
Maze Twinbots

Ly Nguyen, Luke Ireland, Uyen Nguyen

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The project is designed mainly for the
intellectual or experiential gain of the design team members.
However, there is also a realization that this project has some
inherent flexibility for application such as reconnaissance or
search and rescue. The project’s purpose is to design two
robots that solve a maze in tandem using two separate maze
solving algorithms – left wall-following and right wall-
following algorithms. The goal of this project is to create both
robots to be small, consume low power, be inexpensive, and
have a 90% success rate when solving the maze.

Index Terms — autonomous, left wall, maze, right wall,
robot

I. INTRODUCTION

The maze is a 3D perfect maze, meaning it has no loops,

no inaccessible areas, and has exactly one solution. The

cells are rectangular and intersect at right angles. The start

and the exit are separate and located at the outermost wall.

Both robots would begin and end at the same locations.

One robot would follow left wall and the other would

follow a right wall. As the two robots navigate through the

maze, each would store its turns into an array. Once one

robot exits the maze, it would analyze the array of turns,

represented by characters, and optimize the array to

eliminate dead ends. The robot then has a solution to send

to the slower robot to exit out the maze.

The robots’ key features include power supply, wireless

communication, mobility, and autonomy. The power

supply system consists of a battery and two regulator

subsystems. One regulator regulates 5 V for three sensors

and two motors. The other regulates 3.3 V for a

microcontroller. Wireless communication between the two

robots is implemented by a RF module that transmits and

receives characters. Mobility is achieved by the

mechanism of wheels and motors whose direction and

speed are implemented by pulse width modulation

(PWM). Finally, autonomy is accomplished by the

integration of software libraries and custom codes which

are designed by the team. The final software program is

stored in the microcontroller.

II. SYSTEM COMPONENTS

Only major physical components are discussed here.

Minor components such as resistors and capacitors are not

covered in this section. The electronic system is made up

of microcontroller, sensors, servos, regulators, and battery.

Mechanical system includes chassis frame, wheels, and

rear caster.

A. Microcontroller

The microcontroller is the brain of the entire system;

without it instructions cannot be executed, algorithms

cannot be implemented, data cannot be read and

interpreted and tasks cannot be completed. A Texas

Instruments (TI) MSP430F5529 microcontroller was

selected over the commonly-used microcontrollers such as

Raspberry Pi, BeagleBone Black, BASIC Stamp because it

operates at low current (< 100 mA) and voltage (3.6 V

maximum) and can be sampled for free. All team members

are also familiar using the microcontroller. It has more

than enough digital and analog I/O pins for three sensors

and two servos. Besides, the microcontroller can interface

with the RF module. The microcontroller’s memory is 128

KB flash memory which is more than enough to store the

maze-solving program.

B. Sensors

To perform object detection and avoidance, we use 3

sensors on 3 sides of the robots. The sensor data which is

fed into the microcontroller will be converted to distance,

in term of centimeters. We have done research on 5 types

of sensors. Among these, we chose to test 2 types of

sensors: ultrasonic and infrared.

i. Infrared

Infrared sensors are cheap. They only cost around 10

dollars to 20 dollars. They are easy to set up, have low

power consumption and can work quite well with sunlight

if we are using Sharp brand. However, after some

extensive testing, we come to the conclusion that infrared

sensors are not good for our application. The distance is

not linearly proportional to the sensor output. As shown in

Figure 1, sensor output and distance has a logarithmic

relationship so we have to linearize it by generating a best-

fit line. As a result, we have to spend more time on

sampling data. To avoid this process, we can just use

ultrasonic sensors. The range of the infrared sensors are

only from 4cm to 30cm. We need longer range since the

maze is quite big. Whenever the sensors detect an object

that is much farther than 30cm, they start to yield

inaccurate results. So we decide to use ultrasonic sensors

for our project.

FIGURE 1

IR SENSOR OUTPUT VS. DISTANCE [1]

ii. Ultrasonic

Ultrasonic sensors work great even in rain, dusty, or

adverse environment. They are not affected by colors and

can detect both solid and liquid forms. Their range is from

2cm to 400cm, which is a perfect range for our

application. It is close enough to detect walls and far

enough to detect opening. Distance can be calculated

easily from the speed of sound and the time it takes for the

wave to travel back. Like other sensors, they have

downsides as well. They cannot detect objects that are too

close because the time it takes to travel back is too short

for the electronics to respond. If the objects are too far, the

sound can grow weak with distance. The density and the

material of the objects can distort sensor readings. The

sensors consume around 100 milliamps when not in use

but it can jump to several amps when used. Despite these

disadvantages, they have not caused any problem when we

used them. However, after some testing, we discovered

that the ultrasonic sensors frequently reset to 0. We solve

this problem by retaking sensor reading every time one of

the three sensors resets to 0. Another problem is cross

interference, which occurs when the signal emitted by one

sensor can be read by another sensor. To solve this

problem, we face the sensors away from each other. Since

they operate on the same frequency, each sensor will take

turns reading in the distance, instead of reading at the same

time.

C. Servo

Motors are required to drive the wheels or any moving

parts on the robots. Parallax continuous rotation servo is

ideal for our application since it can rotate continuously

unlike most standard servos that can only rotate up to 180

degree. However, Parallax standard servos can be easily

modified for continuous rotation. The servo does not

require an external H bridge or control circuit like stepper

and DC motors. The servo’s speed is moderate, up to 50

RPM at maximum 6 V which is desirable since sensors

have enough time to update their readings and the robots

navigate fast enough in the maze. Furthermore, the

Parallax servo fits perfectly in the chassis and wheels. It’s

small and weigh at only 42.5 g. It draws little current (190

Ma maximum at 6 V) when operating in no load

conditions.

D. Regulator

A LMR61428 step-up switching regulator from Texas

Instruments is used to regulate 5 V. It can achieve up to 90

% efficiency and has high switching frequency of up to

2MHz which allows for tiny surface mount inductors and

capacitors. A low dropout (LDO) REG113-33 is used to

regulate 3.3 V. It doesn’t require external capacitors for

stability. It also has ultra low dropout voltage of 250 Mv.

Both regulators can be sampled for free and available in

very small package sizes which are ideal since they take

very little space on the PCB. Smaller PCBs cost less and

fit better on the robot chassis frame.

E. Battery

Four-cell 4.8 V NiMH battery is used to supply power to

the sensors, servos, microcontroller, and RF module. The

battery is ideal since it is rechargeable, making it suitable

for long and extensive use. It’s also fairly inexpensive,

around $15.00 including a charger. It takes about 2 to 3

hours to fully recharge. Therefore, we don’t need to wait

too long before we can use the battery again. The battery

cells fit nicely in a battery holder that includes a power

switch, which is convenient to use.

F. Chassis and Wheels

Two Parallax Boe-Bot small robot chassis are acquired

from our friends. They are 12.7 cm long and 8.26 cm

wide. They are about 4.5 cm tall including the attached

SumoBot wheel that has a diameter of 6.65 cm. The

chassis only need two wheels and one rear caster. Its small

size fits ideally in a small maze (around 30 cm measured

between left and right walls). All electronic components

also fit perfectly on it.

III. SERVO CONTROL

The Parallax continuous rotation servos rely on pulse

width modulation (PWM) to control the speed and

direction of rotation of the servo shaft. However, before

PWM can be implemented, the servos’ center position

needs to be calibrated in order to define the pulse width

value at which the servo holds still. The calibration

process is often called centering.

A. Pulse Width Modulation

A pulse ranges from 1.3 to 1.7 ms determines the speed

and direction of rotation. In order for a smooth rotation,

the servo needs a 20 ms pause between the pulses. When

the servo’s signal pin receives a 1.5 ms pulse width, the

servo stops. As the pulse width decreases from 1.5 ms, the

servo rotates faster in the clockwise direction. Similarly, as

the pulse width increases from 1.5 ms, the servo rotates

faster in the counterclockwise direction. As a result, the

servo rotates fastest in the counterclockwise direction at

1.7 ms and in the clockwise direction at 1.3 ms.

B. Centering

Manufactured continuous-rotation servos often have

trimmer potentiometer which replaces the traditional

feedback potentiometer. The trim pot allows the user to

calibrate the servo through a screw which can be seen next

to the servo’s cable. The servo can be easily centered by

connecting to a microcontroller which sends a centering

signal of 1.5 ms pulse width to the servo. If the servo’s

shaft rotates, then the servo is not properly centered.

Simply insert a Phillips head screwdriver’s tip into the

hole and gently twist the potentiometer in either direction

until it stops turning. [3]

IV. WIRELESS COMMUNICATION TECHNOLOGY

The group has decided to use 915 MHz RF

communication. This will be implemented using the

Anaren AIR Module which is an integrated transceiver and

antenna that interfaces to the microcontroller via SPI.

The team could have very well used Bluetooth

technology to accomplish the same task since the range

that the robots will communicate is well within the range

of Bluetooth however, the team felt that it could be of use

to become familiar with an increasingly popular form of

wireless communication being used in industrial

applications today.

The Anaren AIR module was also chosen because it

allowed the team to have access to the CC110L

BoosterPack for the MSP430F5529 LaunchPad which

made it much easier to prototype the design. The AIR

module also has the added advantage of being a very low

consumer of power once again aligning with the design

constraints of the project; it consumes just 15 mA in active

receive mode and just 200 nA in sleep mode. It can be

powered at the same voltage as the microcontroller which

eases PCB design. [2]

The Anaren AIR Module also has very convenient

packet handling and data transmission features that assist

in accelerating the design of our system as well as the

power efficiency. The AIR module has transmit and

receive data buffers that can hold up to 60 bytes of data at

a time, this means that in one transmission the AIR module

can send 60 bytes of data, corresponding to 60 turns in our

application, greatly reducing the current drain of the

transceiver since only one transmission will be required

for most maze configurations.

V. PROGRAMMING THE MICROCONTROLLER

One of the major issues encountered with this project

was being able to load a program onto the microcontroller

on the PCB. Originally, the team attempted to use Spy-Bi-

Wire to program the microcontroller since it only requires

four pins (Vcc, Ground, RST, and TEST) and can also use

the emulator from a LaunchPad which lowers cost

however, we soon found that this method of programming

is highly sensitive and difficult to implement. The first

PCB the team designed attempted to use Spy-Bi-Wire but

the team was unable to connect to the programmer and

could therefore not load a program. While attempting to

debug the original board it was discovered that Spy-Bi-

Wire is extremely sensitive to board capacitances, line

capacitance, and other noise sources since its two wire

data is converted to four wire internally using control

logic, this requires very accurate timing that can easily be

disrupted. Our design did not consider such problems and

did not design to mitigate these problems. After more

research into programming methods for the

microcontroller the team decided to switch to a JTAG

interface which requires more pins but is much more

reliable and faster than Spy-Bi-Wire. The second revision

of the PCB design utilized the JTAG interface and was

able to successfully load programs to the microcontroller.

We were able to secure a JTAG Flash Emulation Tool

(FET) from the TI lab which eliminated the increased cost

that paying retail for a FET would bring.

VI. MAZE CONSTRUCTION

The maze(s) that the robots will be solving is (are) an

important portion of the design constraints for the project.

Since both robots are utilizing wall following algorithms to

navigate through the maze, the maze must adhere to the

limitations of this algorithm; that means that the solution

cannot be inside the maze, it must be on the outer edge.

The maze will also be restricted to having one unique

“best” solution which both robots will be able to, ideally,

realize after optimizing their respective paths through the

maze. The maze must be made of a material that will

adequately reflect the ultrasonic sensors pings and must

also be tall enough such that pings actually bounce off the

maze walls as opposed to traveling over them as well as be

wide enough for the robots to navigate through and obtain

clean sensor data. The maze must also be reconfigurable to

allow for proper testing and proof of concept. The easiest

and chosen material for this maze will be 2” X 8” wood

cut in to 1 foot lengths since it can stand on its side and be

easily reconfigured.

VII. HARDWARE DESIGN

Figure 2 is a block diagram of the whole system of each

robot. One battery pack is used to power all the

electronics. Since the sensors can only tolerate input

voltage of 5 V and the servos’ power input ranges from 4

to 6 V, a 5 V regulator is needed to boost the 4.8 V battery

to a 5 V. The microcontroller and RF module operate

typically at 3.3 V. As a result, a 3.3 V regulator is used to

lower 4.8 V to 3.3 V. Switching regulator is favored over

linear regulator because it has a much higher power

efficiency, typically 85 % compared to linear regulator’s

typical efficiency of 40 %. Even the new linear low drop-

out (LDO) regulators are not as power efficient as the

switching regulator. Since linear regulator’s efficiency is

low, it generates a lot of wasted energy in the form of heat

which has to be dissipated by heat sink. In addition, it’s

difficult to drive loads over 200 mA and reduces battery

life. Switching regulator’s efficiency doesn’t depend on

input voltage as much as linear regulator. However,

switching regulator generally is more complicated to set up

than linear regulator because it has more pins and requires

more external components.

A LDO regulator is used to regulate 3.3 V instead of a

switching regulator since the RF module and

microcontroller consume low power. Both the

microcontroller and RF module draw very little current,

less than 100 mA and 14.7 mA respectively. The REG113-

33 LDO regulator can output up to 400 mA which is more

than enough for the RF module and microcontroller.

Each ultrasonic sensor consumes 15 mA. Three sensors

would consume 45 mA. The maximum current draw for

each servo is 190 mA. Therefore, two servos would draw

at most 380 mA. The three sensors and two servos draw a

maximum of 425 mA. The LMR61428 switching regulator

can provide up to 2.85 A which is more than enough for

the sensors and servos.

Table 1 summarizes the voltage and current required by

each component. All the listed components can draw up to

around 540 mA. The battery can handle much more than

that. It

TABLE 1

COMPONENTS’ ELECTRICAL CHARACTERISTICS

Component Voltage

(V)

Current

(mA)

Qty

Servo 4 – 6 15 - 190 2

Ultrasonic

sensor

5 15 3

Microcontroller 1.8 – 3.6 < 100 1

RF module 1.8 to 3.6 14.7 1

 Total < 539.7 6

The sensor data are sent to the microcontroller to be

interpreted. The sensors’ analog data is converted into a

measurement that can be understood by humans such as

centimeter or inch by the software program. The

microcontroller is responsible to send out pulse widths to

control the wheels’ movement based on the sensors’

measurement. Once the robot finds the exit, it sends an

array of characters that represent the turns it takes while

navigating the maze from the microcontroller to the RF

module via the SPI interface which is bidirectional. Then

the RF module sends the characters to the second robot’s

RF module which in turn sends the characters to the

second robot’s microcontroller to be interpreted.

FIGURE 2

SYSTEM BLOCK DIAGRAM

Figure 4 shows the schematic of the REG113-33 and

LMR61428 regulator circuits. The capacitors help to filter

out noises coming in and out of the regulators. RF1 and

RF2 determine the output voltage. Therefore, changing

RF1 and RF2 to different values result in different output.

RF1 and RF2 are related in (1). A value of 150kΩ is

suggested for RF1. RF2 can then be calculated from the

equation given a 5 V output. VOUT is the output at pin 7

of LMR61428.

 RF2 = RF1 /[(VOUT/ 1.24) −1] (1)

CF1 feeds back most of the AC ripple at VOUT to the

FB pin. RFQ sets the frequency for the regulator which

can operate between 300kHz and 2MHz. CI, CNR, and

CO are not required for stability. LED1 and LED2 serve as

status indicators. If the regulators regulate voltage, then

both LEDs must be on. If not, then they are off.

Figure 3 shows the microcontroller interfacing to the RF

module. The headers JP3, JP4, JP9, and JP12 are used for

IR sensors. Headers JP5 and JP8 are used to connect to

two servos. Headers JP16, JP6, and JP13 are used to

connect to ultrasonic sensors. The JTAG header pins are

connected to a MSP-FET (flash emulation tool) which is

used to program the MSP430F5529 chip.

FIGURE 3

MICROCONTROLLER INTERFACE

FIGURE 4

POWER SUPPLY

Figure 5 shows the robot model. It’s best to keep the

electronics further away from the motors which might

cause electronic noise interference. Heavy components

such as battery and servos are placed at the bottom of the

chassis. Lighter electronics are placed on the top away

from the motors. The PCB is placed as close to the sensors

as possible so that the sensors can connect to the header

pins on the PCB. The ultrasonic sensors should be placed

as high as possible on the robot in order to correctly detect

obstacles. The sensors can also be placed vertically instead

of horizontally as shown in the Figure 5.

FIGURE 5

ROBOT MODEL

VIII. WALL FOLLOWER

The algorithm used to solve the maze is called wall

follower, also known as left-hand rule or right-hand rule. It

is equivalent to a person placing one hand on the wall at

all time and walks through the maze until he reaches the

exit. This technique is also called the LSRB algorithm.

Every time the robot turns left, it stores an L in an array. If

it goes straight, it stores an S. If it turns right, it stores an R

and if it turns around, it stores a B. The robot which uses

the left-hand rule follows 4 conditions.

1) It should turn left whenever it can.

2) It should go straight if it cannot turn left.

3) It should turn right if it can neither turn left nor go

straight.

4) It should turn around if the previous 3 conditions are

not met, which means it has encountered a dead end.

Likewise, the robot which uses the right-hand rule

follows 4 similar conditions.

1) It should turn right whenever it can.

2) It should go straight if it cannot turn right.

3) It should turn left if it can neither turn right nor go

straight.

4) It should turn around if the previous 3 conditions are

not met, which means it has encountered a dead end.

We choose this method because it is fast and requires

little memory. Also, the robot will always find the exit if

there is one. The downside to this is that the robot will

keep going in a circle if the start or the end points are

inside the maze. To solve this problem, we are going to

put the entrance and the exit on the outer wall. Also, it may

not offer the shortest way out if the maze has multiple

solutions. Fortunately, our maze only has one solution so

this should not pose any problem.

IX. MAZE SOLVING ALGORITHM

We have 2 robots so one of them is going to use the left-

hand rule. The other will use the right-hand rule. Initially,

they follow the same path. At some point, they’ll take

different route at a junction. The robot that finds the exit

first will send signal to the other robot, telling it to stop

searching and exiting the maze using the solution. While in

the maze, the robots will have to make 6 decisions:

1) Look for the next junction

2) Identify the type of the junction

3) Make a turn

4) Store a character in the array

5) Look for the exit

6) Listen for incoming signal to see if the other robot

sends the solution

The robots encounter 9 possible types of passages, as

shown in Table 2. When the robots enter the maze the first

time, they don’t know the layout of the maze, so it’s

inevitable that the robots will encounter dead ends.

However, when the robots enter the maze the second time,

they should avoid all dead ends and only follow the path

that leads to the exit. Every time the robots encounter a

dead end, it stores a B in the array. So to eliminate the

dead ends, we have to get rid of all the Bs. To get out of a

dead end, we replace a three-letter sequence by another

letter, as shown in Table 3. The sequence always have a B

as the second letter, so when we simplify this sequence, we

are going to search for Bs.

TABLE 2

POSSIBLE PASSAGES IN A MAZE

Passages Left-hand Robot Right-hand Robot

Go straight and search for the next junction

Turn left

Turn right

Turn left

Turn right

Turn left

Go straight

Go straight

Turn right

Turn left

Turn right

Turn around

At the beginning of the program, we create 2 arrays.

One is used to store the current path of the robot. Let’s call

it the path array. The other is used to store the solution.

Let’s call it the solution array. The robot will navigate

through the maze using the left-hand rule or the right-hand

rule, as long as it doesn’t detect an exit and it doesn’t

receive the solution from the other robot. If it exits the

maze, it’ll stop and scan through the path array to look for

Bs. It’ll replace the three-letter sequence in Table 3 with

another letter until all Bs disappear from the path array.

For an example, supposed the robot has this string stored

in the path array: LRBRSSBLL. We have 2 sequences that

we need to replace: RBR and SBL. RBR is replaced by an

S and SBL is replaced by an R. After optimization, the

array is reduced to LSSRL. There’s no B in the array,

which means the next time the robot enters the maze, it

won’t encounter any dead ends. Now the path array

becomes the solution.

It sends this solution to the slower robot which is still in

the maze. The slower robot stores the solution in the

solution array. Then it optimizes its own path array and

compares it against the solution. If the path array doesn’t

match with the first portion of the solution, the slower

robot will continue to navigate through the maze and keep

optimizing its own array until it matches with the solution.

TABLE 3

THREE-LETTER SEQUENCE SUBSTITUTION

Junction Type Sequence

of Turns

Substituting

Letter

LBR

B

RBL

B

LBS R

RBS

L

SBL

R

RBR

S

LBL

S

SBR

L

For an example, supposed the slower robot reduces its

path array to LS. It compares this sequence to the solution

LSSRL. It sees that the solution also starts with LS. So it

uses SRL, the rest of the solution, to get out of the maze.

Every time the left or the right sensor detects an opening,

the robot knows that it has encountered a junction. It scans

the solution and determine what kind of turn it needs to do.

After LS is an S, so at the next junction, it will go straight.

After that is an R, so at the second junction, it will turn

right. After that is an L, so at the last junction, it will turn

left to exit the maze. Figure 6 shows the flow chart of the

algorithm.

FIGURE 6

SOFTWARE INTEGRATION
START

Solution
Received?

NAVIGATE
& STORE
L,S,R,B

STOP
MOTORS

OPTIMIZE
PATH

COMPARE
SOLUTION

Solution
Matches?

FOLLOW
SOLUTION

Exit Found?

SEND
SOLUTION

END

No
No

Yes

Yes

Yes

No

X. CONCLUSION

In conclusion, this project seeks to build a team of two

maze solving robots that will utilize two different maze

solving algorithms to search for the most efficient route

through the maze. This project incorporates many

important fundamental skills that are required of electrical

engineers including: PCB design, system integration,

wireless communication, and embedded system

programming. The team has expanded our knowledge

greatly in the details pertaining to the fields mentioned

above such as sensor technology, various wireless

communication technologies In addition to these skills the

team has learned how to build up a system from the

ground up by utilizing available reference designs as well

as product datasheets to meet any and all design

constraints that pertain to our system. The team has

developed critical soft skills such as project management,

delegation, and team communication. Overall, this project

will serve as a solid introduction to the fundamentals of

beginning, designing, and building a project from start to

finish and will provide the engineers with valuable skills

that they can carry through the rest of their professional

lives.

BIOGRAPHY

Luke Ireland is currently a senior at the University of

Central Florida and will be graduating with his B.S.E.E.

in the top 5 percent (Magna

Cum Laude) of his class in

May 2015. Luke has

accepted a position as a Test

Engineer at Intersil

Corporation in Palm Bay,

Florida beginning May 11,

2015. He plans to take one

year off and then return to earn his M.S.E.E specializing in

semiconductor electronics from UCF as a part time

student.

Ly Nguyen is currently a senior at University of Central

Florida and will be graduating

in May 2015. She plans to

pursue master degree in robotics

while working for NASA at

Kennedy Space Center as an

electrical engineer.

Uyen Nguyen is currently a

senior at University of Central

Florida and will be graduating

in May 2015. She plans to

pursue master degree in

analog or digital circuit

design.

REFERENCES

[1] Sharp Microelectronics, "Analog Output Type Distance
Measuring Sensor," 5 March 2007. [Online]. Available:
http://media.digikey.com/pdf/Data%20Sheets/Sharp%20PD
Fs/GP2Y0A41SK0F_Spec.pdf. [Accessed 25 October
2014].

[2] Texas Instruments, "CC110L," Texas Instruments, January
2014. [Online].
Available:http://www.ti.com/product/cc110l?keyMatch=cc1
10L&tisearch=SearchEN. [Accessed 10 October 2014].

[3] A. Lindsay, "Activity 5: Centering the Servos," 29 February
2012. [Online]. Available:
http://learn.parallax.com/node/185. [Accessed 11
September 2014].

