Universol Charge Station

Group 17

Amy Parkinson Jonathan German John Curristan Brock Stoops

Sponsored **Points**

Motivations

Environmental

0 0

Power Demand

- 0
- Dependency
- 0

Solution

Universol Charge Station

- •A Solar Powered Cell Phone Charging Station
- Photovoltaic Battery Charging System
- •Zero Carbon Emissions
- •Color Touchscreen User Interface
- Personalized PIN Number Security Access
 Code
- •Charge Up To 4 Cell Phones Simultaneously
- •Monitor Charging Activity
- Company Advertisement Slots
- •24 Hour Autonomy

Specifications

Item	Qty	Description
12V 235W Solar Panel	1	Power Input
30A MPPT Charge Controller	1	Controls Power from Solar Panel to Battery
12V 89Ah SLA Battery	1	Rechargeable Battery
12V DC 5V 1A USB HUB	1	Voltage Regulating Charging Hub
Universal Charging Cables	4	4 th and 5 th Gen. Android and Iphone
ATMega328P	1	Microcontroller
Green LEDs	4	Charge Status Indicators
Red LEDs	4	Charge Status Indicators
Current Shunt Resistors	4	Charge Status Sensor
4.3" Color Touchscreen	1	User Interface, Advertisemnts
5V Voltage Regulators	2	12V - 5V Voltage Regulators
Electro-Mechanical Solenoid Locks	4	Programmable Compartment Locks
Metal Enclosure with see through doors	1	Metal with Clear Doors Weight: 60 LBS Dimensions: (12 x 78 x 18)in
Solar Panel Mount	1	Adjustable
PCB board	1	Special Order

Requirements

- 0
- 0
- The System must be able to operate with 24 hours

Overall Block Diagram

Photovoltaic (PV) Power System

- Small Off-Grid PV System
- Solar Panel Voltage Rated Higher than Battery
- Charge Control inhibits overcharge of battery
- Solar Panel Output Current Limited

Maximum Power Point Tracking (MPPT)

- Solution MPPT
- Uses an algorithm to track max. power curve
- Enhances Power Gain by Increasing Current

Ideal Conditions/ Ideal Goal Max 12 19.5 30.2 7.8 = 255 W Max P

Design Considerations

Common Industry Recommendations:

- 12 V Deep Cycle Battery
- Depth of Discharge (DOD) - 60% capacity

Location:

 5.76 Average annual Sun Hours in Central Florida

Days of Autonomy:

 Selected 24 hours of system operation without Solar Power

Sizing the PV System

	Electrical Loads	Quantity	Watts	Hours/Day	Watt- Hours/day			
	Cell Phones	4	5	24	480			
	4.3" Color Touch Screen	1	0.25	24	6			
	ATmega 328 P	1	0.2	24	4.8			
Establ	,il				490.8			
o Tot Size E Size E	Total Electrical $\frac{Load}{C} = \sum_{day}^{Watt*hours}$ Size Battery Bank Capacity day Size Battery Bank Capacity							
Estado Establ	Estaddlishynaimimum Campelity output by Solar Panel .85*Max.DOD *Nominal Battery Voltage							
Estab	Establish maximum Current output by Solar Parler Establish maximum Current output Charge Controller should handle							
8 Solar Panel Amperage = $\frac{\frac{1}{day}}{battery nominal voltage} * \frac{1}{5.76 \left(\frac{h}{day}\right)}$								
Establ	ish maximum Current outp	<mark>ut</mark> Charge C	Controlle	r should h	andle			
o Ch	arge Control Amp Cap. = $\frac{1}{N}$	Solar Panel (ominal Batter	Watts) y Voltage	$+ (.25 * \frac{1}{N})$	Solar Panel (Watts) Tominal Battery Voltage			
					1.25 NEC power factor			

buffer

PV System Analysia/Design Requirements Design

Electrical Loads	Quantity	Watts	Hours/Day	Watt-Hours/day
Cell Phones	4	5	24	480
4.3" Touch Screen	1	0.25	24	6
ATmega 328 P	1	0.2	24	4.8
				490.8
Design Parameters	Nominal Values	Units		
Autonomy	1	Days		
Nominal Battery Voltage	12	Volts		
DOD	0.6	Percent		
Average Sun Hours Central Florida	5.76	Hours/Day		
Design Results	Nominal Values	Units	Cost	
Battery Bank Size	80.20	Amp-hours	\$250.00	
Solar Panel Amperage	7.10	Amps	\$230.00	
Charge Controller Amperage Capacity	15.63	Amps	\$265.00	
				Total Main
, , ,			Ş745.00	System Cost

Final Design Saved \$230.00

Electrical Loads	Quantity	Watts	Hours/Day	Watt-Hours/day
Cell Phones	4	5	24	480
4.3" Touch Screen	1	0.25	24	6
ATmega 328 P	1	0.2	24	4.8
				490.8
Design Parameters	Nominal Values	Units		
Autonomy	1	Days		
Nominal Battery Voltage	12	Volts		
DOD	0.6	Percent		
Average Sun Hours Central Florida	5.76	Hours/Day		
Design Results	Nominal Values	Units	Cost	
Battery Bank Size	80.20	Amp-hours	\$250.00	
Solar Panel Amperage	7.10	Amps	\$0.00	
Charge Controller Amperage Capacity	24.48	Amps	\$265.00	
			\$515.00	Total Main System Cost

Design Verification calculator **Xa Trojan**. **RE** Renewable Energy Off-Grid Battery Sizing Calculator Clean energy for life.

Welcome to the Trojan Battery Renewable Energy Sizing Calculator. This calculator is a tool to help you determine the model and quantity of Trojan batteries needed for your renewable energy or backup power system. The calculator recommends batteries based on your inputs and the results are ranked according to cycle life performance.

RE STEP 1

Please Select Your System Design Parameters

Values below will change as you enter system para	meters and	load estimat
Battery watt-hours per day for AC loads (including 15% AC inverter loss)	0.00	Wh/day
Battery watt-hours per day for DC loads	490.80	Wh/day
Total battery watt-hours per day (azsuming 97% wiring and distribution efficiency)	505.98	Wh/day
Avg daily battery amp-hours needed (with 12V battery system)	42.16	Amp-hours (
Required system capacity [#] (based on desired 50% DOD) to achieve 1 days of Autonomy.	84.33	Amp-Hours (@
	Volues below will change as you enter system para Battery watt-hours per day for AC loads (including 15% AC inverter loss) Battery watt-hours per day for DC loads Total battery watt-hours per day (assuming 37% wiring and distribution efficiency) Avg dailly battery amp-hours needed (with 12V battery apterm) Required system capacity ⁴ (loazed on eiterd 50% DOD) to achieve 1 days of Autonomy.	Values below will change as you enter system parameters and Battery watt-hours per day for AC loads 0.00 (including 15% AC inverter loss) 0 Battery watt-hours per day for DC loads 490.80 Total battery watt-hours per day 505.98 (assuming 37% wining and distribution efficiency) 42.16 (with 12V battery amp-hours needed 42.16 (with 12V battery system) 84.33 (based metering 500 Dt) ta schieve 1 days of Autonomy.

Battery w/in 5% (84.33

System Loads and Battery Capacity Requirements

RE STEP 2

Ah) Please Enter Your Average Daily Load Estimate

Click here to see average wattage for a typical appliance.

Load Description	DC Load? (uses AC load unless checked)	Watts	Quantity	Hours Per Day	Days Per Week	Total Watts	Total Average Watt Hours Per Day*	Remove Item
cell phone charging	2	5	4	24	7 🔻	20W	480Wh	REMOVE
touch screen	2	.25	1	24	7 🔻	OW	6Wh	REMOVE
Microcontroller	8	.2	1	24	7 🔻	OW	5Wh	REMOVE

AltE off-grid calculator

STEP 3:

Determine How Many Solar Panels You Need In Your Array

How many solar panels do you need? That depends on the panel you choose.

Select the wattage of the panel your interested in, and see the results below:

Sizing a charge controller can be complex, the above answer is a conservative estimate. Please feel free to call us to find a more accurate fit for your needs.

Now that you have sized up the system that fits your needs, call our Knowledgeable Sales Folks at 800-320-9514 and let them help you find the exact products for your system.

© 2005 - 2015 altE Store, Inc. - www.altEstore.com

MPPT Charge Controller

BLUE SKY Solar Boost 3000i

Characteristics	Blue Sky SB3000i MPPT Controller System	Linear Technology LT8490 I.C. System
Efficiency	95%	97%
Power Loss	5%	2-3%
Cost	\$265.00	\$195.00
Digital Display	Yes	No
Complexity of Design	Simple	Complex
Temperature Compensation	Optional	No
Communicatio ns Control	Remote Access	No
Adjustable Voltage Set Points	Yes	Yes

- **30A/15 V** Amperage Voltage Output Capacity
- Built-in Charging Algorithm/MPPT
- Built-in Heat Sink
- 95% power efficient

Monitoring MPPT Efficiency/ Battery DOD

SOLAR	BOOST 3	000i
12 MPPT SOL4	VOLT 30/22 AMP AR CHARGE CONTRO	OLLER
AMPOUT AMPOUT DISPLAY SELECT OFF + AUX VOLT + AMPAUT OFF + AUX VOLT + AMPAUT	AUX OUT	CHARGE STATUS FLOAT ABSORPTION FLASHING - EQUALIZE
VERY LOW I LOW I 0000 I CHUR 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 IMITTERY LEVEL VS. VOLTAGE	14.0 14.5	

0

- Solar Amp In
- Controller Voltage Out
- Controller Amp Out

SAMPLE THREE-STAGE CHARGING REGIME

Figure 3.4-3 Sample Three-Stage Charging Regime

Reprinted with permission. © 2014 Home Power Inc., www.homepower.com .

		APPROX. BATTERY CHARGE	
CHARGE STATUS LED's	CHARGE MODE	LEVEL	CURRENT OUTPUT
ABSORPTION & FLOAT OFF	CHARGE OFF	0%/DISCONNECTED	NONE
ABSORPTION & FLOAT ON	BULK	<70% FULL	HIGH
ABSORPTION ON - FLOAT OFF	ABSORPTION	70% - 95% FULL	TAPERS OFF
ABSORPTION OFF - FLOAT ON	FLOAT	FULLY CHARGED	TRICKLE/MAINTENANCE CHARGE

Solar Panel Comparison Minimum Current Output of 7.1A

	Monocrystalline Solar Panel	Polycrystalline Solar Panel
Efficiency	About 17%	11% - 14%
Power generated per (ft ²)	More	Less
Aesthetics	Consistent Deep Black Design	Inconsistent Blue Cell Design
Temperature Tolerance	Higher	Lower
Cost	Higher	Lower

Solar Panel Selection

Suntech 235W Polycrystalline Solar Panel

Electrical Characteristics

STC

Maximum Power at STC (Pmax) Optimum Operating Voltage (Vmp) Optimum Operating Current (Imp) Open Circuit Voltage (Voc) Short Circuit Current (Isc) Module Efficiency

ST	P235-20/Wd	
	235 W	
	30.2 V	
	7.79 A	
	37.0 V	
	8.35 A	
	14.4%	

Polycrystalline

Dimensions	$1640 \times 992 \times 35 \text{mm}$ (64.6 $\times 39.1 \times 1.4$ inches)
Weight	18.2 kgs (40.1 lbs.)

Battery

TROJAN 12 V 89 Ah (Absorbent Glass Mat)

Parameters	Lead Acid Gel Sealed	Lead Acid AGM	Lithium Ion
Average battery life	Replace every 3-5 years	Replace every 10 years	Replace every 10 years
Deep cycle DOD efficiency	50%	60%	80%
Weight	66 lbs.	64 lbs.	4 lbs.
Space requirements	8.1 x 8.1 x 5.9 inches	12.05 x 6.84 x 9.32 inches	7.17 x 6.61 x 3.03 inches
Cost	\$200.00	\$250.00	\$560.00
Charge Efficiency	75%	75% 97%	
Energy Efficiency	Moderate	Moderate	High
Environmental hazards	80% recyclable	97% 🛧 recyclable	60% recyclable

- Most common practice in PV Systems
- Maintenance Free
- Cost Efficient 🛖
- Eco-conscious
- Weight and Space Accommodations met by Enclosure

Power System

Compatibility (Lose^l it?)

SPECIFICATIONS	Solar Boost 3000i
Nominal Battery Voltage	12 VDC
Automatic Output Current Limit	30.0A with 36 cell PV input • 22.0A with 60 cell PV input
Maximum PV I _{SC} / Power	24.0A / 400W with 36 cell PV input • 11.8A / 290W with 60 cell PV input
Maximum Battery & PV Voltage	50.0VDC absolute maximum \odot (Recommend maximum PV V _{OC} at STC \leq 40.0VDC)
Standby Power Consumption	30mA typical
Charge Algorithm	3-stage Bulk/Absorption/Float Plus Auto/Manual Equalization
Power Conversion Efficiency	97% typical, 36 cell modules delivering 24A

Panel

- o
 o
 o
 1.25 NEC buffered power factor
 o
- 19.6 A

UniverSOL PV System Prototyping

INPUT 150 W

137 W

91 % OF TOTAL POWER

Blue SI

50LAR BOOST 3000

TECHNICAL DETAILS

- 12VDC (you can use 9-12 DC volts, but lower voltage results in weaker/slower operation)
- Draws 650mA at 12V, 500 mA at 9V when activated
- Designed for 1-10 seconds long activation time
- Max Dimensions: 41.85mm / 1.64" x 53.57mm / 2.1" x 27.59mm / 11.08"
- Dimensions: 23.57mm / 0.92" x 67.47mm / 2.65" x 27.59mm / 11.08"
- Wire length: 222.25mm / 8.75"
- Weight: 147.71g

Current Sensors

- The PCB will have four mounted ACS712 Hall-Effect-Based Linear Current Sensor ICs with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor
- Current flowing through a copper conduction path generates a magnetic field which is then sensed by the integrated Hall IC and converted into a proportional voltage
- The ATMEGA328 processor reads t voltage to determine the charge status of the phone being charged

LED Status Indicators(JC)

- Status of charge level on phones
- Green and Red LED mounted inside each locker
- Visible from outside of locker to indicate status of locker or phone

Red indicate s phone is charging

Green indicates phone charging complete.

Current and Voltage Meter

Current and voltage test tool
Digital LED 7-segment readout
Alternates between voltage and current readings every 5 seconds

Current Sensing to Indicate Charge Status

•No cell phone connected to charger plug

 All Indicator lights off due to no current

•Cell phone connected to charger plug

 Indicator light illuminated red due to cell phone battery receiving charge

•Connected cell phone completely charged

Indicator light illuminated green due to cell phone battery drawing limited amount of current

Charging Cabinet Modifications

- Decrease the height from 78" to 72" by removing legs, so Universol's available charging lockers are at a
 72" more user-friendly height
 - New dimensions: 72"Hx12"Wx15"D
 - Locker 1 used for storing battery and MPPT charge controller
 - Locker 2 will house touch screen display
 - Lockers 3 through 6 to be used for cell phone charging

4-in-1 Breakout Cables (JC)

Apple i3 and i4 dock connector
 Apple Lightning iPhone 5, 5S, 6, 6+
 Micro USB
 Mini USB
 Total Length is 12.80"

iPhone 5/5s

Cabinet Modification Detail: User-Charging Locker

Each locker:

- Has a solenoid lock controlled by a user PIN entered through the touch-screen
- Will be equipped with red and green LED indicators
- Will have the 4-in-1 charging break-out cables for various cell phones

Cabinet Back

- Easily accessible rear control panel
- Terminal strip for common tie-in points
- Power and signal separation to eliminate noise issues
- Charge Doctor in-line current sensors for constant monitoring of current to the phones
- Locker 1 to be ventilated due to heat released during battery operation

Embedded System **Microcontroller Unit I/O**

ATmega328 Pin Mapping

Arduino function		-	Arduino function
reset	(PCINT14/RESET) PC6	28 PC5 (ADC5/SCL/PCINT13)	analog input 5
digital pin 0 (RX)	(PCINT16/RXD) PD0 2	27 PC4 (ADC4/SDA/PCINT12)	analog input 4
digital pin 1 (TX)	(PCINT17/TXD) PD1	# PC3 (ADC3/PCINT11)	analog input 3
digital pin 2	(PCINT18/INT0) PD2	≥ PC2 (ADC2/PCINT10)	analog input 2
digital pin 3 (PWM)	(PCINT19/OC2B/INT1) PD3	24 PC1 (ADC1/PCINT9)	analog input 1
digital pin 4	(PCINT20/XCK/T0) PD4	29 PC0 (ADC0/PCINT8)	analog input 0
VCC	VCC 7	22 🛛 GND	GND
GND	GND	21 AREF	analog reference
crystal	(PCINT6/XTAL1/TOSC1) PB6	>>>>> DAVCC	VCC
crystal	(PCINT7/XTAL2/TOSC2) PB7 10	19 PB5 (SCK/PCINT5)	digital pin 13
digital pin 5 (PWM)	(PCINT21/OC0B/T1) PD5[11	18 PB4 (MISO/PCINT4)	digital pin 12
digital pin 6 (PWM)	(PCINT22/OC0A/AIN0) PD6 12	17 PB3 (MOSI/OC2A/PCINT3)	digital pin 11 (PWM)
digital pin 7	(PCINT23/AIN1) PD7	16 PB2 (SS/OC1B/PCINT2)	digital pin 10 (PWM)
digital pin 8	(PCINTO/CLKO/ICP1) PB0	15 PB1 (OC1A/PCINT1)	digital pin 9 (PWM)

Degital Pins 11, 12 & 13 are used by the ICSP header for MISO, MOSI, SCK connections (Atmega 168 pins 17, 18 & 19). Avoid lowimpedance loads on these pins when using the ICSP header.

- Atmel ATmega328P
- 8-bit microcontroller
- 32 KB Program Memory
- Operating Voltage 1.8 to 5.5 Volts
- 6 analog input/output pins •
- 14 digital input/output pins

Microcontroller I/O

Input voltage from phone in each locker

One output to each locker for the solenoid locking mechanism

Output signal to the LED inside each locker

Input and output for the user display and interface via touchscreen

Shift register to add more digital pins

Touch Screen

Main Component of our user interface

4.3 inch LCD Display

Anti-glare

Connected to the microcontroller by diagram shown to the right

Touch Screen

User Interface Flowchart

Something always displayed on the touch screen

After 20 seconds Main Screen will go into power saving advertisement mode

Security System User Interface

- Each locker saves a 4 digit PIN
- Simple Easy to use with big buttons.
- Requires typing a PIN twice to ensure correct numbers
- All old PIN #s get deleted when the locker is done being used

Lock Box/LEDs

Magnetic Solenoid lock receives signal from Atmega328

Red = Charging Green = Done Charging No LED on = Vacant

Current sensor uses hall effect to get the current values from the phones

Class Diagram

Enclosure

batteryLevel: Integer solarPowerLevel: Integer totalTimeCharged: Integer

checkBattery() checkSolarPanal() hasLockerOpen() getTotalTime()

Locker

number: Integer isOccupied: Boolean doneCharging: Boolean timeStarted: DateTime PIN: Integer

lock() unlock() setOccupied() setDone() turnOnLED() turnOffLED() checkAmps() startCharging() stopCharging() 4 instances of Locker class

1 instance of Enclosure

Enclosure handles all overall system information

PCB Design

PCB

Design Board

Division of Work

Amy	Jonathan	Brock	John
 Power System Battery MPPT Microcontroll er Hardware Testing 	 DC to DC Converters PCB Design Hardware Testing Fabrication 	 Software Microcontroll er Touchscreen Testing Security System 	 Hardware Sensors Safety Programmin g Testing Fabrication

Budget and Finance

Project Fully Fueded Duke Leighes

Balance \$2071.00 - \$1,211.06 = 859.94

Item	Price	Cost
235W Solar Panel	\$275.00	\$0.00
30A MPPT Charge Controller	\$279.24	\$279.24
USB Charging Cables	\$14.48	\$14.48
Universal Cell Phone Charging Cables	\$9.00	\$9.00
Atmega323	\$40.00	\$0.00
Current Meters	\$8.54	\$8.54
LEDs	\$5.00	\$0.00
9" Touchscreen	\$79.19	\$79.19
18F PIC MCU	\$13.06	\$13.06
PIC Dev Board	\$175.00	\$175.00
5V Voltage Regulator	\$2.00	\$0.00
High Powered USB Hub	\$25.49	\$25.49
12V 89Ah SLA Rechargeable Battery	\$259.00	\$259.00
Wire/Cable	\$15.00	
РСВ	\$85.00	
Solenoid Locks	\$75.00	\$23.87
Printing	\$36.00	\$36.00
Enclosure	\$300.00	\$233.21
Protoype Socket	\$37.50	\$37.50
Misc.Circuit Components	\$25.00	\$17.48
Total	\$1,758.50	\$1,211.06

Current Progress Report

Projected Design Stages

Issues

• Touch Screen?

Wiring through doors
 Solenoids Locks or Combination Lock

Green Energy Chart
 System loses all power (hurricane)

THANK YOU FOR YOUR ATTENTION AND ANY QUESTIONS?