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Abstract — The Visually Entertaining Smart Prism, or 
VESP for short, is intended to be a luxury entertainment and 
utility device that works in conjunction with readily available 
internet services and smartphone devices. The project was 
chosen for its broad range of hardware and software 
specifications, demonstrating the use of LCD display drivers,  
sensors, ARM, Arduino, Linux, Wi-Fi and Bluetooth wireless 
communication, battery powering, charge controllers, power 
distribution, and audio processing. The goal of the project 
was to have a working prototype with as much functionality 
as the team could implement during the period of Senior 
Design, along with the potential of including more features in 
the future. 

Index Terms  —  VESP, LCD Display, ARM, Arduino, 
HDMI, RGB, Wi-Fi, Bluetooth, Battery power, Smart device, 
Sensors, OpenGL, Embedded Linux, Qt. 

I. INTRODUCTION 

The world of technology is progressing in such a way 

that gizmos and gadgets are popping up everywhere for a 

variety of purposes, all to help mankind’s daily routine be 

more efficient and enjoyable. Most notable of these 

gadgets are tablets, smartphones, gaming consoles, and 

smart TVs. This is the motivation behind the idea for the 

Visually Entertaining Smart Prism, or VESP. The goal was 

to make a fun, autonomous notification center that could 

easily find its place on any desk or table, in either a home 

or workplace environment. This technology would help 

assist the user stay notified of upcoming calendar events, 

current weather conditions, or simply the time. It would 

also provide entertainment for the user through 3D 

animation imagery and music playback from the user’s 

phone. In addition, the ability to operate the device 

portably was desired, and so the VESP was split into two 

portions, the VESP device, and the dock. The following 

figure (Fig. 1) illustrates this feature. 
Working on this project offered the chance for the 

project engineers to apply their undergraduate coursework 

and get experience in areas such as PCB design, wireless 

communications, power distribution design, computer 

graphics, sensor, and Linux/ARM development, just to 

name a few.. It also helped to develop other professionally 

applicable skills such as technical research, data analysis, 

team work, project management, and working under strict 

deadlines.  

II. SYSTEM COMPONENTS 

The VESP is composed of various hardware 

components, purchased or designed, that work in unison to 

give the VESP its essential functions. Each of the 

components will be briefly described in this section. 

A. Main Processing Unit 

At the heart of the VESP lies the Main Processing Unit 

(MPU). The VESP MPU is what runs all of the software 

for the project. In addition, the MPU takes in incoming 

orientation data from the MCU, as well as touch data from 

the touchscreen controller. It was anticipated that the 

VESP would have to be able to handle all of this 

processing, while also minimizing the amount of lag that 

the user might experience. With that in mind, the 

ODROID XU3 from HardKernel was chosen for the MPU. 

The device was within our size constraints and is a very 

high performance ARM development platform that could 

more than satisfy all of our current and potential future 

requirements. 

B. LCD Displays 

The LCD displays are an essential part to the VESP’s 

aesthetic and form factor. For that reason, the selection of 

which LCD displays to use for the project was crucial. Not 

Fig. 1. VESP device and dock high-level diagram 



only did the screens have to meet the performance 

specifications, special consideration had to be given on the 

dimensions as well. This is due to the project requirement 

that all of the internal components for the device (MCU, 

MPU, PCBs, battery, data/power cables, etc.) had to fit 

within the form factor. Too big of displays would have 

made the final result too bulky to carry by hand, while too 

small of displays would mean even stricter size 

constraints.  

C. LCD Controller 

The LCD controller is responsible for taking in the 

HDMI output from the MPU and distribute it to the four 

LCD displays. In addition, the LCD controller is 

responsible for handling the raw touchscreen data coming 

from the capacitive touch screen and processes it to be 

then used by the MPU. 

D. Microcontroller 

The VESP’s MCU is used to control and process the 

sensor subsystem. Having an MCU added additional 

hardware connection options and helped take some of the 

processing load off the MPU. The MCU had to be 

connected to the motion sensor, the gyroscope, the 

ambient light sensor, the MPU, and the power distribution 

PCB. 

E. Sensors 

Various sensors were incorporated into the VESP device 

in order to give it its “Smart” acronym, these included a 

motion sensor, an ambient light sensor, and a gyroscope. 

The motion sensor’s purpose for the project was to 

assist in power saving. It would sense when a user was 

nearby or present, so that the VESP would “know” 

whether to auto lock the device software and power off the 

LCD display backlights, which on any portable device is 

the main perpetrator for battery power consumption. This 

meant that the sensor’s range should encompass the length 

of a typical household room. 
The purpose of the light sensor is to measure the 

surrounding lighting and detect changes, giving this 

information to the MCU. That data would then be used to 

adjust the brightness of the LCDs accordingly. This is to 

further help make the VESP as power efficient as possible 

which is especially important when it is off the power 

dock. 

The purpose of the gyroscope will be to sense when the 

VESP is off the power dock and to determine the 

orientation of the VESP as the user moves it around in 

their hands. The data it gathers will be processed by the 

MCU which will then send commands to the MPU to 

change the orientation of the displays accordingly. 

F. Wi-Fi 

Every relevant electronic device on the market has some 

sort of connection to the internet, the VESP is no different. 

For the purpose of getting Wi-Fi on the VESP, a 

proprietary Wi-Fi module was purchased from 

HardKernel. The module is sleek and small enough to fit 

within the enclosure without issue, can be powered via one 

of the MPU’s USB ports and provides more than sufficient 

bandwidth for the purposes of the project. 

G. Power Distribution 

In order to make the VESP device portable, the use of a 

battery and battery charge controller was needed for the 

project. For the battery, a lithium-ion polymer battery was 

used. This type of battery is lightweight, small and can 

output sufficient power to the drive all of the internal 

components. For the battery charge controller, the 

LTC4020 from Linear Technology was used. The charge 

controller charges the battery at a constant-

voltage/constant-current, and is designed to withstand a 

maximum charge of 2 Amps. Also, the LTC4020 is able to 

pull the current necessary to power all the devices at 

maximum usage. 

H. Dock  

The dock for the VESP houses all of the components 

that for one reason or another, weren’t necessary to 

include inside the VESP device. This included audio 

speakers, an audio amplifier, a Bluetooth audio receiver, 

and an AC-DC converter circuit. For the components 

pertaining to audio, a TA2024 Class-D audio amplifier 

was used. This would take in audio signals coming from 

the Bluetooth audio receiver and output them to the audio 

speakers. For the purpose the project, two 2”x3” extended 

range speakers were used. For the AC-DC converter, an 

AC-DC transformer was used in conjunction with a 12V 

regulator, which was used to power both the audio 

amplifier, as well as the battery charge controller within 

the VESP device. 

III. SYSTEM OVERVIEW 

This section will briefly describe the organization of the 

hardware, and software components, as well as the go into 

more detail on the interactions between the hardware, and 

software components. This is will give an overview of how 

the VESP works, before a low-level description is given. 

A. Hardware 

Figure 2 in the next page shows the hardware block 

diagram for the VESP device. Each of the blocks represent 



a major component in the systems; the arrows connecting 

the blocks represent an interaction between the 

components. Starting from the upper-left side, the MCU is 

connected to the gyroscope, ambient light, and motion 

sensors and handles all of the raw sensor data. The 

orientation and motion data is passed to the MPU to be 

used as input for the software. The MCU is also connected 

to the Power Distribution board in order to control the 

backlight power going to the LCD displays. The MPU is 

connected to the all of the other major hardware 

components. The MPU sends its video data to the LCD 

controller, which then distributes it to the four LCD 

displays. The MPU is connected to the internet via the 

connected Wi-Fi module. Finally, the LCD controller 

sends its processed touch data to the MPU. 

 

B. Software 

Figure 3 below shows the software block diagram for 

the VESP. Each of the colored blocks represent major 

software components, while arrows represent relevant 

interactions between them. Starting from the upper-left, 

the MCU takes in the raw sensor data coming into the 

various sensors connected to it, and processes the data to 

an expected format for the rest of the VESP to understand. 

The orientation data and motion data is sent to the MPU 

which is accepted by the Linux environment running with 

it. The Linux environment also accepts the processed 

touch data coming from the LCD controller. The accepted 

data going into the Linux environment is then used by the 

Qt Framework, which drives all of the VESP’s 

applications. 

B. Dock 

Figure 4 below shows the hardware block diagram 

describing the dock for the VESP. From the diagram, the 

power supply is powering both the audio amplifier and the 

Bluetooth receiver. The audio amplifier and the Bluetooth 

are connected to provide audio data transfer. Finally, the 

amplifier is connected to the audio speakers to output 

sound. 

Fig. 2. VESP Hardware Block Diagram 

 

Fig. 3. VESP Software Block Diagram 

 
Fig. 4.  Dock Hardware Block Diagram 



IV. HARDWARE DETAIL 

This section will give a lower-level view of the 

hardware components previously mentioned. 

A. MPU 

As previously stated, the MPU chosen for the project 

was the ODROID XU3 by HardKernel. As you can see 

from the Table 1 below, the XU3 has a fast, dual quad-

core CPU ARM architecture, giving the project more than 

enough processing power to work with when developing 

applications, without needing to take to prioritize coding 

efficiency. Along with its speedy processor, the XU3 has 

2GB of DDR3 RAM, giving it the VESP the ability to run 

more than one applications in the background. Another 

major feature of the XU3 is its graphics chip, the Mali-

T628 MP6, allowing for the development of 3D hardware 

accelerated graphics. Other useful features of the XU3 are 

its 30-pins for I/O (GPIO/UART/SPI/I2C), four USB 2.0 

ports, and HDMI output. 

 

Model ODROID-XU3 Lite 

CPU Quad-core Cortex-A15/ Quad-core 

Cortex-A7 Combo 

GPU Mali-T628 

RAM 2GB DDR3 

 Memory 16GB  

I/O Ports USB 3.0 Host x 1, USB 2.0 Host x 4, 

USB 2.0 OTG x 1, 30-pin 

GPIO/IRQ/SPI/ADC 

Video Output Micro-HDMI 1.4a 

API Support OpenGL ES 1.1, 2.0 and 3.0 

Power 5V @ 4 A 

 

 

B. LCD Displays 

The LCD displays chosen for the project were the 

ER_TFT070_4 from BuyDisplay.com. The displays 

measure ~7” diagonally, have a 800x480 resolution, and a 

color depth of 24 bits. The 7” option was ultimately 

chosen to be the ideal size for the project (compared to 

similarly priced and capable 5” displays), providing plenty 

of space for internal components, without making the 

VESP excessively bulky. The voltage required to power 

each screen was 3.3V is similar to many of the other 

components in the project, which assisted in simplifying 

the power supply design. In addition, the ER_TFT070_4 

came with an optional configuration which included a 

mounted capacitive touch screen, thereby illuminating the 

need to research and purchase a separate sensor and 

having to mount the sensor on the display manually. 

C. MCU 

The selection for the MCU was the ATmega328 on the 

Arduino Uno 3. This option was a great fit for the project, 

Table 2 below shows the MCU’s specifications. It offers a 

sufficiently fast clock, enough to handle all of the sensors 

and transmitting data to the MPU. Plenty of digital I/O 

pins that include UART, SPI, I2C, and PWM. The PWM 

is particularly important as it will be the way the MCU will 

control the backlight brightness of the displays. A USB 

connection is available to both power the device and 

transmit data to the MPU. This board operates on a 

voltage range of 7-12V which was within the scope of the 

VESP’s power range. Additionally, two of the sensors 

could be powered directly from the board’s 3.3V pin and 

5V pin, which helped to simplify the power supply design. 

Software-wise, there were many different libraries and 

examples to reference online, which helped to ease the 

development of the project’s sensor software. 

 

MCU ATmega328 

Clock Speed 16 MHz 

Input Voltage 7-12V 

Operating Voltage 5V 

Digital I/O 14 

 Analog I/O 6 

Flash Memory 32KB 

I/O Voltage 3.3V & 5V 

D. Motion Sensor 

The selection for the motion sensor was a PIR sensor 

found on Adafruit.com. This sensor could sense up to 20 

feet away, was a reasonable size, and runs on a voltage 

range of 5V-16V, although the project runs it on 5V as 

that was more compatible with the power supply design. 

The sensors design also offered screw-holes, which helped 

with mounting it on the top of the VESP. 

E. Ambient Light Sensor 

The light sensor selected for the project was the 

TSL2561 Digital Luminosity Sensor. This sensor had a 

vast detection range of 0.1 to 40,000 lux with the option to 

measure IR, visible, or full-spectrum light. It runs on a 

supply voltage of 3.3V and communicated digitally via 

I2C which made it a great match for the MCU. 

F. Gyroscope 

The gyroscope selected for the project was the MPU-

3050 Triple Axis Gyroscope from Invensense.com. 

Table. 1.      MPU Specification and Features  

Table. 2.      MCU Specification and Features  



Additionally, this gyroscope will be used on the OSEPP 

Gyroscope Sensor Module. This component runs on a 5V 

power supply so it was easily integrated into the power 

supply design. The gyroscope interfaces with the MCU 

through I2C. The issue that arose from both the light 

sensor and the gyroscope requiring the MCU’s single I2C 

connection was overcome through the use of the OSEPP 

module, as it provided a pass-through connector, allowing 

these two sensors to be chained together without 

interrupting each other’s data flow. 

G. LCD Controller 

The LCD controller is one of the hardware components 

that was designed for the project. The LCD controller 

satisfies two functions: distribute the video signal to the 

four LCD panels, process incoming touch data from the 

capacitive touch panel. For the first function, the LCD 

controller first takes the HDMI output from the MPU 

through its female HDMI connector and sends it to the 

HDMI decoder, which then converts the TMDS signals to 

24-bit parallel RGB signals that the LCD displays can 

interpret. The HDMI decoder chosen for the project was 

the TI TFP401A, it is able to decode video resolutions up 

to 1080p @ 60 Hz, plenty for the purpose of the project. 

For the second function, the LCD controller includes the 

FocalTech FT5406 capacitive touch panel controller, 

which takes in the raw touch data from the capacitive 

touch panel and processes it to then send to the MPU for 

use. The FT5406 uses the I2C protocol for transmitting its 

touch data to the MPU. Figure 5 shows the PCB board 

layout for the LCD controller. 

H. Charge Controller 

    A charge controller was necessary to safely charge the 

lithium-ion polymer battery. The LTC4020 was configured 

to provide a constant-current/constant-voltage charge 

profile to avoid any damages on the battery. It includes a 

4-switch buck/boost dc/dc power converter to optimize the 

battery charging and allowed us to accept input voltages 

up to 55V and produce voltages that are lower, higher or 

the same as the input voltage. This was essential when the 

device was plugged to the dock because it allowed us to 

charge the battery and at the same time be able to power 

the components in the device. Also the charger was 

configured with a timer to sense the end of cycle of battery 

charging and stop charging after 22 minutes while the 

device was still connected to a power supply. The 

LTC4020 is able to manage the power distribution 

between the input voltage, the backup battery, and the 

output in response to the load variations, battery charge 

requirements and input power limitations. 

    Aside from the LTC4020, there were other IC 

components that allowed us to power all our small devices 

in VEST. The TPS54618 step down voltage device, 

outputted a voltage of 3.3V with a max current of 6 amps. 

The LMR62421 is a step up voltage regulator that 

powered the devices that needed a 12 volts input like the 

motion sensor and the Arduino. The LM3478 is a 

switching regulator to power the MPU and the FAN5333A 

is high current serial LED driver that was used to power 

the LCD backlight and adjust its frequency. 

Fig. 5. PCB layout for the LCD Controller.  

 

Fig. 6. PCB layout for the charge controller 



V. SOFTWARE DETAIL 

  This section will describe in detail the software 

running in the VESP. This will include the architecture, 

the overall GUI, and each of the applications available in 

the VESP. 

A. Software Architecture 

For developing the software for the VESP project, the 

Qt Creator IDE was used. The software all was written 

using C++, for the main logic, in conjunction with QML 

(Qt Meta Language), for the user interface. QML is a 

declarative language developed by the Qt Company, and 

allows for developing fast, easy, and beautiful user 

interfaces. In addition, other APIs and SDKs were used in 

creating the VESP software. The OpenWeather API is 

used to fetch weather data based on the positioning data 

obtained from Wi-Fi, to then display to the user. The 

Google Calendar API is used to fetch calendar event data 

from the user’s Google account to remind the user of any 

events going on that day. Finally, the Mali OpenGL ES 

SDK, in conjunction with the OpenGL ES 2.0 API was 

used is used to render visually appealing, hardware 

accelerated 3D graphics to the displays. 

B. Graphical User Interface 

The GUI of the VESP is intended to be both visually 

appealing, simple and easy to use. Figure 7 on the left 

shows the state diagram for the general UI flow. The GUI 

is split up between two major elements: the Lock screen 

and the Home screen. The Lock screen is intended to be 

the first thing the user sees when starting the software; 

showing the current time in analog format, as well as the 

current weather of the VESP’s current location. A simple 

touch of the screen will transition the GUI to the Home 

screen. The Home screen’s purpose is to show all of the 

VESP’s applications, and is where all of the VESP’s 

current (and future) applications are (will be) launched 

from. The Home screen also has a lock button on the 

bottom which will transition the UI back to the Lock 

screen. A touch on any of the application icons will launch 

the respective application. Every application of the VESP 

has a home button on the bottom of the screen that will 

transition the UI back to the Home screen. The UI will 

also transition back to the Lock screen either after a set 

amount of time has passed without any user input, or if the 

device detects that no one is present, essentially “locking” 

the device. In addition, every state of the UI (lock, home, 

and application) have an portrait and landscape layout, a 

sufficient change in orientation of the device will transition 

the device to/from either layout. 

C. Applications 

The applications on the VESP are the Animation apps, 

the calendar app, and the weather app. Of the three, the 

Animation is the only app which has to be launched in 

order to use. The other two apps are passive, run in the 

background, and require no user interaction to use. 

The Animation applications all display a particular 3D 

graphic on the screen. Some applications take in touch 

input from the user and change accordingly, while others 

simply loop over time. Their purpose is purely aesthetic 

and give the VESP its first two letters of the acronym 

(Visually Entertaining). The weather app is a passive app 

which runs on the Lock screen, displaying the current 

temperature and weather condition of the location obtained 

from the positioning data coming from the Wi-Fi 

connection.  Finally, the calendar is the other passive app 

that runs on the Lock screen, it displays calendar event 

reminders to the user. Calendar event reminders will be 

stored in a queue data structure, when a user has dismissed 

the currently displayed reminder (via touch), the next 

reminder will be displayed. 

 

 

 

Fig. 7. VESP GUI State Diagram 

 



VI. HOUSING 

The housing for the VESP is split into two separate 

components, one for the VESP device and the other for the 

dock. For both of the housings, a clear plastic acrylic was 

used to hold the components together. For the VESP 

device housing, exact measurements were made on the 

LCD displays to make the windows of the housing as tight 

as fit as possible. The windows are joined using a 

combination of a jigsaw pattern intersections and acrylic 

glue. In addition, for the sake of making sure that all of the 

internal components fit within the enclosure, the housing 

windows were made to be a couple of inches larger than 

initially planned. 

For the dock, the housing was made to be wider than the 

VESP device, with a significant depression on the top the 

size of the device in order to ensure a secure fit between 

the dock and the device. On the opposite sides of the dock, 

a hole was made in order to include the speakers. Other 

holes were made for the wall outlet connector, and the 

battery charging connector as well. Figure 7 below shows 

a prototype of the housing design with the four LCD 

displays placed in the windows. 

  

 

 

 

VII. CONCLUSION 

The world is filled with a plethora of entertainment and 

utilitarian electronic devices. Every day, more and more of 

such devices arrive to the market. The VESP is an attempt 

to present a novel idea for a new device, with an 

interesting, (albeit unorthodox) form factor. The VESP 

prototype described in this documentation is only the first 

step. The internal hardware contained within the device is 

powerful enough to handle new and exciting features, and 

with a powerful framework such as the one provided by 

Qt, the possibilities are near infinite. With that said, in the 

future, the team would like to improve on the design of the 

VESP, as well improve its current functionalities. In 

conclusion, the project gave the team invaluable learning 

experience in the many disciplines of Electrical and 

Computer Engineering. 

ENGINEERS 

Tyler Drack will 

graduate from UCF in May 

2015 with a B.S. in 

Electrical 

Engineering. Tyler has 

accepted an offer from 

Harris Corporation in Palm 

Bay, Florida as an 

electrical engineer within 

their Microelectronics 

Department.  In his free time Tyler enjoys playing video 

games, writing, jigsaw puzzles and reading and watching 

several topics including meteorology, astronomy, geology 

and in-depth articles about mechanics in video games.  In 

the future Tyler would like to live in rural New 

Hampshire, preferably near the town of New London.   
 

Christopher Hubbard will 

graduate from UCF in May 2015 

with a B.S. in Electrical 

Engineering. Chris has accepted an 

offer for a position at Northrop 

Grumman in Melbourne, Florida as 

a Systems Integration and Test 

Engineer. Throughout his 

undergraduate career, some of his 

favorite courses were Electronics, 

HDL in Digital System Design, DSP 

Fundamentals, Intro to Modern & 

Robust Control, and Digital Systems. Outside academia, 

he enjoyed UCF’s gymnasium, leisure pool, football game 

days, and skateboarding around campus. He hopes to 

Fig. 7. VESP device housing prototype 



become a great asset at Northrop Grumman, and spend his 

days surfing, working, and enjoying life by the beach. 
 

Leonardo Achutegui 

will be graduating in 

May 2015 with a B.S. 

in Electrical 

Engineering. 

Leonardo's interests for 

the future are Power 

Systems Design and 

Project Management. 

He aspires to work in a 

Power Plant or Utility 

Company and at the 

same time work in his 

Masters degree in Power Systems. During his 

undergraduate time in UCF, Leonardo acquired many 

skills in electronics and design that has led him to choose 

the path of power systems. Aside from his engineering 

career, Leonardo enjoys outdoor activities and traveling. 

 

Alejandro Torroella will 

graduate from UCF in May 

2015 with a B.S. in 

Computer Engineering. 

Alejandro has accepted an 

offer from Harris 

Corporation in Melbourne, 

Florida as a software 

engineer in the Image 

Processing team. During 

his time at UCF, Alejandro 

has done computer vision 

research and co-authored a paper published in the ECCV 

2014. His other topics of interest include computer 

graphics, HCI, computer architecture, and embedded 

systems. In the future, he looks forward to getting his Ph. 

D., while doing research in any of his fields of interest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGEMENT 

The authors wish to acknowledge the assistance and 

support of the UCF EECS faculty, most notably, the TI 

Innovation Lab staff, Nathan Bodnar, David Douglas, and 

Dr. Samuel Richie. Without their assistance and guidance, 

the project team would not have accomplished their goals. 

Additionally, we would like to thank the members of the 

faculty review committee for taking the time out of their 

schedules to participate in our project’s presentation. 

 


