
Page | i

COLLEGE OF ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE

ELECTRONIC LEGO SORTER

Group 33

Nike Adeyemi

David Carey

Katrina Little

Nickolas Steinman

Senior Design 1 - Fall 2014

Page | ii

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 1

2.0 PROJECT DESCRIPTION 1

2.1 PROJECT MOTIVATION 1
2.2 PROJECT GOALS AND OBJECTIVES 3
2.3 TEAM MEMBER RESPONSIBILITIES 4

 3.0 RELATED RESEARCH 5

3.1 EXISTING PROJECTS AND PRODUCTS 5
3.1.1 Existing (Electronic) LEGO® Sorters 5
3.1.2 Projects With Relevant Components 8

3.2 INITIAL PROJECT CONSIDERATIONS 9
3.2.1 LEGO® Separation, Transportation, and Identification 9
3.2.2 LEGO® Sorting Component 10
3.2.3 User Input 12
3.2.4 Control 14
3.2.5 Image Processing 15
3.2.6 How to Gather the Image 16

3.3 SUBSYSTEM SPECIFIC RESEARCH 18
3.3.1 Conveyor Belts 19
3.3.2 Lift System 22
3.3.3 Rotating Arm System 25
3.3.4 Image Processing 29
3.3.5 Main Microcontroller 32
3.3.6 LCD Screen 34
3.3.7 Sweeper Arm 35
3.3.8 Power Supply 37

4.0 PROJECT DESIGN DETAILS 40

4.1 BLOCK DIAGRAM 41
4.2 HARDWARE DESIGN 41

4.2.1 Conveyor System 42
4.2.2 Lift Arm System 45
4.2.3 Rotating Arm System 46
4.2.4 Image Processing System 51
4.2.5 Main Microcontroller 53
4.2.6 LCD Display 57
4.2.7 Sweeper Arm 60

4.2.8 Power Supply 61
4.3 SOFTWARE DESIGN 75

4.3.1 User Interface 76
4.3.2 Image Processing 79
4.3.3 Conveyor Belt 81
4.3.4 Lift Arm System 81

 4.3.5 Errors 82
4.3.6 Code Integration 83

5.0 INTERFACE BEAGLEBONE BLACK AND ATMEGA32U4 83

6.0 PROTOTYPE CONSTRUCTION 84

6.1 MATERIALS LIST AND PARTS ACQUISITION 84
6.2 PCB VENDOR 85

Page | iii

6.3 PCB SOFTWARE 86
6.4 FINAL CODING PLAN 87

6.4.1 User Interface 87
6.4.2 Error Processing 90
6.4.3 Image Processing 91
6.4.4 Other Subsystems 95

7.0 PROTOTYPE TESTING 98

7.1 HARDWARE TEST ENVIRONMENT 98
7.2 HARDWARE SPECIFIC TESTING 98

7.2.1 Conveyor Testing 98
7.2.2 Rotating Arm Testing 99
7.2.3 Lift Arm Testing 99

7.2.4 Sweeper Arm Testing 100
7.3 SOFTWARE TEST ENVIRONMENT 100
7.4 SOFTWARE SPECIFIC TESTING 100

7.4.1 User Interface Testing 101
7.4.2 Image Processing Testing 103
7.4.3 Error Handling Tests 107
7.4.4 Hardware Communication Testing 109

8.1 MILESTONES 113

APPENDIX A - COPYRIGHT 114

Page | 1

1.0 Executive Summary

LEGO has become a household name – you can ask just about anyone if they have ever

played with LEGO’s as a child and the answer will most likely be yes. Not only are

LEGO’s a toy, they also help children develop important skills such as problem solving,

organization, and planning through construction (among many other critical development

skills). LEGO has evolved tremendously through the years. They have even developed

LEGO kits for adults such as the “Mindstorms NXT” which includes a programmable

robotics kit. There are really only two drawbacks when it comes to LEGO’s. The first

drawback is the price. The second drawback is for the true LEGO collectors. If you

collect LEGO’s for many years, you wind up with many pieces and it is very difficult to

sort through 100 pounds of bricks to replicate one of the original LEGO “sets” that you

purchased a long time ago. This project is being designed to tackle both of these

problems.

2.0 Project Description

This section outlines the motivation, goals & objectives, and team member

responsibilities of the project.

2.1 Project Motivation

More than 400 billion LEGO bricks have been produced since 1949. LEGO bricks are

available in 53 different colors and 19 million LEGO elements are produced every year.

There are more than 8 quadrillion (8,181,068,395,500,000) possible combinations of

minifigures that can be made using all of the unique minifigure parts over the last 30

years. The motivation for an electronic LEGO sorter is extremely significant. There are

many blogs online of LEGO fanatics with approaches to sort LEGO’s using home storage

solutions to tackle the organization problems associated with LEGO’s. Unfortunately,

most LEGO collectors do not have the technical knowledge to build a sorter to solve this

problem. The motivation behind this project is to tackle the two main difficulties with

LEGO’s. The first shortcoming being the price and the second being the headache of

sorting LEGO parts by hand.

Figures 2.1-A and 2.1-B illustrate a before and after depiction to the LEGO sorting

process. Even after spending hours hand sorting an entire LEGO collection you can easily

see there is still a lot of room for improvement. Hand sorting 20 pounds of LEGO’s takes

about 8 hours and by the end of it all the small parts get thrown into a bin unsorted due to

exhaustion.

Page | 2

Figure 2.1-A : Huge Collection of Unsorted LEGO

Figure 2.1-B: Huge collection of LEGO’s that have been hand sorted

Currently, there is only 1 type of LEGO sorting element that you can purchase. These

plastic sorters consist of four tiers, each tier having different sized slots. The figure below

easily sums up the problem with this method to LEGO sorting.

Page | 3

Figure 2.1-C: Multi-Tiered LEGO sorting element

The goal of this project is to sort through large quantities of LEGO’s autonomously

(meaning you turn on the sorter and leave it alone). You may wonder how this tackles the

first drawback to LEGO’s which is the price. Some LEGO “Star Wars” sets sell for

thousands of dollars. You can buy a 20 pound lot of LEGO’s for around $200 (give or

take). So, the idea is that if you buy large bulk lots of LEGO’s you can use this

“Electronic LEGO Sorter” to slowly piece together these more expensive sets slowly over

time as a more affordable option to buying a new set in stores. This project aims to

tackle both problems of price and inconvenience.

2.2 Goals and Objectives

The goal of this project is to sort a set library of LEGO® bricks as accurately as possible

by color or by shape, which is decided by the user using a touch screen. This way if the

user wants to further sort the bricks such as by color and shape they would just remove

the bin they wish to sort and put it back in for further sorting. Because of the variety of

LEGO®s that are out in the market sorting through them to get the exact part needed

becomes very time consuming. So for hobbyist who cannot find a certain part or sellers

who need an efficient way to find and catalogue their LEGO® parts this project could be

the solution to relieve this problem. The user needs is a Library of the different LEGO®

parts and colors.

The main objective of this project is accuracy therefore speed was not as important of a

factor for this LEGO® sorter. With the library loaded in both the AtMega2560 and the

BeagleBoneBlack, the user will use the touch screen to specify how to sort the bricks

whether it is by color or by shape. Then the user decide which of the seven containers the

Page | 4

blocks will go in with one of the containers being used to collect any errors or bricks the

image processor could not determine. The user can assign multiple buckets to hold the

same types and there exists common colors like yellows, whites, blues, etc. The bricks to

be sorted will be loaded into a container with a lift system built in. The lift will carry a

hand full of LEGO® parts up and dump them on a two-stage conveyor belt. The

conveyor belts are used to space out the parts before they enter the image processor.

Setting the first stage belt to a slow speed and the second stage belt to a higher speed does

this. The bricks then slowly drop to the faster belt spacing the bricks apart. Each brick

enters the image processor ideally one by one. Once a LEGO® enters the processor the

conveyor belt stops and the image processor system becomes active. Depending on what

the user decided how to sort, the image processor either check color and compare it to

some color constants or using a mirror, edge detection algorithm, and other algorithms to

compare the given part to the parts in the library in memory to decide what kind of part it

is. Once the processor is done and decides which bucket to put it and rotates the arm to

the correct position. The sorter then pushes the part into a chute, which will guide it to the

appropriate container. The process will continue until all parts have been dealt with. All

these processes will be done using the AtMega32u4 for motor, lift, and LCD control and

a Beagle Bone Black to act as an image processor.

2.3 Team Member Responsibilities

The group involved in the project consists of two Electrical Engineers and two Computer

Engineers. This helps to determine a natural way to divide the work within the project.

The Electrical Engineers were able to focus more on the hardware side of the project,

dealing with the circuit boards and power, while the Computer Engineers were devoting

the majority of their time to the software of the project, coding everything up and making

sure all of the parts are communicating properly. Beyond that, each person has an even

more specific role that they play within the project.

Nike Adeyemi (Computer Engineering)

Nike’s focus in the project will was the User Interface. Her role was to build a user

interface that will be quick to learn, easy to understand, and very effective in aiding the

user in setting up the organization of the project in exactly the way that the user desires.

David Carey (Computer Engineering)

David’s primary area of focus for the project was on the image processing portion of the

sorter. His role was to make sure that the Legos are properly analyzed and then sorted

correctly based upon their color shape and size.

Katrina Little (Electrical Engineering)

Page | 5

Katrina’s primary area was that of the power supply, lift arm subsystem, and interfacing

with the Atmega and BeagleBone. She designed the source of power for the entire

project to ensure that the sorter receives enough power to be able to function properly,

without receiving so much power that it becomes more harm to the system than good.

Also she is the one in charge of making sure that communications are working properly

between the brains of the project and the mechanical parts.

Nick Steinmann (Electrical Engineering)

Nick’s primary roles included setting up the Conveyor Belt and Rotating Arm systems as

well as setting up the PCB for the Atmega. The Atmega chip was utilized on a custom

PCB board built by Nick for this project.

3.0 Related Research

This next section will be devoted to showing the research done in different areas that

ultimately led to the decisions that were made regarding the Lego sorter.

3.1 Existing Projects and Products

The first place that research for the project was started was with similar projects and

products. This includes other Lego sorters as well as other projects that used components

similar to those being used in the Lego sorter.

3.1.1 Existing (Electronic) LEGO Sorters

When choosing this project it was already known that there were already a handful of

sorters that organize blocks and other various LEGO parts. Many of those were created

using the Mindstorm NXT LEGO smart brick as the main controller. The sorters that we

focused on were those that could sort LEGO bricks and other parts and of those sorts they

were organized into three categories: Sorters that sort only by Size and shape, Sorters that

organize by color, and sorters that are organized by some combination of the previously

stated types.

There were sorters we saw organized only specific parts by size or length for example is a

sorter that only sorts lift arms, created by a user on YouTube known as Akiyuky, and

uses a simple system to process them. First the sorter will orient the parts a certain way to

enter the system for example the sorter in figure 3.1.1 – a used two lifts that alternate

going up a down to change the lift arm orientation and to load the lift arm onto the

Page | 6

conveyor belt. The sort then makes sure the that the parts only enter one at a time and

back to back and any part that ends up onto of the other or does not fit in the entryway is

pushed into a chute and back into the loading bucket. The lift arms that made it into the

sorter then travel across the conveyor belt until it slides into the first hole that is big

enough to fall in the hole getting bigger the longer it travels and into the correct

containers.

Figure 3.1.1-A LEGO Lift Arm Sorter

There is also another sorter that is able to separates a wider variety of bricks both using a

similar set up. The same YouTube user Akiyuky created this sorter as well using image

processing as a means to sort the parts. In his sorter, the parts entered the sorter with a lift

arm by the hand full and carried though the two-stage conveyor belt. The two conveyor

belts are used for spacing out the parts so they can enter the image processor one by one

and sorted into the appropriate bucket. This being a good start but they only sort by shape

and the sorter that we build must also sort by color.

Page | 7

Figure 3.1.1-B Image recognition screen

There also LEGO sorters that organized by color. It goes through a similar process, as the

part sorter only that a color sensor is needed to detect the brick color. However many of

the sorts seen using this method was only using the same brick type, as color was the

main focus of their machine.

Finally there were sorters that are able to sort both by shape and color and are what we

want for our own sorter. Of the ones that were seen they were simple as that only used

simple bricks like the 2 x 2 and 2 x 4 bricks and sort them. It makes sense though as

sorting a variety of parts with a variety of colors will need a large amount of containers to

use. While our sorter will sort through many parts there is only a limited amount of

container to use.

So with everything considered Akiyuky’s model is the closest to the model we had in

mind. It was mainly because of its use of image processing. Because of this it can easily

be adjusted in order to sort by shapes in one setting and sort by color in a different

setting. This essentially turns our sorter into a hybrid sorter as in order to sort by color

and shape the user will just have to go one pass to sort by color or shape and a second

pass with the opposite settings.

3.1.2 Projects with Relevant Components

Page | 8

For our sorter the design will require use of image processing, a conveyor system, and a

loading system. There are a wide amount of parts to choose from so to narrow down our

choices we looked at other senior design project and what parts they used for their project

that relates to our project by providing similar need to what we need.

T-100 Watchdog - The T-100 Watchdog was an earlier senior design project in spring

2014 in UCF. It was an all-terrain vehicle that uses computer vision and autonomy to

track and pursue a target based on the heat signature. Using the web camera and thermal

camera, the image processor it is able to track any movement that has occurred, acquire

the target that was the source of that movement, and track that target all in real time.

The team was able to program these functionalities using OpenCV an open source

computer vision library running in a Linux based operating system as OpenCV has the

majority of the algorithms needed for their task. All the image processing was done

through the BeagleBone Black as it acted as the main controller for all the subsystems

that were running in this vehicle.

For the motors each motor that controlled each wheel individually were controlled by

separate microcontrollers each of them connected to the main controller the BeagleBone

black.

Solar Tracker – The solar tracker is another UCF Senior design project. The purpose of

this project is to use a mobile application to control the solar tracker to convert the solar

energy in order to provide power to other devices. Since they are dealing with solar

tracking it is important that the solar panels are facing the sun to get maximum energy

input. Therefore motors are needed to rotate the panels and are program to rotate to the

right orientation depending on the suns location. Here they considered using motor

controllers as opposed to microcontrollers believing that just only using microcontrollers

might not have enough power to drive the motors. When used in conjunction with the

microcontroller the motor controllers just receive information from the microcontroller

on how to run with just a few inputs. They use DC motors to rotate the panels and the

servomotor to determine how much the motor should rotate. The LCD screen they had

was just a simple 2 x 16 screen that is linked the microcontroller used to monitor the

status of the device.

Page | 9

3.2 Initial Project Considerations

This section will cover existing projects with similar components to be used in this

project, as well as similar LEGO sorters, subsystem designs that were rejected, and

finally subsystem specific research.

There is no “one size fits all” on how one sorts their LEGO collection. Some people sort

by color, others by shape and size, and others try to sort their collection by sets. It all

depends on what you plan TO DO with your LEGO’s.

Some parents buy new sets for their children because they want their children to develop

engineering skills by following a specific detailed instruction manual to build a project.

Also, many adults stick solely to “Star Wars” collections (among others). These groups

of people would require a sorter to sort their pieces specifically by sets.

“Lego artists” are more inclined to sort their bricks by color and shape. Another thing to

consider is that many people have such large collections of LEGO’s that sorting just the

“bricks” and “plates” by color separates the collection enough to find the other smaller

parts that are needed. This is because the “bricks” and “plates” make up the majority of

most sets.

3.2.1 Lego Separation, Transportation, &

Identification

There are countless ways to tackle the sorting issue. This section describes initial

considerations for the transportation, separation, and identification components of the

project design.

One of the ideas considered was dumping the parts into a large bucket that had a camera

inside. The camera would photo the parts as they fell through the bucket. As the parts fell

there would be fans to blow the parts into a specific section for sorting. This idea was too

complicated mechanically and was therefore ruled out.

Another consideration was to pre-sort the parts using a sifting device such as the one

shown in figure 2.1- c (above) before reaching a camera for image recognition. This was

not ideal due to the huge variety of LEGO parts.

The use of a conveyor belt system using sensors and fans was also considered. The parts

would pass a series of sensors and fans situated on the sides of the conveyor belt. If the

sensor was tripped the data would be sent to the microcontroller. The microcontroller

would turn on the fan and blow the part off of the belt into the appropriate sorted bin of

similar parts. This would be done using color sensors. This would sort parts by color but

not by size or shape. This idea was ultimately ruled out because LEGO’s are made from

Page | 10

plastic which limits the type of sensor that could be used to detect the size of parts that

pass by. The only sensors that can detect plastic are capacitive sensors. Capacitive

sensors are not as readily available as Inductive sensors (which are used to detect

metal). Capacitive sensors are more so used to detect different types of plastic materials

(not shape or size) which is needed for the application of this project. The other issue

with this method is that if many parts pass by the sensors (as well as fans) at the same

time they will all be blown into the bins and ultimately the sorting process is destroyed.

3.2.2 Lego Sorting

After deciding specifically which Legos will be sorted, the next issue to arise was exactly

how to separate them into different receptacles.

One of the first ideas that was discovered in research was a sorter that was able to

separate parts using different sized gates to catch the various Legos as they were

transported down the conveyor belt. While it would allow for a bit more speed in the

separation, it only accounts for a specific Lego type. With multiple different types of

Legos being introduced to the sorter all at the same time, simple gates would end up

putting Legos of multiple different types into the same receptacles.

The next idea was that of dropping the Legos down into waiting receptacles. So

essentially we would have a set of buckets waiting below the end of the conveyor belt

which would dispense the most recently identified Lego into the proper bucket. This

became the idea that was ultimately settled upon. With the method of using image

processing to determine the type of Lego, the difficult part was trying to find a way to

cycle through the different available buckets in order to separate the Legos.

When it came to the orientation of the buckets, two different options were presented: a

circular arrangement, and a linear arrangement. The linear arrangement would

essentially line up the buckets underneath the conveyor belts. It would then extend or

retract the set of buckets so that the bucket used for the current Lego would sit

underneath the conveyor. This option has the advantage of being an option that the space

the sorter would occupy would be minimalized a bit……. Or at least that would be the

case when the sorter is not active. That’s where one of the major downsides occurs. The

entire idea for the sorter is that the user does not have to be actively involved after

initially starting it, therefore the user would not be totally aware of when the buckets

would extend from underneath the conveyors. This could cause a potential safety hazard

for the user. It also creates a requirement that extra space needs to be accounted for when

setting up the sorter, otherwise the bucket system could end up running into a wall.

Another issue to consider is the weight of the Legos. After a rather long session of

sorting, the buckets may begin to contain rather large amounts of Legos that could cause

Page | 11

more stress on the motors involved in the system. While this wouldn’t be an immediate

issue, it could cause fairly extensive wear and tear to the system.

Figure 3.2.2-A Initial drawing of a linear bucket system

In the case of the circular configuration, the more major issue of the linear system is

accounted for. In a circular configuration, the bucket setup, while still able to move,

would never take up unexpected space. This eliminates the safety hazard of the

unexpected extension of the linear system. However, the issue of extensive wear and tear

of the motor would still occur if the buckets were to rotate. So the ideal situation for the

sorter would be a circular configuration for the buckets in which the buckets would not

have to be the subject of the rotation. That is when the idea for a rotating arm was

proposed.

In the case of the rotating arm, the buckets would be set up in a static circular

configuration still, but rather than the conveyor belt dropping the Legos off into the

bucket below, it would drop them into a very simple slide that would rotate between the

buckets as necessary. The arm would first rotate to the desired receptacle, and then the

conveyor would drop off the next available Lego onto the slide. This would ensure that

the amount of weight handled by the motors would only ever handle the weight of the

arm itself and nothing more. This way the motors would be able to last for much longer.

Ultimately, this rotational arm system is what was settled upon. This was the safest, most

efficient way to sort out the Legos while causing as little wear and tear to the motors as

possible.

3.2.3 User Input

One of the most important considerations that needed to be made concerning the Lego

sorter was that of the user input. Without a proper system for user input there is no way

Page | 12

to manage the Legos in a way that’s truly useful. The Lego sorter needs to be able to

accommodate specifications specific to what the user has in mind, and, more importantly,

it needs to be simple to use and understand. The difficult part is deciding what the best

way to implement a user input system would be.

One of the first ideas that was brought up was the use of a mobile app. Smartphones are

everywhere and it would make a good deal of sense to simply make the user interface

into a mobile app that the user could carry with them everywhere, allowing them to

simply connect wirelessly to their sorter. While at first glance it seems to be a good idea,

there are a couple of factors that set this idea back a bit. The first immediately

recognizable downside to using a mobile app is the screen size for the interface. The goal

of the user interface is to create something that a first time user would be able to

approach for the first time and be able to use with relative ease. Restricting the screen

size to that of mobile devices would be fairly restricting to the abilities of the user

interface in that cramming an efficient and easy-to-use interface onto a small screen

would be fairly difficult. Another downside would be that using a mobile app would

require multiple versions. With both iOS and Android being the primary competitors in

the mobile market, it would require at least two versions of the app. And even after those

two have been covered, it still limits our user audience. The thought behind the Lego

sorter is that ANYONE would be able to approach it and use it, so creating the user

interface exclusively for mobile devices would NOT be ideal.

So if a mobile application isn’t the answer, then the next logical step is a simple built-in

interface. But now this raises the question as how to narrow this down even further.

Would a keyboard and a screen be suitable, or would a touch of some sort make more

sense? In the case of a buttons and a screen, there are so many factors that would have to

be accounted for. It could be trickier to navigate from one screen to another or to assign

different parts to different buckets. Overall it just doesn’t seem to be practical. It would

essentially have to be a full computer setup complete with a mouse to be a truly easy-to-

use system. However, a touch screen is entirely reasonable. The Legos that are being

sorted will already be programmed into the system, so little typing will be needed, and

touch screens have become such a basic part of everyday life that it would be easily

recognizable by virtually everyone, including children. This settles the goal of securing a

system that would be usable by users of virtually every age. It creates a simple

environment with very little learning curve for the user which makes the system very

approachable.

Page | 13

Figure 3.2.3-A Initial user interface considerations with buttons

While there are a number of different ways to approach the user interface, the initial goals

of the project create limitations that ultimately lead to a built-in touch screen interface

being the most ideal selection for the sorter. Users from ages 5 to 85 are able to simply

approach the system and learn how to use it with incredibly little difficulty.

3.2.4 Control

This project requires a central control unit to respond to and control each subsystem.

Figure 3.2.4-A shows a rough data-flow diagram of the subsystems that are connected to

the main controller. The arrows indicate the direction of the data flow.

Page | 14

Figure 3.2.4-A: Block diagram of control

For the conveyer belt subsystem, the central control unit can turn off and on the DC

conveyer belt motors as well as vary the DC motor speeds. Pulse width modulation

(PWM) from the main controller is used to vary the speeds. Each of the two conveyer

belt DC motors take one I/O port from the main controller.

The rotating arm subsystem utilizes a stepper motor and a feedback sensor to rotate

towards the correct bucket for sorting. The main controller controls the rotation of the

motor through a stepper motor driver circuit and receives feedback from the sensor to

make sure the arm is in the correct position. The stepper motor uses 4 digital control lines

and the sensor uses one ADC channel from the main microcontroller. The lift arm

subsystem utilizes a DC motor to lift the LEGOs onto the belt and two boundary

switches. The main controller controls this motor and receives the boundary switches as

inputs. The upper switch tells the main controller to stop moving the lift arm up when it is

hit. The same process happens for the lower switch when the lift system is lowering

itself. Each switch uses one digital I/O line from the MCU. The main controller also

transmits and receives data from the user control subsystem. This system is a touchscreen

with an LCD and resistive touch overlay. The main controller can render simple graphics

on the LCD as well as receive the touch coordinates signal from the touch overlay. The

image processing subsystem communicates with the central controller via UART. The

Page | 15

image processor identifies the LEGO piece and sends the data to the main controller. This

data lets the main controller know which type LEGO piece was identified with the image

processor. The main controller then tells the rotating arm to move to the appropriate

location. The MCU also has UART communication pins.

3.2.5 Image Processing

One of the ways discussed to sort the LEGO pieces is through the use of image

processing. Image processing is a way to take a picture or video frame input from a

camera device and analyze it with algorithms.

Figure 3.2.5-A

Figure 3.2.5-A above shows the general data flow diagram for the image processing

subsystem. The image processor operates on the input images received from the camera.

The processor then runs algorithms on the image and relays information about it to the

main controller. For this project, LEGO pieces are separated based on their shape and

color attributes. The color identification is fairly straightforward. The camera inputs its

image and the processing device identifies the color based on the pixel information from

the camera sensor. Shape identification is a more complicated task. The image processor

needs to perform more complicated algorithms like edge detection to process the shape

seen by the camera sensor. A major issue to consider is that the LEGO pieces will enter

the camera’s field of view at arbitrary angles and orientations on the conveyer belt. A

library of Lego shapes is used to compare against the Lego in question. Once identified,

the information is then sent to the main microcontroller to have the piece be transported

into the correct bucket. One of the objectives of this project is for it to be a completely

embedded solution. This means that it should not have to be hooked up to a laptop or

outside computer to function. Image processing is a fairly computationally intensive

procedure and consideration was taken to pick a capable platform. Technologies initially

considered were; microcontroller, microcomputer, digital signal processor (DSP)

development board, and field programmable gate array (FPGA) development board.

Detailed research on the various technologies capable of image processing was done. The

Page | 16

image processor unit interfaces with a camera sensor to identify the LEGO pieces.

Interfacing is done through a USB communication port. The image processor

communicates with the main MCU via a two wire UART connection.

For this project, the image processing can be done on either an image taken every few

seconds or on a constant stream of video input. The method of receiving a snapshot every

few seconds vastly decreases the processing demands from the image processing unit but

would require additional sensors to tell the camera when to take a picture. Each time a

LEGO piece enters the camera’s field of view, it must be completely within the view

without any of it sticking out. Because there are many different shapes and orientations

the LEGO pieces can arrive, the sensors may not be a great solution for consistent results.

Alternatively, the image processing unit can take in a video stream, frame by frame. This

is much more demanding of the processing unit, but has the advantage of not needing

extra sensors to detect whether the LEGO pieces are completely within the camera’s field

of view. An edge-detect algorithm can run on the processor to determine that the piece’s

outline is entirely within the image. This method is much more robust than the snapshot

method as it does not rely on outside sensors to determine what is in its field of view.

3.2.6 How to Gather the Image

For the image processing chamber that is used within the project, the most immediate

thing that had to be addressed was what method would be used to gather the image that

would ultimately be analyzed. It was very clear from the beginning that there would

somehow need to be more than one angle of view on the Lego in question in order to

gather all of the necessary details for analysis. A couple of different approaches were

arrived at for this issue.

The first proposed solution was the most obvious, and that was the use of two separate

cameras. One camera would be mounted above the Lego, while the other would be

mounted on the side. This would give the two angles that were needed in order to gather

enough information to properly analyze the Lego and correctly determine how it needs to

be sorted. This creates a couple of minor issues in the process though. With the two

separate cameras, it creates a need for more space for the cameras. It also requires a good

deal more processing power in order to handle the two separate images, and it would also

increase the difficulty of the analysis, in that the coding would also have to handle two

separate images. While these issues are certainly not massive, finding a simpler method

would be ideal.

Page | 17

Figure 3.2.6-A Dual Camera option

After seeking advice from a reputable source, the idea of using a mirror was introduced.

The thought was that rather than introducing an entirely new image source to get the

second angle, the extra angle could be taken by the exact same camera, but by using a

mirror at a 45 degree angle to the conveyor belt. This would essentially allow two

separate images be processed at the exact same time. This would reduce the camera

requirement down to one, and reduce the processing power needed for the image,

however it would make setup slightly more difficult with the mirror. Perfectly placing

the mirror will take a great deal of precision.

Page | 18

Figure 3.2.6-B: Single Camera w/mirror option

In the end, the ultimate decision was to go with the option that required only one camera

and the mirror. While took more care to prepare the chamber with that setup, the belief is

that the multiple advantages of using that system outweigh the single disadvantage.

3.3 Subsystem Specific Research

For organizational purposes, the project has been broken down into subsystems. Since

this project requires a lot of mechanical parts, much of the subsystem specific research is

devoted to the achievement of mechanical parts in an electrical/computer engineering

project as well as research devoted to the electrical & computer engineering aspects of

the project. The figure in 3.3-A below provides a rough sketch of the mechanical

components of the project.

Page | 19

Figure 3.3-A: Mechanical subsystems

3.3.1 Conveyor Belts

Mechanical Component- The conveyor belt subsystem generated some issues of

concern during research. It is understood that mechanical parts are allowed to be

purchased. When browsing pre-fabricated conveyor belts online, it became evident that

the conveyor belt system would have to be fabricated instead of purchased due to cost

(the minimum price was around $1300 upwards of $20,000). Since the project requires

two belts, the cost was too hefty.

It was decided that there would be 2 belts utilized to initially separate the LEGO parts.

The first belt will move as slow as the DC motor will allow for continuous operation.

This configuration is needed so that if a huge pile of parts is clumped on the first belt, the

slow motion of the belt will allow 1 part to drop onto the second belt at a time (with some

error). The second belt will move much faster since the parts will be separated. The exact

speed is unknown at this point but will be assumed to be 3-4 times the speed of the first

belt. The second belt will feed into the sweeper arm subsystem, which is situated

underneath the lower conveyor belt, as well as the image processing chamber.

Summary - It was ultimately decided to build the structure of the conveyor belts out of

LEGO parts as shown in Fig 3.3.1- A.

Page | 20

Figure 3.3.1-A Duel Conveyor System Constructed from Technic LEGO and Photo Paper

The beauty of building the structure out of LEGO’s is that the size of the belt can be

adjusted accordingly as needed. Furthermore, there are many different sizes, of rims,

treads, and tire parts that can be selected to turn the belt during trial and error testing.

Photo paper was selected for the material of the belt. The photo paper is $0.75/square

foot and comes in large reams at office max which are 36” in width. This allows for

minor design constraint when it comes to size. The paper also pairs nicely with LEGO

since it is lightweight.

Electrical Component- The conveyer belts serve a couple functions in this project. The

first function is moving the LEGO pieces from the lift arm, through the image processing

system, and finally into the proper sorting container. The second function the belts serve

is as a method of separating the pieces from one another. The first belt, which is elevated

above the second belt, will be moving slower. The second quicker moving belt will

separate pieces that are dropped within close succession and proximity to each other. This

is so the image processing system only looks at one piece at a time without overlaps. The

belts need to be stopped and speed controlled depending on the code in the main

controller. Basic DC motors seem to be the most logical first consideration to accomplish

this task. There are two general approaches to using DC motors with the conveyer belts.

The first approach is to use two DC motors, one per belt. The second approach is use one

motor, but have a gear system spin the second belt faster than the first. The problem with

the second approach is that if one belt stops, then the other must stop as well because of

the physical geared connection between them. Independent control of the belts is not

possible. The second approach also leaves no room for speed-up efficiency in sorting

time when both belts have to stop for the same amount of time. The first approach of

using two motors, while more power consuming, leaves much more room for control

versatility and speed-up efficiencies.

A way to control the speed of DC motors is through pulse width modulation (PWM). The

microcontroller controlling the motors provides pulsed signals to vary the speed. Longer

pulses make the motor spin faster while shorter pulses make the motor spin slower.

Figure 3.3.1-B below shows the PWM signal generated by the main microcontroller

which controls the motor speeds.

Page | 21

Figure 3.3.1-B PWM signals from the microcontroller vary the speed of the motors using

pulse width modulation

As shown above in Figure 3.3.1-B, the longer the pulse is high during each period

determines how fast the motors turn. The bottom conveyor belt will need to run at a

higher speed than the top to separate LEGO pieces as they fall onto the bottom belt. The

bottom belt’s motor will be fed a higher duty cycle signal than the top, which will be

implemented with code functions and on the microcontroller. Since the motors require

higher voltage and current than microcontrollers can supply, extra circuitry is needed. A

simple transistor circuit used as a switch should work. Figure 3.3.1-C below shows a

simple transistor circuit that separates the PWM control signal from the high power

needed to turn the motor.

Figure 3.3.1-C: Transistor circuit with flyback diode for DC motor control

Figure 3.3.1-C above shows a transistor acting as a switch to control the 12 V DC motor.

The resistor tunes the base current to make sure the transistor is in saturation mode. The

diode connected across the DC motor terminals is there to remove the voltage kick-back

from the motor coils when the motor is turned on and off. This circuit implementation

can be repeated for each of the two DC conveyer belt motors.

Page | 22

3.3.2 Lift System

Initial Construction Research- The lift system is the first electro mechanical stage of

the sorting process. The original idea was to construct the lift arm out of LEGO parts as

shown in Fig 3.3.2-A. The moving platform utilizes Gear Racks and LEGO technic gears

to move the platform up and down. The lift system was to be sandwiched in between a

dump bucket for unsorted LEGO’s and the first conveyor belt. To start, the platform

would be level with the dump bucket. The dump bucket was to be placed at a slight angle

so that the unsorted Lego parts would fall directly onto the platform. The moving

platform would then traverse a few inches downward until it hits a mechanical micro

switch. The unsorted LEGO parts would fall onto the moving platform, filling the space.

The lower mechanical micro switch would send feedback to the microcontroller to

reverse direction. Another mechanical micro switch was placed in such a way that the

platform would move upward until the LEGO parts dump onto the first conveyor belt and

the platform would hit the switch. The top switch would send feedback to the

microcontroller to reverse the direction of the motor, repeating the process.

Servo Motor Selection – There are two types of Servo motors that were considered for

the project:

● Positional Rotation

● Continuous Rotation

Positional rotation servos rotate a half circle or 180°. These servos rotate between a

neutral point and either left or right depending on the control signal applied. This would

only be able to move the platform a couple of inches up and down which is not helpful

for the application of this project. Continuous rotation servos operate on the same

principle of positional rotation servos except they can turn in either direction indefinitely.

The control signal of this configuration controls the speed of rotation as well as the

direction of rotation (CW or CCW) which make the movements much more precise than

positional rotation servos.

Page | 23

Figure 3.3.2- A: Initial Lift Arm Construction

The servo motor selected for the initial construction plan was a Parallax S148 Servo as

shown in Table 3.3.2-A

Table 3.3.2- A Continuous Rotation Servo Specification

Boundary Switches- To control the upper and lower boundaries of the lift system, a pair

of mechanical micro switches were selected. The switches have an AC Voltage Rating of

250V with a current rating of 5A as shown in Fig. 3.3.2- B.

Figure 3.3.2-B Lift System Mechanical Micro switch Boundary Control

Page | 24

Conclusion of Lift System Initial Construction Research- The Initial construction plan

was to use two Parallax S148 Servo motors and mount large LEGO gears to the servo

horns as shown in Fig- 3.3.2-A . The servos were threaded onto a 10” LEGO axle rod.

The rod was to be fed through the entire technic platform connecting the two servos in a

drive shaft fashion. The initial construction plan failed before testing began because the

LEGO Gear rack parts began to fall off as more weight was added to the platform as

shown in Fig 3.3.2-A. Although the initial construction plan for the lift system did not

work in this application the hardware and gear/rack idea was recycled to build the

“Sweeper Arm” subsystem described in section 3.3.7.

Final Construction Research – The final lift system built was linear actuated lift

system. The use of mechanical micro switches was implemented as specified in the initial

lift system research. This time, the moving platform was to be built out of wood. The

moving platform had a ¼” coupler epoxied to a piece of wood. A DC motor was used to

drive the platform up and down. The DC motor had a 12” threaded rod coupled to the

motor shaft. The moving platform supported by the motor was built using ultra-light

weight balsa wood. The outside supporting frame was built using sturdier 4 ply wood.

12” square shaped dowels were used to build the guide rails to move the structure up and

down. The construction of the lift system can be seen in Fig. 3.3.2-C.

Figure 3.3.2-C : Final Construction of Lift System

Final Construction Motor Selection- Since processing LEGO’s using image processing

is not the fastest method of sorting LEGO parts, it was decided that a high RPM motor

would be utilized to move the platform up and down. Below is a summary of the pros and

cons of linear actuators and standard DC motors.

Linear Actuator Pros:

• All in one construction

• Easy to control

Page | 25

• Built in limit switches

Linear Actuator Cons:

• Extremely Expensive $80+

• Constricted to set Size

• RPM not quite high enough

DC Motor Pros

• High RPM

• Easy to control with H-Bridge Circuit

DC Motor Cons:

• Must use micro switches to control the boundaries

It was ultimately decided to use a high RPM DC motor. The RS-455PA DC motor was

selected. The specifications are shown in Table 3.3.2-B.

RS-455PA DC Motor No Load Stall

Operating Voltage Speed Current [A] Current [A]

12-42 [V] 5500 [rev/min] 0.055 [A] 0.1 A

Table 3.3.2-B Lift System DC Motor Specifications

The stall current was measured to be 100mA.

Conclusion of Lift System Final Construction Research- The lift system will utilize a

550 RPM DC motor to construct a linear actuator using a ¼” coupler and threaded rod in

conjunction with two mechanical micro switches to send feedback to the microcontroller

of the upper and lower boundaries of the system.

3.3.3 Rotating Arm System

Motor - The sorting bins will be placed in a circular pattern below and around the

rotating arm system. The rotating arm will ultimately sort the LEGO pieces by rotating to

the proper location and let the LEGO piece fall through it and into the proper bin. The

range of motion of the sorting arm will need to be at least 360 degrees to accommodate

the location of all the bins. There are two types of motors that were considered for this

task: servo motor and stepper motor. Servo motors are great for high speed applications,

at thousands of RPM. At high speeds, servo motors hold their torque rating up to 90%.

The drawback of servos is their complicated circuitry and high price. Servos must have

an encoder to provide feedback to the motor. Because servos have a small number of

magnetic poles for the motor shaft to rest at, the encoder and motor will be using more

current to keep adjusting itself to maintain the correct position. Stepper motors, on the

Page | 26

other hand, have a large number of magnetic poles (between 50 and 100) and require a

much less complicated driving circuit. Because of the greater number of poles, the

stepper motor draws less current to keep the motor at a position under load. For this

reason, stepper motors are ideal for lower speed applications. The rotating arm only

needs to rotate at a low speed, possibly in the range of 60 RPM or less. The load will be

very small on the motor, considering it will just rotate a light-weight shaft and LEGO

slide. With this information in mind, the stepper motor would be the better choice for the

task.

There are two main types of stepper motors to consider: unipolar and bipolar. Unipolar

stepper motors require less circuitry than bipolar but are less efficient and provide less

torque. Bipolar motors are simpler in design, but the driving circuitry is more complex.

Both motor types can be implemented so that they use two or four pins from the main

microcontroller. The bipolar motor will be used for this project because of its higher

efficiency. The more complex circuitry to drive the bipolar motor is not an issue as it can

be packaged in a tiny IC chip. A simplified diagram of a bipolar stepper motor is shown

below in Figure 3.3.3-A.

Figure 3.3.3-A: Simplified bipolar stepper motor diagram

In the Figure 3.3.3-A above, the two coils would be polarized in an alternating fashion to

step the motor through its rotation. In an actual stepper motor, there are many poles to

increase the step resolution and total possible number of angles the motor can hold at.

Motor Circuitry - The bipolar stepper motor is a possibility for the task of moving the

rotation arm. For the motor to be controlled by the main microcontroller in the project, a

stepper motor driver circuit must be integrated. A common way to control stepper motors

is through the use of an H-bridge circuit. The H-bridge circuit allows for current to flow

through a device in either direction. Stepper motors usually are connected to an H-bridge

to allow its coils to be energized in either direction. An H-bridge concept diagram is

shown below in Figure 3.3.3-B.

Page | 27

Figure 3.3.3-B: H-bridge conceptual circuit

The switches in Figure 3.3.3-B above are transistors in the actual H-bridge circuit.

Biasing resistors and flyback diodes are common in H-bridge circuits as well. To save

project complication and space on the PCB board, the bipolar stepper motor can be

driven by an IC chip. Since stepper motors have two coils to control, the use of two H-

bridge circuits is needed. The L2394D package has two integrated H-bridges and is ideal

for this project. Consideration must be taken to find an appropriate bipolar stepper motor

that will not overload the H-bridge chip in any way. The recommended operating

conditions of the H-bridge IC are shown below in Table 3.3.3-A.

Table 3.3.3-A: Recommended voltage levels of the L2394D duel H-bridge IC

The motor supply voltage on pin “V2” in Figure 3.3.5-1 can be in the range of 4.5V –

36V. This gives a fair amount of flexibility for the choice of motor. The pin “V1” shown

in the same figure can be in the range of 4.5V to 7V. Connected to that pin will be a logic

output pin from the main microcontroller in the 5 V range.

Sensor - The rotating arm system should use a sensor as feedback to ensure the correct

positioning of the arm during each rotation. At the very least, a “home” position for the

rotating arm stepper motor needs to be established each time the system is started up.

This can be done many ways with various types of sensors. The initial consideration is

Page | 28

through use of a color sensor that can identify which sorting container it is facing at all

times. Each container can be a different color with the sensor attached to the rotating arm.

The advantage of this method is that it provides a continuous stream of feedback to the

microcontroller to reduce poor arm positioning. A sketch of the possible physical layout

of the sensor incorporated into the rotating arm system is shown below in Figure 3.3.3-C

Figure 3.3.3-C: Sketch of rotating arm with color sensor and LEGO bins

As can be seen in Figure 3.3.3-C above, the color sensor is attached to the shaft of the

rotating container that the LEGO falls through. The sensor is extended outwards to face

the colored sorting containers as the shaft and LEGO slide rotate around. The sensor

makes sure that the initial rotation by the stepper motor is adequate by relaying the color

information of the containers to the microcontroller.

A possible drawback to this configuration is outside lighting. If the sensor is not

completely contained in a system with controlled lighting, ranges of color values may be

different from location to location. This issue can be mitigated with a completely

contained sensor system, or perhaps through some clever programming.

Possible sensors considered are the Color Sensor Breakout HDJD S822, Geeetech

TCS230 and TCS34725. Specifications and features of each sensor are shown below in

Figure 3.3.3-B.

Page | 29

Table 3.3.3-B

The HDJD S822 has a more intuitive design with the RGB sensors each outputting an

analog value based on the intensity of the respective colors detected. The TCS320 is

cheaper and has a more powerful integrated feature that converts the current of each color

channel into a frequency that can be read by the microcontroller. The TCS34725 requires

the least amount of pins and is the most cost effective solution of the color sensors.

There is another issue with having a color sensor rotate on the arm, however. Wire

tangling will occur if some wire management system is not devised to prevent it. Another

sensor possibility is using an IR reflectance sensor, to the side of the arm, to reflect IR

light off of a surface on the rotating arm system. A marking on the arm can then be used

as a homing position for the system. A considered sensor is the QRE1113 IR reflectance

sensor. This sensor has an analog output and would require an ADC channel from the

MCU. Advantages of the QRE1113 include easy coding, worry free wires, and only one

output pin.

3.3.4 Image Processing (technologies research)

There are a few technological barriers to consider when deciding on the image processing

device. One potential barrier is the data size of the image or video frame, which is

determined by a number of factors. For this project, LEGO pieces need to be identified

by their color and shape. With this in mind, the color depth as well as the resolution of

the image must be sufficiently high to identify the pieces successfully.

There are a total of 58 different LEGO colors[1] that exist that can potentially be ran

through the LEGO sorter. The image processing device must operate on a color depth

that can distinguish each color. A couple issues to note is that some LEGO pieces are

very similar in color and there may be situations where shadows or reflections on the

LEGO pieces are registered as the wrong color by the image processing device. The way

the pieces enter the camera’s field of view cannot easily be controlled. The color depth

will have to be able to accommodate for these variations as well. Some typical color

depths that are used in various camera sensor and display applications are 8-bit color, 16-

bit High color, and 24-bit True color. The numbers of colors these depths can “resolve”

are 256, 65k, and 16.7M respectively. Because of the issues mentioned above, 256

Page | 30

identifiable colors may not be enough to resolve the pieces reliably. The 16-bit High

color may be a good depth to use with over 65,000 colors. Resolution of the image is also

important for edge detection of the LEGO pieces. The resolution does not need to be high

definition, but needs to be high enough for detecting the edge of the LEGO against a

solid color background. VGA format (640x480) should be a sufficient resolution for this

project. With the color depth of 16 bits and a resolution of 640x480, this gives an image

size of 614,400 bytes, or about 614 Kb. The image processing device must have enough

onboard memory to hold an image of this size. It may be possible to have a smaller

image, but for reliability purposes, the device used in the project should have hardware

that is able to exceed this value. Knowing the above, there are various technologies that

can accomplish the image processing needed for this project. Among the platforms to

consider are: microcontrollers, microcomputers, digital signal processing (DSP)

development boards, and field programmable gate array FPGA development boards.

Microcontrollers, while generally not suitable for higher end image processing, are

inexpensive and consume little power relative to the other technologies listed above. A

table of some popular microcontroller development boards, their prices, and relevant

specifications is shown below in Table 3.3.4-A.

Table 3.3.4-A Microcontroller development boards being considered

The MSP430G2553 is a great, very low power and cost effective device, but the on-board

SRAM of only 0.5KB is not anywhere near the 614KB figure calculated for the size of

the image. Not only that, but there is no USB interface for USB webcam. It seems there

would be no simple way for this microcontroller to handle the image processing for the

project. The MSP430FG4618 is a development and experimenter board used for learning

and developing embedded projects. This board also comes up short in the memory

department for this project at only 8K in on-board SRAM. There is also no USB interface

for the camera. It will not be used. The Arduino Due is a higher end microcontroller that

is popular among hobbyists. The Arduino was initially considered for this project because

of the large online community support around the board. However, looking at the

Page | 31

technical specifications, the SRAM is again, not high enough to hold a relatively low

resolution image to be processed. The Tiva C series TM4C1294 was also initially

considered because of its higher overall specs relative to other popular microcontrollers.

It’s 256KB SRAM memory may be high enough to hold lower resolution images, but it

might be pushing the limits for use in this project. The hardware specs should exceed the

rough estimates of memory usage for the project, which this device does not do.

Because none of the microcontrollers initially considered for image processing in the

project met the specification requirements, the technology will not be used. Another

technology that was initially considered is microcomputers. Microcomputers, like

microcontrollers, have a general purpose central processor. Unlike microcontrollers,

microcomputers are capable of running an operating system and control a large variety of

peripherals. The use of an operating system, while more power consuming, has the

benefit of allowing for easier use of code libraries such as OpenCV. Microcomputers

also have the added benefit of more onboard memory compared with microcontrollers.

Table 3.3.4-B below shows some relevant specifications of two popular single-board

microcomputers.

Table 3.3.4-B

As shown in the Table 3.3.4-B above, The Raspberry Pi Model B is plenty capable of the

image processing requirements with 512MB of onboard RAM and a 700 MHz CPU clock

speed. The Raspberry Pi also has a dedicated floating point unit (FPU). The Beaglebone

Black Rev C is also very capable of meeting and exceeding the image processing

demands for the project. The Beaglebone is $15 more than the Raspberry Pi, however, it

beats the Raspberry Pi in computing power and memory. Both boards are capable of

running OpenCV and have large support communities, albeit, Raspberry Pi’s community

is a bit larger. Both boards have a USB host port(s) that can be used for webcam

integration. The Beaglebone is a fair amount faster, which will aid in the speed of the

LEGO piece identification.

Another technology initially considered is DSP development boards. DSP boards are

similar to microcontrollers in their functionality and lack of an OS, however they have

specialized built-in hardware for dealing with real-time digital signal processing. One

DSP board considered was the TMS320C6748 DSP Development Kit by Texas

Instruments. It features a dedicated DSP CPU at 456MHz, 128 MB DDR3 SDRAM, and

Page | 32

(1) USB host. It costs $195.00. The DSP kit is faster in computing than both

microcontrollers and microcomputers, but they are pricier and may take longer to develop

due to the lack of community support.

FPGA boards were also initially considered. FPGAs differ from the previous

technologies in that there is no already-built processor. Instead of a general CPU, the

programmer designs the circuitry to directly handle the processing of a signal or image.

This technology is much faster than the previously listed ones. The speed that FPGAs

process at is not required for this project. The price range of FPGA kits is generally

higher than the other tech with the Altera Cyclone II FPGA Starter Dev Kit at $199.00.

When all is considered, FPGA technology is overkill in terms of processing speed for this

project. Due to the limited amount time to design and build the project, FPGA is not a

feasible solution.

Conclusion - Most microcontrollers are too slow and do not have enough onboard

memory to process images. DSP development kits have more than enough speed and

memory to handle the task, but are more expensive and have less resources and

community help to prevent and resolve design roadblocks. FPGA kits are expensive and

way overkill in terms of processing speeds for the comparatively low level image

processing demands of the project. While microcomputers use more power to run an OS

on the CPU, they contain enough processing power and memory to get the job done. The

two microcomputers considered, the Raspberry Pi and Beaglebone Black Dev C, both

have good online support and can run useful libraries like OpenCV. In the end, the

Beaglebone Black Dev C seems like the best choice for the image processing of the

project because of its quick processing speeds, high amount of memory, and it’s

relatively low price.

3.3.5 Main Microcontroller

The main microcontroller will be the central processing device that connects all the sub

systems together. It will receive data from the image processing system, touchscreen

controller, and the various sensors throughout the project. The microcontroller will also

be in charge of controlling the lift arm motor, sorting arm motor, conveyer belt motors, as

well as displaying the user interface on the LCD. The main controller needs enough I/O

pins to communicate with and control each sub system. Figure 3.3.5-A below shows the

estimated pin usage of the various devices that will be connected to the main

microcontroller.

Page | 33

Figure 3.3.5-A

From the table, the absolute high estimate is 22 pins in total could be used by devices

connected to the controller. Six of those pins must be involved with SPI master-slave

interfacing. While the GPIO pin count may be reduced by adding logic devices like shift

registers, it may be best to err on the side of caution to select a controller with more I/O

pins.

Other considerations during microcontroller selection include: logic voltage of the GPIO

pins, supply voltage, current rating, serial/parallel interfacing, CPU speed, and price.

Figure 3.3.5-B below shows various microcontroller platforms initially considered for the

project with relevant specifications:

Figure 3.3.5-B Specifications on the considered MCU platforms.

From figure 3.3.5-B it can be seen that all but one microcontroller provide enough I/O

pins for the project. The MSP430G2553 was initially considered because of the

familiarity of its usage as well as its low power reputation. The controller, however, falls

short of the 22 pin estimate for this project and will therefore not be used.

The rest of the controllers meet the project requirements so selection comes down to the

most power for the price. The ATmega32U4 is the cheapest of the remaining choices and

it contains enough pins as well as medium range clock rate. It also has a recommended 7

- 12 V input, which can be shared with the other devices connected to the 12 V power

supply output. An extra voltage output does not need to be designed on the power supply

to accommodate the controller.

Page | 34

3.3.6 LCD Screen

Size - The menu for the user interface will need to be moderate in size. A 3” display was

considered but it was too small to accommodate all of the menu options. A 7” display

was considered but was too large for the scope of the project. A 5” display was chosen

for the project.

Resolution and Response Time - Resolution and Response time were a couple more

considerations. Since the project requires a simple user interface it was ultimately

decided to use an LCD with a lower resolution display. Response time is also not a huge

issue since the user will only need to input a couple of selections.

Graphic vs. Character Display - It was decided that a “graphic” LCD display will be

utilized to create a menu for the user to select the method of sorting. A “character”

display is too simple for the user interface desired. A TFT LCD is more than enough to

accomplish the job at an affordable price. The only drawback is the TFT LCD consumes

more power to drive the backlight (in comparison to a top of the line OLED display).

There are two options for a TFT LCD display: High or Low level. The high level version

interfaces to an on-board microcontroller whereas the low level version interfaces to a

display controller. The high level LCD displays were a lot pricier and not necessary for

the project but they do have different interfacing options such as UART/RS232

connections, USB, and Ethernet/wifi interfaces as shown in Table 3.3.6-A

Table 3.3.6-A Comparison of High and Low Level Graphic TFT Displays from

Crystalfonz

Interfacing the LCD display Controller to the Main Microcontroller- Interfacing the

LCD display will propose some of the biggest challenges from the hardware point of

view. It is imperative that the LCD is paired with an appropriate microcontroller that has

a compatible interface. The Table 3.3.6-B offers a clear representation of some

specifications that need to be considered.

Page | 35

Table 3.3.6-B: LCD Specification Comparison

The TFT LCD displays were all found on buydisplay.com. The nice thing about the TFT

displays found on buydisplay.com is that they all have sample code to help initialize

interfacing.Buydisplay.com also offers “accessories” for interface, meaning that each

TFT LCD from their website offers a selection of options for interfacing instead of

selling their displays with a fixed interface for each device as crystalfontz.com does. This

made it much easier to select an LCD more than 1 interface option can be added.

Buydisplay.com also offers PDF datasheets for the touch panel controllers, TFT (Thin

Film Transistor) LCD (Liquid Crystal Display) module, and for the IC equivalent

controllers.

Conclusion- In summary, the RA8875 controller TFT, resistive touch, 5” display was

chosen from Buydisplay.com for the project since the website provides ample

documentation and set up examples. It also allows has many interface options for

flexibility.

3.3.7 Sweeper Arm System
The sweeper arm is essentially a bar that sits below the second conveyor belt. At the

output of the second conveyor belt is the “Image Processing Chamber.” After a LEGO

part has been identified, it needs to be transferred to the “Rotating Arm” system. The idea

for the sweeper arm was recycled from the initial construction plan of the “Lift System,”

Page | 36

which was mentioned briefly in section 3.3.2. The sweeper arm utilizes LEGO technic

parts to form a gear and rack system. A Large LEGO gear was coupled to the Parallax

S148 continuous rotation servo motor horn. The specifications of the continuous rotation

Parallax S148 servo can be found in table 3.3.2- A. The gear was used to thread a LEGO

axle onto it. The sweeper arm has a row of gear racks on either side, connected by a bar

in between as shown in Fig. 3.3.7-A.

3.3.7-A Sweeper Arm Gear & Rack System

To start, the blue part of the sweeper arm shown in Fig 3.3.7-A is positioned completely

underneath the second conveyor belt against the inner micro switch allowing a LEGO

piece to fall in front of the mirror. After the LEGO has been identified, the main

microcontroller turns on the servo motor to push the bar forward “sweeping” the LEGO

part into the rotating arm system as shown in Fig. 3.3.7- B. The sweeper will extend

forward until the micro switch positioned above the rotating arm is triggered. Once the

switch is triggered, a message is sent to the main microcontroller to turn the servo in the

opposite direction. The sweeper arm will then go backwards until it triggers another

Page | 37

micro switch positioned below the second conveyor belt. When this switch is triggered,

the servo will stop rotating and wait for the next LEGO part to be processed.

Figure 3.3.7-B: Sweeper Arm Positioned Under the Second Conveyor Belt.

The switches used to control the boundaries of the Sweeper Arm Subsystem are the same

250V AC 5A mechanical micro switches that were used to construct the “Lift System”

described in section 3.3.2.

3.3.8 Power Supply

Overview - A power supply is nothing more than a device that is used to “step down” or

“step up” a voltage. Since the objective of this project is for a user to turn on the sorter

and leave it on overnight, it is imperative that the supply is stable enough to run

continuously for long periods of time without dissipating a lot of heat. Considering that

the sorter is to be used in home at all times, the input will come from a standard 120V AC

15A US wall outlet.

Subsystem Power Consumption - The first step in designing a power supply is to find

the voltage and current of each device used in the system. The project has been broken

down into subsystems for simplicity. The subsystems to be dissected: Conveyor System,

Page | 38

Lift System, Sweeper Arm System, Image Processing System, Rotating Arm System, and

the User Interface. Every component used in each subsystem that consumes power will

need to be taken into account by finding the voltages and currents of which these devices

operate. It is also important to note that some devices may operate at the same voltage but

different current. Once the summation of voltages and currents drawn by each device

from each and every subsystem is determined, the power supply can be rated and

designed accordingly. Table 3.3.8- A indicates the operating voltages and currents of the

devices to be used in the project. The LCD screen RA8875 controller has a typical output

voltage of 3.3 or 5V. Since the Beaglebone Black, Sweeper Arm servo, and Switches all

operate at 5V, the RA8875 controller supply voltage was chosen to be 5V as well for

simplicity. The Atmega32u4 specifies an operating voltage range of [7-12] V. The upper

operating range of 12V was selected since the project has many other devices operating at

12V. The DC current for the I/O pins is rated for 40mA. The project requires 12 I/O pins

which is equivalent to 0.48 A. An extra I/O pin was taken into consideration to be on the

safe side and the Atmega32u4 was rated for 0.52A. The Beaglebone Black has an

operating current range of [210-460] mA. The higher current range was accounted for in

the power consumption table.

Table 3.3.8- A: Subsystem Component Power Consumption

Page | 39

Table 3.3.8-B: Power Rating of Overall System

Design Flaws and Non-Idealistic Characteristics - In real life, the voltages and current

ratings given in data sheets are only very good estimates at best. There are statistical

deviations in all electronic devices no matter how well they are designed. Electrical

circuit components are very sensitive devices. For example, transformers store energy in

the form of electromagnetic fields. These EMF fields can create noise in nearby circuit

components if they are not isolated appropriately. The wall supply has an internal

resistance which can alter design calculations as well. Diodes and transistors are heavily

temperature dependent devices which can be damaged easily if there is too much current

flowing through them. There are many other limiting factors involving circuit

components that can alter an expected output voltage. To have a reliable power source,

these non-idealities need to be considered and designed around accordingly. To

accommodate possible design flaw & non-ideal characteristics of circuit components to

be used, as well as internal resistance supplied by the AC wall voltage source, and to

allow for continuous operation, 20% current will be added to the maximum current that

has been rated for the power supply. The power supply required two DC voltages for the

project. Vo1= 12V and Vo2 = 5V. The final power supply ratings can be found in Table

3.3.8-B.

Note- The “Sweeper Arm” subsystem was implemented in the project after the PCB

board for the power supply was sent out. The sweeper arm servo motor operates at 5V

with a rated current of 300mA. The micro switches have negligible current consumption

since they can operate at a maximum voltage of 250 VAC. The rated current for the 5V

supply is 2.84A. If the sweeper arm servo is included the rated current becomes 3.14A

which is still lower than the rated current +20% of 3.41A.

AC-DC Converter- An open frame switching mode power supply was selected for the

AC to DC conversion of the project. The supply is manufactured by Mean Well model:

PS-45-12. The input voltage is 115VAC rated at 0.8A (typical). The supply has an output

of 12V rated at 3.7A. This output was used as the input to the two DC voltages Vo1=12V

rated at 1.7A and Vo2 = 5V rated at 3.41 A that were designed for the project.

Page | 40

Kill switch – A simple Single Pole Single Throw (SPST) kill switch was selected from

home depot that operates at 115V AC 15A to cut off power to the AC input to the Mean

Well AC-DC open frame power supply.

4.0 Project Design Details

Section 4 will be dealing with the overall design plan of the Lego sorter. These are the

plans that were used to build the foundation of the project and will help to be the guide

for the entire construction process.

4.1 Block Diagram

To begin, the user assigns what color or size LEGO parts they want sorted into each

bucket using the RA8875 LCD Screen. After the selection has been made the RA8875

Controller signals the Atmega32u4 to begin the sorting process. The Atmega32u4 is the

main microcontroller that controls all of the mechanical systems, including the Lift

System, Dual Conveyor Belt System, Sweeper Arm System, and the Rotating Arm

System.

The “Lift System” is the first mechanical subsystem to the sorting process. The user

drops their unsorted LEGO parts onto the slanted platform of the lift system which starts

out positioned below the first conveyor belt. This allows room to dump the unsorted

LEGO parts. The lift system traverses upwards until it hits a limit switch and the unsorted

LEGO parts are then dropped onto the first conveyor belt (Recall that the top of the Lift

System has an angled piece.

The Top Conveyor Belt is positioned directly above the Bottom Conveyor Belt. The lift

system moves back down until it hits the bottom switch and repeats the process. The first

conveyor belt moves at the slowest speed possible that allows the motor to turn the belt.

This ideally drops the LEGO parts onto the second belt one at a time. The second belt

moves 3 to 4 times faster than the first belt in order to separate the LEGO parts out even

further.

The second belt drops the LEGO parts onto a stationary platform inside the “Image

Processing Chamber.” The Image processing chamber consists of a Logitech Webcam

placed above the platform where the LEGO parts drop and a mirror that is positioned 45°

to the platform. The mirror allows the webcam to gather two views of the LEGO parts for

data processing. Once the LEGO part has been identified it needs to be deposited into the

appropriate sorting bucket that has been set up by the user.

The BBB sends a message to the Atmega32u4 to position the rotating arm to the

appropriate bucket. For example, if the BBB detects an orange LEGO part, and the user

Page | 41

has identified bucket #5 to collect orange LEGO’s, the rotating arm will rotate to bucket

#5.

The final step is for the LEGO part to be swept into the rotating arm. The Sweeper arm is

positioned completely below the second belt when a LEGO part is inside the image

processing chamber. Once the LEGO part has been identified and the rotating arm is

positioned to the appropriate bucket, the Atmega32u4 turns on the continuous rotation

servo motor. This servo motor is coupled to a gear and rack system with a bar attached.

The gear and rack system pushes the bar forward, pushing the LEGO into the rotating

arm, which drops the LEGO into the appropriate sorting bucket. Fig 4.1-A shows the

functional block diagram of the entire system.

Figure 4.1-A: Overall System Block Diagram

4.2 Hardware Design

Section 4.2 will outline the hardware design details for each of the separate subsystems.

Breaking down the project into various subsystems makes it simple to test everything

Page | 42

individually and then when each part is working on its own the subsystems will be

brought together at the end of the construction process.

4.2.1 Conveyer Belt System Design

The conveyer system is comprised of two belts driven at different speeds. The bottom

belt moves at a quicker speed than the top belt to allow for separation of clumped LEGO

pieces. Each belt is animated by its own 12 V motor connected to a wheel shaft. Figure

4.2.1-A below shows a physical layout of the conveyor belt system viewed on profile.

Figure 4.2.1-A: Conveyor belt system with belts, belt motors, and IR reflectance sensors.

The motors connect to driver circuitry, which in turn is connected to and controlled by

the main microcontroller. A general block diagram of the conveyor belt system

electronics is shown below in Figure 4.2.1-B.

Figure 4.2.1-B Conveyer belt system circuitry block diagram

Motor Driver Circuitry Design - Motor circuitry design is identical for both of the

conveyor belt motors. The conveyer belts need only move in one direction, so advanced

circuitry like an H-bridge for bi-directional movement is not needed. A simple transistor

switch circuit allows for a small signal from the main microcontroller to control the

motors. A schematic of the DC motor circuitry is shown below in Figure 4.2.1-c.

Page | 43

Figure 4.2.1-C DC motor driver circuit

Besides a transistor, Figure 4.2.1-C above shows resistor R1, diode D1, transistor Q1, and

motor M1. The transistor acts as a switch when given a signal from the main

microcontroller. The signal is a repeating pulse that has its width modulated to control

the motor speeds. When the transistor base receives a 5V high pulse from the

microcontroller signal, current flows through the motor to turn the conveyor belts. The

transistor used is a TIP120, which is a Darlington pair circuit packaged into a three

legged piece. Diode D1 acts as a flyback diode to suppress voltage spikes from the motor

when it is turned on and off. Resistor R1 biases the signal from the microcontroller so

that the transistor is in complete saturation when the signal is pulsed high. A 2.2k-ohm is

used in the simulation as a current limiting resistor. The simulation of the DC driver

circuit is shown below in Figure 4.2.1-D.

Page | 44

Figure 4.2.1-D Simulation of DC driver circuit

A pulse period of 0.5 milliseconds with 50% duty cycle was used in the simulation to

mimic a PWM signal from the microcontroller. The simulation shows a voltage of 12V

applied across the motor when a high pulse of 5V is sent to the transistor base. Channel B

in Figure 4.2.1-D above refers to the input signal from the MCU. Channel A refers to the

voltage across the motor. The inductor model parameters were changed to match the

selected motor specifications, which are shown below in Figure 4.2.1-E below.

Figure 4.2.1-E Electrical characteristics of the motor

Looking again at Figure 4.2.1-C, the 12V source comes from the power supply. A parts

list of the schematic in Figure 4.2.1-C is shown below in Figure 4.2.1-F.

Page | 45

Figure 4.2.1-F: Conveyor belt component descriptions and values

The input signals that control the DC motor driver come from the main microcontroller.

The microcontroller will have a pulse width modulation (PWM) peripheral on-board that

can send a modulated signal to the motor driver. The higher the duty cycle of the

modulated signal, the faster the motors will turn.

4.2.2 Lift System

Overview- The lift system consists of a 5500 RPM DC motor, an L293D dual – H bridge

controller, and two mechanical micro switches to control the upper and lower boundaries

of the system. The Atmega32u4 takes input from the upper and lower micro switches.

When the switches are triggered the Atmega32u4 sends a message to the L293D H-

bridge to reverse the direction of the motor. The system block diagram for the Lift

System is shown in Fig. 4.2.2-A.

Figure 4.2.2-A: Lift System Hardware Block Diagram

H-Bridge Direction Control Theory- A simple interpretation of an H-bridge can be

thought of as 4 switches connected to a motor. When S1 and S3 are closed, the motor is

off since there is no connection to ground. When S2 and S4 are closed, the same is true

since the motor has no supply voltage connected. When S1 and S4 are closed, the current

flows from the 12 V input, through S1, the motor, and S4 to ground. This turns the motor

forward. When S3 and S2 are closed, the current flows from the 12V input, through S3,

the motor, and S2 to ground. This causes the motor to reverse direction. The diagram of

H-bridge direction control can be seen in Figure 4.2.2-B.

Page | 46

Figure 4.2.2-B H-Bridge Direction Control

L293D H-Bridge Control- The L293D operates at 5V. The enable line for the L293D

also operates at 5V. The DC Motor is connected to output 1 and output 2 of the chip. The

motor runs on 12V. Input 1 and Input 2 are the control lines fed to the Atmega32u4 main

microcontroller as seen in Fig 4.2.2-B.

Figure 4.2.2-B Lift arm L293D Pin Diagram

4.2.3 Rotational Arm Design

Page | 47

The rotating arm’s task is to position itself over the proper bin to allow the identified

LEGO piece to fall in. Specifications for the rotating arm include the ability to rotate 360

degrees and have an accuracy of at least 10 degrees. Stepper motors offer 360 degree

continuous rotation as well as incremental and accurate stepping. Because the rotating

arm shaft is light-weight and can be coupled directly to the motor, a high voltage, high

torque motor is not necessary. As such, the small 5V rated 28BYJ-48 stepper motor is

used to move the rotating arm. While stepper motors can be very accurate, they lack

sense of relative positioning. With extended use the rotating arm will become more and

more inaccurate, straying further and further from the correct positions. A simple but

effective solution has been developed to solve this issue. A sensor must be used to

provide positioning feedback to the system. The method used in this project utilizes an

infrared reflectance sensor and a white disk with an IR absorbing line as shown in Figure

4.2.3-A below.

Figure 4.2.3-A: Rotating arm sensor feedback

The IR absorbing line on the white disk provides an identifying point or “home” position

for the sensor to read. To home the rotational arm, the arm is rotated and a polling loop is

ran on the sensor until the home line is read. When the sensor outputs a significantly

smaller analog value from the black line, the rotational arm is at home position. From this

point, the MCU can calculate and send the stepper motor the number of steps required to

get from bin to bin. The stepper motor’s gear ratio is approximately 64:1 on full step

mode. Because the exact ratio is not an integer, the motor loses accuracy over time. This

is a relevant consideration for this project as the sorter is to be left on for extended

periods of time. To mitigate this issue, the motor is sent to home position periodically

between sorting pieces.

Page | 48

 Sorting time is also an issue for this project. The movement of the rotating arm is

optimized to ensure the arm never moves more than half way around when moving from

bin to bin. The code calculates the two distances between the current location of the arm

and the target bin. Figure 4.2.3-B below describes visually these two distances.

Fig. 4.2.3-B The rotating arm calculates the shortest distance between the current location

and the destination.

With an 8 bin configuration, the maximum distance the rotating arm will move during

any bin to bin movement is 4 bins. In Figure 6 above, the arm will take the path

“Distance 2” because it is the shorter path. The distances are calculated with the

following two equations:

Distance1 = bigger – smaller (1)

Distance2 = (number_of_bins - bigger) + smaller (2)

 In the equations above, the term “bigger” refers to the higher bin number of either the

current bin or target bin. Likewise, the term “smaller” refers to the smaller of the two

bins. The algorithm calculates both distances, and through a series of nested if statements,

it determines which direction it should rotate. The determined bin distance is then

converted from bin numbers to number of steps the motor must take to reach the target

using equation (3) shown below.

Number_of_steps = Distance*(512/number_of_bins) (3)

The 512 term comes from the number of steps it takes the stepper motor to make a full

revolution using a half step coil energizing sequence. With these equations the motor

takes the least time and least amount of movements to get from current bin to target bin.

Page | 49

Stepper motor driver circuitry – The detailed block circuitry diagram of the

rotational arm system is shown below in Figure 4.2.3-C.

Figure 4.2.3-C Rotational arm system block diagram

The block diagram shows the data path of the various components. When the LEGO

piece has been identified by the image processing system, the main controller feeds

signals to the stepper motor driver which turns the arm to the correct position. The IR

sensor provides feedback to the microcontroller to ensure correct positioning. Stepper

motors are more complex than the standard DC motor as there multiple poles to energize

to step the motor into each position. The motor used is a 12V rated unipolar stepper

motor with an accuracy of up to 0.7° degrees per step in half-step mode. The MCU

selected cannot handle the current that the motor draws. The ULN2003 Darlington array

package has 7 Darlington transistor pairs for a maximum total of 7 inputs and 7 outputs.

The stepper motor used has 4 control wires to turn the motor shaft and thus only uses 4 of

the input and 4 of the output pins on the ULN2003. The ULN2003 Darlington transistor

array IC pin-out and connection diagram is shown below in Figure 4.2.3-D.

Page | 50

Figure 4.2.3-D ULN2003 IC pin-out and connection diagram

The ULN2003 IC acts as a buffer in between the low voltage logic signals from a

microcontroller and high voltage high, high current power supply for the motor. Figure

4.2.3-E below describes each pin on the IC and its function in the system.

Figure 4.2.3-E ULN2003 pin description

IR Reflectance Sensor - The sorter arm utilizes an IR reflectance sensor to ensure the

system has relative positioning. The sensor chosen is a QRE1113 which is shown below

in Figure 4.2.3-F.

Page | 51

Figure 4.2.3-F Pin diagram of QRE1113 IR reflectance sensor

The sensor has three pins. GND is the ground pin, OUT is the analog output signal pin,

and VCC powers the IR LED and receiver. The VCC pin is connected to the MCU’s 5V

reference supply. The analog output signal from the sensor connects to an analog to

digital converter(ADC) channel on the MCU. The MCU’s ADC converts the analog

signal into a digital value between 0 and 255 (inclusive).

4.2.4 Image Processing Design

The Beaglebone Black Rev C is the device used to complete the image processing task of

the LEGO pieces. An image of the Beaglebone Black is shown below in Figure 4.2.4-A.

Figure 4.2.4-A Beaglebone Black Rev C

The electrical connections and design are minimal for the Beaglebone. It is powered from

the 5V power supply line. Because the Beaglebone Black uses 3.3V logic and the

ATmega32U4 uses 5V logic, a logic level shifter is needed for communication between

the two devices. The logic level shifter used is shown below in Figure 4.2.4-B.

Page | 52

Figure 4.2.4-B Logic Level Shifter

The logic level shifter has 4 bi-directional communication channels, of which two will be

used for UART interfacing between the Beablenone and ATmega32U4. Along with the

communication channels, the logic Vcc from each device must be connected to the

respective pins on the logic level shifter. A webcam is also connected to the Beaglebone

through USB interfacing. The Beaglebone has two USB ports already built on the board

as well as available pins for UART interfacing. A wire diagram of all the connections is

shown below in Figure 4.2.4-C.

Figure 4.2.4-C Wiring diagram for the Beaglebone Black

The camera selected to feed images into the Beaglebone is the Logitech C110. The

camera was selected because of the good online support for Logitech products. The C110

is a low resolution VGA camera as high definition is not needed for this project’s

purposes. The camera is shown below in Figure 4.2.4-C.

Page | 53

Figure 4.2.4-D Logitech C110 webcam

PCB Software - The PCB vendor chosen is 4PCB. The chosen software is Eagle PCB

Design. The software has extensive libraries for relatively quick designing. The software

allows the designer to first make a schematic layout of the circuit with traditional circuit

symbols and wiring. The software can automatically create a rough PCB layout from the

schematic, which then requires the designer to place components and reroute wiring

where needed. The software is free to download and use for. Eagle PCB will be used for

the PCB design layout of the project.

Rotating Arm Testing - The stepper motor requires a specific sequence of signals to

operate as intended. Testing will begin once it is completely hooked up as designed. After

hooking up the stepper motor and driver circuit to the ATmega32U4 microcontroller and

power supply as shown in Figure 4.2.4-B, the code will be written. Testing will make

sure the timing in the code allows for smooth operation of the stepper motor. Care will be

taken to make sure delays are put in the code to accommodate for the slower electro-

mechanical processes that occur in the motor. Being that the motor has 1.8° steps, it

should not be a problem to get the rotating arm slide to line up with each LEGO bin.

Testing will make sure it does any way. The color sensor on the rotating arm will also be

tested. It will be connected via I2C with the microcontroller before testing. The sensor

has a register and some integrated features that will be read into to properly test its

functionality

4.2.5 Main microcontroller Design

The main microcontroller is the central command of this project. It is in charge of taking

in sensor and image processing data, and controlling the conveyer belt, lift arm, and

rotational arm accordingly. The microcontroller chip used is the ATmega32U4.

Page | 54

The ATmega32U4 has all the peripherals and technologies needed to control each of the

subsystems. The project demands use of the MCU’s PWM channels, ADC channels,

general purpose digital I/O, SPI and UART serial interfacing. The pinouts of all the

subsystems are designed around these features. Figure 4.2.5-A below shows the

ATmega32U4 physical pin layout as well as each pin’s available functionalities.

Figure 4.2.5-A ATmega32U4 pin layout and functionality (permission pending)

The LEGO sorter devices and their pin requirements of the ATmega32U4 MCU are

shown below in Figure 4.2.5-B.

Page | 55

Figure 4.2.5-B Devices and their pin requirements of the ATmega32U4 MCU

In total, 19 data pins are required to control all of the LEGO sorter devices. The interrupt

pin is used to stop the program when it detects touch on the touchscreen. The PWM pins

are used on the conveyor motors allow for speed control. The ADC pin on the IR sensor

converts the analog signal into a digital signal that the MCU can interpret. The digital I/O

pins can send or receive a voltage level of 5V or 0V. The UART and SPI are

communication pins that will allow data transfer to/from the MCU to the Beaglebone and

LCD screen respectively. The MCU and subsystem circuitry was designed in Eagle PCB

software. The total embedded schematic is shown below in Figure 4.2.5-C.

Page | 56

Figure 4.2.5-C ATmega32U4 and subsystem schematic

The PCB board designed is shown below in Figure 4.2.5-D.

Page | 57

Figure 4.2.5-D ATmega32U4 and subsystem PCB design

The PCB is designed with the MCU, supporting power and USB components, and the

subsystem hardware circuitry. Pin header pads were designed on the PCB for easy

connectivity with the subsystem hardware such as the motors and sensors.

4.2.6 LCD
The pinouts in this section come from the RA8875 controller for the TFT LCD display

specifications PDF. Some sections of specifications have been passed over. These

sections specify a default setting for all pinouts and therefore will not be discussed and

will be left to their default settings.

SPI MCU Interface to Atmega32u4- Since there are three devices that are to be

interfaced to each other using SPI, a 4 wire connection is required. The 4th connection is

for the clock line. A 3 wire connection is only compatible if two devices are to be

interfaced using SPI. Figure 4.2.6-A shows the pins for SPI interface of the RA8875

controller to be configured.

Page | 58

Table 4.2.6-A LCD RA8875 Controller Atmega32u4 SPI Interface

The chart includes some IIC connections which will not be used so NC will be needed for

these pins. For the SIFS pin the logic will be set to “10” or binary “2” for 4-WIRE SPI

interface. The RA8875 operates as a slave pin to the Atmega32u4. The SPI can be

configured in command/data write mode or status/data read mode by setting the MSB

two bits of first byte of protocol as seen in Figure 4.2.6-B.

Table 4.2.6-A: Read/Write Ra8875 Cycle Commands

Since the RA8875 acts as a slave controller it has 3 input lines coming from the

Atmega32u4 SCS (chip select), SCL (SPI clock), and SDI (data input). The RA8875 has

1 output line to the Atmega32u4 SDO (data output). This is shown in figure 4.2.6-C

below. The serial interface selection line (SISF1) and the power supply are connected to

Vdd and the serial interface connection line (SIFSO) must be connected to ground

according to Figure 4.2.6-C.

Page | 59

Figure 4.2.6-B Atmega32u4 Interface 4 Wire SPI

RA8875 Pin Configurations - Serial interfaces on the RA8875 are disabled by default.

The following jump point connections need to be made to enable the device for 4-wire

SPI interfacing:

Table 4.2.6-C Jump Point Connections to enable 4-Wire SPI on the RA8875 Controller

The Jump Point 1 / Connection 1 (JP1/CON1) pins of the RA8875 controller need to be

configured for 4-Wire SPI interface according to Figure 4.2.8-D.

Page | 60

Table 4.2.6-D Pin Configuration – JP1/Con1 Four Wire SPI

Summary - The datasheet for the RA8875 controller provided by buydisplay.com was

followed carefully to initialize the appropriate pin configurations for a 4-wire SPI

interface with the Atmega32u4. There are 3 PDF files as well as some example code to

get the LCD display up and running. This section includes an overview of interface

protocol for the RA8875 controller but may not include all the initializations that need to

be made.

4.2.7 Sweeper Arm System

Overview- The sweeper arm system utilizes a continuous rotation servo motor. The servo

motor has three lines: +Vcc, Ground, and a control line. The Atmega32u4 main MCU

controls the direction and speed of the servo. The boundaries of the servo motor are

controlled by two mechanical micro switches. The mechanical micro switches are inputs

to the Atmega32u4 as shown in Fig 4.2.8-A.

Figure 4.2.8 – A: Sweeper Arm Subsystem Hardware Block Diagram

Continuous Rotation Servo Motor Control- The continuous rotation servo operates

much like the positional rotation servo except there is no limit on its’ range of motion. It

either rotates CW, CCW, or has no rotation. Instead of PWM correlating to fixed

positions at pulse width integers of 1ms, 1.5ms, or 2ms ,the continuous rotation servo

uses the same three pulse width integers but includes an interval which correlates to the

speed of the CW/CCW direction traveled. Table 4.2.8-B shows the direction and speed

control of the Parallax S148 continuous rotation servo.

Page | 61

Table 4.2.8-B: Continuous Rotation Servo Motor Speed and Direction Control

Software- The Atmega32u4 will use polling to detect whether or not the switches have

been triggered. Interrupts were originally used in testing. The problem with interrupts is

that they stop all control of the main MCU in order to read the switches. The switch

under the belt will be set low and the switch at the rotating arm output will be set high.

When the switch under the belt is triggered it will go from low to high. When the switch

at the rotating arm is triggered it will go from high to low. At this point the Atmega32u4

will reverse the direction of the servo until it hits the switch under the second conveyor

belt, at which point the sweeper arm will stop underneath the second conveyor belt while

another LEGO is being processed.

4.2.8 Power Supply Hardware Design

Overview- As stated in section 3.2.8, the power supply to be designed was to have two

DC supply voltages.

 Vo1 = 12V rated at 1.7A

 Vo2 = 5V rated at 3.41 A

The AC to DC conversion from the 115 V AC 15 A standard wall supply was purchased

from Jameco and manufactured by Mean Well. The input to the Mean Well supply is a

standard two prong live, neutral connection.

Webench Design Tool – The two DC Load voltages for the project were designed using

the Webench DC Power Architect tool provided by Texas Instruments (T.I.). The DC

input source to the two supplies to be designed comes from the Mean Well Open Frame

AC-DC SMPS. The design input is shown in Fig.4.2.8-A.

Page | 62

Figure 4.2.8-A Webench DC Power Architect Parameters.

The Webench DC power Architect tool generated the appropriate current needed for the

two DC voltage supplies to be designed. The current needed to supply the two DC Supply

voltages was rated at 3.33A. The Mean Well AC-DC supply selected has a slightly higher

current rating at 3.7A as shown in Fig. 4.2.8-B. The input to the two voltage supplies was

attached to a SPST standard 120VAC 15A switch to cut- off power to the system. The

total system efficiency is 93.79%, with a footprint of 458 mm2, and total system power

dissipation of 2.478 W.

Figure 4.2.8-B: Overall Block Diagram of Power Supplied to Project

Supply 1 Eagle Schematic - The 12V, 1.7A supply that was designed is a

TPS55340RTER WQFN 16 Pin package Boost converter shown in Fig 4.2.8-C.

Page | 63

Figure 4.2.8-C: Supply 1 TPS55340RTER Eagle Schematic

Vo1 Operation- The TPS55340RTER regulates the output with pulse width modulation

(PWM) control. The 12V 3.7A input supplied by Mean Well is applied across the

inductor. The pwm controller is governed by an internal oscillator clock cycle. The

switch is turned on by the PWM control block at the beginning of each clock cycle

supplied by the oscillator. The switch turns off when the inductor current reaches a

certain threshold level. The schottky diode becomes forward biased, allowing current to

flow to the output capacitor. The duty cycle is determined by the PWM control. The

frequency of oscillation is set by the external resistor Rt. An RC network is utilized for

feedback loop stability and transient response optimization on the compare (COMP) pin.

The output of the internal error amplifier is connected to the PWM control feedback loop

that regulates the forward bias pin, (FB). The internal block diagram of the chip from the

TPS55340 datasheet supplied by T.I. is shown in Fig. 4.2.8-D. [1]

Figure 4.2.8 – D: TPS55340RTER Internal Block Diagram.

Page | 64

Vo1 Component Values – Although the Webench DC power architect tool provides the

values needed to build the circuit, the datasheets for the TPS55340RTER and the

TPS54525PWPR were thoroughly checked for consistency.

Vo1 Switching Frequency- The switching frequency is set by the resistor, Rt, connected

to the (FREQ) pin of the TPS55340. The resistance, Rt, given by Webench was 124kΩ.

According to the graph Fig.4.2.8-E, this corresponds to a switching frequency fsw = 390

kHz

Figure 4.2.8-E TPS55340 Switching Frequency vs. Resistance

Vo1 Voltage Reference and Setting the Output Voltage- The internal error amplifier

shown in Fig. 4.2.8-D provides a 1.229V voltage reference to the non-inverting input.

The output voltage is set by the forward bias pin resistors, Rfbt and Rfbb according to

equation (1) The desired nominal output voltage is 12V.

𝑉𝑜𝑢𝑡 = 1.229𝑉 𝑥 (
𝑅𝑓𝑏𝑡

𝑅𝑓𝑏𝑏
+ 1) (1)

𝑅𝑓𝑏𝑡

𝑅𝑓𝑏𝑏
=

12

1.229
− 1 = 8.764

Letting Rfbb = 10kΩ , we can find Rbt = 86.6kΩ

Vo1 Determining the Duty Cyle – When running in continuous conduction mode

(CCM), the inductor maintains a minimum DC current. The duty cycle is related to the

input and output voltages. According to the TPS55340 datasheet, the voltage drop vD

across the schottky diode is assumed to be 0.5V. The duty cycle is calculated from

equation (2).

Page | 65

𝐷 =
𝑉𝑜𝑢𝑡+𝑉𝑑−𝑉𝑖𝑛

𝑉𝑜𝑢𝑡+𝑉𝑑
 (2)

=
12 + 0.5 − 12

12 + 0.5
= 0.04 = 4%

Vo1 Selecting the Inductor L1- According to the TPS55340 datasheet, in a Boost

Converter, maximum inductor current ripple occurs at 50% duty cycle. For applications

where the duty cycle is always smaller or greater than 50% equation (4) should be used.

Recall the switching frequency was previously found to be around 390 kHz. Kind is the

coefficient that represents the amount of inductor ripple current relative to the maximum

input current (IinDC = ILAVG). The maximum input current can be estimated from equation

(3). The inductor ripple current, Kind values in the range of [0.2 to 0.4] for CCM

operation. This results in a smaller footprint and improved transient response at the

expense of potentially lower efficiency. The efficiency ɳest was conservatively chosen to

be 85% in order to calculate the maximum input current IinDC. The design requires an

output of 12V, 1.7A.

𝐼𝑖𝑛(𝐷𝐶) =
𝑉𝑜𝑢𝑡 𝑥 𝐼𝑜𝑢𝑡

ɳest xVin
 (3)

𝐼𝑖𝑛(𝐷𝐶) =
12𝑉 𝑥 1.7𝐴

0.85 x 12
= 2𝐴

The inductor L1 can now be calculated from equation (4) with the results found in

equations (2) and (3) and the frequency of the switch fsw, which was previously found

from figure 4.2.8-E.

𝐿1 ≥ (
𝑉𝑖𝑛

𝐼𝑖𝑛𝐷𝐶𝑥 𝐾𝑖𝑛𝑑
) (

𝐷

𝑓𝑠𝑤
) (4)

𝐿1 ≥ (
12𝑉

2𝐴 𝑥 0.4
) (

. 04

390𝐸3
) = 1.5385µ𝐻

Vo1 Inductor Current Ratings –After the inductance is calculated, the required current

ratings can be calculated. The inductance ripple current is calculated from eq. (5).

∆𝐼𝐿(𝑅𝑖𝑝𝑝𝑙𝑒) = (
𝑉𝑖𝑛

𝐿1
) (

𝐷

𝑓𝑠𝑤
) (5)

Page | 66

∆𝐼𝐿(𝑅𝑖𝑝𝑝𝑙𝑒) = (
12

1.5385𝐸 − 6
) (

. 04

390𝐸3
) = 800𝑚𝐴

The RMS and peak inductor current can be calculated from equations (6) and (7) below.

𝐼𝐿(𝑅𝑀𝑆) = √(𝐼𝑖𝑛𝐷𝐶)2 + (
∆𝐼𝐿

12
)

2

 (6)

𝐼𝐿(𝑅𝑀𝑆) = √(2𝐴)2 + (
800𝐸 − 3

12
)

2

 = 2.0011𝐴

𝐼𝐿(𝑝𝑒𝑎𝑘) = 𝐼𝑖𝑛𝐷𝐶 +
∆𝐼𝑙

2
 (7)

𝐼𝐿(𝑝𝑒𝑎𝑘) = 2 +
2.0011

2
 = 3.0006 𝐴

A Bourns 1.8µH inductor with a current rating of 2.91A, and saturation current of 4.4A,

and 42mOhm DCR was selected for the TPS55340 12V supply.

Vo1 Selecting the Input Capacitors Cin and Cinx – A capacitance of at least 4.7µF of

ceramic material is recommended. High quality X5R or X7R ceramic capacitors are

recommended to minimize capacitance variations due to temperature. Capacitors must

have an RMS current rating greater than the maximum RMS inut current of the

TPS55340 given by equation (8).

𝐼𝑐𝑖𝑛(𝑟𝑚𝑠) =
∆𝐼𝐿

√12
 (8)

𝐼𝑐𝑖𝑛(𝑟𝑚𝑠) =
800𝐸 − 3

√12
 = 231𝑚𝐴

The capacitor chosen for Cin is an X5R series capacitor. The parameters of Cin are as

follows:

Page | 67

 Cin = 22µF

 ESR = 2.0 mOhm

 VDC = 25.0 V

 IRMS = 3.67 A

The input ripple voltage is calculated from equation (9).

𝑉𝑖(𝑟𝑖𝑝𝑝𝑙𝑒) =
∆𝐼𝐿

4𝑥𝑓𝑠𝑤𝑥𝐶𝑖𝑛
+ ∆𝐼𝐿 𝑥 𝑅𝑐𝑖𝑛 (9)

𝑉𝑖(𝑟𝑖𝑝𝑝𝑙𝑒) =
800𝐸 − 3

4𝑥390𝐸3𝑥22𝐸 − 6
+ 800𝐸 − 3 𝑥 2𝐸 − 3 = 24.9𝑚𝑉

Although a lower voltage rated capacitor could be used for Cin, a 25V rated capacitor

was chosen to limit DC biasing effects. An additional capacitor, Cinx with parameters of

X7R series, 100nF, ESR = 280 mOhm, VDC =25 V, and I(rms) = 0.0A was utilized close

to Vin and Ground for extra decoupling.

Vo1 Setting the Soft Start Time (Css)- The capacitor, Css sets the soft start time of the

chip. Increasing the soft start time reduces overshoot during startup. Therefore, a longer

soft start time is desired. Css was selected with the following parameters: C= 22nF, ESR

= 14.635 mOhm, Vdc= 25.0V, and Irms = 0.0A. The soft start time , τss, was calculated

from equation (10) below.

𝜏𝑠𝑠 = 𝐸𝑆𝑅[𝑂ℎ𝑚]𝑥 𝐶𝑎𝑝 [𝐹] (10)

𝜏𝑠𝑠 = 14.635𝐸 − 3 𝑥 22𝐸 − 9 = 322𝑝𝑆

The start up time of 322 [pS] was more than enough to reduce the in-rush current and

output voltage overshoot.

Vo1 Computing Maximum Output Current- The maximum output current must be

calculated to find appropriate output capacitor values. The maximum output current is a

function of Vin, efficiency, Vout, and the minimum peak current limit, ILIM, which is

given in the datasheet to be 5.25A. Iout(max) can be calculated from equation (11)

below.

𝐼𝑜𝑢𝑡𝑚𝑎𝑥 =
𝑉𝑖𝑛𝑚𝑖𝑛 𝑥 (𝐼𝐿𝐼𝑀 −

∆𝐼𝐿
2

) 𝑥𝑛𝑒𝑠𝑡

𝑉𝑜𝑢𝑡
 (11)

Page | 68

𝐼𝑜𝑢𝑡𝑚𝑎𝑥 =
5 𝑥 (5.25 −

800𝐸 − 3
2

) 𝑥0.85

12
 = 1.74𝐴

The calculated value of Iout(max) = 1.74 A is approximately equal to the desired output

current of 1.7 A specified for the design.

Vo1 Selecting Output Capacitors – Capacitors in parallel at the output create a

negligible equivalent series resistance (ESR). The output ripple voltage is related to the

output capacitance and its’ ESR. Use of high ESR capacitors contributes to additional

ripple at the output. The datasheet specifies a maximum transient voltage ΔVtran =

960mV and ΔItran = 400mA with a control bandwidth frequency fbw = 6kHZ. From

these values the datasheet requires Cout to have a minimum output capacitance of

11.1uF.Equation (12) specifies the output capacitor RMS current.

𝐼𝑐𝑜𝑢𝑡(𝑅𝑀𝑆) = 𝐼𝑜𝑢𝑡 𝑥 √
𝐷

1 − 𝐷
 (12)

𝐼𝑐𝑜𝑢𝑡(𝑅𝑀𝑆) = 1.74𝐴 𝑥 √
. 04

1 − .04
 = 0.355 𝐴

Cout was selected to be 82µF, with an ESR of 27mOhm, VDC = 16V, and Irms = 3.0A.

Coutx was selected to be 680nF, with an ESR of 16mOhm, VDC=25V, and Irms = 0.0A.

Choosing a higher DC voltage than the desired output voltage reduces DC biasing effects.

Vo1 Compensating the Control Loop – Loop compensation should be designed for

minimum operating voltage of the TPS55340. The COMP pin is the output of the internal

error amplifier. Rcomp and Ccomp are connected to the COMP pin to provide a pole and

a zero. This determines the closed-loop frequency response needed for stability and

transient response. Ccomp places a high-frequency pole in the control loop. The datasheet

suggests starting with Rcomp =2kohm and Ccomp = 0.1uF. Increasing Rcomp or

reducing Ccomp increases closed loop bandwidth and improves transient response.

Rcomp was chosen to be 3.65kohm and Ccomp was chosen to be 6.8nF.

Vo1 Selecting the Schottky Diode D1- The average peak current ratings of the diode

must exceed the average inductor output current , IL(rms) which was found to be 2.0011

A. Also, the reverse breakdown voltage of the diode must exceed the regulated output

voltage which is 12V for this design. The diode chosen was a B22013-F schottky diode

by Bourns Inc. The parameters are Vbr = 20V, which exceeds the regulated output of

12V with an average rectified current of 2A.

Page | 69

Vo1 Conclusion– The datasheet was studied carefully, and the values provided by

Webench were in agreement with the values calculated from the equations provided in

the TPS55340 datasheet.

Supply 2 Eagle Schematic Supply 1 Eagle Schematic - The 5V, 3.41 A supply that was

designed is a TPS54525PWPR 5A Synchronous Step-Down DCAP2 Mode converter.

The Eagle Schematic diagram is shown in Fig 4.2.8- F.

Figure 4.2.8-F: TPS54525 DC Supply 5V , 3.41 A Output

Vo2 Output Voltage Selection – The output voltage is set by a resistors divider from the

output node to the feedback pin FB. Improved efficiency occurs when moderate resistors

are chosen for Rfbb and Rfbt. The equation for Vo2 is given by (13) below.

𝑉𝑜𝑢𝑡 = 0.765 𝑥 (1 +
𝑅𝑓𝑏𝑡

𝑅𝑓𝑏𝑏
) (13)

Letting Rfbb = 22.1kohm, and designing Vo2 = 5V, the resistance Rfbt is found by

rearranging eq (13)

𝑅𝑓𝑏𝑡 = (
5𝑉

0.765
− 1) 𝑥 22.1 = 121 𝑘𝑜ℎ𝑚

Vo2 Recommended Component Values- According to the datasheet, a feed forward

Capacitor, Cff is to be added in parallel to Rfbt for additional phase boost for output

voltages that are to be designed at or above 1.8V. This will be needed since the desired

output, Vo2 = 5V > 1.8V.

Vo2 Inductor Selection L2 – The inductor peak-topeak ripple current, peak current and

RMS current are calculated using equations (14), (15), and (16). The switching

Page | 70

frequency, fsw is given to be 650kHz by the TPS54525 datasheet. [2] For an output of

5V, L2 is given to be 3.3µH by the datasheet.

𝐼𝐿𝑝𝑝 = (
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
) (

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿2𝑥 𝑓𝑠𝑤
) (14)

𝐼𝐿𝑝𝑝 = (
5

12
) (

12𝑉 − 5𝑉

3.3𝐸 − 6𝑥 650𝐸3
) = 1.36𝐴

𝐼𝑙(𝑝𝑒𝑎𝑘) = 𝐼𝑜𝑢𝑡 +
𝐼𝐿𝑝𝑝

2
 (15)

𝐼𝑙(𝑝𝑒𝑎𝑘) = 3.41𝐴 +
1.36𝐴

2
 = 4.09 𝐴

𝐼𝐿𝑜𝑢𝑡(𝑅𝑀𝑆) = √𝐼𝑜2 +
1

12
(𝐼𝐿𝑝𝑝)2 (16)

𝐼𝐿𝑜𝑢𝑡(𝑅𝑀𝑆) = √(3.41)^(2) +
1

12
(1.36)2 = 3.43 𝐴

The inductor selected for this design is a 3.3 µH, 9A, 7.8 mOhm inductor by Bourns.

Vo2 Output Capacitor Selection- The output ripple voltage is determined by the ESR

and capacitance value. The TPS54525 is intended for use with ceramic or other low ESR

capacitors. The recommended values range from [22-68] µF. The output capacitor RMS

current rating is determined by equation (17) below.

𝐼𝑐(𝑜𝑢𝑡) =
𝑉𝑜𝑢𝑡 𝑥 (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)

√12 𝑥 𝑉𝑖𝑛 𝑥 𝐿2 𝑥 𝑓𝑠𝑤
 (17)

𝐼𝑐(𝑜𝑢𝑡) =
5𝑉 𝑥 (12 − 5)

√12 𝑥 12 𝑥 3.3𝐸 − 6 𝑥 650𝐸3
 = 0.393 𝐴.

Cout was selected to be 47µF rated at 1A RMS with a low ESR rating of 1.71mOhm.

Page | 71

Vo2 Input Capacitor Selection – The input capacitor is recommended to be over 10µF.

The capacitor voltage rating needs to be greater than the maximum input voltage,

Vin=12V. Cin was selected to be 22µF with a 16V rating supplied by TDK.

Vo2 Bootstrap Capacitor Selection – The datasheet recommends a 0.1µF ceramic

capacitor connected between the BOOST and SW pin for proper operation.

Vo2 Feed Forward Capacitor Cff – The feed forward capacitor, Cff is recommended to

be in the [5-22]pF range. Cff was selected to be 5.6PF.

Vo2 Creg – The voltage regulator pin should have a 1.0µF capacitor connected between

Vreg and ground.

RpGood – The TPS54525PWPR has a power-good drain output. The power good

function is enabled after soft start has finished. Power good becomes active after 1.7

times the soft start time. Rpgood should be in the range of [25 to 150] kohm. Rpgood was

selected as 100kohm.

Ren – The datasheet recommends Ren be connected from the EN Pin to ground in the

[220 – 880] kohm range, with 440kohm being the typical value. Ren was selected to be

100kohm, which is out of the recommended range suggested in the datasheet.

Vo1 & Vo2 PCB Design – The PCB design for the two supply voltages was designed

using eagle. The chips were laid out with polygons around Vin, Vout, and power ground,

as close as possible to the recommended layout designs shown in Fig 4.2.8-G and Fig

4.2.8-H.

Page | 72

Figure 4.2.8- G: TPS55340RTER Suggested Layout Considerations for Vo1 = 12V

Figure 4.2.8-H TPS54525PWPR Suggested Layout Considerations for Vo2 = 5V

The combined PCB board for Vo1=12V and Vo2 = 5V using the TPS55340RTER and

TPS54525PWPR is shown in Fig. 4.2.8-I.

Figure 4.2.8-I: PCB Board for Power Supply

Page | 73

Fig 4.2.8-J Shows the polygon tied around Vin, Fig 4.2.8-K shows the polygon tied

around Vo1, and Figure 4.2.8-L shows the polygon tied around Vo2.

Figure 4.2.8-J: Vin polygon

Figure 4.2.8-K Vo1 = 12V Polygon

Page | 74

Figure 4.2.8-L Vo2 = 5V Polygon

Conclusion- The 12V supply ended up working fine as shown in figure 4.2.8 –M, but the

5V supply never worked.

Figure 4.2.8- M Vo1=11.96V Measurement from PCB

There are a few things that could have contributed to this. The reference design provided

by T.I. had the enable resistor, Ren tied to a third layer. Since price goes up significantly

if you add more than 2 layers, it seemed unnecessary to add a third layer for a single

route. Another issue is that Ren was out of the suggested range provided by the datasheet

of [220 – 880] kohm with 440kohm, being typical. Ren was generated by Webench to be

100kohm. Unfortunately this was overlooked until after the PCB was ordered. Another

thing that could have contributed to the Vo2 =5V supply not working is some of the

thermal vias were removed. The original design had 16 more ground thermal vias above

Ren. Before I sent out my PCB I used 4PCB.com DFM Gerber file checker. The file

checker threw close drill hits for a lot of my thermal vias, and I unfortunately took them

out so there would not be a cam hold.I previously had 12 vias on the TPS54525 as shown

Page | 75

in Fig 4.2.8-H. The vias were too small, and not compatible with 4PCB’s board house. I

took them out and replaced them with 5 larger vias to tie the exposed power pad to

ground as shown in Fig. 4.2.8-L. In conclusion, I learned that the board house

specification limits should be learned before laying out any part of a PCB design. I also

learned that laying out a power supply PCB takes a lot of patience due to the polygons

that must be tied to the chips for thermal protection.

Power Component Budget -

Table 4.2.8 – A: Power Supply Component Budget

4.3 Software Design of the System

While the hardware will provide the parts that are needed to perform the task at hand, the

instructions for how to do that are all provided by the software. The software will be

what tells the hardware what to do, when to do it, and how to do it. Most importantly

though, software is what will be used to identify the Legos in order to separate them.

Index Quantity Part # Description Reference Extended Price

1 3 399-1167-1-ND CAP CER 0.1UF 16V 10% X7R 0805 CBST / VS5 0.33

2 3 478-1465-1-ND CAP CER 5.6PF 50V NP0 1206 CFF / AVX / VS5 0.93

3 2 490-1882-1-ND CAP CER 22UF 16V 10% X5R 1210 CIN / MURATA / VS5 2.58

4 2 490-1882-1-ND CAP CER 47UF 10V 20% X6S 1206 COUT / TDK / VS5 2.16

5 3 478-1567-1-ND CAP CER 1UF 25V 10% X7R 1206 CREG / AVX / VS5 0.72

6 3 399-1158-1-ND CAP CER 10000PF 50V 10% X7R 0805 CSS / KEMET / VS5 0.3

7 2 SDR2207-3R3MLCT-ND INDUCTOR POWER 3.3UH 9.0A SMD L1 / BOURNS / VS5 2.24

8 3 SDR2207-3R3MLCT-ND RES SMD 10K OHM 1% 1/4W 1206 REN / PANASONIC / VS5 0.3

9 3 P22.1KFCT-ND RES SMD 22.1K OHM 1% 1/4W 1206 RFBB / PANASONIC / VS5 0.3

10 3 P121KFCT-ND RES SMD 121K OHM 1% 1/4W 1206 RFBT / PANASONIC / VS5 0.3

11 3 311-1135-1-ND CAP CER 6800PF 50V 10% X7R 0805 CCOMP /YAGEO AM. / VS12 0.3

12 3 311-1194-1-ND CAP CER 820PF 50V 10% X7R 0805 CCOMP2 / YAGEO / VS12 0.3

13 2 490-3889-1-ND CAP CER 22UF 25V 10% X5R 1210 CIN / MURATA / VS12 2.56

14 3 478-3755-1-ND CAP CER 0.1UF 25V 10% X7R 0805 CINX / AVX / VS12 1.44

15 2 P16482CT-ND CAP POLYMER 82UF 20% 16V SMD COUT / PANASONIC / VS12 0.72

16 3 478-1565-1-ND CAP CER 0.68UF 25V 10% X7R 1206 COUTX / AVX / VS12 1.08

17 2 445-2674-1-ND CAP CER 0.022UF 25V 5% C0G 0805 CSS / TDK / VS12 0.72

18 2 B220-FDICT-ND DIODE SCHOTTKY 20V 2A SMB D1 / DIODES INC / VS12 1.08

19 2 SDR0403-1R8MLCT-ND FIXED IND 1.8UH 2.91A 42 MOHM L1 /BOURNS / VS12 0.94

20 3 P3.65KFCT-ND RES SMD 3.65K OHM 1% 1/4W 1206 RCOMP/ PANASONIC / VS12 0.3

21 2 P10.0KFCT-ND RES SMD 10K OHM 1% 1/4W 1206 RFBB / PANASONIC / VS12 0.2

22 3 P86.6KFCT-ND RES SMD 86.6K OHM 1% 1/4W 1206 RFBT / PANASONIC / VS12 0.3

23 3 P124KFCT-ND RES SMD 124K OHM 1% 1/4W 1206 RT / PANASONIC / VS12 0.3

24 2 296-37677-1-ND IC REG BST FLYBK SEPIC 16WQFN U1 / TPS55340RTER/ VS12 9.6

Total 32.51

Power Supply BOM

Page | 76

4.3.1 User Interface

The only means the user has to communicate with the LEGO® sorter is though the LCD

touch screen connected to the main controller. Therefore simplicity is kept in mind when

designing the interface so that the user will not be confused one how to navigate through

the choices. The user interface of the touch screen is designed using an open source

RA8875 library. There will be at most 4 different screens to navigate through are the

following: the start-up screen, the sorting type and bucket assignment screen,

confirmation screen, and pause screen.

Figure 4.3.1 - A Basic GUI Screen flowchart

Start Screen- This will be the simplest screen to display it will first display the software

name and version of the software. Pressing the start button will take the user to the next

screen.

Page | 77

Figure 4.3.1 - B Example Start screen

Sorting Type and Bucket Assignment - Here the user will choose how to sort the

LEGO® parts by either color or shape. If they want to do color and shape the user will

just have to run the sorted bricks through the sorter again choosing the setting they did

not use on the first run though. Depending on if they chose to sort by color or by part

shape will change the bucket assigning choices. Because the interface should be simple a

circle with a number in the middle is displayed which will correspond to the buckets at

the end of the sorter and labels for the user to see what the bucket will hold during the

sorting process. When the user presses the circle, it will highlight and a new window will

open beside it.(as shown in figure…). Here the user can press the larger back arrow to

exit the window or go to the previous window, double tap the selection to assign that

value to the bucket or proceed further into the selection, or use the smaller arrows at the

bottom of the window to scroll through the choices. The information in the windows will

come from the library in the AtMega as a structure. When chosen, the label below the

bucket will update displaying the value that is assigned to that bucket. The user must

have at least one bucket be assigned to be the error bucket or “Misc.” If that is not the

case when the user hits the next button a pop-up appears notifying the user that they

cannot proceed until one bucket is assigned to be the error bucket. The user is allowed to

assign more than one bucket to hold the same items. For example the user is allowed to

assign two buckets to hold red pieces since red is one of the most common colors it is

expected to fill the bucket quickly. Once set the user must press the next button to move

to the next screen.

Page | 78

Figure 4.3.1 - C Example Setup screen

Confirmation -

Here the user will see a review page of how everything is going to be sorted. It will

display a list of where they assigned the bricks. If they are okay with their selection then

sorting will begin once they select the confirm button else the user will hit the back

button and reconfigure their sorting set up. While this serves as a checkpoint in case the

user made some sort of mistake in set up.

Figure 4.3.1 - D Example Confirmation screen

Pause - By the time the user hits this screen the sorter has begun. Here the user can

pause or resume the sorting process. When paused, the user can decide to quit the current

sorting process or resume at another time. If the user selects quit then the user will be sent

back to the start screen and the sorter will stop completely.

Page | 79

Figure 4.3.1 - E Example Status screen

By the time the user hits this screen the sorter has begun. Here the user can pause or

resume the sorting process. When paused, the user can decide to quit the current sorting

process or resume at another time. If the user selects quit then the user will be sent back

to the start screen and the sorter will stop completely.

4.3.2 Image Processing

This section of software programming is debatably the most important in the entire

project. This is the part of the system that actually determines what the Legos in the

system are, and determines the receptacle that they belong in.

The first portion of the design for this process is that of determining when an image on

the camera is ready to be pulled for use in sorting. This was done by analyzing frames in

1 second increments. In software, an image is simply represented by a two dimensional

array of integers that all correspond to a different color. Ideally, an image of the

background used in the image processing chamber will be represented by an array of all

of the same number. A simple pixel analysis algorithm will look for changes in this

number as the webcam in the system continues to process the images that it sees. If an

unusual spike occurs within the array, this almost certainly means that a Lego has entered

the area and the algorithm is able to process that. The algorithm will have a specific

threshold however that determines when a spike is significant enough to deserve

attention. This will eliminate errors that could be caused by smaller jumps in the array.

For example, two cells in the array may only differ in value by one. This is almost

certainly due simply to changes in the lighting, and thus can be ignored by the edge

detection algorithm.

Page | 80

After the Lego has been detected initially, it performs a full analysis immediately after.

This is to account for the possibility that a Lego was captured in frame while falling into

the chamber. So the analysis is then done when the Lego is at rest in the chamber. Was

the Lego is at rest, the algorithm initially detects color. If it is a color recognized by the

program, it will send the proper signal to the MCU. If it does not recognize the color, or

if the user is sorting by shape, then the process moves on to the shape recognition

algorithm.

In the case of determining the color of the Lego, the process is incredibly simple. By

searching through the two dimensional array of the image, it will determine what color

the Lego is simply based off of the number that represents that color. Through testing,

ranges were determined that represent the multiple different colors that the project will be

handling. It is important that these colors are represented by a small range of numbers

instead of just a singular number. This accounts for any possible discrepancies caused by

the lighting. The most difficult color to determine will of course be white, seeing as this

is going to be the same color as the background for the image processing chamber.

In the case of sorting by shape and size, processing the images will of course be slightly

more involved. The two images that will be gathered from the camera will be able to

gather all of the dimensions of the more basic Legos. Using the images gathered and

some very basic math applied to that information, it was incredibly easy to gather the

dimensions of the brick. So the approach that will be used will be to hardcode a library

of the parts that will be sorted by the algorithm directly into the Beaglebone. This was a

simpler algorithm and will most likely take less time than a sort of image comparison

algorithm, but that will translate into more time consumed by simple data entry. This

will require inputting details for every single Lego, and in order to gather those details it

was extensive testing with the image processing chamber.

The math that the algorithm uses is to determine the length and width of the Lego in

question, and then the side view of the Lego gathered from the camera is able to provide

the width. The algorithm first locates the first colored pixel in the image and then it

begins looking for the left-most and right-most corners of the Lego. By gathering the

location in the array of these points and using the Pythagorean theorem, the algorithm

gathers the length and width of the brick. These measurements are then compared to the

data entries to determine if the Lego recognizes such a brick. If it does, it places the brick

in the correct bucket, and if it doesn’t, the brick will be placed in the miscellaneous

bucket by default.

After the analysis has been completed in full on the Lego, the Beaglebone will send the

appropriate signal to the MCU in order to determine specifically which bucket the brick

belongs in, move the rotating arm to the appropriate position, and then activate the

sweeper arm to push the brick into its bucket.

Another important part of the image processing algorithm is that it is able to determine

whether or not the system needs to shut down if no more Legos are passing through. A

Page | 81

predetermined value decides how long the system will need to wait until it is ok to shut

the system down completely.

So in summary, the software design of the image processing portion of the Lego sorter

will run in a series of steps that are repeated until no more Legos are being presented into

the image processing chamber. The steps are as follows:

1. Determine that a Lego has entered the chamber.

2. Activate a small delay to give the Lego time to come to rest within the

chamber.

3. Perform any color or shape analysis necessary by calculating length,

width, and height of the Lego.

4. Compare the results to the data in the Beaglebone.

5. Output results to rotating arm unit to dispense Lego.

6. Determine exit of the Lego from the chamber.

7. Repeat process until Legos have stopped entering the chamber.

4.3.3 Conveyor System

In the case of the conveyor system, the software handles a couple of different details.

First and foremost is the speed of the two conveyors. The first conveyor moves at a

much slower pace than the second. This is to ensure that Legos get spilled onto the

second conveyor belt only one at a time. This allows them to be spaced out as much as

possible on the second conveyor belt. The second conveyor belt is then able to move the

Legos one at a time into the image processing chamber. The space between the Legos

ensures as few errors as possible in the image processing.

The other detail that is accounted for is simply whether or not the conveyors are running.

While a Lego is being processed for sorting, this causes a delay in the system requiring

the conveyor belts to stop for small periods of time. The software is able to communicate

this with the conveyor system so that it can start and stop the belts freely.

Simply put, the software communicates to the conveyor belts a static speed value, and the

on/off state of the conveyor belt are handled as a Boolean variable.

4.3.4 Lift Arm System

In the case of the lift arm system, one detail that the software handles is the intervals in

which the lift arm activates. In the case of the activity variable, if the lift arm activates

too often, it would end up overloading the conveyor belt with too many Legos causing

errors in the system. A value is set so that there are intervals between lift arm activations.

Page | 82

The second variable in the lift arm system is its speed. If the lift arm moves too quickly,

it could throw Legos past the conveyor belts and off of the system, but if it moves too

slowly, the Legos may not move off of the lift arm.

The speed of the lift arm is a static variable that was determined in hardware testing.

4.3.5 Errors

With main moving parts that make this whole system function there are many things that

can go wrong if not corrected. There should be methods that can be used to monitor and

treat the problem as it appears, report the problem to the user or just maintenance. Here

are some problems that could surface and solutions to those problems.

Conveyor belt jam - With many small pieces constantly spilling into the conveyor belt

there is a chance that some like an axle can fall in the spaces or somewhere it shouldn’t

be like where the motors are. It could end wedge in with the motor and could stop the

system or break a vital part or perhaps the belt itself could get caught in the motors

seizing it up or some other outside force that managed to get wedged in the conveyor belt

motors. To prevent that walls were built on the final belts to prevent the LEGOs from

falling anywhere near the motor or wheels.

Jammed Chute - This is similar to the motors in the conveyor belt some outside force

could get wedged into the motor. The motor is concealed in a box in order to prevent any

small parts from falling into it incase of a small chance of overflow. Also the chute was

made wide enough to catch any brick and reorient itself as it slides to the appropriate

bucket.

Lift Jam - Similar to the problem with the motor jam it is possible for the smaller

LEGO® parts to become wedge into the lift components or some other form of outside

force. However because of how it is built it is now not a problem

More Than One Piece Entering the Processor - The system that we have designed

cannot handle processing two objects at the same time. So there needs to be a protocol

that handles what to do if more than one part has entered the image processor. The image

processor should pick up on the number of objects on screen. (There should be two. One

for the actual part and the other is the reflected image of the part) If there is more parts

then the sorter should be able to check is they happen to be the same color or same part

and sort normally else all pieces goes into the error bucket.

Memory - Because image processing is being used to determine what each LEGO® part

is according to what is stored in the library it is important to take into account the amount

Page | 83

of memory needed to perform this process. This was prevented by having to put both

copies of the list of parts in both the Beagle bone and the AtMega.

Camera - The camera must be stationary as it must be at the correct angle to view the

incoming LEGO® parts and the mirror. The camera is stored tightly in a box made of

legos affixed in place without worry of moving.

4.3.6 Code Integration

The entirety of the Lego sorter was planned around building smaller subsystems

separately, and then integrating all of them seamlessly together in the final stages of

preparation. The software for the sorter is no exception. Each subsystem was coded and

tested on its own to ensure that each part works properly, and then all of the parts were

ultimately combined in the final stages.

A major advantage of taking this particular approach to the coding of the Lego sorter is

that it makes things much easier to debug in the final stages. If all of the parts were put

together from the beginning and then immediately tested, it creates a scenario where the

bug could be in any number of locations, whether that be the subsystem, the main portion

of code, or simply in the communications between the systems. By testing the

subsystems before integrating everything together, this eliminates the possibility of the

subsystem itself being at fault, and makes it easier to locate the problem.

A small downside to designing the software in this fashion was the need to keep track of

the variables across different sections of code before they are integrated with each other.

When the subsystems begin to be integrated with one another, became imperative that all

of the variables were accounted for so that the communications between each of the

systems works properly. It was a minor detail that proved to be tedious, but if it wasn’t

properly handled it could have caused major frustration in building the project in the long

run.

Once each of the individual subsystems were working on their own, the only concern was

the communications between them. The method that was used to code up the software

allowed major focus in specific areas of the software one part at a time, rather than

dealing with an overwhelming amount content areas simultaneously. The plan promoted

good organization in the software, and it also made it easier to plan out time to ensure the

best outcome for the project.

5.0 Interfacing Beaglebone Black & Atmega32u4

BBB & Atmega32u4 UART Interface- The Beaglebone Black Rev C was interfaced

with the Atmega32u4 using UART transmit and receive pins. When the Atmega32u4 is

Page | 84

transmitting data the BBB is receiving data. A logic level shifter was implemented to

transmit and receive data between the two MCU’s since the BBB operates at 3.3V and

the Atmega32u4 operates at 5V.

Baud Rate- In order for proper communications between the Atmega and the

Beaglebone Black, the baud rate needs to be set to the same value on both ends. In the

case of this project, the baud rate is set to 9600.

LCD Interface- The Atmega32u4 was interfaced to the RA8875 LCD controller using 4

Wire SPI interface as shown in Fig.5.0-A

Figure 5.0-A: Interface Between the Beaglebone Black, Atmega32u4, and LCD RA8875

Controller

6.0 Prototype Construction

Section six will outline the process that will go into assembling the final prototype. This

will cover both the hardware portion of the project as well as the software portion.

6.1 Materials List and Parts Acquisition

Our team decided to go without a sponsor. The parts were paid for by the team members.

Prototype Final Budget
Part Quantity Price Total

Beaglebone Black 1 59.99 $59.99

Atmega32u4 Chip 1 $7.00 $7.00

Power Supply PCB 4 $33 $132

Page | 85

Wooden Dowels 2 1.65 $3.30

L293D H- Bridge 1 $1.39 $1.39

RS-455 PA DC Motor 1 $9.20 9.2

TFT RA8875 LCD 1 $30.76 30.76

MicroSwitch 4 $1.50 $6.00

PCB 2 $33 $66

Stepper Motor 28BYJ-48 + UNL2003 Driver 1 $7.99 $7.99

Mirrors 2 $1 $2

Threaded Rod 1 $1.70 $1.70

Coupler for Threaded Rod 1 $0.90 $0.90

Wood 1 $15 $15

Photo Paper 2 $5 / ft^2 $10

Buckets 10 $0.50 $5

Legos N/A Donated $0

Conveyor Belt DC Motor 2 $12 $24

Webcam Logitech C110 1 $19.50 $19.50

QRE1113 Sensor 1 $2.95 $2.95

Power Supply BOM 1 $33 $33

Embedded PCB Components 1 $30 $30

SPST Switch 1 $.69 0.69

Balsa Wood Glue 1 $4.50 4.50

Parallax S148 Servo Motor 1 $20 20.00

Balsa Wood 4 $4 20.00

Mean Well Power Supply 1 $18 18.00

Wire & Connectors 1 $10 10.00

Zip Ties 1 $2.50 2.50

LED 1 $3 $3

 Total $546.38

6.2 PCB Vendor

As suggested there are two vendors to be considered for ordering the PCB for the project,

OSH park and 4PCB.

Osh Park – OSH park has a lot of resources for PCB design. The website offers a lot of

resources about common file formatting issues and plenty of links on how to solve these

issues including 13 files on general “FAQ” and 7 files on CAD Package specific help.

The price is more than fair as can be seen in Figure 6.3-A. OSH Park supports Eagle Cad

Page | 86

“Eagle BRD” files is only compatible with version 6.6 up to 7.1. The only real issue is

the processing time and fabrication time. Time will need to be managed efficiently to

allow 1 business day process time, 12 day fabrication time, and shipping time. It will take

a minimum of 2 weeks for the PCB to arrive.

OSHPark Price # of Copies Order Process

Time
Fabrication

Time

Standard 2 Layer

Board
$5/in2 3 1 Business Day 12 Days

Standard 4 Layer

Board
$10/in2 3 Weekly 14 Days

Figure 6.3-A PCB vendor OSH Park

4PCB – 4PCB offers a free design tool “PCB Artist” that can be used to develop the

design needed. 4PCB offers a free file review which is reviewed by engineers so if there

are any errors in design they will be found immediately with no surprises later. Figure

6.3-B shows that the turnaround time is very quick. It should take no longer than 1.5

weeks for the PCB to arrive.

4PCB Price # of Copies Order Process Time Fabrication Time

Standard 2 Layer

Board
$33 4 Same Day 3 Days

Standard 4 Layer

Board
$66 4 1 Business Day 5 Days

Figure 6.3-B PCB Vendor 4PCB

Summary- We decided to use 4PCB since it has a much faster turnaround time. We

knew that the PCB’s would take some time to design since we have no prior experience

with eagle or soldering.

6.3 PCB Software

The PCB software used for both the power supply as well as the embedded Atmega32u4

PCB was Eagle. We chose to use Eagle because there is a lot more information on the

web and plenty of youtube tutorials to get us started. Sparkfun, element14, and Webench

all have eagle libraries, schematics, and board files that can be downloaded for reference.

PCB Artist was experimented with to some extent. It is much more user friendly, but it

was not used for this project simply because there is not as much information or tutorial

videos as with PCB Artist.

Page | 87

6.4 Final Coding Plan

This section will outline the plan that was used on coding the system. The major parts to

this include the image processing portion, the user interface, the moving portions of the

system, and error handling. In order to do proper testing for the final prototype, all of

these portions needed to be able to work individually, then they had to be able to

accurately communicate between each other.

6.4.1 User Interface

Since the AtMega used to control the LCD screen R8875 library was had to be used. All

the code and function provided are already written in C and is designed to easy to

implement.

Initialization – First the object R8875 is called to a variable in order to used functions

for the LCD. Four pins for the touch screen are assigned to the SPI pins (CS, CLK,

MOSI, MISO) in the ATMega chip and 2 pins used to control the touch panel on the

screen. They can technically be assigned to any pin but in this case it was pin 23 and pin

24 to INT and RESET on the LCD screen. The both the display and touch panel are

activated separately in the set up function. Now the program is ready to draw on the

screen and detect touch from the resistive touch panel.

Start screen – The start screen will just contain text displaying the name of our system,

version number, and a push button. An example of the screen is shown in Figure 4.X.X –

a . In order to implement this screen first the menu color is set for the background in this

case white was used, then the Name and version of software are displayed by first

changing from GRAPHICS mode to TEXT mode. Note that when first initialized, it is

automatically set to GRAPHICS mode. Net set the cursor is set to the appropriate

coordinates and text set to the appropriate color. Then call print through the touch screen

library.

Since there is no function that handles events like in Java a function must be made to let

the user move on to the next page. Because buttons are going to be used throughout this

program a void function called roundButton is created to draw out the button states for

when it is touched or untouched. The function takes in the x and y coordinates for where

the button will be drawn from the top left corner, a string which is what is printed on the

button, and a Boolean indicating if the button is being pressed or not. It will draw a white

box with a black outline using the function call drawRect with black text centered in the

button. If the button has been touched then the button is instead colored black using

fillRect with white text. The size of the button is program to change if the string is too

long.

Page | 88

For the touch it is done using a combination of the function touchDectect and

touchReadX, where X is either Pixel or Analog. In this case touchReadPixel was used out

of preference. touchDetect is used to sense any change in the analog values of the touch

panel and returns true if it senses something. It also has a secondary use of clearing touch

data when true is entered as an argument. Without a true argument touchReadPixel must

be called immediately after it. touchReadPixel takes in the address of two variables to

store the coordinates of the touch as coordinates in pixel. Those stored values are then

checked to see if they within the pixel values of the button using and if statement. If true

then the button will call roundButton and redraw it as being touched to indicate to the

user that they touched the button. Then the next page is drawn on screen.

Setup Screen – This screen is used to assign sorting type and where each lego will go.

On screen there will be two buttons that will decide sorting type. Eight numbered circles

that will represent the buckets and eight labels under them that lets the user know what

that bucket has been assigned to hold. An example of this screen is shown in Figure 6.4.1

– B. First a call to fillScreen to erase the screen. Then a call to drawRect is made to make

a container for all the buckets. Then two more calls to drawRect is made to draw the tabs

for when the user will switch between sorting by color or sorting by shape which which is

determined by the variable isColorMode where true is “sort by color” and false is “sort

by shape”. A white line is draw on the bottom border of one of the tabs depending on the

state of isColorMode. Finally a call to roundButton is made to draw an untouched “next”

button. The buckets, bucket numbers, and labels are all drawn at the same time using a

for loop and adjusting the spacing as needed. The labels are values stored and in array

that is initialized to the value “Misc.”

When the tab for Shape or Color is touched a call to redraw the setup screen by

redrawing the tabs to indicate which one is active if not already selected and reinitializes

the labels to “Misc.”. Each of the buckets when pressed becomes highlighted and the

choice window opens letting the user assign the buckets. When the next button is touched

a call to the confirmation screen is made if and only if at least one of the buckets is

assigned otherwise a function is called for a pop up window to notify the user that there

must a “Misc.” assigned to a bucket.

Choice window – The creation of this window is the most complicated because of the

amount of interactive parts that are close together in one area and the fact that the touch

screen has no means of detaching pressure on the touch panel. In order to lessen the

amount of false positives the user must double tap their choices.

First the area where the window will redraw in cleared by calling rectFill using whatever

color for the background. Then the shapes for the buttons, title space, choice space using

the draw functions. Once the basic shape of the window is created print the title of the

window in the title space. The title used come form the menu structure.

For choices in this code it is set to hold four items at the time by adjusting the spaces and

size of the window it can be changed. As for the items depending on the level of the

menu (Level 0 being the lowest) it will either print the items from the list of items when

Page | 89

the menu is a level 0 menu or print the title of the lower levels from the list of menu

structures. A for loop is used to print the items on the window. The starting point from

where on the list to start looking at is through the variable idx as when the user is

scrolling through the list the view of the list shift every four blocks.

For touch a while loop is used to keep polling for a touch. If one of the for choices are

touched the choice is highlighted blue. This done by drawing a blue rectangle with

fillRect and reprint the string in white. The term idx which is an integer based on the

array values of the menu list is loaded into a temporary variable called tempsel which is

then saved in the variable selected when the user lifts their finger to remember the

highlighted value. While it is highlighted if the current menu is level 0 then the choice is

stored in an array that will update the setup screen otherwise a recursive call to itself is

made with the new argument for the menu struct being based of the title printed on the

list of choices. If the size of the menu list is greater than four the bottom left button is

pressed the button first is highlighted and a flag for the previous button is set to true. The

next button, and the top left button are similar to the previous button only the next flag

and prev_p flags are set to true respectively. When the finger is lifter for a certain amount

of time determined by the counter the selected button is set. If the next flag is true the idx

value is updated by incrementing it by four or resetting it to zero is the value goes past

the list size. If the previous flag is true then the value is decremented by four or goes the

last available pointer value for the menu list. Then the window is cleared and updated

with the next set of values. If prev_p is true if there exists a higher-level menu based on

the current menu then a recursive call is made to that menu otherwise it returns a null

string.

Confirmation screen – This screen is the simplest of the screens as it is just a text box

showing what the user choices from the setup screen and two buttons with one leading

back to the set up screen and the other leading to the status screen. Basically a call to

drawRect is used to draw a container for the text. A for loop is used to print the bucket

assignment into the container and two calls to roundButton for a Next and previous

button.

For touch it is checked if the touch value is within one of the two buttons. If the “prev” is

detected to be touched then the screen changes to the Setup Screen. If the other is touched

then the pause screen is drawn.

Pause screen – The pause screen gives the user to pause, resume, and quit the current job

along with a fun little image to fill in white space that uses a hand full of the R8875’s

drawing functions such as drawLine, drawHLine, drawVLine, and other drawing

functions. Text is printed below the image stating the state of the sorter. The buttons that

appear depends on if the system is paused or not. If the system is not paused then one call

to round button is made to make a pause button. When the button is pressed the pause

state it updated and the pause screen is redrawn to reflect the change in state. When

redrawn the text prints the new state of the system and two calls to roundButton are made

making a resume and quit button. When resume is touched the pause screen updates to

Page | 90

it’s previous state of the system running else when the quit button is touched the screen a

pop up window opens asking the user if they want to quit.

Popup windows – When going through the screens there are only two pop up window

the user will encounter. A pop up for a missing “Misc.” assigned bucket and the quit pop

up. Both are made using similar methods. First and area for the window is cleared using

fillRect. Then the window is drawn using drawRect. Next the text for the pop up is

printed in the box. Finally one call to roundButton to draw and “Ok” button for the

warning pop-up and two calls to roundButton for the “Yes” and “No” buttons for the quit

box.

For touch when the “Ok” button is pressed in the warning pop-up or “No” is pressed in

the quit pop-up the pop-up disappears. If “Yes” is pressed in the quit pop-up then the

screen is brought back to the start screen.

6.4.2 Error Processing

Error processing is designed to handle any problems that occur in the hardware and

software. With the amount of moving parts in the sorter, most of the errors will come

from some sort of outside force. Sensors are used for vital parts of the sorter in or to catch

any problem that appears. As for the software the vital areas are the image processor and

the library as with out them there will be nothing to compare the Lego parts with. When

these problems arise depending on the severity of the problem the system needs to either

pause the sorting and state the error on the LCD screen or dynamical correct the problem

as it occurs and continue running. The coding language used to run this operation will be

C++ language as that is the language the microcontrollers use.

Motor Speed – Because of how the conveyor belt is built and how it function the speed

of the motors are critical as the conveyor belt is what helps separate the Lego parts before

they enter the image processor. Therefore the speed of the motors of the first and second

conveyor belt must be run at specific speeds, the first belt running at a slower speed and

the second conveyer belt running at a faster speed. The motor drivers will constantly

report the speed of the motor as it is running. If for some reason the motors run at a faster

or slower speed than it is allowed the drivers should correct themselves otherwise the

Conveyor Belt Jam error process is performed.

Power Surge – This is a very important error to catch as many of the components

running this machine are low power and a sudden change in power will damage the sorter

or lead to a fire. To avoid that the power supply should shut itself off.

Camera – Before the system can even run the camera must be set in place. The camera is

set when it sees certain marks in the area were the image processing takes place. If at any

time the camera is moved out of place the system will pause and state message on the

Page | 91

LCD screen that the camera is off center. Once back in place the image processor will

rerun if there is a part that needs processing and continue operation from there.

Weight – When the containers become full that cannot be used anymore because the

parts will just over flow. With the load sensors under the containers the system can keep

track on the amount of parts in the container. Once the load has reached a certain

threshold the rotating arm will skip that container and instead rotate to the next assigned

container otherwise to the error bucket. If the Error bucket is full the system will pause

and alert the user that there are full containers.

6.4.3 Image Processing

The process of coding up the image processing portion of the system was one that had to

be methodical and fairly meticulous. With it being the main brain behind the sorting of

the Legos, it was absolutely imperative that the image processing code works EXACTLY

how it’s supposed to in every aspect. If it was even slightly incorrect, it could have

resulted in more errors in the final project than successful sorts, and that was

unacceptable for the project.

The important thing to understand when it comes to the image processing is the two

dimensional array that represents the image. Figure 6.4.3-A shows a rough visual

representation of what a two dimensional array looks like with an image from the image

processing chamber.

Figure 6.4.3-A

Page | 92

As shown in the figure, 255 is the number that is representing the background of the

conveyor belt, while in this hypothetical case, 1 is representing the color of the Lego

currently in the chamber. This is the representation of all of the images that are

processed throughout this entire program. To reach this result the code moves through a

number of steps.

Step 1
The first portion of coding that was done was the code required to read in an image from

the webcam. While it appears to be fairly trivial, a good deal of research was required to

ultimately reach the point where the camera was able to gather and print a full image.

Step 2
The second step was to write the simple algorithm that detects when a Lego has entered

the image processing chamber. This algorithm quickly goes through the color analysis

algorithm to determine if a Lego has appeared in the chamber. The algorithm goes

through the two dimensional array that represents the image given by the camera and if it

finds a color significantly different than white (the background) it will know that a Lego

has indeed entered the area. After a small delay, the code then begins its full analysis of

the Lego that has entered the chamber.

The code for this portion is fairly simple and very active. It works in intervals, checking

the chamber every second for significant changes in the chamber to determine if it’s time

to run a full analysis.

Step 3
The next part of coding will be to test color detection. This portion of coding won’t be so

much a contribution to the algorithm as it will be testing to determine thresholds for the

different Lego colors. With all of the lighting in the image processing chamber, the

chances of a single Lego showing the same color code for all of its pixels is

EXTREMELY low. There is a small range of numbers that each color will represent and

testing helped to determine these ranges. These are set in the code so that when the

program goes to detect colors, it returns every color represented within the image.

Ideally, there will be two colors returned each time: white (the background color) and the

color of the Lego. In some cases it may only return white if the Lego is white as well.

As shown in figure 6.5.2-B, this Lego is representing most of its pixels as a value of 2,

with some discrepancies where the value is one. These are very likely caused just by the

lighting in the image processing chamber, and this could very well be the exact same

Lego that was shown in figure 6.4.3-B

Page | 93

Figure 6.4.3-B

The coding for this portion is fairly simple. Through testing, predetermined ranges of

values were set for the different colors. So to determine what colors are in the image

currently being processed, the program simply goes through the image and determines all

of the different colors represented. A simple brute force algorithm using a double “for”

loop is all that is needed to do the job.

The code creates an array that will contain the colors detected within the image so far, but

will not contain duplicates. Ideally this array should only have data in two cells at the

end of the process and then this is used to ultimately determine which bucket the Lego

will go in when sorting by color.

Step 4
This was the most tedious and time consuming part of the code. It required extensive

testing, a good deal of data entry, and a good deal of plain effort.

From what research and preliminary observation has been done, the easiest and most

efficient way to perform the shape recognition was with some basic measurements. The

part of the image that captures the top view of the Lego is able to gather the length and

the width of the brick in question. The other part of the image (the side view) may will

not have that advantage. But it still is able to gather the height of the Lego accurately.

These two pieces of data are able to narrow down the Lego selection to the particular

Lego in question. These details can be measured simply in array cells. This is where the

Page | 94

extensive testing and data entry was done. Each individual Lego shape was individually

tested multiple times to determine the accurate measurements of the shape. After

determining the small range of values for the Lego in question, the data was hard coded

into the Beaglebone Black, allowing it to accurately determine the shape of the Lego.

This also takes into account the different possible orientations of the Lego (IE if the Lego

is on its side) and has those measurements entered into the library as well.

Figure 6.4.3-C

Figure 6.4.3-D

Page | 95

Figure 6.5.2-E

So the coding to read in the image is fairly extremely simple. It consists of two separate

double for loops (one for each portion of the image). The first set is for the topside view.

This view locates the position of the pixels at the highest, furthest left, and furthest right

positions. By using the Pythagorean theorem the length and width of the brick is able to

be determined. For the second portion of the image, the algorithm runs through each

column searching for whether or not that COLUMN contains the color it is looking for.

The code then simply keeps track of how many columns that were counted, and this is the

value that is used for the height of the Lego.

These steps combined together ultimately make up the whole of the image processing

algorithms.

6.4.4 Other Subsystems

The coding plan for the subsystems is fairly straightforward. There doesn’t need to be

excessive coding, as the other subsystems don’t have a massive amount of variables to

handle. The only exception to this was the rotating arm system, which had to deal with

each of the individual buckets.

Lift Arm System – The lift arm system is treated as its own object, containing a few very

basic variables. The variables account for the speed that the lift arm moves, the interval

at which the lift arm moves, and then a variable to denote whether or not the lift arm is

active. There are also variables to account for the switches above and below the lift arm,

indicating when it is time to change direction.

 Variables:

● int Lift_Speed – this variable accounts for the speed at which the lift

moves up and down

Page | 96

● int Lift_Interval – this variable accounts for the time interval in between

lift activations, to make sure there is proper space between loads of Legos

● boolean Lift_Status – this variable is simply to denote whether the lift is

active or inactive, with the default being inactive

● boolean upperSwitch – this variable accounts for the switch that tells the

lift arm to stop moving upward

● boolean lowerSwitch – this variable accounts for the switch that tells the

lift arm to stop moving downward

Conveyor Belt System - The conveyor belt system is only slightly more complex to

represent in the code than the lift arm system, only because there are two conveyor belts

to account for in the code. The necessary variables for the conveyor have to simply

account for whether or not each belt is active, and the speed at which each belt is moving.

 Variables:

● int BeltOne_Speed – this variable accounts for the speed of the first belt

in the conveyor system

● boolean BeltOne_Status – this variable determines the current status of the

first belt in the conveyor system

● int BeltTwo_Speed – this variable accounts for the speed of the second

conveyor belt, which will definitely be greater than that of BeltOne_Speed

● boolean BeltTwo_Status – this variable determines the current status of

the second belt in the conveyor system

Rotating Arm System - Of the mechanical subsystems in the Lego sorter, this was the

most complex with the software. It will required variables to account for each of the

buckets, as well as the rotating arm itself. Also there needed to be variables for each of

the sensors that the rotating arm is reading to know it has reached its destination. The

buckets are simply stored in an array in the code. Another array contains the values of

the Legos corresponding to each bucket. So the code uses this array to determine the

position of the bucket that the Lego needs to go into. The rotating arm is also be its own

object, containing variables for speed, whether it’s active, and location.

 Variables:

● Buckets[8] – the code contains an array of characters corresponding to

Legos that are called in order to identify each of the Legos, and these Lego

types can be assigned to each of the individual buckets, which determines

which bucket the Lego will be sorted into

Page | 97

● int Arm_Location – this variable simply keeps track of the current location

of the rotating arm as it continues to travel around the buckets to find its

final destination

● int Arm_Speed – this variable accounts for the speed that the rotating arm

will be moving

● boolean Arm_Active – this variable simply accounts for whether or not

the arm is currently moving

Sweeper Arm System – A later addition to the project, the sweeper arm system is the

means by which a Lego brick makes its way to the rotating arm. It’s location directly

under the conveyor belts, as well as its position flush against the base of the image

processing chamber, make it the perfect addition to simplify Lego detection compared to

the initial plans of a direct disposal from the conveyor to the rotating arm. The sweeper

arm uses switches just like the lift system, and a few variables to determine its speed and

direction.

 Variables:

 int speed – this variable determines both the speed AND the direction of

the arm; the motor’s code dictates that a certain range of values move the

arm forward and another range moves it backwards, which we have set to

180 and 5 respectively

 boolean forwardSwitch – this variable accounts for the switch that is

placed out in front of the sweeper arm to tell it to begin moving backward

 boolean backSwitch – this variable accounts for the switch that is placed

underneath the conveyor, towards the back of the sweeper arm to signal

when the sweeper arm should stop moving

After these various subsystems were taken care of, the next step was to integrate all of

these parts into the main portion of code with the image processing chamber. The

integration was fairly simple at this point, given that each subsystem is properly working

on its own. Each of the variables listed were assigned by the main portion of code and

then changed based on the status of the image processing chamber.

Status Changes:

● Conveyor Belt System – The dual conveyor system moves continuously,

stopping when a Lego has entered the image processing chamber. This

gives the image processing component time to do its work, and it gives the

sweeper arm and the rotating arm ample time to do their job as well.

● Lift Arm System – The lift arm is set in static intervals, moving up and

down based off of the speed of the conveyors.

Page | 98

● Rotating Arm System – The rotating arm system is only active as soon as

the analysis on a current image is complete and the result has determined

the final location of the Lego being analyzed. So the status will change to

active when it receives the signal to move, and inactive as soon as it

reaches its location.

● Sweeper Arm – After the rotating arm has finished its job, the sweeper

arm activates, pushing the current brick off the edge and down into the

rotating arm.

7.0 Prototype Testing

This section outlines methods used to test our prototypes before integration.

7.1 Hardware Test Environment

Much of the initial testing of hardware was done in the Senior design lab. Towards the

end of senior design, there was no longer any room to set up our project with dimensions

of 5 x 3ft. This made integrating all of the moving parts of our project very difficult. We

ended up moving our project to a team mate’s home to finish the project. We used 12V

and 5V AC adapters to preserve our power supply in case of a short. We used a 14

function multi-meter to test voltages, currents, continuity, capacitance, resistance, etc. of

our circuitry. Once we got everything assembled and moving together, our hefty project

was transferred back to the senior design lab to get ready for the demo.

7.2 Hardware Specific Testing

This section will outline the hardware testing of the three main mechanical subsytems:

conveyor belts, rotating arm, lift system, and sweeper system.

7.2.1 Conveyor Testing

The testing for the conveyors was mainly done using the MSP430g2553 PWM pins and

adjusting the speed of the belts until the Top belt moved as slow as possible while still

having enough torque to turn the conveyor belt.

Page | 99

7.2.2 Rotating Arm Testing

The stepper motor requires a specific sequence of signals to operate as intended. Testing

will begin once it is completely hooked up as designed. After hooking up the stepper

motor and driver circuit to the Atmega32u4 microcontroller and power supply as shown

in Figure 4.2.4-B, the code will be written. Testing will make sure the timing in the code

allows for smooth operation of the stepper motor. Care will be taken to make sure delays

are put in the code to accommodate for the slower electro-mechanical processes that

occur in the motor. Being that the motor has 1.8° steps, it should not be a problem to get

the rotating arm slide to line up with each LEGO bin. Testing will make sure it does

anyway. The color sensor on the rotating arm will also be tested. It will be connected via

I2C with the microcontroller before testing. The sensor has a register and some integrated

features that will be read into to properly test its functionality.

7.2.3 Lift System Testing

The lift system was initially tested without a load. The MSP430g2553 was used initially

to test the hardware. The Switches were hooked up to interrupt pins and the motor was

hooked up to the L293D and the MSP430G2553 as shown in figure 7.2.3-A

Figure 7.2.3- A: Lift System Testing Before Integration

For the final integration the switches were hooked up to digital pins. One switch was set

High and the other was set low. The Atmega32u4 used polling through serial interface to

constantly poll the switches to see if they were pressed. When the switch is pressed, the

motor reverses direction until it hits the other boundary switch, and the motor reverses

direction repeating the process.

Page | 100

7.2.4 Sweeper Arm Testing

Setting the Internal Potentiometer of the Servo -In order to test the sweeper arm, the

Parallax S148 Servo motor’s internal potentiometer must be tuned the neutral position.

The datasheet specifies that the neutral position of the Parallax S148 is at 1.5ms with a

period of T=20ms. The servo was connected to 5V using a triple power supply in the

senior design lab, and connected to ground. The function generator was set to a pulse

width of 1.5ms and a period of 20ms. The output of the function generator was

connected to the oscilloscope and grounded. Once the square wave was measured on the

scope to the appropriate neutral pulse width of 1.5ms and a period T=20ms, the function

generator was connected to the control line of the servo. In order to adjust the set point of

the servo’s internal potentiometer, the screw connected to the outside casing of the motor

was slowly turned until the servo stopped rotating.

Configuration – The Sweeper arm switches were tested in a similar manner to the lift

system. The Parallax148 only has 3 wires for control: +Vcc = 5V, GND, and a control

line. The control line was wired to an analog pin on the Atmega32u4. The servo was

initially programmed using the Arduino “servo sweep” library. The only thing the servo

needed to do was go CW until it hit one boundary switch and then reverse direction and

go CCW until it hits the other switch. The maximum speed was used with 180 degrees

CW, and 5 degrees CCW.

7.3 Software Test Environment

An extremely important portion of testing is creating an accurate environment in which to

test the software. In order to make sure that the testing done accurately reflects how the

project will respond in the final prototype, it is of utmost importance that the testing be

done in the same kind of environment. Therefore, since all of the software will be

coming from the Atmega and the Beaglebone Black, those will be the testing

environments for all of the software. The software will be written onto the

microcontrollers via a Windows 8 computer with standard specifications, and this

computer will also be used to help debug the code during active testing.

7.4 Software Specific Testing

This section covers the user interface testing, image processing testing, error handling

tests, hardware communication testing.

Page | 101

7.4.1 User Interface Testing

It’s important the user interface functions behaves properly without many issues as it the only

way the user can communicate with the LEGO® sorter. That why it important to test the

responsiveness of the LCD screen and GUI such that the screens flow in the correct order, the

bucket screen is assigned to the correct bucket, test that the interface communicated to the

controller the sorting method, reading the data from the sensors, and calibrating the screen in

order to interact with the GUI properly. Before any of these tests can be done first make sure the

LCD screen is properly calibrated for use. The RA8875 library comes with code used to calibrate

the touch screen panel.

Screen flow – Testing the screen progression is simple enough. It’s mainly to see if all the

screens are displaying in the right resolution and if the buttons go to the correct pages. During this

stage there is no other functionality like reading sensor data or sending the bucket assignments.

Supplies:

 5” RA8875 Resistive touch LCD Screen

 ATMega

 Computer

Preparation:

Attach the LCD screen to the AtMega. Upload the user interface program from the computer to

the AtMega to begin Debugging.

Procedure:

1. Run the first screen on the display. The entire screen must fit on the screen and must not

leave any space or get cut off screen. If it is not fitted properly then go back into the code

and readjust the GUI window size.

2. Once the first screen is displaying properly press the start button to go to the next page.

The page showing should be the set up screen where the user picks how to sort and what

each bucket is going to hold. If it is not got back to the code and correct the where the

button should be pointing to.

3. Then check to see if the page is the right resolution.

4. Set the sorting type and assign any value to the buckets.

5. Once everything is set up properly press the next button. The next screen should be the

confirmation screen. There will be an un-editable text box that displays how the blocks

will be sorted and what each bucket is going to hold.

6. Again check if the resolution of the window and adjust accordingly in the code if needed.

7. Next press the back button. This should lead back to set up screen.

8. Make some changes in the setup screen and press next.

Page | 102

9. The confirmation screen should change according to the new settings. Press the next

button. The next screen should be the pause screen and the final screen. Here the screen

shows and image, some text, and a pause button.

10. Check the resolution and adjust if needed.

11. Press the pause button. The text should change and the resume or quit buttons should

appear.

12. Press resume. The screen should go back to its previous state.

13. Press pause again.

14. Press the quit button. A new window should pop-up asking for a confirmation.

15. Press no and the window should disappear returning to the status screen again.

16. Return to the confirmation window and press yes. The screen should return to the start

window concluding the test.

With all the screens progressing in the right order it is ready to be integrated with system.

Setting Up – Here is where is where we assign what will go into witch bucket. Here we just need

to test if the information is loaded into the array properly.

Procedure:

1. Go the set up screen

2. Select the setting for the seven buckets and compare it to the information in the debugger.

3. When everything is set correctly go to the confirmation screen. All the information in the

array should be displayed on the confirmation screen’s text box. If it’s not then that

means the Library is not organized properly and some data does not have all it’s

information.

Once it is know that all the data selected is going into the array next is to test communication of

the LCD screen to the image processor.

Procedure:

1. First set all the data for all the buckets on the set up screen.

2. Then hit next to go to the confirmation screen. Make sure to check the data in the array

with a debugger.

3. Press the next button on the confirmation screen. This will send a byte to the image

processor indicating how the LEGOs will be sorted.

4. Check the image processor with a debugger to see if the byte has been received. If that is

not the case then there is something wrong in communication. Check the code to see if

any port name has been misspelled or if the wiring of the microcontrollers is wrong.

Page | 103

7.4.2 Image Processing Testing

One of the most important parts of testing is that of the image processing component.

This consists of a number of different tests that determine how the system handles

different scenarios that may occur within the system, as well as testing the very basic

situations that should be occurring regularly.

The simplest version of this test is by simply running through Legos one at a time in the

normal fashion to ensure that they are sorted into the correct buckets. These tests were

run for every available color that is going to be used in the project. The supplies and

preparation for these tests were all the same.

Color Test Number 1: Basic Situation Test

Supplies:

● Image Processing Chamber

● BeagleBone Black

● Computer

Preparation:
Connect and power up the BeagleBone via the computer, and then connect the

BeagleBoard to the Image Processing Chamber.

Procedure:

1. Place singular Lego within the parameters of the Image Processing

Chamber.

Page | 104

2. Run the algorithm on the BeagleBone for gathering the details of the Lego

to attempt to identify the color of the Lego.

3. Check result of algorithm to confirm that it matches the color of the Lego.

4. Repeat 1-3 for other singular Legos to test all of the different colors and a

wide variety of shapes.

There are multiple other situations, however, that may arise that should be accounted for

as well when it comes to color testing. One such situation involves having multiple

Legos on frame. In this case, the test was run to see if all of the Legos on screen

coincidentally are the same color. In this case, the multiple Legos can be dispensed into

the correct bucket as normal, however if the two are different colors then they should be

put into the error bucket instead.

Color Test Number 2: Multiple Legos

Procedure:

1. Place multiple Legos within the Image Processing Chamber either all of

the same color, or with different colors.

2. Run the algorithm on the BeagleBone for gathering the details of the Lego

to attempt to identify the color of the Lego.

3. Check the result of the algorithm. In the case where the Legos are all the

same color, confirm that this is the result that was gathered by the

algorithm. In the case where the Legos used were of various colors,

confirm that the algorithm resulted in an error.

4. Repeat steps 1-3 for various different combinations of Legos. This

includes overlapping Legos, Legos in different positions, and Legos that

represent each of the colors used in the algorithm.

Another situation that could occur would be multi-colored Legos. If there are multiple

Legos in the chamber at the same time, and their colors are not the same, this will be

processed as an error and the Legos will be placed in the miscellaneous bucket.

Color Test Number 3: Multi-Colored Legos

Procedure:

1. Place Lego(s) with multiple colors in the Image Processing Chamber.

2. Run the algorithm on the BeagleBone for gathering the details of the Lego

to attempt to identify the color of the Lego.

3. Check the result of the algorithm to ensure that it is an error every time.

4. Repeat steps 1-3 for a wide variety of Legos to ensure a consistent result.

Page | 105

These three tests will account for virtually all of the situations that the system may

encounter. With multiple tests in a wide variety of areas involving color it will help to

ensure that the sorter is able to successfully separate the Legos properly based off of their

color. Testing the system for its ability to recognize shape was a different set of tests

however.

In the case of shape, there is a set library of shapes that the system will be able to

recognize. In the case of a shape that is not recognized, it will be sent to the error bucket.

Shape Test Number 1: Basic Shape Recognition

Procedure:

1. Place a single Lego into the Image Processing Chamber.

2. Run the algorithm on the BeagleBone for shape recognition on the Lego.

3. Check the result of the algorithm to ensure that it recognizes the shape if it

is in the library, or if it processes it as an error if it is not.

4. Repeat steps 1-3 for all the Legos in the library as well as a variety of

those that are not in the library.

One of the additional situations that could arise is that of overlapping Legos in the image

processing chamber. If two Legos overlap within the chamber, the system will likely
recognize this as a single Lego. While this is certainly not an ideal situation, the

algorithm should be able to simply register this situation and drop the two Legos into the

error bucket.

Shape Test Number 2: Overlapping Legos

Page | 106

Procedure:

1. Place multiple Legos within the Image Processing Chamber, making sure

that they overlap each other.

2. Run the algorithm on the BeagleBone for shape recognition on the Lego.

3. Check the result of the algorithm to ensure that it process the Legos as an

error, rather than mistaking it for an actual Lego.

4. Repeat steps 1-3 multiple times to ensure consistency of results.

That covers the basic situations that could complicate the simple color and shape

recognition abilities of the system, but there is also the possibility that multiple shapes

could appear on the image WITHOUT overlapping. This isn’t so much of a test of the

shape or color recognition algorithm, but the ability of the algorithm to know WHEN to

process what is on the image, or possibly how much of the image to process. In this case,

the first Lego passed through will have already been processed, but the second Lego will

be the one that creates the trouble. The algorithm should be able to recognize this and be

able to handle it. The difficulty with this test though, is that it relies on a lot of different

parts to be finished and working to properly test it. This simply means that this will be

one of the last bits of testing that the project will be subjected to.

Multiple Legos (Separated) Test

Supplies:

● Image Processing Chamber

● Atmega

● BeagleBone Black

Page | 107

● Conveyor Belt

● Rotating Arm System

● Computer

Preparation:

Set up the conveyor belt, Image Processing Chamber and Rotating Arm System as it will

be in the final prototype. Power up the BeagleBone, connect it to the Atmega and display

it via the computer.

Procedure:

1. Place singular Legos along the conveyor belt. Ensure that the Legos are

close enough that there will be more than one in the Image Processing

Chamber at a time.

2. Begin running the system.

3. When the first Lego has reached the Image Processing Chamber, ensure

that it is processed properly and is ready to be dispensed into the rotating

arm system.

4. Continue to run the system as the second Lego begins to enter the

chamber. Ensure that the algorithm DOES NOT begin to process the

second Lego until it has received a signal from the sensor on the rotating

arm system that the first Lego has left.

5. If another Lego has gotten into the chamber before the second Lego has

been processed, ensure that the algorithm works correctly in ONLY

processing the second Lego.

6. Repeat this process multiple times. Space the Legos out at different

intervals and use multiple different types of Legos to ensure that the test

occurs under multiple situations.

This series of tests should be able to effective test every aspect of the image processing

algorithm that was used in the project. This will ensure the best possible results when the

project is finished to make the Lego sorter the best it can be.

7.4.3 Error Handling Testing

Majority of test plans involve similar procedure, as all that is needed are the sensors and

the LCD. The following tests can only be done when all testing on the LCD screen pass.

Attach motors, load sensors, and power sensors to the main controller in order to

communicate to the LCD screen. Have the LCD be set to the status screen. Here were the

sensor error window will appear.

Page | 108

Supplies:

● LCD Screen

● Atmega32u4

● Beagle Bone Black

● Camera

● DC Motors

● Servo Motors

● Stepper Motors

● Motor Sensors

● Motor Drivers

● Power Sensor

● Power Supply

Motor Sensors – It is important that all the motors run at the appropriate speed.

Especially the motors driving the conveyor belt at they serve as a mean to separate the

LEGO® parts. This applies to all

Procedures:

This part of the procedure applies only to DC motors.

1. Run the motors. Check the read the data of the motor that is running on the LCD

is showing the correct reading.

2. Increment speed of motor while monitoring it vial the LCD screen.

3. Continue until speed suddenly drops to initial speed. The monitor should reflect

this change in speed.

4. Repeat this procedure except decrease the speed instead.

This part of the procedure applies to all motors

5. Now carefully hinder the motor spinning to simulate an obstruction.

6. The motor should come to a halt. Check the LCD screen. A window should

appear displaying a message that there is a jam in a motor.

7. Remove the obstruction.

8. Press resume on the LCD screen. The motor should start running again.

Page | 109

Load Sensors – If more LEGO®s are being loaded into the sorter as it is still running then is

possible that containers to soon become full. Therefore the system need to determine when a

container is full and notify the user through the LCD screen that the Error bucket is full meaning

that there are other buckets that are full. In this test we check if the system can recognize a full

error bucket.

Procedure:

1. Hard code senor to represent an error bucket.

2. Slowly increment the amount of weight put on the sensor.

3. Monitor the LCD screen to keep track of the amount of weight put on the sensor.

4. Continue incrementing weight until window appears on screen indicating a bucket

is full.

Camera – The camera must be on center in order to properly view the LEGO® part and the

mirror in order to see the details of the part otherwise mistakes in comparison are more likely to

happen.

Procedure:

1. Set camera to view the marker.

2. Check if LCD screen is seeing the same marker by pressing the camera tab.

3. Slowly move the camera off marker while monitoring the LCD screen.

4. Continue until an error window appears stating that the camera is off its mark.

5. Move the camera back in place. The pop up should then disappear.

Power Sensors – Because of the amount of low power devices it is important to monitor the

power coming out of the power supply. If the output is too high the power supply must shut off to

prevent any damage to the rest of the system.

Procedure:

1. Set a safe maximum level to test with.

2. Increase power slowly.

3. Monitor activity on LCD screen.

4. Continue until entire system shuts off.

7.4.4 Hardware Communication Testing

One of the most important things to test within the project is how well the algorithm on

the BeagleBone communicates with the various hardware that will be used. Multiple test

need to be done to make sure that the BeagleBone is sending signals to the hardware

properly, but also that those are the RIGHT signals.

Page | 110

The first set of tests that will be run will be that of the conveyor belts. The conveyor

belts will be fairly necessary in other parts of the testing, including portions of testing the

image processing algorithm (see 7.4.2, Multiple Legos (Separated) Test). The initial tests

of the conveyor belt will start off in an extremely basic manner. These first tests are

simply to confirm that the signals are being sent correctly to the conveyor belt, so for

these tests an extremely simple test program can be run that sets the speed of the

conveyor belt and can alternate it turning on and off.

Conveyor Belt Test

Supplies:

● BeagleBone Black

● MSP430 Microcontroller

● Conveyor Belt System

● Computer

Preparation:
Connect the BeagleBone Black to the MSP430 Microcontroller in the same manner as the

final prototype, and connect the MSP430 to the conveyor belt system. Power up and

display the BeagleBone via the computer. Prepare a simple test program for the

conveyor system and run it with the BeagleBone.

Procedure:

1. Run the sample program on the BeagleBone that starts the conveyor belts.

2. Confirm that the conveyors move at proper speeds and turn off and on

correctly when instructed to.

3. Repeat this process until the conveyor belts are all behaving properly and

until proper settings for the final prototype have been determined.

Another simple part that will need to be tested will be that of the lift arm. The lift arm

will be running at intervals throughout the process of the Lego sorter and it needs to be

tested as such. This will require another very simple test program that simply sends the

required signals to the lift arm.

Lift Arm Testing

Supplies:

● BeagleBone Black

Page | 111

● MSP430 Microcontroller

● Lift Arm System

● Computer

Preparation:
Connect the BeagleBone Black to the MSP430 Microcontroller in the same manner as the

final prototype, and connect the MSP430 to the lift arm system. Power up and display

the BeagleBone via the computer. Prepare a simple test program for the conveyor system

and run it with the BeagleBone.

Procedure:

1. Run the sample program on the BeagleBone that starts the conveyor belts.

2. Confirm that the lift arm is moving at an appropriate speed and at the

correct intervals.

3. Repeat this process until the lift arm is behaving accurately and until a

desired setting for the final prototype is arrived at.

The final hardware communications testing that needs to be done involves the rotating

arm system. This will likely be the most difficult of the testing that needs to be done. It

will involve communicating with the rotating arm system and keeping track of where the

rotating arm is at and where it needs to go. This will require more extensive testing than

that of the conveyor belts and the lift arm.

Rotating Arm System

Supplies:

● Rotating arm system

● BeagleBone Black

● MSP430 Microcontroller

● Computer

Preparation:
Connect the BeagleBone Black to both the computer and the microcontroller, and then

the microcontroller to the rotating arm system as it will be in the final prototype. Prepare

the BeagleBone with a sample code that will test the various necessities of the rotating

arm system.

Procedure:

1. Begin running the sample code to test the rotating arm system.

2. Ensure that the rotating arm system stops at the appropriate positions,

moves at an appropriate speed and starts when instructed.

Page | 112

3. Repeat this process for a multiple of different scenarios to test the various

situations that the system may encounter in the final prototype.

These tests cover the three major hardware components in the system. Before any of

these test are done the hardware tests will have been performed to ensure that the parts

are already working, these tests are to confirm that the software portion of the process is

communicating in the proper manner and that the signals are being communicated

correctly between the BeagleBone, the microcontroller, and the hardware itself. After all

of these tests have been performed on the system, all that’s left will be to test everything

together in the final prototype.

Final Prototype Testing

Supplies:

● All subsystems, including the Lift Arm System, the Conveyor Belt System, the

Rotating Arm System, the Image Processing Chamber and the User Interface.

● Tiva-C and BeagleBone Black

Preparation:
Prepare the final prototype by piecing everything together in the same manner that the

final project will be prepared. Feed conveyor belt 1 into conveyor belt 2, feed conveyor

belt 2 through the image processing chamber and over the rotating arm system. Connect

the BeagleBone Black and the Tiva-C to each of the subsystems and power on the

machine.

Procedure:

1. Test each aspect of the User Interfaces options to ensure that they are all

working at first glance. Make sure displays are working properly, that kill

switch is functional, and that the interface is assigning the buckets the

proper Legos.

2. Begin running the Lego sorter.

3. Pore over the sorters process in search of any sign of errors or needed

changes including:

a. Lift Arm speeds and intervals

b. Conveyor Belt speeds and stops

c. Rotating Arm timing

d. Image Processing error/success ratio

4. Repeat this process THOROUGHLY to check that every aspect of the

sorter is working properly.

The goal of the Lego sorter is to create a project that is highly accurate, and as efficient as

possible given the constraints of its accuracy. In order to ensure this outcome, testing is

Page | 113

of utmost importance with the project. The sorter needs to be tested thoroughly and

repetitively so that no stone is unturned in making sure that the project is the best it can

be. As long as these tests are adhered to, it should help to produce a superior project.

8.0 Milestone

Figure 8.0 –a shows the milestone chart for the project including deadlines for subsystem

specific research, testing, and final prototype plans.

Figure 8.0 – Milestone timeline for Senior Design 1 & 2

Page | 114

Appendix A – Copyright

[1] http://www.ti.com/lit/ds/symlink/tps55340.pdf

[2] http://www.ti.com/lit/ds/symlink/tps54525.pdf

Page | 115

