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Abstract  —  The project is designed mainly for the 
intellectual or experiential gain of the design team members. 
However, there is also a realization that this project has some 
inherent flexibility for application such as reconnaissance or 
search and rescue. The project’s purpose is to design two 
robots that solve a maze in tandem using two separate maze 
solving algorithms – left wall-following and right wall-
following algorithms. The goal of this project is to create both 
robots to be small, consume low power, be inexpensive, and 
have a 90% success rate when solving the maze. 

Index Terms  —  autonomous, left wall, maze, right wall, 
robot  

 

I. INTRODUCTION 

The maze is a 3D perfect maze, meaning it has no loops, 

no inaccessible areas, and has exactly one solution. The 

cells are rectangular and intersect at right angles. The start 

and the exit are separate and located at the outermost wall. 

Both robots would begin and end at the same locations.  

One robot would follow left wall and the other would 

follow a right wall. As the two robots navigate through the 

maze, each would store its turns into an array. Once one 

robot exits the maze, it would analyze the array of turns, 

represented by characters, and optimize the array to 

eliminate dead ends. The robot then has a solution to send 

to the slower robot to exit out the maze.  

The robots’ key features include power supply, wireless 

communication, mobility, and autonomy. The power 

supply system consists of a battery and two regulator 

subsystems. One regulator regulates 5 V for three sensors 

and two motors. The other regulates 3.3 V for a 

microcontroller. Wireless communication between the two 

robots is implemented by a RF module that transmits and 

receives characters. Mobility is achieved by the 

mechanism of wheels and motors whose direction and 

speed are implemented by pulse width modulation 

(PWM). Finally, autonomy is accomplished by the 

integration of software libraries and custom codes which 

are designed by the team. The final software program is 

stored in the microcontroller. 

II. SYSTEM COMPONENTS 

Only major physical components are discussed here. 

Minor components such as resistors and capacitors are not 

covered in this section. The electronic system is made up 

of microcontroller, sensors, servos, regulators, and battery. 

Mechanical system includes chassis frame, wheels, and 

rear caster.  

A. Microcontroller 

The microcontroller is the brain of the entire system; 

without it instructions cannot be executed, algorithms 

cannot be implemented, data cannot be read and 

interpreted and tasks cannot be completed. A Texas 

Instruments (TI) MSP430F5529 microcontroller was 

selected over the commonly-used microcontrollers such as 

Raspberry Pi, BeagleBone Black, BASIC Stamp because it 

operates at low current (< 100 mA) and voltage (3.6 V 

maximum) and can be sampled for free. All team members 

are also familiar using the microcontroller. It has more 

than enough digital and analog I/O pins for three sensors 

and two servos. Besides, the microcontroller can interface 

with the RF module. The microcontroller’s memory is 128 

KB flash memory which is more than enough to store the 

maze-solving program. 

B. Sensors 

To perform object detection and avoidance, we use 3 

sensors on 3 sides of the robots. The sensor data which is 

fed into the microcontroller will be converted to distance, 

in term of centimeters. We have done research on 5 types 

of sensors. Among these, we chose to test 2 types of 

sensors: ultrasonic and infrared.  

i. Infrared 

Infrared sensors are cheap. They only cost around 10 

dollars to 20 dollars. They are easy to set up, have low 

power consumption and can work quite well with sunlight 

if we are using Sharp brand. However, after some 

extensive testing, we come to the conclusion that infrared 

sensors are not good for our application. The distance is 

not linearly proportional to the sensor output. As shown in 

Figure 1, sensor output and distance has a logarithmic 

relationship so we have to linearize it by generating a best-

fit line. As a result, we have to spend more time on 

sampling data. To avoid this process, we can just use 

ultrasonic sensors. The range of the infrared sensors are 

only from 4cm to 30cm. We need longer range since the 

maze is quite big. Whenever the sensors detect an object 



that is much farther than 30cm, they start to yield 

inaccurate results. So we decide to use ultrasonic sensors 

for our project.  

 

FIGURE 1 

IR SENSOR OUTPUT VS. DISTANCE [1] 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Ultrasonic  

Ultrasonic sensors work great even in rain, dusty, or 

adverse environment. They are not affected by colors and 

can detect both solid and liquid forms. Their range is from 

2cm to 400cm, which is a perfect range for our 

application. It is close enough to detect walls and far 

enough to detect opening. Distance can be calculated 

easily from the speed of sound and the time it takes for the 

wave to travel back. Like other sensors, they have 

downsides as well. They cannot detect objects that are too 

close because the time it takes to travel back is too short 

for the electronics to respond. If the objects are too far, the 

sound can grow weak with distance. The density and the 

material of the objects can distort sensor readings. The 

sensors consume around 100 milliamps when not in use 

but it can jump to several amps when used. Despite these 

disadvantages, they have not caused any problem when we 

used them. However, after some testing, we discovered 

that the ultrasonic sensors frequently reset to 0. We solve 

this problem by retaking sensor reading every time one of 

the three sensors resets to 0. Another problem is cross 

interference, which occurs when the signal emitted by one 

sensor can be read by another sensor. To solve this 

problem, we face the sensors away from each other. Since 

they operate on the same frequency, each sensor will take 

turns reading in the distance, instead of reading at the same 

time.  

C. Servo 

Motors are required to drive the wheels or any moving 

parts on the robots. Parallax continuous rotation servo is 

ideal for our application since it can rotate continuously 

unlike most standard servos that can only rotate up to 180 

degree. However, Parallax standard servos can be easily 

modified for continuous rotation. The servo does not 

require an external H bridge or control circuit like stepper 

and DC motors. The servo’s speed is moderate, up to 50 

RPM at maximum 6 V which is desirable since sensors 

have enough time to update their readings and the robots 

navigate fast enough in the maze. Furthermore, the 

Parallax servo fits perfectly in the chassis and wheels. It’s 

small and weigh at only 42.5 g. It draws little current (190 

Ma maximum at 6 V) when operating in no load 

conditions. 

D. Regulator 

A LMR61428 step-up switching regulator from Texas 

Instruments is used to regulate 5 V. It can achieve up to 90 

% efficiency and has high switching frequency of up to 

2MHz which allows for tiny surface mount inductors and 

capacitors. A low dropout (LDO) REG113-33 is used to 

regulate 3.3 V. It doesn’t require external capacitors for 

stability. It also has ultra low dropout voltage of 250 Mv. 

Both regulators can be sampled for free and available in 

very small package sizes which are ideal since they take 

very little space on the PCB. Smaller PCBs cost less and 

fit better on the robot chassis frame. 

E. Battery 

Four-cell 4.8 V NiMH battery is used to supply power to 

the sensors, servos, microcontroller, and RF module. The 

battery is ideal since it is rechargeable, making it suitable 

for long and extensive use. It’s also fairly inexpensive, 

around $15.00 including a charger. It takes about 2 to 3 

hours to fully recharge. Therefore, we don’t need to wait 

too long before we can use the battery again. The battery 

cells fit nicely in a battery holder that includes a power 

switch, which is convenient to use. 

F. Chassis and Wheels 

Two Parallax Boe-Bot small robot chassis are acquired 

from our friends. They are 12.7 cm long and 8.26 cm 

wide. They are about 4.5 cm tall including the attached 



SumoBot wheel that has a diameter of 6.65 cm. The 

chassis only need two wheels and one rear caster. Its small 

size fits ideally in a small maze (around 30 cm measured 

between left and right walls). All electronic components 

also fit perfectly on it.  

III. SERVO CONTROL 

The Parallax continuous rotation servos rely on pulse 

width modulation (PWM) to control the speed and 

direction of rotation of the servo shaft. However, before 

PWM can be implemented, the servos’ center position 

needs to be calibrated in order to define the pulse width 

value at which the servo holds still. The calibration 

process is often called centering. 

A. Pulse Width Modulation 

A pulse ranges from 1.3 to 1.7 ms determines the speed 

and direction of rotation. In order for a smooth rotation, 

the servo needs a 20 ms pause between the pulses. When 

the servo’s signal pin receives a 1.5 ms pulse width, the 

servo stops. As the pulse width decreases from 1.5 ms, the 

servo rotates faster in the clockwise direction. Similarly, as 

the pulse width increases from 1.5 ms, the servo rotates 

faster in the counterclockwise direction. As a result, the 

servo rotates fastest in the counterclockwise direction at 

1.7 ms and in the clockwise direction at 1.3 ms.  

B. Centering 

Manufactured continuous-rotation servos often have 

trimmer potentiometer which replaces the traditional 

feedback potentiometer. The trim pot allows the user to 

calibrate the servo through a screw which can be seen next 

to the servo’s cable. The servo can be easily centered by 

connecting to a microcontroller which sends a centering 

signal of 1.5 ms pulse width to the servo. If the servo’s 

shaft rotates, then the servo is not properly centered. 

Simply insert a Phillips head screwdriver’s tip into the 

hole and gently twist the potentiometer in either direction 

until it stops turning. [3] 

IV. WIRELESS COMMUNICATION TECHNOLOGY 

The group has decided to use 915 MHz RF 

communication. This will be implemented using the 

Anaren AIR Module which is an integrated transceiver and 

antenna that interfaces to the microcontroller via SPI.  

The team could have very well used Bluetooth 

technology to accomplish the same task since the range 

that the robots will communicate is well within the range 

of Bluetooth however, the team felt that it could be of use 

to become familiar with an increasingly popular form of 

wireless communication being used in industrial 

applications today.  

The Anaren AIR module was also chosen because it 

allowed the team to have access to the CC110L 

BoosterPack for the MSP430F5529 LaunchPad which 

made it much easier to prototype the design. The AIR 

module also has the added advantage of being a very low 

consumer of power once again aligning with the design 

constraints of the project; it consumes just 15 mA in active 

receive mode and  just 200 nA in sleep mode. It can be 

powered at the same voltage as the microcontroller which 

eases PCB design. [2] 

The Anaren AIR Module also has very convenient 

packet handling and data transmission features that assist 

in accelerating the design of our system as well as the 

power efficiency. The AIR module has transmit and 

receive data buffers that can hold up to 60 bytes of data at 

a time, this means that in one transmission the AIR module 

can send 60 bytes of data, corresponding to 60 turns in our 

application, greatly reducing the current drain of the 

transceiver since only one transmission will be required 

for most maze configurations. 

V. PROGRAMMING THE MICROCONTROLLER  

One of the major issues encountered with this project 

was being able to load a program onto the microcontroller 

on the PCB. Originally, the team attempted to use Spy-Bi-

Wire to program the microcontroller since it only requires 

four pins (Vcc, Ground, RST, and TEST) and can also use 

the emulator from a LaunchPad which lowers cost 

however, we soon found that this method of programming 

is highly sensitive and difficult to implement. The first 

PCB the team designed attempted to use Spy-Bi-Wire but 

the team was unable to connect to the programmer and 

could therefore not load a program. While attempting to 

debug the original board it was discovered that Spy-Bi-

Wire is extremely sensitive to board capacitances, line 

capacitance, and other noise sources since its two wire 

data is converted to four wire internally using control 

logic, this requires very accurate timing that can easily be 

disrupted. Our design did not consider such problems and 

did not design to mitigate these problems. After more 

research into programming methods for the 

microcontroller the team decided to switch to a JTAG 

interface which requires more pins but is much more 

reliable and faster than Spy-Bi-Wire. The second revision 

of the PCB design utilized the JTAG interface and was 

able to successfully load programs to the microcontroller. 

We were able to secure a JTAG Flash Emulation Tool 

(FET) from the TI lab which eliminated the increased cost 

that paying retail for a FET would bring. 



VI. MAZE CONSTRUCTION 

The maze(s) that the robots will be solving is (are) an 

important portion of the design constraints for the project. 

Since both robots are utilizing wall following algorithms to 

navigate through the maze, the maze must adhere to the 

limitations of this algorithm; that means that the solution 

cannot be inside the maze, it must be on the outer edge. 

The maze will also be restricted to having one unique 

“best” solution which both robots will be able to, ideally, 

realize after optimizing their respective paths through the 

maze. The maze must be made of a material that will 

adequately reflect the ultrasonic sensors pings and must 

also be tall enough such that pings actually bounce off the 

maze walls as opposed to traveling over them as well as be 

wide enough for the robots to navigate through and obtain 

clean sensor data. The maze must also be reconfigurable to 

allow for proper testing and proof of concept. The easiest 

and chosen material for this maze will be 2” X 8” wood 

cut in to 1 foot lengths since it can stand on its side and be 

easily reconfigured. 

VII. HARDWARE DESIGN 

Figure 2 is a block diagram of the whole system of each 

robot. One battery pack is used to power all the 

electronics. Since the sensors can only tolerate input 

voltage of 5 V and the servos’ power input ranges from 4 

to 6 V, a 5 V regulator is needed to boost the 4.8 V battery 

to a 5 V. The microcontroller and RF module operate 

typically at 3.3 V. As a result, a 3.3 V regulator is used to 

lower 4.8 V to 3.3 V. Switching regulator is favored over 

linear regulator because it has a much higher power 

efficiency, typically 85 % compared to linear regulator’s 

typical efficiency of 40 %. Even the new linear low drop-

out (LDO) regulators are not as power efficient as the 

switching regulator. Since linear regulator’s efficiency is 

low, it generates a lot of wasted energy in the form of heat 

which has to be dissipated by heat sink. In addition, it’s 

difficult to drive loads over 200 mA and reduces battery 

life. Switching regulator’s efficiency doesn’t depend on 

input voltage as much as linear regulator. However, 

switching regulator generally is more complicated to set up 

than linear regulator because it has more pins and requires 

more external components. 

A LDO regulator is used to regulate 3.3 V instead of a 

switching regulator since the RF module and 

microcontroller consume low power. Both the 

microcontroller and RF module draw very little current, 

less than 100 mA and 14.7 mA respectively. The REG113-

33 LDO regulator can output up to 400 mA which is more 

than enough for the RF module and microcontroller. 

Each ultrasonic sensor consumes 15 mA. Three sensors 

would consume 45 mA. The maximum current draw for 

each servo is 190 mA. Therefore, two servos would draw 

at most 380 mA. The three sensors and two servos draw a 

maximum of 425 mA. The LMR61428 switching regulator 

can provide up to 2.85 A which is more than enough for 

the sensors and servos.  

Table 1 summarizes the voltage and current required by 

each component. All the listed components can draw up to 

around 540 mA. The battery can handle much more than 

that. It  

 

TABLE 1 

COMPONENTS’ ELECTRICAL CHARACTERISTICS 

Component Voltage 

(V) 

Current 

(mA) 

Qty 

Servo 4 – 6  15 - 190 2 

Ultrasonic 

sensor 

5  15 3 

Microcontroller 1.8 – 3.6  < 100 1 

RF module 1.8 to 3.6  14.7 1 

 Total < 539.7 6 

 

The sensor data are sent to the microcontroller to be 

interpreted. The sensors’ analog data is converted into a 

measurement that can be understood by humans such as 

centimeter or inch by the software program. The 

microcontroller is responsible to send out pulse widths to 

control the wheels’ movement based on the sensors’ 

measurement. Once the robot finds the exit, it sends an 

array of characters that represent the turns it takes while 

navigating the maze from the microcontroller to the RF 

module via the SPI interface which is bidirectional. Then 

the RF module sends the characters to the second robot’s 

RF module which in turn sends the characters to the 

second robot’s microcontroller to be interpreted. 

 

FIGURE 2 

SYSTEM BLOCK DIAGRAM 

 
 



Figure 4 shows the schematic of the REG113-33 and 

LMR61428 regulator circuits. The capacitors help to filter 

out noises coming in and out of the regulators. RF1 and 

RF2 determine the output voltage. Therefore, changing 

RF1 and RF2 to different values result in different output. 

RF1 and RF2 are related in (1). A value of 150kΩ is 

suggested for RF1. RF2 can then be calculated from the 

equation given a 5 V output. VOUT is the output at pin 7 

of LMR61428. 

 

                  RF2 = RF1 /[(VOUT/ 1.24) −1]                (1) 

 

CF1 feeds back most of the AC ripple at VOUT to the 

FB pin. RFQ sets the frequency for the regulator which 

can operate between 300kHz and 2MHz. CI, CNR, and 

CO are not required for stability. LED1 and LED2 serve as 

status indicators. If the regulators regulate voltage, then 

both LEDs must be on. If not, then they are off. 

Figure 3 shows the microcontroller interfacing to the RF 

module. The headers JP3, JP4, JP9, and JP12 are used for 

IR sensors. Headers JP5 and JP8 are used to connect to 

two servos. Headers JP16, JP6, and JP13 are used to 

connect to ultrasonic sensors. The JTAG header pins are 

connected to a MSP-FET (flash emulation tool) which is 

used to program the MSP430F5529 chip. 

 

 

 

 

FIGURE 3 

MICROCONTROLLER INTERFACE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURE 4 

POWER SUPPLY 

 
 

Figure 5 shows the robot model. It’s best to keep the 

electronics further away from the motors which might 

cause electronic noise interference. Heavy components 

such as battery and servos are placed at the bottom of the 

chassis. Lighter electronics are placed on the top away 

from the motors. The PCB is placed as close to the sensors 

as possible so that the sensors can connect to the header 

pins on the PCB. The ultrasonic sensors should be placed 

as high as possible on the robot in order to correctly detect 

obstacles. The sensors can also be placed vertically instead 

of horizontally as shown in the Figure 5.    

 

FIGURE 5 

ROBOT MODEL 

 

VIII. WALL FOLLOWER 

The algorithm used to solve the maze is called wall 

follower, also known as left-hand rule or right-hand rule. It 

is equivalent to a person placing one hand on the wall at 

all time and walks through the maze until he reaches the 

exit. This technique is also called the LSRB algorithm. 

Every time the robot turns left, it stores an L in an array. If 

it goes straight, it stores an S. If it turns right, it stores an R 

and if it turns around, it stores a B. The robot which uses 

the left-hand rule follows 4 conditions.  

1)    It should turn left whenever it can. 

2)    It should go straight if it cannot turn left. 

3) It should turn right if it can neither turn left nor go 

straight. 

4) It should turn around if the previous 3 conditions are 

not met, which means it has encountered a dead end. 

Likewise, the robot which uses the right-hand rule 

follows 4 similar conditions. 

1)    It should turn right whenever it can. 

2)    It should go straight if it cannot turn right. 

3) It should turn left if it can neither turn right nor go 

straight. 

4) It should turn around if the previous 3 conditions are 

not met, which means it has encountered a dead end. 

We choose this method because it is fast and requires 

little memory. Also, the robot will always find the exit if 

there is one. The downside to this is that the robot will 

keep going in a circle if the start or the end points are 

inside the maze. To solve this problem, we are going to 

put the entrance and the exit on the outer wall. Also, it may 

not offer the shortest way out if the maze has multiple 

solutions. Fortunately, our maze only has one solution so 

this should not pose any problem. 

IX. MAZE SOLVING ALGORITHM 

We have 2 robots so one of them is going to use the left-

hand rule. The other will use the right-hand rule. Initially, 

they follow the same path. At some point, they’ll take 

different route at a junction. The robot that finds the exit 

first will send signal to the other robot, telling it to stop 

searching and exiting the maze using the solution. While in 

the maze, the robots will have to make 6 decisions: 

1)    Look for the next junction 

2)    Identify the type of the junction 

3)    Make a turn 

4)    Store a character in the array 

5)    Look for the exit  

6)  Listen for incoming signal to see if the other robot 

sends the solution 

The robots encounter 9 possible types of passages, as 

shown in Table 2. When the robots enter the maze the first 

time, they don’t know the layout of the maze, so it’s 

inevitable that the robots will encounter dead ends. 

However, when the robots enter the maze the second time, 

they should avoid all dead ends and only follow the path 

that leads to the exit. Every time the robots encounter a 

dead end, it stores a B in the array. So to eliminate the 

dead ends, we have to get rid of all the Bs. To get out of a 

dead end, we replace a three-letter sequence by another 

letter, as shown in Table 3. The sequence always have a B 



as the second letter, so when we simplify this sequence, we 

are going to search for Bs.  

 

TABLE 2 

POSSIBLE PASSAGES IN A MAZE 

Passages Left-hand Robot Right-hand Robot 

 

Go straight and search for the next junction 

 

 

Turn left 

 

 

Turn right 

 

 

Turn left 

 

 

Turn right 

 

 

Turn left 

 

Go straight 

 

 

Go straight 

 

Turn right 

 

 

Turn left 

 

Turn right 

 

 

Turn around 

 

At the beginning of the program, we create 2 arrays. 

One is used to store the current path of the robot. Let’s call 

it the path array. The other is used to store the solution. 

Let’s call it the solution array. The robot will navigate 

through the maze using the left-hand rule or the right-hand 

rule, as long as it doesn’t detect an exit and it doesn’t 

receive the solution from the other robot. If it exits the 

maze, it’ll stop and scan through the path array to look for 

Bs. It’ll replace the three-letter sequence in Table 3 with 

another letter until all Bs disappear from the path array. 

For an example, supposed the robot has this string stored 

in the path array: LRBRSSBLL. We have 2 sequences that 

we need to replace: RBR and SBL. RBR is replaced by an 

S and SBL is replaced by an R. After optimization, the 

array is reduced to LSSRL. There’s no B in the array, 

which means the next time the robot enters the maze, it 

won’t encounter any dead ends. Now the path array 

becomes the solution.  

It sends this solution to the slower robot which is still in 

the maze. The slower robot stores the solution in the 

solution array. Then it optimizes its own path array and 

compares it against the solution. If the path array doesn’t 

match with the first portion of the solution, the slower 

robot will continue to navigate through the maze and keep 

optimizing its own array until it matches with the solution.  

 

TABLE 3 

THREE-LETTER SEQUENCE SUBSTITUTION 

Junction Type Sequence 

of Turns 

Substituting 

Letter 

 

 

LBR 

 

B 

 

 

RBL 

 

B 

 

LBS R 

RBS 

 

L 

 

 

 

 

SBL 

 

 

 

R 

 

 

 

RBR 

 

 

S 

 

 

 

LBL 

 

 

S 

 

 

 

SBR 

 

 

L 

 

For an example, supposed the slower robot reduces its 

path array to LS. It compares this sequence to the solution 

LSSRL. It sees that the solution also starts with LS. So it 

uses SRL, the rest of the solution, to get out of the maze. 



Every time the left or the right sensor detects an opening, 

the robot knows that it has encountered a junction. It scans 

the solution and determine what kind of turn it needs to do. 

After LS is an S, so at the next junction, it will go straight. 

After that is an R, so at the second junction, it will turn 

right. After that is an L, so at the last junction, it will turn 

left to exit the maze. Figure 6 shows the flow chart of the 

algorithm.  

FIGURE 6 
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X. CONCLUSION 

In conclusion, this project seeks to build a team of two 

maze solving robots that will utilize two different maze 

solving algorithms to search for the most efficient route 

through the maze. This project incorporates many 

important fundamental skills that are required of electrical 

engineers including: PCB design, system integration, 

wireless communication, and embedded system 

programming. The team has expanded our knowledge 

greatly in the details pertaining to the fields mentioned 

above such as sensor technology, various wireless 

communication technologies In addition to these skills the 

team has learned how to build up a system from the 

ground up by utilizing available reference designs as well 

as product datasheets to meet any and all design 

constraints that pertain to our system. The team has 

developed critical soft skills such as project management, 

delegation, and team communication. Overall, this project 

will serve as a solid introduction to the fundamentals of 

beginning, designing, and building a project from start to 

finish and will provide the engineers with valuable skills 

that they can carry through the rest of their professional 

lives. 
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