UniverSOL Charge Station

Group 17

Jonathan German Amy Parkinson John Curristan Brock Stoops

Sponsored **leidos DUKE ENERGY**.

Motivations

Environmental

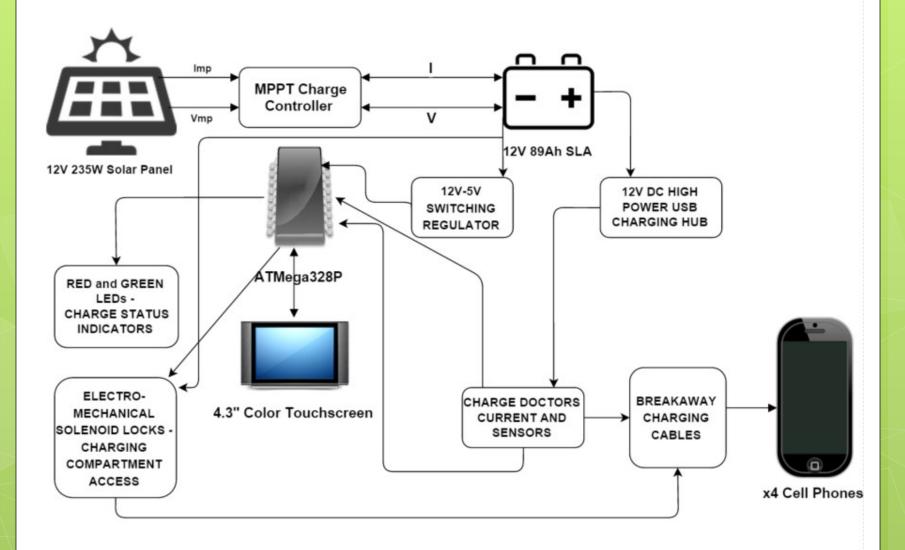
0 0

Power Demand

- 0
- Dependency
- 0

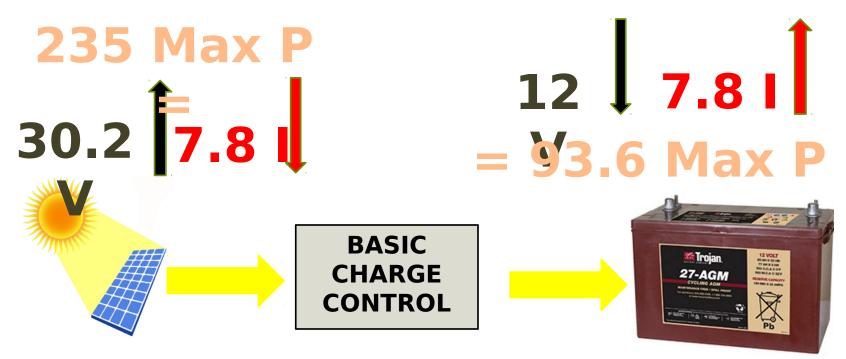
UniverSOL Charge Stationar Powered Cell Phone Charging Station

- Self Sustainable
- Color Touchscreen User Interface
- Personalized PIN Number Security Access Code
- Monitors Charging Activity
- 24 Hour Autonomy

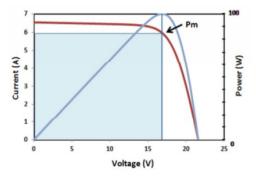


Specifications

ltem	Qty	Description
12V 235W Solar Panel	1	PV System Power Input
30A MPPT Charge Controller	1	Optimize the Efficiency of PV System
12V 89Ah SLA Battery	1	Rechargeable Battery
12V-5V Switching Regulator	1	DC to DC Converter
12V DC USB Charging HUB	1	Cell Phone Charging Hub
Breakout Charging Cables	4	4 th and 5 th Generation Android and Iphone Devices
ATMega328P	1	Microcontroller
16 Mhz Clock	1	Standalone Atmega328P on the PCB
Green LEDs	12	Charge Status Indicators
Red LEDs	12	Charge Status Indicators
Current Sensors	4	Cell Phone State of Charge (SOC) Sensors
Current and Voltage Meters with Display	4	LED Segment Display of Current and Voltage
4.3" Color Touchscreen	1	User Interface
12V Electro-Mechanical Solenoid Locks	4	Cell Phone Charging Compartment Locks
Metal Enclosure with see through doors	1	Metal Locker with See-Through Doors
PCB board	1	Manufactured by Osh Park


Overall Block

Diagram


Photovoltaic (PV) Power System

- Small Off-Grid PV System
- Solar Panel Voltage Rating Higher than Battery
- Charge Control inhibits overcharge of battery
- Solar Panel Output Current Limited

Maximum Power Point Tracking (MPPT)

- Solution MPPT
- Uses an algorithm to track max. power cur
- Enhances Power Gain by Increasing Currer

Ideal Conditions/ Ideal Goal Max 12 30.2 7.8 = 255 W Max P

Design Considerations

Common Industry Recommendations:

- 12 V Deep Cycle Battery
- Depth of Discharge (DOD) - 60% capacity

Location:

 5.76 Average annual Sun Hours in Central Florida

Days of Autonomy:

 Selected 24 hours of system operation without Solar Power

Sizing the PV System

					Watt-		
	Electrical Loads	Quantity	Watts	Hours/Day	Hours/day		
	Cell Phones	4	5	24	480		
	4.3" Color Touch Screen	1	0.25	24	6		
	ATmega 328 P	1	0.2	24	4.8		
Pstatbi					490.8		
o Total Electrical $\frac{Load}{C} = \sum \frac{Watt*hours}{day}$ Size Battery Bank Capacity							
E stadd	ishynBiniknSina (Ampehlovo	ut)put by S	tt hours*1 Olar Pa x.D0D*Noi	Days of Auto NEI ninal Batter	onomy ry Voltage		
Establish minimum Current output by Solar Panel							
Establish maximum Current output Charge Controller should handle 8 Solar Panel Amperage = $\frac{Wh}{day}$ * $\frac{1}{5.76\left(\frac{h}{day}\right)}$							
Establish maximum Current output Charge Controller should handle							
• Charge Control Amp Cap. = $\frac{Solar Panel (Watts)}{Nominal Battery Voltage} + (.25 * \frac{Solar Panel (Watts)}{Nominal Battery Voltage})$							
1.25 NEC							
					power fac	tor	

buffer

PV System Analysia/Design Requirements Design

Electrical Loads	Quantity	Watts	Hours/Day	Watt-Hours/day
Cell Phones	4	5	24	480
4.3" Touch Screen	1	0.25	24	6
ATmega 328 P	1	0.2	24	4.8
				490.8
Design Parameters	Nominal Values	Units		
Autonomy	1	Days		
Nominal Battery Voltage	12	Volts		
DOD	0.6	Percent		
Average Sun Hours Central Florida	5.76	Hours/Day		
Design Results	Nominal Values	Units	Cost	
Battery Bank Size	80.20	Amp-hours	\$250.00	
Solar Panel Amperage	7.10	Amps	\$230.00	
Charge Controller Amperage Capacity	15.63	Amps	\$265.00	
			1	Total Main
			Ş745.00	System Cost

Final Design Saved \$230.00

Electrical Loads	Quantity	Watts	Hours/Day	Watt-Hours/day
Cell Phones	4	5	24	480
4.3" Touch Screen	1	0.25	24	6
ATmega 328 P	1	0.2	24	4.8
				490.8
Design Parameters	Nominal Values	Units		
Autonomy	1	Days		
Nominal Battery Voltage	12	Volts		
DOD	0.6	Percent		
Average Sun Hours Central Florida	5.76	Hours/Day		
Design Results	Nominal Values	Units	Cost	
Battery Bank Size	80.20	Amp-hours	\$250.00	
Solar Panel Amperage	7.10	Amps	\$0.00	
Charge Controller Amperage Capacity	24.48	Amps	\$265.00	
			\$515.00	Total Main System Cost

Design Verification Trojan Battery off-grid calculator

RE Renewable Energy Off-Grid Battery Sizing Calculator

Welcome to the Trojan Battery Renewable Energy Sizing Calculator. This calculator is a tool to help you determine the model and quantity of Trojan batteries needed for your renewable energy or backup power system. The calculator recommends batteries based on your inputs and the results are ranked according to cycle life performance.

RE STEP 1

Please Select Your System Design Parameters	System Loaus and Dattery Ga	pacity neu	unements
Choose system design battery voltage (12V, 24V, or 48V)	Values below will change as you enter system	parameters and	load estimates.
12 V V	Battery watt-hours per day for AC loads (including 15% AC inverter loss)	0.00	Wh/day
Choose desired battery depth-of-discharge (DOD)	Battery watt-hours per day for DC loads	490.80	Wh/day
50% V Type of Battery	Total battery watt-hours per day (accuming 97% wiring and distribution efficiency)	505.98	Wh/day
VRLA – Maintenance Free	Avg daily battery amp-hours needed (with 12V battery system)	42.16	Amp-hours (@12V)
Days of Autonomy	Required system capacity* (based on desired 50% DDD) to achieve 1 days of Autonor	84.33 my.	Amp·Hours (@12V)
Batte	ery w/in 5%	(84	.33

RE STEP 2

Please Enter Your Average Daily Load Estimates

Ah)

Click here to see average wattage for a typical appliance.

d Datters Oanasity De

Load Description	DC Load? (uses AC load unless checked)	Watts	Quantity	Hours Per Day	Days Per Week	Total Watts	Total Average Watt Hours Per Day*	Remove Item
cell phone charging		5	4	24	7 🔻	20W	480Wh	REMOVE
touch screen		.25	1	24	7 🔻	0W	6Wh	REMOVE
Microcontroller		.2	1	24	7 🔻	OW	5Wh	REMOVE

AltE off-grid calculator

Sizing a charge controller can be complex, the above answer is a conservative estimate. Please feel free to call us to find a more accurate fit for your needs.

Now that you have sized up the system that fits your needs, call our Knowledgeable Sales Folks at 800-320-9514 and let them help you find the exact products for your system.

© 2005 - 2015 altE Store, Inc. - www.altEstore.com

Charge Control/MPPT 30A/15V BLUE SKY Solar Boost 3000i

- 95% power efficie
- Built-in Charging Algorithm/MPPT and Heat Sink

• Digital Display

- Solar Amp In
- Controller Voltage Out
- Controller Amp Out

Monitoring MPPT Efficiency/Battery SOC

CHARGE STATUS LED'S	CHARGE MODE	APPROX. BATTERY CHARGE LEVEL	CURRENT OUTPUT
ABSORPTION & FLOAT OFF	CHARGE OFF	0%/DISCONNECTED	NONE
ABSORPTION & FLOAT ON	BULK	<70% FULL	HIGH
ABSORPTION ON - FLOAT OFF	ABSORPTION	70% - 95% FULL	TAPERS OFF
ABSORPTION OFF - FLOAT ON	FLOAT	FULLY CHARGED	TRICKLE/MAINTENANCE CHARGE

Solar Panel Comparison Minimum Current Output of 7.1A

	Monocrystalline Solar Panel	Polycrystalline Solar Panel
Efficiency	About 17%	11% - 14%
Power	More	Less
generated per (ft ²)		
Aesthetics	Consistent Deep Black Design	Inconsistent Blue Cell Design
Temperature Tolerance	Higher	Lower
Cost	Higher	Lower

Solar Panel Selection

Suntech 235W Polycrystalline Solar Panel

Electrical Characteristics

STC

Maximum Power at STC (Pmax) Optimum Operating Voltage (Vmp) Optimum Operating Current (Imp) Open Circuit Voltage (Voc) Short Circuit Current (Isc) Module Efficiency

STP235-20/Wd
235 W
30.2 V
7.79 A
37.0 V
8.35 A
14.4%

Polycrystalline

Dimensions	1640 \times 992 \times 35mm (64.6 \times 39.1 \times 1.4 inches)
Weight	18.2 kgs (40.1 lbs.)

Battery

TROJAN 12 V 89 Ah (Absorbent Glass Mat) AGM

Parameters	Lead Acid AGM	Lithium Ion
Average battery life	Replace every 10 years	Replace every 10 years
Deep cycle DOD efficiency	60%	80%
Weight	64 lbs.	4 lbs.
Space requirements		7.17 x 6.61 x 3.03 inches
Cost	\$250.00	\$560.00
Charge Efficiency	75%	97%
Environmental hazards	97% 🛧 recyclable	60% recyclable

- Maintenance Free
- Cost Efficient
- Eco-conscious
- Weight and Space Accommodations met by Enclosure

SOC	VOC
100	12.84
75	12.54
50	12.24
25	11.94
0	11.64

Power System Compatibility

SPECIFICATIONS	Solar Boost 3000i
Nominal Battery Voltage	12 VDC
Automatic Output Current Limit	30.0A with 36 cell PV input • 22.0A with 60 cell PV input
Maximum PV I _{SC} / Power	24.0A / 400W with 36 cell PV input • 11.8A / 290W with 60 cell PV input
Maximum Battery & PV Voltage	50.0VDC absolute maximum \odot (Recommend maximum PV V _{oC} at STC \leq 40.0VDC)
Standby Power Consumption	30mA typical
Charge Algorithm	3-stage Bulk/Absorption/Float • Plus Auto/Manual Equalization
Power Conversion Efficiency	97% typical, 36 cell modules delivering 24A

- 0
- 0
- 0
- **o** 19.6 A

235 W Solar Panel Highest Irradiation days

0

0

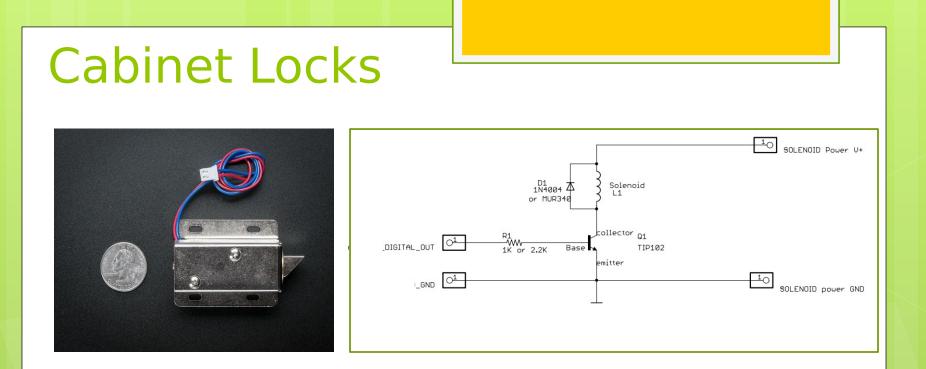
24.5 A 1.25 NEC

buffered power factor

Afford Small Loss – Rare Conditions – More than Ample Power Supply

UniverSOL PV System Performance

SETTING	Pin W	Vout	lout	PV Pout W	PWM Pout W	SYSTE M GAINS
Lab	150	13.3	10.3	137	67	47%
Low	46	12.9	3.4	43.8	43.8	0%
High	228	13.6	14.4	195.8	105.9	54%


DC to DC Converter

0

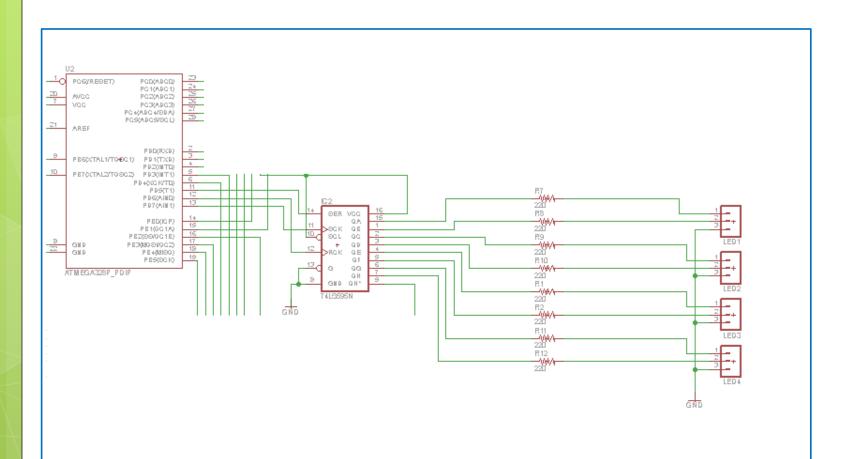
- Higher Efficiency then Linear Voltage Regulators
- Buck Switching Voltage Regulator, 1.5A Output
- Small Footprint, 3 terminal SIP package

D	input voltage Range (v)	7 to 50		
	Design Origin	Murata Power Solutions		
	Dimensions (inch)	0.41 x 0.65 x 0.30		
	Dimensions (mm)	10.4 x 16.5 x 7.62		
	Efficiency (%)	90.5		

TECHNICAL DETAILS

- 12VDC (you can use 9-12 DC volts, but lower voltage results in weaker/slower operation)
- Draws 650mA at 12V, 500 mA at 9V when activated
- Designed for 1-10 seconds long activation time
- Max Dimensions: 41.85mm / 1.64" x 53.57mm / 2.1" x 27.59mm / 11.08"
- Dimensions: 23.57mm / 0.92" x 67.47mm / 2.65" x 27.59mm / 11.08"
- Wire length: 222.25mm / 8.75"
- Weight: 147.71g

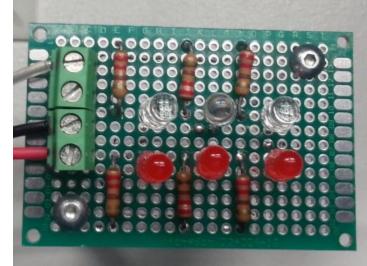
Current Sensors


- The PCB will have four mounted ACS712 Hall-Effect-Based Linear Current Sensor
- ICs with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor
- Current flowing through a copper conduction path generates a magnetic field
- Magnetic field is sensed by the integrated Hall IC and converted into a proportional voltage
- The ATMEGA328 processor reads the voltage to determine the charge status of the phone being charged

I/O Expansion

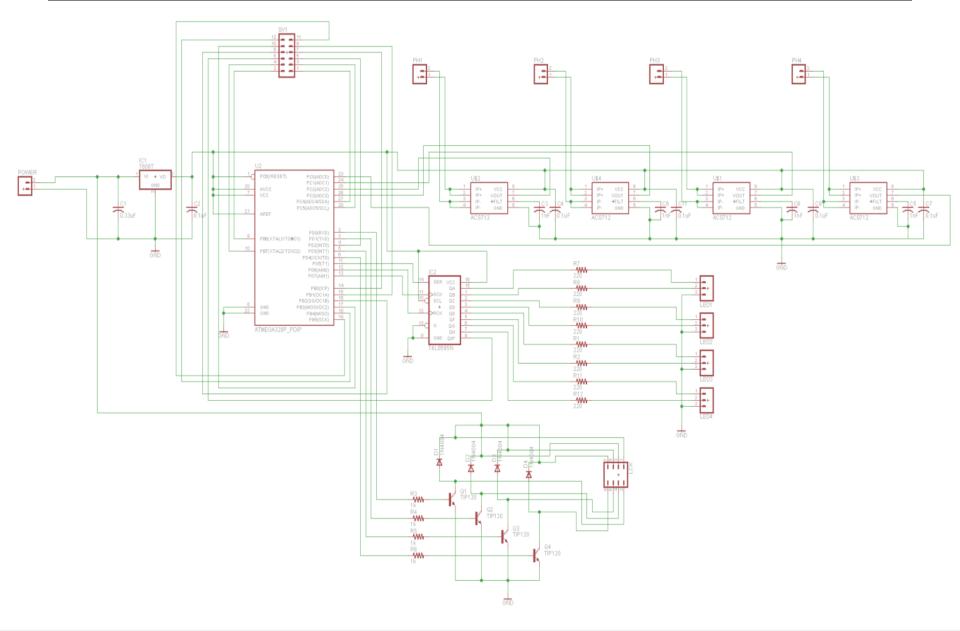
74HC_HCT9595

Shift Register - Uses Only 3 Pins from the Atmega328

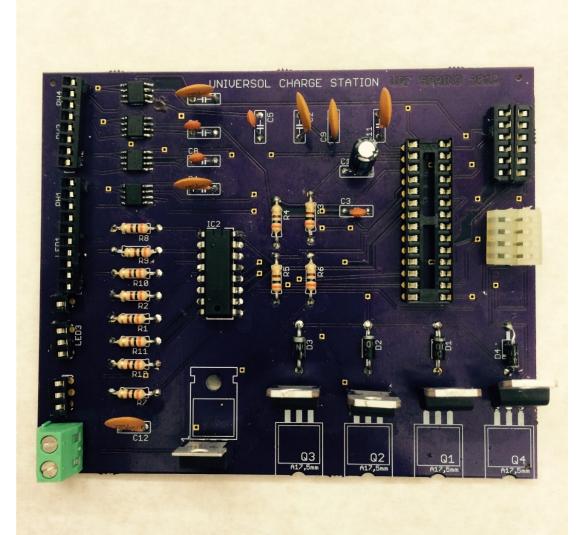


Charge Indicator Board

• Status of charge level on phones


- Three green and three red LEDs mounted inside each locker
- Visible from outside of locker to indicate status of phone
- Each LED circuit contains a 220 ohm current limiting resistor

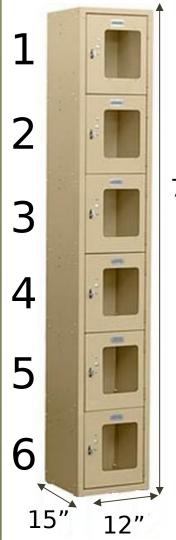
Red indicate s phone is charging


Green indicates phone charging complete.

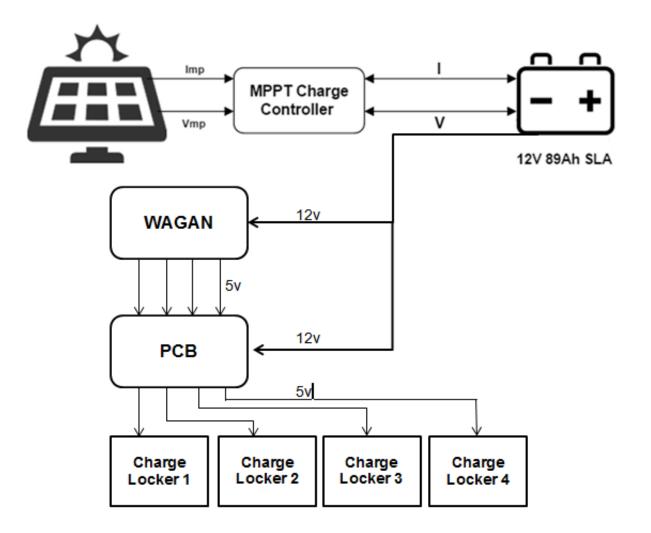
PCB Design Schematic

PCB Design

Assembled PCB Board


Current and Voltage Meter

Current and voltage test tool
Digital LED 7-segment readout
Alternates between voltage and current readings every 5 seconds



Charging Cabinet Modifications

- Decrease the height from 78" to 72" by removing legs, so UniverSOL's available charging lockers are at a
 72" more user-friendly height
 - New dimensions: 72"Hx12"Wx15"D
 - Lockers 1, 3, 4, and 5 to be used for cell phone charging
 - Locker 2 will house touch screen display
 - Locker 6 used for storing battery and MPPT charge controller

Power Distribution

4-in-1 Breakout Cables

Apple i3 and i4 dock connector
Apple Lightning iPhone 5, 5S, 6, 6+
Micro USB
Mini USB
Total Length is 12.80"

iPhone 5/5s

Cabinet Back

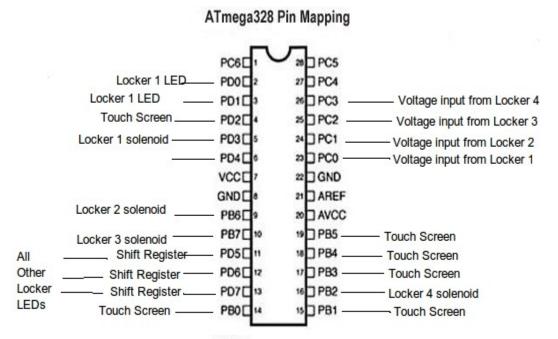
Easily accessible rear control panel, containing:

•WAGAN 12v input to four 5v USB output ports

Printed Circuit Board

 Charge Doctor in-line current sensors for constant current and voltage monitoring

Embedded System Microcontroller Unit I/O

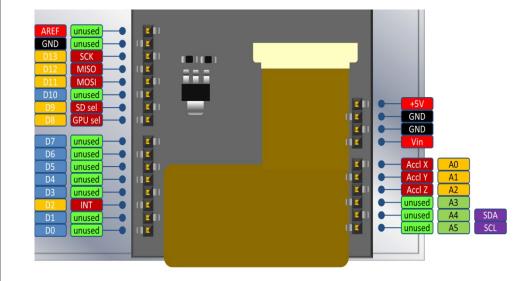


and the second	1	-	-0	8.2
n 🛛 🔪 🖉	RST	A	5	Arduino function
an 1	DO	N		analog input 5
	01	AS		analog input 4
		~	9	analog input 3
7/10	D2	A2	-	analog input 2
	D3	AI	10	analog input 1
	D4	AD		analog input 0
	VCC	GND	100	GND
	GND	APEF		analog reference
	X1	AVCC		VCC
4	X2	D13		digital pin 13
)	D5	D12		digital pin 12
	D6	D11		digital pin 11 (PWM)
	D7	D10		digital pin 10 (PWM)
	D8 u	ed or		digital pin 9 (PWM)

Degital Pins 11, 12 & 13 are used by the ICSP header for MISO, MOSI, SCK connections (Atmega 168 pins 17, 18 & 19). Avoid lowimpedance loads on these pins when using the ICSP header

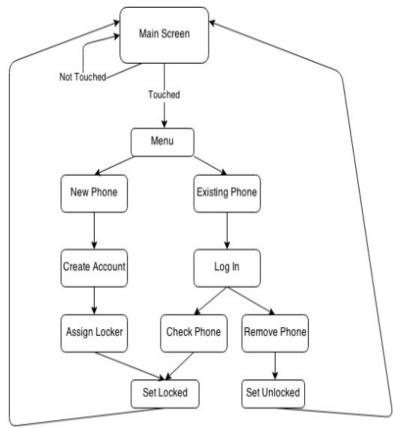
- Atmel ATmega328P
- 8-bit microcontroller
- 32 KB Program Memory
- Operating Voltage 1.8 to 5.5 Volts
- 6 analog input/output pins
- 14 digital input/output pins

Microcontroller I/O



- Input voltage from phone in each locker
- One output to each locker for the solenoid locking mechanism
- Output signal to the LED inside each locker
- Input and output for the user display and interface via touchscreen
- Shift register to add more digital pins

Touch Screen


Main Component of our user interface

- 4.3 inch LCD Display
- Anti-glare
- Connected to the microcontroller by diagram shown to the right

Touch Screen

User Interface Flowchart

- Something always displayed on the touch screen
- Each screen represents a different state

 Code runs a continuous loop

Security System User Interface

- Each locker saves a 4 digit PIN
- Simple Easy to use with big buttons.
- Requires typing a PIN twice to ensure correct numbers
- All old PIN #s get deleted when the locker is done being used

Lock Box/LEDs

- Magnetic Solenoid lock receives signal from Atmega328
- Red = Charging
 Green = Done Charging
 No LED on = Vacant
- Current sensor uses hall effect to get the current values from the phones

Class Diagram

batteryLevel: Integer solarPowerLevel: Integer totalTimeCharged: Integer

checkBattery() checkSolarPanal() hasLockerOpen() getTotalTime()

Locker

number: Integer isOccupied: Boolean doneCharging: Boolean timeStarted: DateTime PIN: Integer

lock() unlock() setOccupied() setDone() turnOnLED() turnOffLED() checkAmps() startCharging() stopCharging() 4 instances of Locker class

 1 instance of Enclosure

 Enclosure handles all overall system information

Division of Work

	Amy	Jonathan	Brock	John
•	Power System • Battery • MPPT Microcontroll er Hardware Testing	 DC to DC Converters PCB Design Hardware Testing Fabrication 	 Software Microcontroll er Touchscreen Testing Security System 	 Hardware Sensors Safety Programmin g Testing Fabrication

Budget and Finance

Project FullydEunded

Balance \$2071.00 - \$1,182.76 = \$745.18

ltem	Price	Cost
235W Solar Panel	\$275.00	\$0.00
30A MPPT Charge Controller	\$279.24	\$279.24
USB Charging Cables	\$14.48	\$14.48
Universal Cell Phone Charging Cables	\$9.00	\$9.00
Atmega328P	\$40.00	\$0.00
Current Meters	\$8.54	\$8.54
LEDs	\$20.00	\$20.00
4.3" Touchscreen	\$79.19	\$79.19
5V Switching Voltage Regulator	\$12.99	\$12.99
High Powered USB Hub	\$25.49	\$25.49
12V 89Ah SLA Rechargeable Battery	\$259.00	\$259.00
Wire/Cable	\$40.00	\$40.00
РСВ	\$85.00	\$79.25
Solenoid Locks	\$75.00	\$23.87
Printing	\$36.00	\$36.00
Enclosure	\$300.00	\$233.21
Protoype Socket	\$37.50	\$37.50
Misc.Circuit Components	\$25.00	\$25.00
Total	\$1,621.4 3	\$1,182.7 6

THANK YOU FOR YOUR ATTENTION AND ANY QUESTIONS?