selection of

which LCD displays to use for the project was crucial. Not

Fig. 1. VESP device and dock high-level diagram

only did the screens have to meet the performance

specifications, special consideration had to be given on the

dimensions as well. This is due to the project requirement

that all of the internal components for the device (MCU,

MPU, PCBs, battery, data/power cables, etc.) had to fit

within the form factor. Too big of displays would have

made the final result too bulky to carry by hand, while too

small of displays would mean even stricter size

constraints.

C. LCD Controller

The LCD controller is responsible for taking in the

HDMI output from the MPU and distribute it to the four

LCD displays. In addition, the LCD controller is

responsible for handling the raw touchscreen data coming

from the capacitive touch screen and processes it to be

then used by the MPU.

D. Microcontroller

The VESP’s MCU is used to control and process the

sensor subsystem. Having an MCU added additional

hardware connection options and helped take some of the

processing load off the MPU. The MCU had to be

connected to the motion sensor, the gyroscope, the

ambient light sensor, the MPU, and the power distribution

PCB.

E. Sensors

Various sensors were incorporated into the VESP device

in order to give it its “Smart” acronym, these included a

motion sensor, an ambient light sensor, and a gyroscope.

The motion sensor’s purpose for the project was to

assist in power saving. It would sense when a user was

nearby or present, so that the VESP would “know”

whether to auto lock the device software and power off the

LCD display backlights, which on any portable device is

the main perpetrator for battery power consumption. This

meant that the sensor’s range should encompass the length

of a typical household room.
The purpose of the light sensor is to measure the

surrounding lighting and detect changes, giving this

information to the MCU. That data would then be used to

adjust the brightness of the LCDs accordingly. This is to

further help make the VESP as power efficient as possible

which is especially important when it is off the power

dock.

The purpose of the gyroscope will be to sense when the

VESP is off the power dock and to determine the

orientation of the VESP as the user moves it around in

their hands. The data it gathers will be processed by the

MCU which will then send commands to the MPU to

change the orientation of the displays accordingly.

F. Wi-Fi

Every relevant electronic device on the market has some

sort of connection to the internet, the VESP is no different.

For the purpose of getting Wi-Fi on the VESP, a

proprietary Wi-Fi module was purchased from

HardKernel. The module is sleek and small enough to fit

within the enclosure without issue, can be powered via one

of the MPU’s USB ports and provides more than sufficient

bandwidth for the purposes of the project.

G. Power Distribution

In order to make the VESP device portable, the use of a

battery and battery charge controller was needed for the

project. For the battery, a lithium-ion polymer battery was

used. This type of battery is lightweight, small and can

output sufficient power to the drive all of the internal

components. For the battery charge controller, the

LTC4020 from Linear Technology was used. The charge

controller charges the battery at a constant-

voltage/constant-current, and is designed to withstand a

maximum charge of 2 Amps. Also, the LTC4020 is able to

pull the current necessary to power all the devices at

maximum usage.

H. Dock

The dock for the VESP houses all of the components

that for one reason or another, weren’t necessary to

include inside the VESP device. This included audio

speakers, an audio amplifier, a Bluetooth audio receiver,

and an AC-DC converter circuit. For the components

pertaining to audio, a TA2024 Class-D audio amplifier

was used. This would take in audio signals coming from

the Bluetooth audio receiver and output them to the audio

speakers. For the purpose the project, two 2”x3” extended

range speakers were used. For the AC-DC converter, an

AC-DC transformer was used in conjunction with a 12V

regulator, which was used to power both the audio

amplifier, as well as the battery charge controller within

the VESP device.

III. SYSTEM OVERVIEW

This section will briefly describe the organization of the

hardware, and software components, as well as the go into

more detail on the interactions between the hardware, and

software components. This is will give an overview of how

the VESP works, before a low-level description is given.

A. Hardware

Figure 2 in the next page shows the hardware block

diagram for the VESP device. Each of the blocks represent

a major component in the systems; the arrows connecting

the blocks represent an interaction between the

components. Starting from the upper-left side, the MCU is

connected to the gyroscope, ambient light, and motion

sensors and handles all of the raw sensor data. The

orientation and motion data is passed to the MPU to be

used as input for the software. The MCU is also connected

to the Power Distribution board in order to control the

backlight power going to the LCD displays. The MPU is

connected to the all of the other major hardware

components. The MPU sends its video data to the LCD

controller, which then distributes it to the four LCD

displays. The MPU is connected to the internet via the

connected Wi-Fi module. Finally, the LCD controller

sends its processed touch data to the MPU.

B. Software

Figure 3 below shows the software block diagram for

the VESP. Each of the colored blocks represent major

software components, while arrows represent relevant

interactions between them. Starting from the upper-left,

the MCU takes in the raw sensor data coming into the

various sensors connected to it, and processes the data to

an expected format for the rest of the VESP to understand.

The orientation data and motion data is sent to the MPU

which is accepted by the Linux environment running with

it. The Linux environment also accepts the processed

touch data coming from the LCD controller. The accepted

data going into the Linux environment is then used by the

Qt Framework, which drives all of the VESP’s

applications.

B. Dock

Figure 4 below shows the hardware block diagram

describing the dock for the VESP. From the diagram, the

power supply is powering both the audio amplifier and the

Bluetooth receiver. The audio amplifier and the Bluetooth

are connected to provide audio data transfer. Finally, the

amplifier is connected to the audio speakers to output

sound.

Fig. 2. VESP Hardware Block Diagram

Fig. 3. VESP Software Block Diagram

Fig. 4. Dock Hardware Block Diagram

IV. HARDWARE DETAIL

This section will give a lower-level view of the

hardware components previously mentioned.

A. MPU

As previously stated, the MPU chosen for the project

was the ODROID XU3 by HardKernel. As you can see

from the Table 1 below, the XU3 has a fast, dual quad-

core CPU ARM architecture, giving the project more than

enough processing power to work with when developing

applications, without needing to take to prioritize coding

efficiency. Along with its speedy processor, the XU3 has

2GB of DDR3 RAM, giving it the VESP the ability to run

more than one applications in the background. Another

major feature of the XU3 is its graphics chip, the Mali-

T628 MP6, allowing for the development of 3D hardware

accelerated graphics. Other useful features of the XU3 are

its 30-pins for I/O (GPIO/UART/SPI/I2C), four USB 2.0

ports, and HDMI output.

Model ODROID-XU3 Lite

CPU Quad-core Cortex-A15/ Quad-core

Cortex-A7 Combo

GPU Mali-T628

RAM 2GB DDR3

 Memory 16GB

I/O Ports USB 3.0 Host x 1, USB 2.0 Host x 4,

USB 2.0 OTG x 1, 30-pin

GPIO/IRQ/SPI/ADC

Video Output Micro-HDMI 1.4a

API Support OpenGL ES 1.1, 2.0 and 3.0

Power 5V @ 4 A

B. LCD Displays

The LCD displays chosen for the project were the

ER_TFT070_4 from BuyDisplay.com. The displays

measure ~7” diagonally, have a 800x480 resolution, and a

color depth of 24 bits. The 7” option was ultimately

chosen to be the ideal size for the project (compared to

similarly priced and capable 5” displays), providing plenty

of space for internal components, without making the

VESP excessively bulky. The voltage required to power

each screen was 3.3V is similar to many of the other

components in the project, which assisted in simplifying

the power supply design. In addition, the ER_TFT070_4

came with an optional configuration which included a

mounted capacitive touch screen, thereby illuminating the

need to research and purchase a separate sensor and

having to mount the sensor on the display manually.

C. MCU

The selection for the MCU was the ATmega328 on the

Arduino Uno 3. This option was a great fit for the project,

Table 2 below shows the MCU’s specifications. It offers a

sufficiently fast clock, enough to handle all of the sensors

and transmitting data to the MPU. Plenty of digital I/O

pins that include UART, SPI, I2C, and PWM. The PWM

is particularly important as it will be the way the MCU will

control the backlight brightness of the displays. A USB

connection is available to both power the device and

transmit data to the MPU. This board operates on a

voltage range of 7-12V which was within the scope of the

VESP’s power range. Additionally, two of the sensors

could be powered directly from the board’s 3.3V pin and

5V pin, which helped to simplify the power supply design.

Software-wise, there were many different libraries and

examples to reference online, which helped to ease the

development of the project’s sensor software.

MCU ATmega328

Clock Speed 16 MHz

Input Voltage 7-12V

Operating Voltage 5V

Digital I/O 14

 Analog I/O 6

Flash Memory 32KB

I/O Voltage 3.3V & 5V

D. Motion Sensor

The selection for the motion sensor was a PIR sensor

found on Adafruit.com. This sensor could sense up to 20

feet away, was a reasonable size, and runs on a voltage

range of 5V-16V, although the project runs it on 5V as

that was more compatible with the power supply design.

The sensors design also offered screw-holes, which helped

with mounting it on the top of the VESP.

E. Ambient Light Sensor

The light sensor selected for the project was the

TSL2561 Digital Luminosity Sensor. This sensor had a

vast detection range of 0.1 to 40,000 lux with the option to

measure IR, visible, or full-spectrum light. It runs on a

supply voltage of 3.3V and communicated digitally via

I2C which made it a great match for the MCU.

F. Gyroscope

The gyroscope selected for the project was the MPU-

3050 Triple Axis Gyroscope from Invensense.com.

Table. 1. MPU Specification and Features

Table. 2. MCU Specification and Features

Additionally, this gyroscope will be used on the OSEPP

Gyroscope Sensor Module. This component runs on a 5V

power supply so it was easily integrated into the power

supply design. The gyroscope interfaces with the MCU

through I2C. The issue that arose from both the light

sensor and the gyroscope requiring the MCU’s single I2C

connection was overcome through the use of the OSEPP

module, as it provided a pass-through connector, allowing

these two sensors to be chained together without

interrupting each other’s data flow.

G. LCD Controller

The LCD controller is one of the hardware components

that was designed for the project. The LCD controller

satisfies two functions: distribute the video signal to the

four LCD panels, process incoming touch data from the

capacitive touch panel. For the first function, the LCD

controller first takes the HDMI output from the MPU

through its female HDMI connector and sends it to the

HDMI decoder, which then converts the TMDS signals to

24-bit parallel RGB signals that the LCD displays can

interpret. The HDMI decoder chosen for the project was

the TI TFP401A, it is able to decode video resolutions up

to 1080p @ 60 Hz, plenty for the purpose of the project.

For the second function, the LCD controller includes the

FocalTech FT5406 capacitive touch panel controller,

which takes in the raw touch data from the capacitive

touch panel and processes it to then send to the MPU for

use. The FT5406 uses the I2C protocol for transmitting its

touch data to the MPU. Figure 5 shows the PCB board

layout for the LCD controller.

H. Charge Controller

 A charge controller was necessary to safely charge the

lithium-ion polymer battery. The LTC4020 was configured

to provide a constant-current/constant-voltage charge

profile to avoid any damages on the battery. It includes a

4-switch buck/boost dc/dc power converter to optimize the

battery charging and allowed us to accept input voltages

up to 55V and produce voltages that are lower, higher or

the same as the input voltage. This was essential when the

device was plugged to the dock because it allowed us to

charge the battery and at the same time be able to power

the components in the device. Also the charger was

configured with a timer to sense the end of cycle of battery

charging and stop charging after 22 minutes while the

device was still connected to a power supply. The

LTC4020 is able to manage the power distribution

between the input voltage, the backup battery, and the

output in response to the load variations, battery charge

requirements and input power limitations.

 Aside from the LTC4020, there were other IC

components that allowed us to power all our small devices

in VEST. The TPS54618 step down voltage device,

outputted a voltage of 3.3V with a max current of 6 amps.

The LMR62421 is a step up voltage regulator that

powered the devices that needed a 12 volts input like the

motion sensor and the Arduino. The LM3478 is a

switching regulator to power the MPU and the FAN5333A

is high current serial LED driver that was used to power

the LCD backlight and adjust its frequency.

Fig. 5. PCB layout for the LCD Controller.

Fig. 6. PCB layout for the charge controller

V. SOFTWARE DETAIL

 This section will describe in detail the software

running in the VESP. This will include the architecture,

the overall GUI, and each of the applications available in

the VESP.

A. Software Architecture

For developing the software for the VESP project, the

Qt Creator IDE was used. The software all was written

using C++, for the main logic, in conjunction with QML

(Qt Meta Language), for the user interface. QML is a

declarative language developed by the Qt Company, and

allows for developing fast, easy, and beautiful user

interfaces. In addition, other APIs and SDKs were used in

creating the VESP software. The OpenWeather API is

used to fetch weather data based on the positioning data

obtained from Wi-Fi, to then display to the user. The

Google Calendar API is used to fetch calendar event data

from the user’s Google account to remind the user of any

events going on that day. Finally, the Mali OpenGL ES

SDK, in conjunction with the OpenGL ES 2.0 API was

used is used to render visually appealing, hardware

accelerated 3D graphics to the displays.

B. Graphical User Interface

The GUI of the VESP is intended to be both visually

appealing, simple and easy to use. Figure 7 on the left

shows the state diagram for the general UI flow. The GUI

is split up between two major elements: the Lock screen

and the Home screen. The Lock screen is intended to be

the first thing the user sees when starting the software;

showing the current time in analog format, as well as the

current weather of the VESP’s current location. A simple

touch of the screen will transition the GUI to the Home

screen. The Home screen’s purpose is to show all of the

VESP’s applications, and is where all of the VESP’s

current (and future) applications are (will be) launched

from. The Home screen also has a lock button on the

bottom which will transition the UI back to the Lock

screen. A touch on any of the application icons will launch

the respective application. Every application of the VESP

has a home button on the bottom of the screen that will

transition the UI back to the Home screen. The UI will

also transition back to the Lock screen either after a set

amount of time has passed without any user input, or if the

device detects that no one is present, essentially “locking”

the device. In addition, every state of the UI (lock, home,

and application) have an portrait and landscape layout, a

sufficient change in orientation of the device will transition

the device to/from either layout.

C. Applications

The applications on the VESP are the Animation apps,

the calendar app, and the weather app. Of the three, the

Animation is the only app which has to be launched in

order to use. The other two apps are passive, run in the

background, and require no user interaction to use.

The Animation applications all display a particular 3D

graphic on the screen. Some applications take in touch

input from the user and change accordingly, while others

simply loop over time. Their purpose is purely aesthetic

and give the VESP its first two letters of the acronym

(Visually Entertaining). The weather app is a passive app

which runs on the Lock screen, displaying the current

temperature and weather condition of the location obtained

from the positioning data coming from the Wi-Fi

connection. Finally, the calendar is the other passive app

that runs on the Lock screen, it displays calendar event

reminders to the user. Calendar event reminders will be

stored in a queue data structure, when a user has dismissed

the currently displayed reminder (via touch), the next

reminder will be displayed.

Fig. 7. VESP GUI State Diagram

VI. HOUSING

The housing for the VESP is split into two separate

components, one for the VESP device and the other for the

dock. For both of the housings, a clear plastic acrylic was

used to hold the components together. For the VESP

device housing, exact measurements were made on the

LCD displays to make the windows of the housing as tight

as fit as possible. The windows are joined using a

combination of a jigsaw pattern intersections and acrylic

glue. In addition, for the sake of making sure that all of the

internal components fit within the enclosure, the housing

windows were made to be a couple of inches larger than

initially planned.

For the dock, the housing was made to be wider than the

VESP device, with a significant depression on the top the

size of the device in order to ensure a secure fit between

the dock and the device. On the opposite sides of the dock,

a hole was made in order to include the speakers. Other

holes were made for the wall outlet connector, and the

battery charging connector as well. Figure 7 below shows

a prototype of the housing design with the four LCD

displays placed in the windows.

VII. CONCLUSION

The world is filled with a plethora of entertainment and

utilitarian electronic devices. Every day, more and more of

such devices arrive to the market. The VESP is an attempt

to present a novel idea for a new device, with an

interesting, (albeit unorthodox) form factor. The VESP

prototype described in this documentation is only the first

step. The internal hardware contained within the device is

powerful enough to handle new and exciting features, and

with a powerful framework such as the one provided by

Qt, the possibilities are near infinite. With that said, in the

future, the team would like to improve on the design of the

VESP, as well improve its current functionalities. In

conclusion, the project gave the team invaluable learning

experience in the many disciplines of Electrical and

Computer Engineering.

ENGINEERS

Tyler Drack will

graduate from UCF in May

2015 with a B.S. in

Electrical

Engineering. Tyler has

accepted an offer from

Harris Corporation in Palm

Bay, Florida as an

electrical engineer within

their Microelectronics

Department. In his free time Tyler enjoys playing video

games, writing, jigsaw puzzles and reading and watching

several topics including meteorology, astronomy, geology

and in-depth articles about mechanics in video games. In

the future Tyler would like to live in rural New

Hampshire, preferably near the town of New London.

Christopher Hubbard will

graduate from UCF in May 2015

with a B.S. in Electrical

Engineering. Chris has accepted an

offer for a position at Northrop

Grumman in Melbourne, Florida as

a Systems Integration and Test

Engineer. Throughout his

undergraduate career, some of his

favorite courses were Electronics,

HDL in Digital System Design, DSP

Fundamentals, Intro to Modern &

Robust Control, and Digital Systems. Outside academia,

he enjoyed UCF’s gymnasium, leisure pool, football game

days, and skateboarding around campus. He hopes to

Fig. 7. VESP device housing prototype

become a great asset at Northrop Grumman, and spend his

days surfing, working, and enjoying life by the beach.

Leonardo Achutegui

will be graduating in

May 2015 with a B.S.

in Electrical

Engineering.

Leonardo's interests for

the future are Power

Systems Design and

Project Management.

He aspires to work in a

Power Plant or Utility

Company and at the

same time work in his

Masters degree in Power Systems. During his

undergraduate time in UCF, Leonardo acquired many

skills in electronics and design that has led him to choose

the path of power systems. Aside from his engineering

career, Leonardo enjoys outdoor activities and traveling.

Alejandro Torroella will

graduate from UCF in May

2015 with a B.S. in

Computer Engineering.

Alejandro has accepted an

offer from Harris

Corporation in Melbourne,

Florida as a software

engineer in the Image

Processing team. During

his time at UCF, Alejandro

has done computer vision

research and co-authored a paper published in the ECCV

2014. His other topics of interest include computer

graphics, HCI, computer architecture, and embedded

systems. In the future, he looks forward to getting his Ph.

D., while doing research in any of his fields of interest

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of the UCF EECS faculty, most notably, the TI

Innovation Lab staff, Nathan Bodnar, David Douglas, and

Dr. Samuel Richie. Without their assistance and guidance,

the project team would not have accomplished their goals.

Additionally, we would like to thank the members of the

faculty review committee for taking the time out of their

schedules to participate in our project’s presentation.

