
Glove Drummer 
MIDI Controller and Audio Playback Module 

 
 
 

 

 
 
 
 
 

Group 15: 

Aaron Rice 

Michael Moran 

Timothy Cox 



Group 15 

i 

Glove Drummer 

 

Table of Contents 

 
Table of Contents .................................................................................................. i 

1.0 Executive Summary ........................................................................................ 1 

2.0 Project Definition ............................................................................................ 1 

2.1 Personnel .................................................................................................... 2 

2.2 Goals & Objectives ..................................................................................... 2 

2.3 Requirements and Specifications ................................................................ 3 

2.3.1 Hand Modules ...................................................................................... 3 

2.3.2 Tabletop Module ................................................................................... 4 

2.3.2 Pedal Sensors ...................................................................................... 5 

3.0 Research ........................................................................................................ 6 

3.1 Musical Instrument Digital Interface (MIDI) ................................................. 6 

3.2 Electronic Drum Kits ................................................................................... 8 

3.2.1 Electronic Drum Pads and Cymbals ..................................................... 8 

3.2.2 The Drum Brain .................................................................................... 8 

3.3 Glove Controllers ...................................................................................... 12 

3.3.1 Musical Glove Controllers ................................................................... 12 

3.3.2 Other Glove Controllers ...................................................................... 12 

3.4 Serial Communications ............................................................................. 13 

3.4.1 The UART and RS-232 Protocol ........................................................ 13 

3.4.2 The USART and Synchronous Half-Duplex Serial Protocol ............... 15 

3.5 Digital Audio .............................................................................................. 15 

3.5.1 Recording Digital Audio ...................................................................... 17 

3.5.2 Playback of Digital Audio .................................................................... 18 

3.6 Using an SD Card in Embedded Projects ................................................. 21 

3.7 Wireless Communication .......................................................................... 22 

3.7.1 Available Technologies and Devices .................................................. 22 

4.0 Design .......................................................................................................... 22 

4.1 Hardware .................................................................................................. 22 



Group 15 

ii 

4.1.1 Microcontroller Development Boards.................................................. 22 

4.1.2 FPGA Development Board: The Spartan X3CS500E Core Board ..... 25 

4.1.3 UART to PC Interfaces ....................................................................... 26 

4.1.4 Connection Between Left/ Right Hand Modules and Table-top Module
 .................................................................................................................... 27 

4.1.5 SD Card .............................................................................................. 29 

4.1.6 Supplying Power ................................................................................ 33 

4.1.7 Hardware for Expanded Mapping Flexibility and Hi Hat Control ......... 36 

4.1.8 Level Shifter Circuits........................................................................... 38 

4.1.9 ADCs .................................................................................................. 39 

4.1.10 The Vishay DG Multiplexer ............................................................... 41 

4.2 Software .................................................................................................... 44 

4.2.1 C Code Programs ............................................................................... 44 

4.2.2 Energia Code for Tiva C series .......................................................... 48 

4.2.3 Verilog Code for the Spartan FPGA ................................................... 55 

4.2.4 Hex Editor Software............................................................................ 58 

4.2.5 Audacity Digital Audio Workstation (DAW) ......................................... 60 

4.2.6 BFD3 Drum Software ......................................................................... 60 

4.2.7 WAV2C Software ............................................................................... 61 

4.2.8 Hairless Serial to MIDI Software ......................................................... 61 

4.2.9 LoopMIDI Software ............................................................................. 62 

5.0 Prototyping ................................................................................................... 63 

5.1 Construction of Piezo Sensors .................................................................. 63 

5.2 Construction of the Gloves ........................................................................ 64 

5.3 Construction of the Hi Hat Pedal ............................................................... 64 

5.4 Construction of the Bass Drum Pedal ....................................................... 65 

5.5 Left/ Right Hand Module in the Breadboard Phase ................................... 65 

5.6 Table-top Module in the Breadboard Phase.............................................. 66 

5.6.1 Sub-Modules ...................................................................................... 67 

6.0 Piezo Signal Conditioning ............................................................................. 70 

6.1 The Unconditioned Piezo Signal ............................................................... 70 

6.2 The Piezo Conditioning Circuit .................................................................. 72 

6.2.1 Op Amp Selection .............................................................................. 72 

6.2.2 Bounding the Piezo Signal between Ground and Vcc ........................ 73 

6.2.4 The Final Conditioning Circuit Design ................................................ 74 



Group 15 

iii 

7.0 PCB Planning ............................................................................................... 75 

7.1 Signal Integrity .......................................................................................... 76 

7.2 Custom PCB for Left/ Right hand Modules ............................................... 77 

7.2.1 Power Supply ..................................................................................... 77 

7.2.3 Integrated Circuits (ICs) ...................................................................... 77 

7.2.4 Clock Circuits ..................................................................................... 80 

7.2.5 Programming Interfaces ..................................................................... 81 

7.2.6 Bill of Materials (BoM) ........................................................................ 82 

7.2.7 Complete Hand Module PCB Schematic ............................................ 85 

8.0 Assessing Latency and Jitter ........................................................................ 87 

9.0 Administrative Content ................................................................................. 87 

9.1 Milestone Discussion ................................................................................ 87 

9.2 Budget and Finance .................................................................................. 88 

10.0 Conclusions ................................................................................................ 89 

Appendix: References ........................................................................................ 90 

 



Group 15 

1 

1.0 Executive Summary 
 

With Glove Drummer, the power of music is in the palm of your hand. 
 
The Glove Drummer team would like to thank Ray K. and Guitar Center for allowing 
the research of modern electronic drum sets at their Winter Park location. 
 
Electronic Drum sets have been around for 40 years or more, and have already 
evolved to closely mimic the nuances of acoustic drums. However, these electronic 
drum sets are equally, and unnecessarily, as large and clunky as their acoustic 
counterparts. Glove Drummer aims to intuitively map an electronic drum kit to a 
pair of pair of gloves, replacing the need for large and immobile drum kits. By 
utilizing a pair of drum gloves, two pedal sensors, and a table-top module, Glove 
Drummer will provide the user with all the same interfacing and customizability 
already found in modern electronic drum kits. While an intuitive default will be 
present, users will be able to completely customize Glove Drummer with their own 
personal set of drum sounds. Also, computer connectivity will allow to the user to 
utilize the same Digital Audio Workstations they are already familiar with. 
 
The left and right hand modules of Glove Drummer will feature velocity sensitive 
sensors, allowing the user to play a full drum kit on any hard surface. By utilizing 
velocity sensitive sensors, Glove Drummer will closely mimic the different 
acoustics associated with striking a drum kit at varying velocities. The hand 
modules will transmit this information wirelessly to the table-top module. The pedal 
sensors, which are wired to the table-top module will allow the user to control the 
hi-hat and play the bass drum in the same manner they are already accustomed 
to. The table-top module will then generate sound samples based on the 
messages sent by the hand modules and pedal sensors. The table-top module will 
utilize an SD card to store the library of sound samples, allowing the user to load 
their personal library onto a small card, or use multiple cards for easy swapping of 
audio sample libraries. 
 
Electronic drum users will greatly appreciate the mobility provided by Glove 
Drummer. By eliminating the large drums and pieces associated with a standard 
drum kit, Glove Drummer can easily be transported wherever a band intends to 
play, without requiring a vehicle sometimes as large as a mini-van just to house 
their drums. Also, as Glove Drummer can be played on any hard surface, areas as 
small as office cubicles can suddenly be used to practice and write music. 
 
 
 
 
 

2.0 Project Definition 
 



Group 15 

2 

2.1 Personnel 
 
Aaron Rice- Electrical Engineering 

aaronwrice@gmail.com 

 
Timothy Cox- Computer Engineering 

timothy.cg.cox@gmail.com 

 
Michael Moran- Electrical Engineering 

kalceus@gmail.com 

 

2.2 Goals & Objectives 
 
Glove Drummer aims to provide an intuitive, user-friendly, compact, and mobile 
alternative to the modern electronic drum kit. The hand modules will allow the user 
to play Glove Drummer on any hard surface. Utilizing intuitive sensor mapping, 
Glove Drummer will be an easy transition for any advanced drum player, while also 
being approachable to new users interested in electronic drums. 
 
One major goal of Glove Drummer is ease of use. To this end, the gloves will be 
comfortable and must not restrict freedom of motion. Also, the gloves will be 
intuitive enough that experienced electronic drum users will have an easy time 
making the transition to Glove Drummer, but will be simple enough to allow new 
users to simply put on the gloves and play. By utilizing a compact table-top module, 
Glove Drummer will be portable enough to take anywhere, and can turn any space 
into a music studio. 
 
Another major goal of Glove Drummer is versatility. One way this will be achieved 
is allowing users to load their own personal audio library for use. Although Glove 
Drummer is designed to be a replacement for electronic drum kits, the user can 
make it play any sounds they desire, allowing Glove Drummer to be used as any 
instrument the user wishes, be it a piano, trumpet, etc. The ability to quickly swap 
SD cards and load new audio files will allow the user to switch between Glove 
Drummer functionalities in an instant. Also, by utilizing a USB connection and the 
same MIDI messages found in other electronic drum kits, Glove Drummer will be 
able to work with the same Digital Audio Workstations that experienced electronic 
drum users will already be familiar with. 
 
A third major goal of Glove Drummer is accuracy of emulation. This means that 
Glove Drummer must closely mimic the sounds of a standard drum kit. To this end, 
the sensors in the left/right hand modules must be velocity sensitive, to mimic loud 
and soft hits on a drum kit. The bass pedal must also utilize a velocity sensitive 
sensor, for the same reason. The hi-hat pedal will function much like a standard 
hi-hat pedal. Depressing the hi-hat pedal partially will cause the hi-hat sensor on 
the hand modules to make sounds corresponding with partially closed hi-hat. Fully 



Group 15 

3 

depressing the hi-hat pedal will close the virtual hi-hat, and not pressing it at all will 
open it. Also, for emulation accuracy, quickly opening or closing the hi-hat will 
produce its own unique sound. In addition, the tabletop module must be able to 
read sensor information and playback audio with low latency, specifically under 
15ms. 
 

2.3 Requirements and Specifications 
 
Glove Drummer will be split up into three major components, the Left/Right Hand 
Modules, the Tabletop Module, and the pedals. The requirements and 
specifications for each is found below. 
 

2.3.1 Hand Modules 
 
The left/right hand modules have several strict requirements to allow for practical 
playability. Outlined in table 1, these requirements ensure that Glove Drummer 
will possess ease of use, and will properly mimic a standard drum kit. 
 
Table 1: Hand Module Requirements 

Overall Component Requirements 

1. The Glove Drummer hand modules must not weigh over two pounds, 
and must be securely fastened to users hands via wrist straps 

2. The hand modules must be powered by battery 

3. The hand modules must use low power components, to extend battery 
life 

4. The hand modules must communicate with the tabletop unit wirelessly 

5. The hand modules must be comfortable to play extended sessions 

6. The hand modules must be flexible enough as to not restrict finger or 
hand motion 

7. The hand modules must utilize velocity sensitive sensors to closely 
mimic an acoustic drum kit 

8. The hand modules must have one velocity sensitive sensor per finger, 
as well as one on the palm 

9. The hand modules must be intuitively mapped to a standard drum kit 

 



Group 15 

4 

While Glove Drummer will allow the user to load their preferred audio files, and 
match them with any sensor of their choosing, Glove Drummer will have an 
intuitive standard mapping, as shown below in figure 1. Exact sensor location, 
and means of fastening the hand modules, are better depicted in figure 2. 
 

  
Figure 1: One possible sensor to drum sound mapping 

 
Figure 2: Hand and Tabletop Modules 

 
 
2.3.2 Tabletop Module 
 
The tabletop module has several strict performance requirements in order to 
emulate a standard drum kit. Listed below in table 2, these requirements will 



Group 15 

5 

ensure that Glove Drummer can’t be distinguished from a standard drum kit by 
sound alone. 
 
Table 2: Table-top Module Requirements 

Overall Component Requirements 

1. The tabletop module must fit on a standard sized desk or table 

2. The tabletop module must receive input from hand and pedal modules, 
and correctly play the corresponding audio file 

3. The tabletop module must mix audio files without changing the total 
volume 

4. The tabletop module must play audio files with less than 15ms of latency 
between sensor input and audio output 

5. The tabletop module must playback audio through an onboard speaker 

6. The tabletop module must possess a standard 3.5mm headphone jack 

7. The tabletop module must possess computer connectivity via USB 

8. The tabletop module must utilize an interchangeable SD card for audio 
file storage 

9. The tabletop module must utilize MIDI messaging to interact with 
existing digital audio software 

10. The tabletop module must possess a master volume switch 

 

2.3.2 Pedal Sensors 
 
Glove Drummer will utilize two different pedal sensors in order to emulate a 
standard drum kit, a hi-hat pedal and a bass pedal. The requirements for each of 
these pedals are different, and are listed below in table 3. 
 

 
Table 3: Bass and Hi-Hat Pedal Requirements 

Overall Component Requirements 

1. The hi-hat pedal must detect the level to which it is currently depressed 

2. Quickly pressing or releasing the hi-hat pedal must generate its own 
unique audio playback sample 



Group 15 

6 

3. Both the bass and hi-hat pedals must be of comparable size to standard 
drum pedals 

4. The bass pedal must possess a velocity sensitive sensor 

5. Both the bass and hi-hat pedals must communicate with the tabletop 
module via wired communication 

 

 

3.0 Research 
 

3.1 Musical Instrument Digital Interface (MIDI) 
 
MIDI was created in 1983 (source1) and is associated by some with the music from 
a Nintendo or other early gaming system.  This could not be further from the 
truth.  MIDI does not represent any certain type of sound, only commands to create 
and alter sounds.  Synthesized sounds stored in tables were initially used in the 
past, resulting in that “Nintendo sound,” and therefore that association was 
made.  The processing power and data storage capacity of microcontrollers around 
the time of MIDI’s invention just did not allow for actual recorded audio tracks to 
be triggered by MIDI controller devices.  Today you will find MIDI being used for 
light shows, synthesized sounds, and the playback of actual recorded audio 
tracks.  The Glove Drummer left and right hand modules will serve as MIDI 
controllers whereas the table-top module will serve as a MIDI sequencer.  MIDI 
controllers interpret data from the outside world and create messages.  MIDI 
sequencers decode the messages from the MIDI controller and produce 
sounds.  Although the sequencer is sometimes called a “MIDI synthesizer” it 
should be noted that the sounds produced could be synthesized or acoustic 
depending on the user’s preference.  Glove Drummer will feature an onboard MIDI 
synthesizer, but also will give the option of using a PC software as the MIDI 
synthesizer.  Drum software like BFD3 will no doubt produce the most realistic 
drum sounds when compared to the sounds produced by the table-top module as 
most electronic drummers prefer these sounds to the sounds produced by their 
professional electronic drum sets. 
 
The communication protocol that is MIDI dictates that each message contains 
three bytes.  The first byte is called the status byte and tells what type of message 
is being sent and on what channel.  The channel information can be one of 16 
values and drums are reserved for channel nine in the MIDI specification.  The 
type of message is found in the upper half (or nibble) of the status byte.  Types of 
messages important in implementing Glove Drummer will be limited to Note On, 
Note Off, and Continuous Control (CC).  Other types of messages may have an 
important function when trying to mimic other instruments, but are mostly useless 
in the case of drums.  A type of message called “after touch” has been used in 
some electronic drum sets, but CC messages can achieve the same results. 



Group 15 

7 

 
The second of three bytes (data1) in a message contains the “key,”  since MIDI 
was designed based around the musical keyboard.  For the purpose of electronic 
drum sets, key can be thought of as whatever drum the message is intended 
trigger.  There are 128 keys equivalent to a 7-bit value, meaning the Most 
Significant bit (MSb) is always zero.  The same goes for the third byte of the 
message.  This could be used as a way to differentiate between the status byte 
and data bytes, because the status byte will always have an MSb equal to 
one.  The third and final byte in a message (data2) contains “velocity” 
information.  Velocity information equates to how hard the drum or cymbal was 
struck.  Since the MSb of data2 is always zero, there are 128 possible values for 
velocity where velocity=0 produces no sounds.  When an acoustic drum is struck 
with varying force, the sounds produced differ not only in volume, but also in 
timbre.  This is the reason electronic drum sets store audio tracks of each drum 
being hit with varying force or velocity. 
 
In Figure 3 below, the messages needed to produce a single drum sound are 
shown.  Two three byte messages are needed in order to turn the sound on and 
then turn it off.  The Note Off message does not actually turn any note or sound 
off, but it is required to play the next sound for that “key” or particular drum.  It could 
be said that when a MIDI synthesizer is configured to play drum sounds that the 
Note Off message is ignored.  Note Off has an important role in creating other 
musical instrument sounds, but not in creating drum sounds.   
 

 
Figure 3: Standard six byte Note On/Off Combo message for drum strike 

 
Another method called “running status” only requires that the second message 
contain two bytes as the status of the first message is perceived also as the status 
of the second message.  A message using running status can be seen below in 
Figure 4.  This is possible because the second message is also a Note On 
message for channel nine, but the velocity information in data2=0x00 effectively 
turns off the sound.  Any additional Note On messages on channel nine may also 
omit their status bytes so long as no CC messages were generated in the interim 
period.  This method saves time and therefore reduces potential latency.  For this 
reason, the running status method will be implemented in Glove Drummer. 
 

 
Figure 4: Note On/Off combo using running status 

 



Group 15 

8 

3.2 Electronic Drum Kits 
 
Forty-four years ago the first electronic drum kit was created for Graeme Edge of 
the band Moody Blues (source2).  Since that time great improvements have been 
made to electronic drums such as variable hi hat control, positional and cymbals, 
and the replacement of synthesized sounds with recordings of real sounds. 
 

3.2.1 Electronic Drum Pads and Cymbals 
 
The Drum pads and cymbals all have one or more piezoelectric disc transducers 
embedded somewhere within them, protected by foam or foam rubber.  Some 
drums like the toms have only one, whereas the hi hat and snare sometimes have 
two for judging the position where the stick hit the hi hat or snare.  The hi hat 
cymbal is also controlled by the hi hat pedal.  Electronic hi hat pedals work in one 
of two ways.  The more primitive way uses discrete open hi hat and closed hi hat 
positions.  A better approach is called variable hi hat control which records the 
position of the pedal between open and closed so that the sounds created are 
more natural when compared to the sound of an acoustic hi hat.  An acoustic ride 
cymbal can make three different distinct sounds and accordingly some of the better 
electronic ride cymbals include three transducers for recreating this effect.  Another 
feature in some cymbals is the ability to strike the cymbal and quickly “choke” it by 
grabbing the edge between the thumb and fingers.  In this case a sensor, which 
may not be a piezo disk, is placed near the edge of the cymbal to sense the cymbal 
has been “choked.”  All of these features have been designed in order to make 
electronic drums more attractive to drummers.  In the following section the team 
explores the MIDI messages created by Roland’s flagship electronic drum set 
which includes all of the features mentioned here. 
 

3.2.2 The Drum Brain 
 
Early during Senior Design I, the team took a trip to Guitar Center, a music store 
in Winter Park, where the inner workings of the Roland TD-30 electronic drum set 
were explored.  The Roland TD-30 is arguably the best electronic drum set there 
is with many features that help to make it respond close to the way an acoustic 
drum set would.  The “drum brain” has input jacks for each of the sensors found 
throughout the drums, cymbals, and hi hat pedal.  It takes the signals from those 
sensors and plays pre-recorded drum sounds through an audio output 
jack.  Surprisingly, many electronic drum players choose to record their kits using 
other pre-recorded sounds from computer software and not the sounds stored in 
the drum brain.  This choice is usually made because the user feels that the sound 
libraries offered by computer software are of superior quality when compared to 
the drums brain sound library.  The team could only conclude from the preferences 
of electronic drum users that the MIDI messages sent from a drum brain include 
all the necessary data to trigger drum sounds in a way that effectively emulates an 
acoustic drum set.  Knowing this, the team studied the output of MIDI messages 



Group 15 

9 

from the TD-30 drum brain in an attempt to understand exactly what data is needed 
by the drum software and why.  The MIDI output of the TD-30 was connected to a 
laptop PC through MIDI/USB interface.  A program called “MIDI Ox” was used to 
record the MIDI messages as they were created.  Screenshots from MIDI Ox are 
shown and explained below. 
 

 
Figure 5: TD-30 Drum Brain - MIDI output for positional snare drum 

 
In Figure 5 shown above, a positional snare drum is hit in the center of the drum 
and then on the rim of the snare (the outer perimeter) of the drum.  This 
progression from center to rim is repeated three times.  A “positional snare” is 
nothing more than an electronic drum with two piezo sensors, one placed in the 
center of the drum and one closer to or on the rim.  They are made this way 
because an acoustic snare drum will sound different depending on how close to 
the center it is struck.  In Figure 5 above, the MIDI messages reveal that a 
Continuous Control (CC) message precedes each “Note On/ Off combo.”  Data3 
of the CC message is the data that would tell the drum software how close to the 
rim the snare was struck.  Like velocity data, CC data3 is a 7 bit value where 0x7F 
corresponds to the snare being struck directly on the rim while 0x00 corresponds 
to the snare being struck directly in the center of the drum.  Values in between of 
course correspond the snare being struck somewhere in between the center and 
the rim.  For software that may only have sounds for the center and rim position 
that does not use CC messages, data2 of the note on/off combo is different.  It is 
reasonable to assume that this change in data2 is made as the stick crosses the 
radial line halfway between the center and the rim.  The concept of a positional 
snare could be implemented in Glove Drummer by placing a sensor on the fingertip 
and another lower on the finger, palm-side, corresponding to the center and rim 
sensors of a positional snare drum.  Most likely only discrete center or rim 
messages could be discerned, although cross-talk between the two sensors 
resulting from the fact they are both attached to the same finger might allow for CC 
messages to be sent with positional values between the center and rim. 
 



Group 15 

10 

 
Figure 6: TD-30 Drum Brain - MIDI output for hi hat struck on bow then edge 

 
In Figure 6 above, MIDI messages are shown resulting from striking the positional 
hi hat on the bow (halfway between the center and perimeter of the cymbal, struck 
with the tip of the stick) and then the edge (perimeter of the cymbal struck with the 
shank of the stick).  This progression from bow to edge is repeated three times, 
each time with the hi hat pedal fully open.  As with the positional snare, a CC 
message precedes each note on/off combo except that here it is the position of the 
hi hat pedal between open and closed that is contained in data2 of the CC 
message.  As shown above, CC data2 for the hi hat pedal is 0x00 for the fully open 
position.  The position where the stick struck the hi hat cymbal is given discretely 
as either bow or edge and nowhere in between.  This information is contained in 
data1 of the note on/off combo and can be seen to alternate between 0x2E = bow 
hit and 0x1A = edge hit.  Glove Drummer will also feature a variable hi hat pedal 
which provides a seven bit range of values between open and closed.  Bow/ edge 
hi hat hits could also be implemented as previously mentioned with the positional 
snare drum. 
 
In Figure 7 below, a sound created solely by movement of the hi hat pedal called 
the “foot chick” sound is produced by the TD-30 drum brain.  As the hi hat pedal 
moves quickly toward the floor, CC data2 increases from 0x00 to 
0x5A.  Interestingly, the hi hat pedal when fully depressed reads a value of 0x5A 
and not 0x7F (the max 7-bit value it could be).  When implementing the Glove 
Drummer hi hat pedal, the team reasons that values from open to closed read from 
the pedal sensor need not range all the way from 0x00 to 0x7F.  When the pedal 
reaches the fully depressed position,  a note on message is sent the MIDI 
sequencer to play the foot chick sound.  Note off messages were thought be to be 
ignored in all cases by the MIDI sequencer and after careful analysis of the time 
step in the leftmost column, this assumption was correct.  Subtracting the note on 
time from the note off time for all cases resulted in 99 to 100 time steps between 
note on and note off.  The time step is believed to be the inverse of the MIDI baud 
rate of 31250bps = 32us.  One hundred of those time steps equals only 3.2ms, 
much too short to be able to hear the full response of a drum hit which usually lasts 
around 3s. 
 



Group 15 

11 

 
Figure 7: TD-30 Drum Brain - MIDI output for hi hat “foot chick” sound 

 
Another sound produced solely by the movement of the hi hat pedal is show below 
in Figure 8.  This sound is called a “foot splash,”  and it occurs when the hi hat 
pedal is released from the fully depressed position very quickly.  These sounds 
might be easy to overlook in creating an electronic drum set because most people 
would associate making sounds only with hitting the drum or cymbal with the drum 
sticks.  How quickly the pedal was pressed or released will determine that a sound 
is produced and the “velocity of that sound.  It was also important to note that the 
more slowly the pedal was moved the more CC messages were sent, and that 
when it is moved slowly no chick or splash sound was created.  Both the foot chick 
and foot splash sounds will be an important aspect of creating a realistic sound in 
the Glove Drummer hi hat implementation.   
 

 
Figure 8: TD-30 Drum Brain - MIDI output for hi hat “foot splash” sound 

 
The three- position ride cymbal is explored in Figure 9 below.  The bell sensor is 
housed near the exact center of ride cymbal.  A strike to the bell produced a note 
on/off combo message with no CC message needed.  However, striking closer to 
the edge creates a note on/off combo preceded by a CC message much like the 
positional snare drum except the key number (data2) is the same for bow and 
edge.  Seemingly a MIDI synthesizer that was not programmed to recognize the 
CC message would only play the bow sound as the edge sound is less commonly 
used.   
 



Group 15 

12 

 
Figure 9: TD-30 Drum Brain - MIDI output for ride cymbal struck on the bell, then  
bow, then edge 

 
It is unclear at this point how many of the features may be able to be incorporated 
into a glove controller.  With the exception that the bounce of a drum stick off the 
drum head is not possible with the fingers, Glove Drummers design will basically 
be a mapping of an electronic drum set to a pair of gloves.  The team believes 
simple not on/off messages created by the tiny 9.5mm piezos will work nicely for 
producing velocity sensitive drum sounds.  Additionally the team believes that with 
the use of infrared (IR) proximity sensors a variable hi hat control pedal should 
possible. Getting a chance to view these messages from the TD-30 was of great 
benefit to the team in understanding how Glove Drummer will be designed and 
programmed. 
 

3.3 Glove Controllers 
 

3.3.1 Musical Glove Controllers 
 
There are notably few instrumental glove controllers available for comparison and 
none readily available commercially. Existing instrumental glove controllers 
generally feature wired hand modules and poor customizability. Many models 
utilize one volume fits all drum sounds, which does a poor job mimic the acoustic 
finesse of an actual drum kit. By allowing users to connect Glove Drummer to 
existing digital audio workstations, such as Audacity, and utilizing piezoelectric 
sensors, Glove Drummer will better mimic standard acoustic drum kits, whilst 
providing the customizability associated with modern electronic drum kits. Utilizing 
wireless communication, Glove Drummer will also offer the user greatly enhanced 
freedom of motion. 
 
 

3.3.2 Other Glove Controllers 
 
Whilst very few instrumental glove controllers have been developed, glove 
controllers have been developed for a large array of applications. As early as 1989, 
the Nintendo power glove combined a wearable glove with control features. Touch 
activated sensors and accelerometers are inputs present in most glove control 
applications. However, one specification that is of extreme importance to any glove 
controller is freedom of motion. By utilizing only small piezoelectric sensors, Glove 
Drummer is at an advantage in this regards. And while the presence of Lithium Ion 



Group 15 

13 

batteries and a wireless component will increase the size of the Glove Drummer 
hand modules, the lack of an attached cord removes many limitations associated 
with most glove controllers. 
 
 

3.4 Serial Communications 
 
Communication between MCUs generally is done bit by bit, or serially, so that less 
pins on either MCU are used versus using parallel communication.  Data lines are 
usually held high in their idle state which is a practice used ever since the telegraph 
(source3). Keeping data lines high allows the receiving device to determine if the 
transmitting device is functioning.  If the receiving device were to receive zero volts 
at all times, the assumption could be made that the transmitting device was not 
functioning.  Serial communications can be either asynchronous or 
synchronous.  In asynchronous communications the sender and receiver must 
agree on the speed of transmission, or baud rate, as there is no clock line between 
the two devices.  Because there is no clock line, asynchronous communication has 
a maximum speed of about 115,200 bps.  Synchronous communications however 
uses a clock lines between devices and can attain much faster speeds.  
 
Implementing Glove Drummer will require communication between devices and 
serial communication will be required given the toal number of pins available on 
these devices.  Initially Glove Drummer will use asynchronous communication 
between devices.  If the team encounters latency issues, using synchronous 
communication in order to make each transmission faster may be required. 
 

3.4.1 The UART and RS-232 Protocol 
 
Since our project will rely heavily on smooth communication with our embedded 
systems it is important for us to review and refresh ourselves with how UART 
(universal asynchronous receiver/transmitter) works and how it works well with the 
RS-232 Protocol. The RS-232 serial communication protocol is a standard protocol 
that was designed for asynchronous communication. To understand how it will 
work for us the team will setup a situation that will be very similar to what our glove 
drummer project will entail. Suppose we have our Tiva C communicating with 
another UART based device via a serial link. The team needs to implement a serial 
data transmission and the RS-232 protocol can really help with this. The hardware 
configuration begin discussed is shown in the figure below..  
 



Group 15 

14 

 
Figure 10: UART hardware configuration 

 
The UART sits between the host computer and the serial channel. The serial 
channel is the collection of cables over which the bits are transmitted. The output 
from the UART is a standard range of 0 or 5 volts. The standard sets voltage levels 
that go hand in hand to logical on and logical zero levels for not only data 
transmission but for the control signal lines as well. Signals range from +3 to +15 
volts. For our project the team will most likely want to stick to 0 to 5 volts. Because 
both ends of the RS-232 circuit depend on the ground pin being zero volts, issues 
will occur when connecting embedded computers where the voltage between the 
ground pin on one end, and the ground pin on the other is not zero. This may also 
cause a hazardous ground loop. To avoid this in our project the team will have to 
make not of all the control signals tied in with the RS-232 protocol. A small 
descriptive chart I found in Figure () will help a lot with referencing the signals when 
working on our final project. The team should also note RS-232 devices may be 
classified as Data Terminal Equipment (DTE) or Data Communication Equipment 
(DCE). DCE is what the team will use to wire send and receive the signals with our 
Tiva C or maybe even our FPGA device. Just to note for reference the team will 
most likely use a 3-wire connection in RS-232, one to receive, transmit data, and 
ground. In order to optimize bandwidth, reduce noise, and increase range, this TTL 
logical level is converted to an RS-232 logic level because it can handle that data 
a lot better since it was made for asynchronous communication. The data frame in 
the RS-232 Protocol consists of a start bit, seven data its, and the parity bit and 
two stop bits. The parity bit here is the core functionality of the protocol, trying to 
detect potential transmission errors. This will give us a flag anytime our data faces 
errors upon transmissions and the team will know the appropriate action to take to 
reduce these errors.  
 



Group 15 

15 

 
Figure 11: Asynchronous communication terminology 

 

3.4.2 The USART and Synchronous Half-Duplex Serial 
Protocol 
 
Similar to the UART and RS-232 protocol, a Universal Synchronous Asynchronous 
Receiver Transmitter allows for the transfer of data between embedded systems. 
The main difference between UART and USART is the availability of synchronous 
data transfer. Synchronous data transfer utilizes a clock line to regulate the transfer 
of data, and can allow for very fast data transfer speeds, which may be necessary 
to reduce latency in our project. Typical speeds for RS-232 asynchronous 
communication range in the 20Kbps range, whilst synchronous communications 
can easily achieve speeds in the Mbps range. The presence of a serial clock line 
also allows USART to more easily interface with modern PCs, which will be 
important to users when attempting to utilize Glove Drummer with any Digital Audio 
Workstations. 
 
Half-Duplex serial communication refers to serial communication configuration in 
which data transfer is unidirectional. Compared to full-duplex communication, half-
duplex communication is easier to implement and requires less data lines, which 
can save bus space. As the size of the Glove Drummer hand modules is of 
considerable design concern, and many of the components will not require full-
duplex communication, half-duplex communication will be the data transfer 
method of choice. 
 

3.5 Digital Audio 
 
Of course audio is a big part of our Glove Drummer project, so it is very important 
the team put a lot of time into making it as high quality as possible. There is a lot 
to understand about Digital Audio and the processes, signals reading and writing 
it goes through to produce our different drum sounds at different pitches and 
outputs. There are two types of audio signals the team will deal with here, analog 
signals and digital signals. Digital signals are what will talk directly to our hardware 
such as our speakers, to produce our sound. However, these start as analog 
signals and must be converted to digital ones first by an analog to digital converter. 



Group 15 

16 

For our project this will mainly be on the Tiva C board which the team picked 
because it has an onboard converter. One processor handles the instructions 
coming through, and the other is the digital to analog converter.  
  
To begin with the team will discuss analog signals, which are continuous signals 
from the software that change all the time seamlessly. They are unpredictable and 
are easily manipulated, so they could have huge ranges and have many different 
rates. This randomness is the reason they cannot be directly read by hardware or 
else their out of range voltage readings would really mess up what is supposed to 
be heard. They can be degraded easily so they don’t have a long lifespan and can 
cause the waveform to produce unwanted results. The machine reading it cannot 
tell what the user wants to hear, or what a fault of the system is. This is where the 
converters come in. For our project for example the bass drum pedal and the hi 
hat pedal will produce analog signals when they are pressed. It’s the converters 
job to cut off excessive readouts to produce a clear readout of bits that the software 
can pass to the hardware.   
 
Now with this conversion the team has digital signals that are structured in a much 
better way to where the team can work with them a lot better. They are 
discontinuous signals because of how they sample analog signals at a certain point 
in time, and record that as data. With their constrictions on size, shape and how 
they only fluctuate at certain time intervals make them a binary code that is 
compacted to everything we are supposed to hear. This number depicts the 
waveform in its properties over time rather than representing it by the unpredictable 
analog signal. Degradations are much easier to handle when it comes to digital 
signals such as distortion of the wave, unwanted noise, or timing variations from 
samples. These can all be removed without changing the content of the audio we 
want to hear. In our project the team will be using a process called pulse width 
modulation to produce our audio, more on this subject matter later. The quality of 
a digital audio signal is not primarily dependent on the medium the signal is 
traveling through but the whole conversion process from analog to digital because 
that is where the audio quality is shaped to perfection. Before moving on to 
recording and playback of our digital audio, we need to understand the importance 
of sampling our signal and sampling rates.  
 
As previously stated analog signals come many different frequencies and ranges. 
The team must cut off the frequency range before going into the sampling process 
or we will just be working backwards. The team must do a lot of audio filtering to 
restrict the upper frequencies being input. Whenever the sampling rates don’t 
match up and we encounter signals appearing in the midst of a string of data, this 
is called aliasing. For our project we want the best sound quality we can possibly 
get. This is easier said than done as getting to a very comfortable 44kHz frequency 
is hard to implement. Getting the code to produce a steady 20kHz or more would 
be very satisfactory to us. Our sampling rate needs to be coded in a way to get as 
many reads of the digital signal as possible before we output it. This will be 



Group 15 

17 

discussed much more in recording and playback. The figure below gives an 
graphical representation of the sampling process. 
 

 
Figure 12: Sampling a sine wave 

 

3.5.1 Recording Digital Audio 
 
For our project the recording of digital audio will be done behind the scenes, as the 
team will only need to do it one time before the team presents this project. If the 
team goes with the original plan of playing back digital audio straight from our 
device, the team will need to record the audio of all the different sounds and levels 
of the drums straight to our external memory, in this case our SD card. To do that 
the team will need to grasp digital audio recording not only to make sure the team 
stores our sounds correctly, but also to ease the process that the team will have 
to take when wanting to playback that audio from the particular location where it is 
placed. A series of steps will have to completed in order to do so. 
 
First the team needs to take the analog signal that’s transmits and throw it into an 
analog to digital converter. As the team went over before, the converter measures 
the analog wave at different points in time depending on the sampling rate, and 
then converts all those readings into a binary string. This one digital audio sample 
that is only part of the total word length representation of our sound, represents 
our sound our sound at that single instant as a single number. With a lot of these 
numbers we will have our sound. The higher we can get this word length, the better 
we can record our sound so that it sounds its best when the team decide to play it 
back. This is only half the battle, half way through the conversion to bits it is 
important to record the bits being produced just as fast as the signal is coming in. 
The team needs to have a software that can handle many bits per second, because 
the higher we try to get the sample rate for better audio we will have many more 
bits. Also note when the team increases the sampling rate of our converter we 
increase the upper cutoff frequency of the audio signal. When we have our entire 
representation of our sound in binary, then we can store it on a device, in this case 
our SD card. How these numbers are stored will depend on the SD card file system 
so it’s important we look at that and make sure we understand it when it’s time for 
playback.  
 
 



Group 15 

18 

3.5.2 Playback of Digital Audio 
 
The playback of our Digital Audio is planned to be taken care of by the on board 
speakers we wish to attach. If that is not doable we will have the computer software 
take care of audio playback. The first step for playing back the sounds we stored 
on our SD card are to make sure we grabbed the correct file. Our code will be 
constructed as to when one of our sensors is hit, that particular sensor and the 
level of the voltage will be send to grab the particular sound we want. Then that 
sound will be sent back and played, with as little delay as possible. The binary 
numbers we stored on our SD card will have to go back through our on board 
converter on the Tiva C, but this time they will be converted from digital to analog 
in order to rebuild the original analog wave from that our speakers will recognize 
before they play the sound. As stated before the audio quality will depend on our 
we record it and how well we can sample it before its played back (more on this in 
our section).  
 

3.5.2.1 Using Pulse Width Modulation (PWM) to Drive a 
Speaker or Headphones 
 
The simplest way to drive a speaker is to use pulse width modulation.  In this 
technique, square wave pulses create pseudo analog voltage waveforms.  The 
inductor within the speaker stores current from the square wave pulses and 
slowly discharges that current, smoothing the square edges of the waveform. A 
decoupling capacitor should also be used in series with the PWM port of the 
MCU so that the DC offset is removed. Eight bit resolution PWM where the pulse 
width is updated at a rate of 22kHz has an audio quality similar to AM radio.  
Glove Drummer’s audio playback will need to be at least 8 bit at 22kHz.  Sixteen 
bit PWM audio can also be achieved by using two 8 bit PWN ports in parallel.  
Each port would handle either the most significant or least significant four bits. 
 

3.5.2.2 Digital to Analog Converters 
 
The glove drummer project will require the use of a Digital to Analog Converter 
(DAC) in order to achieve audio playback. When the drum glove or pedal sensors 
are triggered, they will send a MIDI message to the drum brain. The drum brain 
will then interpret these signals and playback the audio files, in digital, mixing audio 
samples as required. Once the digital audio playback message has been mixed, it 
will be sent to the DAC to be converted, at which time it can be played back through 
a speaker or headphones. 
 
There are many different types of DACs, ranging widely in speed, precision, 
accuracy, and cost. On the high end, thermometer-coded DACs can reach 
sampling rates of one billion samples per second, while maintaining high precision 
and accuracy. For the glove drummer project, a much simpler DAC method, such 



Group 15 

19 

as delta-sigma modulation, will be used, primarily for its high performance to cost 
ratio, and low power requirements. 
 
It should be noted that the use of any DAC will produce quantization noises at the 
output. In the case of delta-sigma DACs, the use of noise shaping causes 
drastically reduced noise levels at lower frequencies, while increasing the noise 
levels at higher frequencies. However, as the signal of interest is in the low 
frequency range, the high frequency quantization noise is easily removed with a 
low pass filter at the output. 
 
There are also multiple different means of transmitting data to a DAC. While there 
are numerous possible bus configurations, there are several notable 
configurations. Parallel input, Serial Peripheral Interface (SPI), and Inter-IC Sound 
(I2S) are the of the most commonly used bus configurations, each with different 
advantage and disadvantages. 
 

3.5.2.2.1 Parallel input DACs 
 
One of the simplest methods of transmitting data to a DAC, a parallel input bus 
connects to separate pins on a bit by bit basis, and uses chip select and write lines 
to load the data, as opposed to a clock. Parallel input DACs are very simple to 
implement in any design, and allow the user to control when data is loaded into the 
DAC. However, requiring a separate pin for each bit limits the word length of the 
DAC, usually to a 16-bit maximum. Also, communication to a parallel input DAC is 
one-directional.  

          

3.5.2.2.2 SPI with DACs 
 
Another one of the more popular methods of transmitting data to a DAC is the SPI 
bus configuration. A de-facto standard, SPI is a full-duplex communication mode 
between a master device and one or more slave devices. By default, the master 
device controls the clock speed and selects with slave it is going to communicate 
with. However, the actual communication is full-duplex, that is, bi-directional and 
simultaneous. 
 
There are several distinct advantage to using SPI inter chip communication. The 
world length is not limited or restricted as with parallel input, and SPI only utilizes 
4 pins. Also, SPI has one of the fastest throughput ratings, that is, data can 
processed fastest in an SPI configuration, compared to I2S and other common bus 
configurations. Another benefit is that the slave devices run off of the master 
device’s clock, so they do not need any precision oscillators of their own. Also, 
since SPI generally utilizes less circuitry than I2S or other common bus 
configurations, it generally consumes less power to implement. 
 
However, there are several disadvantages to SPI bus configurations. SPI utilizes 
more pins than an I2S configuration. Also, slave devices have no flow control in an 



Group 15 

20 

SPI configuration. In an SPI configuration, the master device has no way to verify 
it is properly connected to a slave, and will transmit and receive data regardless if 
its properly connected to slave or not. Also, the SPI configuration only allows for a 
single master device. As a de facto standard, and not an officially defined standard, 
there are many different variations to the SPI bus configuration. 

 
Figure 13: A typical single-master/single-slave SPI configuration 

 

3.5.2.2.3 I2S with DACs 
 
I2S is a serial link developed specifically for connecting digital audio devices 
together. The bus consists of three lines: a continuous serial clock, a word select 
line, and a serial data line. The master device controls the clock and word select. 
Similar to SPI, the I2S configuration features a master clock line, as well as a 
channel select line. The presence of the master clock line reduces jitter compared 
to configurations where the clock is recovered from the data line. However, with 
I2S, data flow is a single direction, from transmitter to receiver.. Also, the master 
is defined as the device controlling the clock and word select, but the master device 
can be either the transmitter or receiver, or in more complex setups, a single device 
controlling the clock for a multitude of transmitters and receivers. 
 

 
Figure 14: Common I2S Bus Configurations 

 
One major advantage of the I2S configuration is that two devices do not need to 
have the same word length to be compatible, and the transmitter and receiver don’t 
even need to know the word length of the other. The I2S configuration sends the 
MSB first, and the transmitter will send a full word length every cycle. On the 



Group 15 

21 

receiver end, if extra bits are received, the least significant bits are ignored. If too 
few bits are sent, the missing bits are set to zero internally. 
 

3.5.2.4 Interrupt Service Routine (ISR) Using Timer 
 
A timer based interrupt will be useful in generated the audio waveforms at the 
correct sampling rate.  One or more timers can be initialized to interrupt the main 
program when new value needs to be read through the speaker or headphones.  
Using this method will create an exact timing scheme for correctly reading the 
audio data from any source. 
 

3.6 Using an SD Card in Embedded Projects 
 
Due to the complexity and detail of sounds the team wants to produce with Glove 
Drummer, it is not ideal or even possible to place all audio data on a 
microcontroller’s internal storage. With the different voltages making a variety of 
drum sounds this means Glove Drummer will require many wav files. In addition 
the team wants to get as close to a 44KHz sampling rate as possible for quality, 
meaning each of this files will be fairly large. External storage is needed and there 
is no better choice than a Secure Digital (SD) card. It is essential for 
microcontrollers not only because its cheap but it supports the SPI protocol which 
is depended on heavily in our project. The 2GB of memory will be plenty of data to 
store our audio data before it needs to be played. To connect this to our Tiva C 
Series microcontroller Glove Drummer will require an SD card reader that is 
connected with the correct pin assignments. Communication with the SD card is 
done by sending commands to it through our microcontroller and receiving the 
response or data that was asked for. A SD card command is made of 48 bits as 
shown below.  The leftmost two bits are the start bits, then a 6-bit command 
number and a 32-bit argument where the team will put most of the logic for which 
drum sound to play. Next, 7 bits containing a Cyclic Redundancy Check (CRC) 
code are included, followed by the stop bit. 
 

 
Figure 15: Format of the 48-bit command for an SD 

 
This instruction layout is important to reference when throwing wav files into it to 
be played back later. SD cards also operate on a 3.3 volt logic level which will be 
perfect because that is what our Tiva C microcontroller uses as well. To connect 
our 1GB SD card to our system the team will need the following Card logging shield 
that will connect the correct pins to our microcontroller and successfully make a 
connection to our SD card. With this communicating with an SD card is pretty 
simple using the SPI driver (discussed later). To read or write to the card however 



Group 15 

22 

we will need to decide if we are going to use no file system, or the more commonly 
used FAT File system that works fairly well for us. 
 

3.7 Wireless Communication 
 
The purpose of having wireless communications incorporated into Glove 
Drummers design will be to free the hands from any entanglement of transmit wires 
running from the glove to the table-top module.  This will most likely mean inserting 
a microcontroller between the FPGA in the hand modules and the table-top module 
in order to handle the communications with the wireless chip.  This will mean added 
latency, but how much is unknown at this point.  In the event that the latency is too 
great, or for some other reason the wireless communications cannot be realized, 
a wired serial communications protocol will be chosen to transmit messages from 
the hands to the table-top module. 
 

3.7.1 Available Technologies and Devices 
 
Since the purpose of Glove Drummer is to produce a working glove controller for 
the drums that includes audio playback, the team feels it is not necessary to 
develop a new wireless communication system.  Working examples of wireless 
serial communications found on the internet were examined in order to determine 
a cost effective solutions to breaking the wired connection between the left/right 
hand modules and the table-top module.  The first option that was explored used 
Zigbee’s pre-manufactured Bluetooth PCBs that can be used for communication 
between microcontrollers.   Though these Zigbee projects worked well and were 
well documented, the cost of three or four of modules was too much to consider 
using them.  The team has decided to attempt to incorporate another device, the 
NRF24L01, into Glove Drummer’s design because of its low cost and reportedly 
robust communications protocol. 
 

4.0 Design 
 

4.1 Hardware 
 

4.1.1 Microcontroller Development Boards 
 

4.1.1.1 Tiva C Series Development Board 
 
The Tiva-C series Development Board is our group’s choice for a single-board 32-
bit microcontroller that is planned to be integrated into our final design. Its simple 
design and many ports make it very customizable and inexpensive which is just 
what the team needs for the Glove Drummer project. Before going into the 
important specs that lead the team to choose this board, it is very important to get 
familiar with the board hardware and software wise. Below is a great layout of the 



Group 15 

23 

TM4C123G version the team picked and available ports. The team will most likely 
reference this all through Senior Design II, whenever needed, to implement 
something else.  
 
There are 40 I/O pins which can be configured for a variety of functions that we will 
need such as digital inputs (for our card module) digital outputs (for our speakers 
etc) and man others. This was a deciding factor when choosing our microcontroller, 
but the real reason was the 80MHz clock processor core that comes on it. This is 
a lot faster than most microcontrollers, and it is needed for our design. We want to 
reduce the latency as much as possible when reading and input and outputting a 
wav file, and this quick processor will definitely help with that. A lot of open source 
code is available for the Tiva C and has a lot of support from Texas Instruments 
including a USB library, drivers, and a pre-installed bootloader which allows the 
board to be re-programmed through the USB. Other notable features include: 
 

 32 Kbyte of RAM memory for code storage 
 2 Kbytes of EEPROM for non-volatile data storage 
 256-Kbytes of flash memory 
 One RGB user LED 
 Two user switches  
 Available I/O brought out to headers on a 0.1-in (2.54-mm) grid 
 On-board ICDI 
 Reset switch 
 Possibility to use booster packs 
 Two sets of connectors: 40 I/O ports, ISP, USI, JTAG 
 Two CAN modules 
 SPI/UART/I2C (Cable and connector provided by end user) 
 Motion control PWM 
 USB Micro-AB connector: 

 Device mode default configuration 

 Host/OTG modes supportable 

 5 V battery connector 
 Switch-selectable power sources: 

 ICDI 
 USB device 

 

4.1.1.1.1 TM4C123GH6PM MCU (Chip from Tiva C series Dev 
Board) 
 
The Tiva C series Dev Board that is very likely to be on the teams final system was 
chosen for many reasons such as its open source support and reliability. But one 
of the main reasons was because of the powerful microcontroller on the board, the 
TM4C123GH6PM MCU. This microcontroller is one of the best performance-wise 
and most advanced Texas Instruments has to offer for a price that works with the 
teams’ budget. Its low-power state and exceptional core of 80MHz operation make 
it the perfect fit for the Glove Drummer which needs extremely low latency in its 



Group 15 

24 

audio. It also has 256 KB of on board flash memory, 32KB o SRAM, and eight 
UARTs which from the teams design layout all of them will be implemented.  
 
Its Analog-to-Digital Converter (ADC) is a must for our project because of all the 
work that must go into improving the sound quality of the system. In addition the 
team did choose PWM to be the primary way to deal with the wav files, and this is 
supported with the Microcontrollers two PWM modules, with 16 PWM outputs. The 
on chip memory is a must for the team’s project because all the space on the 
external memory SD card will be filled with wav files, and for the microcontroller to 
have all of its internal memory for instruction purpose is a great advantage. In the 
figure below the team notes the High level block diagram layout for the 
TM4C123GH6PM MCU, and with this will be available to look back on and review 
if any changes need to be made.  
 

 
Figure 16: TM4C123GH6PM Hi-Level Block Diagram 

 

4.1.1.2 Atmega88 Development Board 
 



Group 15 

25 

The Atmega88 development board has an eight bit MCU with a 16MHz clock.  Two 
other important features are the separate USART and SPI ports.  These features 
are important because this device will be meant to use its USART port to receive 
messages from the FPGA and its SPI to port to then send those messages to the 
NRF24L01 wireless chip.  One well documented open-source code which 
interfaced two ATmega88s to two NRF24L01 wireless chips through their SPI ports 
helped the team to select the ATmega88.  Since no one on the team has had 
experience with implementing wireless in embedded systems, it was thought that 
this may be the most viable option to eliminate any wires between the hand and 
tabletop modules.  If time permits, in order to reduce latency further, the team may 
eliminate the ATmega88 from at least the table top module layout as there is open 
source Energia code available for the Tiva C development board.  There are no 
open source codes or examples of using the NRF24L01 with an FPGA, so most 
likely the ATmega88 will be included in the hand modules. 
 

4.1.1.3 PIC18F46K22 PAXstarter Development Board 
 
The PAXstarter development board containing the PIC18F46K22 microcontroller 
was initially selected to be the heart of the hand modules because of the fact that 
so many MIDI controller designs incorporate an MCU from the PIC18F family.  The 
electronic drum set found at edrum.info and the Brain series MIDI controllers are 
two examples using PIC18F MCUs.  The PAXstarter has a ten bit ADC which time-
division multiplexes up to 30 analog input channels making it more than suitable 
to work with Glove Drummer’s six analog sensors.  It also features a 16MHz clock 
and Phase Lock Loop (PLL) circuit allowed clock multiplication up to 64MHz. 
 
Although the PAXstarter board would have been a good choice for the hand 
modules there were some factors that made it a less attractive option when 
compared to an FPGA.  The first most obvious reason is that MCUs execute 
instructions sequentially and can be prone to timing issues (ie. latency) if they are 
given too many tasks.  FPGAs are synthesized from Verilog to create many parallel 
circuits as can fit within their reconfigurable digital fabric and are much less likely 
to suffer from any latency issues.  Another reason that the PAXstarter board was 
not chosen as the heart of the hand modules was the multitude of compilers and 
IDEs available for Microchip products.  Over the past ten years or so Microchip 
MCUs have gone through a series of different supported compilers and IDEs.  The 
team found that open source codes available for the NRF24L01 wireless chip were 
not written recently and would require porting the newest compiler library.   
 

4.1.2 FPGA Development Board: The Spartan X3CS500E 
Core Board 
 
Having chosen to implement the hand modules with an FPGA, the team chose the 
Waveshare Spartan 3e development board.  This board does not have many 
features found on other FPGA boards like displays, buttons, switches, various 



Group 15 

26 

ports as they are not required in the hand modules.  It features the Xilinx Spartan 
XC3S500E FPGA chip which has 500K equivalent logic gates and has almost 200 
3.3V tolerant I/O pins.  The board also includes a 50MHz system clock.  It accepts 
5V DC power which is regulated to 3.3V, which means that when interfacing to a 
5V ADC a bidirectional logic level translator must be used.  The team has decided 
to use level shifters, in comparison to voltage dividers to attenuate the interrupt 
signal and data outputs of the ADC.  This decision was made in order to keep the 
rise/fall times as fast as possible and to consume less power.   Since the team has 
now decided on the ADC0820 to interface with the FPGA, it has been determined 
that only shifting from 5V to 3.3V would be necessary as the ADC0820 will accept 
TTL voltages at its inputs.  This basically means that a 3.3V signal will be accepted 
as a logical ‘one’ by the ADC0820. 
 
The team plans to interface the FPGA in the hand modules not only to the 
ADC0820, but also to the table-top module.  If a wireless connection between the 
hand and tabletop modules is realized, an ATmega88 MCU will most likely 
interface to the FPGA UART.  The ATmega88 in this case will serve to relay sensor 
information from the FPGA to the NRF24L01 wireless chip.  The wireless chip 
would then relay that information to the wireless chip within the tabletop 
module.  There is also a possibility of eliminating the ATmega88 from this 
configuration if a SPI port Verilog module can be realized.  In the event that the 
wireless technology cannot be effectively implemented in Glove Drummer’s 
design, then a wired connection via the UART will be used instead. 
 

4.1.3 UART to PC Interfaces 
 

4.1.3.1 CP2102 5V Logic Level UART/ USB Interface 
 
This converter was initially used with the PAXstarter development board in order 
to verify the functionality of the UART and ADC.  It connected the UART transmit 
pin of the MCU to the USB port of the PC where the data was displayed by 
Realterm terminal software.   A Voltage divider with potentiometer powered from 
5V was used to form ratiometric transducers.  When the potentiometer wiper was 
turned all the way in one direction RealTerm displayed 0x00, equivalent to a value 
of 0V.  When the wiper was turned to the extreme in the other direction, RealTerm 
displayed a value 0x7F.  This was equivalent to 5V as the ten bit ADC result was 
shifted down the seven bits to conform to the MIDI standard. 
 

4.1.3.2 FT232RL 3.3V Logic Level UART/ USB Interface 
 
Once the decision was made to use the 3.3V Spartan FPGA instead of the 
PAXstarter to send sensor information to the tabletop module, the FT232RL 3.3V 
UART to USB converter board was purchased.  Initial tests of the UART verilog 
module used this board to connect the transmit pin to the USB port of the PC as in 
section 3.1.3.1 above.  Another alternative would have been to use an oscilloscope 



Group 15 

27 

in the senior design lab, however these tests were performed off-campus and 
would not have been possible without the FT232.  It should be noted that the 
synchronous communication between a SPI or USART port and a PC is not 
possible with this chip or any other chip if the PC is meant to be the slave 
device.  This means that if the team wishes to view the messages sent from a 
synchronous master device, the oscilloscope must be used.  There is one other 
option available in this situation and it would be to use the “loop-back 
method.”   This method connects the synchronous serial output to another serial 
input on the MCU and correct transmission can then be confirmed by the lighting 
of an LED or by some other means.   
 

4.1.4 Connection Between Left/ Right Hand Modules and 
Table-top Module 
 

4.1.4.1 A ‘Wired’ UART Connection 
 
In order for the tabletop module to create drum sounds based on the sensor 
information from the hand modules some sort of connection must be made 
between them.  A wireless connection would be preferable in order to allow the 
hands to move more freely, however it adds a degree of difficulty.  If wireless 
communications cannot be realized during the timespan of Senior Design II, then 
a wired connection between the FPGA’s UART transmit pin and the Tiva C’s UART 
receive pin will be used.  In this case, the need for a battery in the hand modules 
would be eliminated and 5V would be sent from the tabletop module to the 
FPGA.  This method would however result in less latency between the strike of a 
sensor and the creation of sound as there are less devices relaying the sensor 
information. 
 

4.1.4.2  A Wireless Connection with the NRF24L01 RF 
Module 
 
As stated previously, a wireless connection between the hand and tabletop module 
would be preferable.  However it will mean introducing an unknown amount of 
latency to the system because of the added devices in the signal chain.  Whether 
or not the exact amount of latency will be an issue remains to be seen.  The 
implementation of wireless communication is less critical than all other design 
elements and will not be implemented if for instance the team has difficulty with 
any latency.  Design specs like the creation of sound within 15ms of striking the 
sensor are much more important.  In Figure 9 below, one possible hardware 
configuration that uses the NRF24L01 chip is illustrated. 
 



Group 15 

28 

 
Figure 17: Wireless hardware configuration using the Atmega88 to relay messages 

 

4.1.4.2.1 Communicating with the NRF24L01 via Serial 
Peripheral Interface (SPI) Protocol 
 
The Atmega88 will utilize SPI in order to communicate with the NRF24L01 wireless 
transmitter. In this configuration, the Atmega88 will act as the master device, while 
the NRF24L01 will act as the slave, driven by the onboard Atmega88 clock. This 
master/slave configuration will apply to both the transmitter in the hand modules 
and the receiver in the table-top modules. The nRF24L01 has 8 pins in total, which 
will be mapped according to the table below. It should be noted that the Atmega88 
is powered by 5V, and the nRF24L01 requires 3.3V. However, the nRF24L01 I/O 
pins can handle 5V, so no voltage regulation is required for the SPI 
communication. 
 
Most of the pins on the Atmega88 are generic I/O pins by default, with alternate 
functions available. For instance, the generic I/O pin PB5 can also function as SCK 
when configured correctly. In accordance with the table below, the Atmega88 will 
be configured such that PB5 is SCK, PB3 is MOSI, PB4 is MISO, and PD2 acts as 
an interrupt. The pin connections for PB1 and PB2 are both generic outputs, and 
can be remapped to any pins as required. Pin PD2 can also be remapped to any 
pin with interrupt capabilities. 
 
 
 
 
Table 4:  NRF24L01 pin assignments 

nRF24L01 Pin Connect to: 

GND (Pin 1) Ground 

VCC (Pin 2) 3.3V Power supply 

CE (Pin 3) Atmega88 PB1 (Output) 

CSN (Pin 4) Atmega88 PB2 (Output) 



Group 15 

29 

SCK (Pin 5) Atmega88 PB5 (SCK) 

MOSI (Pin 6) Atmega88 PB3 (MOSI) 

MISO (Pin 7) Atmega88 PB4 (MISO) 

IRQ (Pin 8) Atmega88 PD2 (Interrupt) 

 

4.1.5 SD Card 
 
As discussed in section 2.5, the team has chosen an SD card to be the external 
memory component which will be responsible for reading/writing and playing back 
audio files for our Glove Drummer project. Before going into how exactly the Tiva 
C is going to communicate with the SD card in our system lets look at the basic 
structure of one. Below is a great block diagram that shows the layout of a generic 
SD card.  

 
Figure 18: Generic SD card layout 

 
 This is a good representation of the SD card the team is going to purchase. 
The 9-pin interface is for the transfer of data between our microcontroller and the 
card controller on the SD card. The card control is what Glove Drummer will deal 
with the most, it will read/write data to the memory as well as read it when asking 
the SD card for a particular sound. It utilizes the memory core interface when doing 
these read and writes. Internal registers store the state of the card. The big thing 
here to look at is how requests are handled by the controller. The types of requests 
handled are control and data. Control request refer to the allowed access to the 
multiple SD card registers. Data requests is what the code will mainly be using, as 
it handles the read/write of data to the memory core. Data requests for ‘write’ in or 



Group 15 

30 

project are going to be structured in a particular way that places the wav file in the 
memory core using the FAT file system so it can be requested for a read whenever 
one of our piezo sensors are tripped. It’s an important component to our system 
because it will be what the speaker is reading from to produce all our sounds. We 
will have a backup idea however, for if we cannot get the sounds clear enough with 
a high enough quality. If need be we can connect to our computer running a 
software that will recognize the input we wish to output and play that particular 
sound. There are plenty of references on working with SD cards with 
microcontrollers however so the team should be able to apply that to this project. 
 

4.1.5.1 Communicating with the SD card via Serial 
Peripheral Interface (SPI) Protocol 

Serial Peripheral Interface (SPI) communication is a huge help when talking many 
USB devices available today. SPI is still utilized as a communication means for 
some applications using displays, memory cards, sensors, etc. SPI runs using a 
master/slave set-up and signals can be transmitted between the master and the 
slave simultaneously. This is called full duplex mode and it really helps for making 
communication simple. When using many slaves, SPI requires no addressing to 
differentiate between these slaves. There is no standard communication protocol 
for SPI. 

SPI is used to control peripheral devices and has some advantages over other 
methods. Because of its simplicity and generality, it is being incorporated in various 
peripheral ICs. The master IC and the slave IC are tied with three signal lines, 
SCLK (Serial Clock), MISO (Master-In Slave-Out) and MOSI (Master-Out Slave-
In). “The contents of both 8-bit shift registers are exchanged with the shift clock 
driven by master IC. An additional fourth signal, SS (Slave Select), is utilized to 
synchronize the start of packet or byte boundary and to facilitate working with 
multiple slave devices simultaneously.” For one-way transfer devices either of data 
lines may be omitted. The data bits are shifted in MSB first.  

When you get your SD card it is not automatically in SPI mode.  To put the SD 
card in SPI mode you have to set the MOSI and CS lines on the card to a value 
of1 and toggle SD CLK for at least 74 cycles. After these cycles complete the CS 
line will be set to 0 and a particular command in binary will be sent to the card, this 
is the reset command. It puts the SD card into the SPI mode if executed when the 
CS line is low. The SD card will respond to the reset command by sending a basic 
8-bit response on the MISO line. The first bit is always a 0, while the other bits 
specify any errors that may have occurred when processing the message. The 
program should continuously toggle the SD CLK signal and keep checking for a 
command to be sent through the MISO line. (Note* “To ensure the proper operation 
of the SD card, the SD CLK signal should have a frequency in the range of 100 to 
400 kHz.”) Your program will continue to do this check for about 16 clock cycles 
looking for a response, until the reset command must be sent again. Responses 
and reading of the SD card will be discussed in 3.2.2.3.1.  



Group 15 

31 

The SPI mode is suitable for low cost embedded applications with no native host 
interface is available. There are four different SPI modes, 0 to 3, depends on clock 
phase and polarity. Mode 0 is defined for SDC. It is good to know that SPI is not 
time dependent. The Master device sends the clock line with the data, meaning it 
can be speed up and slowed down as wanted, unlike UART which has a fixed data 
rate. The team will need it to be as high as possible to reduce the latency reading 
from the card when outputting sounds. Using this method one can send commands 
to the card with a specific value that the SD format has initially. These commands 
are listened in the SPI Command set table below. These will be referenced many 
times when coding our SD card to work with our system. SPI is also a data 
exchange mechanism, meaning data can be read and written to the SD card 
continuously, a function the team will need.  

 
Figure 19: SPI Command Set 

 

4.1.5.2 The File Allocation Table (FAT) File System 
 
Communicating with our SD card in this project is handled through the SPI mode 
interface previously talked about in this paper. However controlling the card and 
interpreting the data communication SPI provides is a huge task for us the user 
and a higher level of abstraction is needed to use the card effectively. This is where 
the File Allocation Table (FAT) comes in, the filing system that our SD card will 
have incorporated to use with the rest of our system. The FAT file system is a 
computer file system architecture that is simple and robust. It is not the most 
advanced file system, but it really works well in small implementations such as SD 
card embedded system communication. Trying to communicate with the SD card 



Group 15 

32 

in our project can be done without the FAT file system, but it makes things much 
more complicated for us and less organized.  
 
The main topic of this section is the index table that FAT uses, called the File 
Allocation Table. This is produced the moment you format the memory card on any 
windows machine. Each cell has an entry for each cluster which is an area of disk 
space where different information of the data is stored. Such things include the 
number of the next cluster, a flag showing the end of the file, space remaining, and 
special areas reserved on the disk. With the FAT in place the operating system 
can look through the table finding the correct cluster number that a particular 
command is asking for. Through the different FAT file system times, the number 
of clusters increases to account for the extra disk space. The scaling today for SD 
cards is FAT12 for 64MB or smaller cards, FAT16 for 128MB to 2GB cards, FAT32 
for 4GB to 32GB cards and exFAT for 64GB to 2TB cards. Glove Drummer will 
use FAT16 because 2GB of space will be plenty for the amount of wav files we 
plan to write to our SD card. Let us go over the different four sections that are 
involved in the FAT file system.  
 

 Boost Sector: The first sector which contains the boot loader code needed 
to power up the device. Has the total count of reserved sectors.  

 FAT Region: Contains two copies of the File Allocation Table for 
redundancy checking in case something goes wrong. Shows which clusters 
are used by files and directories.  

 Root Directory Region: Directory table that stores information on files in 
the root directory. Creates an allocated fixed size when formatted.  

 Data Region: The main part of the FAT file system, where the file is stored 
and takes up most of the available space. The size of files stored here can 
be added to, as long as they do not go past the reserved space.  

 

As stated before cluster size changes depending on the type of FAT file system 
being used, in our case FAT16. These clusters ultimately create a chain and are 
stored on the Data Region. The FAT16 file system uses 16 bits per FAT entry, one 
entry spans two bytes.  
 



Group 15 

33 

 
Figure 20: FAT16 Index Table  

 
The image above shows us an example of a FAT16 table and how it’s organized. 
When the time comes to place wav files for the desired sounds onto the SD card, 
this is exactly what it will look like in the editor. Every value has its place in the 
table, and we will need to know the tables layout to make any changes. Each entry 
on this table could be a cluster number for the next cluster on the chain, an EOC 
(end of cluster) that shows the end of a chain, a flag for a bad or faulty cluster, or 
a zero to simply say that particular cluster is not being used. For special entries, 
the first entry holds the FAT ID in the first 8 bits. The remaining 8 bits for FAT16 
are going to be 1. The second entry stores the EOC flag which will be 0xFFFF. 
With this knowledge it will be easier for use to transverse through the allocation 
table looking for faults. 
 

4.1.6 Supplying Power 
 

4.1.6.1 Regulating and Filtering the Power Supplies 
 
The tabletop drum brain unit will be powered using a standard 120V, 60Hz AC wall 
connection. In order to regulate the input voltage to 5V DC, the team will be using 
a switching AC to DC power supply. The reason for using a switching power supply 
as opposed to a linear power supply is due to the better cost to performance ratio, 
as well as the better weight, size, and power consumption of a switching power 
supply. Switching power supplies are able to achieve lower power consumption by 
utilizing a network of switches and other devices operation in their non-linear 
modes, which minimalizes the high power usage associated with linear mode 
operations. The use of switches allows for a significantly smaller transformer or in 



Group 15 

34 

some cases no transformer at all, which accounts for the decreased weight and 
size of switching power supplies. 
 
Also, the power supply used for the table top unit will be regulated. A regulated 
power supply is required because many of the chips inside the drum brain will 
require a strict 3.3V or 5V input. If using an unregulated power supply, design the 
supply to output the required voltage with high precision would require knowing the 
total load that will be connected. A regulated power supply, however, can be 
designed to output the correct voltage, and it will vary only very slightly for any 
connected load. In order regulate the power supply, a simple voltage regulator IC 
will be placed at the output of the power supply. It should be noted that in order to 
regulate to a 5V output, the IC must receive approximately 8V. 
 
When using any AC to DC power supply, the input must pass through a rectifier 
circuit. When a rectifier converts AC to DC, it doesn’t do so perfectly. The DC 
output will have high frequency ripples that can cause spikes in output voltage. In 
order to remove these, a filter circuit is applied at the output. This output filter can 
consist of reservoir capacitors and low pass filters. Used in combination, these 
elements can create very near true DC output. 
 

4.1.6.2 Powering the Left/ Right Hand Modules 
 
Unlike the table top drum brain module, the hand modules will require freedom of 
motion in order to properly function. As such, connecting them to a wall outlet as 
with the tabletop module is impractical. Instead, the hand modules will receive 
power from a battery source. When considering potential battery sources, several 
needs come to mind for the hand modules. First, the batteries need to reliably 
provide enough power long enough for the user to play an extended set of music. 
Second, the battery source must be lightweight and small enough so that it does 
not restrict the motion of the user. Also, the battery source should be rechargeable, 
in order to compete with other modern electronics. Given these parameters, 
Lithium Ion batteries are the most effective battery source. 
 
Unlike the tabletop module, the hand modules will be directly supplied with DC 
voltage by the battery source. Because of this, the hand modules will only require 
a DC voltage regulator to achieve the correct input voltage. 
 

4.1.6.2.1 18650 Lithium Ion Batteries 
 
18650 Lithium Ion Batteries resemble large AA batteries but have a power density 
much greater than nickel cadmium and other more traditional battery chemistries.  
These are the batteries found in cell phones and other personal electronics today.  
The physical dimensions of the 18650 battery are less desirable than other slim 
packaged lithium ion batteries because at least one will need to fit inside the hand 
module project enclosure.  Although a slim package may be more ideal, the 18650 
was chosen because of its low cost.  These batteries also come with IC protection.  



Group 15 

35 

The protection offered by the onboard ICs includes thermal, over voltage, and 
under voltage.  In other words the battery will not charge or discharge so long as 
the temperature or voltage are out of the acceptable range.  Any one of these 
situations will at least damage the battery, causing failure.  At worst, the battery 
may catch fire.  Many power management ICs exist that do all of this and also 
regulate voltage or serve as a charging system.  Glove Drummer will use an IC 
protected 18650 battery along with power management ICs.  At this point the team 
plans to use only one single cell lithium ion battery with a 3000mAh capacity 
opposed to any parallel or series combination of batteries.  Using only one cell will 
make selecting power management ICs much easier but may supply inadequate 
power to play for long periods of time. 
 
The power management ICs used will take care of charging the battery, regulating 
its output, and the selecting a “power path.”  Dynamic power path control is term 
that T.I. uses to describe the switching of what the power supply to the load when 
a power source other than the battery (a wall wart) is connected to the system.  In 
this case, the wall wart supplies current both for system operation and for charging 
of the battery.  Not much has been documented on using an IC for power path 
management, the team hopes to use the BQ24072 for this purpose.  Another 
alternative of course would be to remove the battery from the hand modules for 
charging, but this would be much less convenient given that screws will need to be 
removed to do this. 
 
Another issue in power management is voltage regulation.  Switching regulators 
are preferred here for power consumption reasons.  Another disadvantage to using 
a single cell is that to produce a 5V supply rail, a “boost” regulator will be required.  
If two cells were placed in series, then a more efficient “buck” regulator could be 
used.   One very important property of these batteries is that their 3.7 or 3.6V rating 
is a nominal rating.  When they are fully charged they hold ~4.2V, and once fully 
discharged they hold ~3V.  That means in order to provide a 3.6V supply rail, a 
buck/ boost regulator is needed.  What this regulator does is buck its output to 3.3V 
when its input is above 3.3V and boost its output to 3.3V when its input falls below 
3.3V. 
 

4.1.6.2.3 Extending Battery Life 
 
Sacrificing performance to save battery life is a compromise the team does not 
want to have to make.  Nonetheless some sacrifices must be made in order for the 
batteries to last long enough for the user to enjoy playing with Glove Drummer.  
Some techniques that might be used to save battery power are using ICs designed 
for low power consumption, reducing clock speed, reducing sampling frequency, 
and using PWM to drive LEDs when possible. 
 
 
Because of the fact that the human eye cannot perceive an LED turning off and on 
very quickly, the team can exploit this phenomena in order to reduce power 



Group 15 

36 

consumption. Persistence of vision is defined as seeing an image 1/25 of a second 
after the image has disappeared (source4). This means that if a status LED used 
in the Glove Drummer’s design is driven with pulse width modulation so that its 
“off“ period is less than 1/25 of a second then there will be no perceived flickering 
of light.  This will save lower power consumption and therefore extend battery life. 
 

4.1.6.3 Powering the Table-top Module  
 
No AC to DC conversion will occur within the tabletop module because of the 
abundance of AC to DC converters today.  The team feels that many users may 
already own a suitable power supply at home that will work with the use of linear 
DC to DC voltage regulators within the tabletop module.  A wall wart supply with 
a minimum current capability of 500mA operating at a voltage between 7V and 
15V should be suitable. 
 

4.1.7 Hardware for Expanded Mapping Flexibility and Hi 
Hat Control 
 

4.1.7.1 Infrared (IR) Proximity Sensors 
 
Infrared proximity sensors are ratiometric transducers which bounce infrared light 
off of an object and read the reflected light to sense if an object is in close 
proximity.  The most basic IR sensor would contain one IR LED which is powered 
from a voltage source with a current limiting resistor in series.  Current limiting is 
needed to avoid burning out the IR LED.  Next to the first IR LED would be another 
IR LED that is not powered but instead receives reflected light from the first IR 
LED.  A divider must be placed in between the two LEDs so that only reflected IR 
light is creates a voltage difference across the terminals of the second LED.  If a 
MCU were to read a voltage difference from the second LED, it would know there 
is some solid object some distance from this crude proximity sensor.  This design 
would be prone to producing errors stemming from ambient light conditions.  One 
possible improvement on this design is to cover the second LED in an “IR pass 
filter.”  This type of filter is actually a film applied over the second LED which only 
allows IR light to pass through.  In order to improve the accuracy of the proximity 
sensor further, PWM may be used to drive the first LED.  Doing so allows for the 
LED to burn brighter in short bursts without exceeding the maximum average 
current rating of the diode, resulting the ability to sense objects from a farther 
distance.  An adding benefit to this design modification can be realized by adding 
a band pass filter circuit to the second LED circuit.  The frequency of the PWM 
driving the first LED would be in the pass band of this BP circuit so that only 
reflected IR light driven at this specific frequency would be sensed.  IR proximity 
sensors using this technique will be far less prone to errors from ambient visible or 
IR light. This is an example of amplitude modulation where the IR light serves as 
the carrier wave. 
 



Group 15 

37 

The purpose of using any type of IR proximity sensor in Glove Drummer’s design 
would be to allow for different playing modes or to sense the position of the hi hat 
pedal.  Different playing modes might be needed because drummers for the most 
part serve as the clock for other musicians.  This task can be monotonous and 
needs to be broken up every so often with something a little more flashy, like a 
drum roll.  Therefore you might say there are two playing modes for a drummer, a 
“clock mode” and a “dynamic mode.”  Tying each of the finger sensor to a single 
sound may be intuitive to only one of these two modes.  If there were a way to 
switch very quickly from a “clock mode” mapping, to a “dynamic mode” mapping, 
the Glove Drummer system would be much more exciting to play.  IR sensors 
contained within some sort of pedal housing on the other hand could be used to 
sense the position of the pedal between open and closed.  This technique would 
have a great advantage over potentiometer based pedals that fail after excessive 
usage because of wear from the physical contact of the wiper arm.   
 

4.1.7.1.1 The Polulu IR 38kHz Proximity Sensor 
 
The Polulu IR proximity sensor takes advantage of amplitude modulation, pulsing 
the IR LED at 38kHz and employing a band pass filter in order to reduce ambient 
light errors.  Initial testing of this sensor showed that while it is an analog sensor, 
it basically gives two discrete voltages.  When far from any object there is one 
voltage reading, and when within 30cm of an object it gives a much higher 
reading.  No voltages are produced between these two low and high values making 
it a bad choice for a variable hi hat controller pedal.  However this sensor may be 
of use in creating the two different playing modes.  If Polulu sensors were placed 
on each wrist facing downward, then they would be able to sense if the wrist were 
hanging off the edge of the table or hovering over the table.  As long as the fingers 
were within striking distance of the table, the IR sensor would register one of two 
statuses, either “table” or “no table.”  The sensor to drum sound mapping could 
then be changed based on the status of the Polulu sensor, creating the two drum 
modes defined in the previous section.  An example implementation of this idea 
conceived by the Glove Drummer team is illustrated below. 

 
Figure 21: Clock mode/ Dynamic mode mappings and Polulu sensor status 

 



Group 15 

38 

4.1.7.1.2 The TCRT5000 IR Proximity Sensor 
 
The TCRT5000 IR proximity sensor is more basic and less plug and play when 
compared to the Polulu  IR sensor.  It requires the use of additional components 
like current limiting and pull up resistors and does not use amplitude 
modulation.  As expected it cannot sense objects from as far as the Polulu sensor, 
but has other important characteristics.  One of the characteristics is the ability to 
give a continuous range of voltages versus just a low value and a high value.  This 
makes the TCRT5000 more suitable for use in the hi hat pedal.  When fastened to 
the bottom of the hi hat pedal housing, it should read a range of voltages between 
the open and closed pedal positions.  Implementation of this of the variable hi hat 
control pedal will be guided by Figure 10 below, which comes from the TCRT5000 
datasheet. 
 

 
Figure 22: Application note from the TCRT5000 datasheet 

 

4.1.7.2 Push Button on Index Knuckle for Emulating 
Mouse Click 
 
After seeing an example from another glove controller design, the team though the 
addition of a push button to Glove Drummer’s design may be beneficial.  In this 
example a push button was attached to the top of the index knuckle and bound in 
fabric.  When the hand formed a fist, the push button was activated by the fabric 
collar surrounding it.  The team has already implemented a very effective push 
button debouncer in the Verilog language and though this idea could be used to 
enable or disable certain features of the gloves.  For example, a “double click” of 
the knuckle push button might be programmed to disable all fingertip sensors so 
that the user could play a musical keyboard or acoustic drum set without triggering 
Glove Drummer’s sounds.  Users could then re-enable Glove Drummer’s sound 
with another double click of the knuckle push button. 
 

4.1.8 Level Shifter Circuits 
 



Group 15 

39 

Level shifter circuits come in two flavors, shown in the figure below.  The more 
basic circuit is the uni-directional voltage divider.  In this circuit the ratio between 
the two resistors and the supply voltage determine the output voltage.  Since the 
MCU pin is buffered with a high input impedance, no voltage drop will occur when 
a connection is made.  Although the resistors have no inherent slew rate, once 
they are factored in with the parasitic capacitances in the system an RC time 
constant is formed.  In this case the voltage divider may cause errors in hi 
frequency transmissions.  A better solution is to use semiconductor based level 
shifters like the bi-directional shifter shown below.  Using a specialized MOSFET 
powered from a dual supply, it has the ability to transfer data over a SPI port and 
works at very high frequencies.  Yet another advantage of this design is decreased 
power consumption.  The Glove Drummer team has decided to use the second 
option not only for the reasons listed above, but also because of the smaller 
footprint of any level shifter IC. 
 

 
Figure 23: Two types of Logic Level Shifters 

 
 
 
 
 
 

4.1.9 ADCs 
 

4.1.9.1 The ADC0808 
 
The ADC0808 was the team’s first choice to interface to the FPGA.  It has an eight 
to one multiplexer which allows for up to eight separate analog channels to be 
sampled.  It uses the successive approximation conversion technique and has 
eight parallel data output lines.  The large number of I/O pins on the Spartan FPGA 
will accommodate the data output lines and all of the ADC0808’s other I/O lines. 
Unfortunately, the time taken to complete a conversion was deemed to be be too 
large to accurately locate the peak of the piezo signal if all eight inputs were to be 
sampled by one ADC0808.  Additionally the ADC0808 does not include any 
sample and hold circuitry and may not be suitable for the fast rise time of the piezo 



Group 15 

40 

signal.  The ADC0808 is more suited to sampling slow signals such as indoor air 
temperature unless external sample and hold circuits can be added.  After 
discovering these problems, the team has decided to find another ADC to sample 
the piezo signals. 
 

4.1.9.2 The ADC0820 
 
The ADC0820 is an eight bit, half-flash ADC with sample and hold circuitry.  It lacks 
the onboard multiplexer of the ADC0808, but has a much faster conversion 
time.  The datasheet specifies conversion times of 2us to less than 1us depending 
on the mode of operation.  Operation modes include Read and Write modes with 
the latter being able to complete a conversion in 700ns.  The team has decided to 
use a sampling frequency much higher than the Nyquist frequency in this situation 
as the Nyquist Shannon Sampling theory applies only to continuous 
signals.  Multiple possible configurations will be explored two or more ADC0820 
ICs in parallel, each one using a DG508 eight to one multiplexer.  The number of 
lines multiplexed by the DG508 will be determined by the maximum sampling 
frequency allowed using that number of inputs.  If a peak cannot be accurately 
found using all eight of the DG508’s inputs, then the number of inputs will be 
decreased until a high enough sampling frequency is achieved.   
 
One downside to using this ADC with the Spartan FPGA is the incompatibility of 
the their respective voltage levels.  While the ADC0820 will accept 3.3V as logical 
‘1’, its nine total output lines will have to be shifted from 5V to 3.3V with external 
circuitry.  Also, the effect of not shifting the 3.3V control lines from the FPGA to 5V 
remains to be seen.  Though it is possible, it may be far from optimal.  In either 
case, many lines will exist between a number of ADC0820s and the Spartan FPGA 
that require logic level shifting.  The team plans to find an IC for this purpose which 
may include up to 32 bits of logic level conversion.  Texas Instruments for example 
makes an IC just like this.  Hopefully using such a device will decrease the footprint 
of analog circuitry on the Glove Drummer PCB.   
 
The connections made between the sensors and the ADC must also conform to a 
certain standard.  Since the ADC will be biased between ground and +5V, its 
analog inputs must be contained within that voltage range.  Also the sensors’ 
output impedance must be kept below a certain value in order to make accurate 
conversions.  This is the reason for the analog signal conditioning circuitry 
discussed in Section 5.0.  The resulting signal that is sourced from the analog 
conditioning circuitry has a very low output impedance and is bound  in magnitude 
between ground and +5V. 
 
In order to explore the operation of the ADC0820, the team has decided to begin 
experimenting with the chip in “Read” mode.  A timing diagram for read mode is 
shown in the figure below. This is the more basic of the two modes where a 
conversion is started by driving the (read)’ line low.  The FPGA will know a 
conversion is complete when the (int)’ line is driven low by the ADC.  Shortly after 



Group 15 

41 

(int)’ goes low, the result of the conversion will become available to the 
FPGA.  Write mode may also be explored in order to increase the sampling 
frequency.  Reducing the time needed to make a conversion will also help recover 
the time that may be lost to switch channels on the DG508 MUX.  While the most 
simple configuration might be using read mode with six ADC0820s operating in 
parallel, this may require too much space on the PCB.  Using only one ADC0820 
with eight inputs multiplexed through the DG508 will require much less PCB real 
estate, but may result in too low a sampling frequency.  Through the prototyping 
process, the team hopes to find a happy medium between these two extremes. 
 

 

Figure 24: ADC0820 read mode timing diagram 

 
In order to obtain faster conversions, write/ read mode may be used.  Using 
“standalone operation,” write/ read mode operation is greatly simplified.  Readings 
can easily be obtained without needing the interrupt signal a timing diagram for 
this mode of operation is shown below. 

 
Figure 25: Write/ read mode in standalone operation timing diagram 

 

4.1.10 The Vishay DG Multiplexer 
 



Group 15 

42 

4.1.10.1 DG508 
 
The Vishay DG508B Multiplexer is an 8-to-1 precision analog multiplexer used to 
connect one of 8 inputs to a common output, based on a 3-bit address. One major 
factor for choosing the DG508B 8-1 MUX is the allowance of ±5V supply, which 
will already be available on the PCB. Glove Drummer will use a multiplexer as a 
bridge between the condition piezoelectric signals and the Analog to Digital 
converters. The ADC will continually poll the different inputs of the MUX until a 
peak is detected, at which point the message will be converted to digital MIDI and 
sent to the FPGA. 
 
However, given the latency requirements of Glove Drummer, and the relatively low 
duration of the piezo signals, a single ADC polling 8 different piezoelectric input 
signals is not ideal. Another similar multiplexer was researched for this reason. 
 

4.1.10.2 DG509 
 
The Vishay DG509B dual 4 to 1 multiplexer is very similar to the DG508B. The 
specifications for the two multiplexers are nearly identical, allowing for easy design 
transition between the two multiplexers. The major advantage of this multiplexer is 
the dual channels, effectively becoming two 4 to 1 multiplexers in a single chip. By 
utilizing a second ADC along with the dual channel multiplexer, Glove Drummer 
will trade a small amount of PCB real-estate for greatly improved latency and peak 
detection. As each ADC will only need to poll 4 inputs, the sampling frequency will 
be greatly improved. 
 

4.1.11 Audio Amplifier Circuits 
 

4.1.11.1 Headphone Amplifier Circuit 
 
The glove drummer will utilize a headphone amplifier circuit to condition the audio 
volume levels when played through headphones. The tabletop module will feature 
a standard 3.5mm headphone jack, which will bypass the speaker circuit when 
connected. Also, the tabletop module will feature a volume control knob, which will 
control both the speaker and headphone volume. The audio amplifier will boost the 
audio signal generated by the Tiva-C via Pulse Width Modulation to a suitable 
maximum level. A volume knob potentiometer will allow the user to scale the 
volume down to the desired audio level. 
 
The headphone amplifier circuit will utilize a OPA134 dual supply op-amp. This op-
amp was selected primarily for its low-cost and low power consumption. As shown 
in the figure below, the power supply section of the headphone amplifier will split 
a 9V DC source into a ±4.5V dual supply (source5). A switch connecting the source 
to the circuit will be closed only when a headphone is plugged in. A simple LED 
will be used to indicate when the headphone amplifier has power.  



Group 15 

43 

 

 
Figure 26: Circuit for splitting 9V supply  

 
The amplifier stage of the headphone amplifier will feature a 10kΩ to 50kΩ 
potentiometer for volume control. This will be the same potentiometer used to 
control the speaker circuit. The amplifier circuit will feature two channels, 
corresponding to the Left and Right speakers in the headphones. The amplifier is 
designed with a non-inverting gain of 11, however the gain may be adjusted as 
needed. Also, due to the relatively lower quality of the PWM audio generated by 
the Tiva-C, the amplifier will be designed around standard low impedance 
headphones. Low impedance loads can cause an imbalance in the power supply, 
which can damage headphones. The amplifier will be optimized for low impedance 
loads by adding a 50Ω resistor in series with the output, which will stabilize the 
supply. It should be noted the output resistor will cause a small drop in gain. The 
amplifier stage of the circuit is shown in the figure below 

 

 
Figure 27: Headphone Amplifier Circuit with Volume Control 

 

4.1.11.2 Speaker and Amplifier Circuit to Drive Speaker  
 
The Glove Drummer table-top module will feature an onboard speaker to allow for 
audio playback. The speaker system will be designed such that it is bypassed 



Group 15 

44 

completely when the user plugs a pair of headphones into the table-top module. 
This will be achieved by utilizing a headphone bypass jack as the headphone 
connection. A single volume knob will be used to control the volume for both the 
speaker amplifier and the headphone amplifier. The speaker used will be a 
standard 5W, 8Ω speaker. 
 
The speaker amplifier, shown below in the figure below, will utilize a basic LM386 
for audio amplification. The amplifier will be powered by a 9Vdc source, and will 
initially be designed, as shown, with a maximum gain of 200. Once implemented, 
the gain can easily be scaled down to the optimum gain by adding a resistor 
between LM386 pins 1 and 8, in series with the 10µF capacitor shown. The PWM 
audio is applied at the input, and the 20k potentiometer allows for volume control, 
from 0 gain up to the maximum designed gain.  The circuit schematic is shown in 
the figure below. 
 

 
Figure 28: 5W, 8Ω Speaker Amplifier 

 

4.2 Software  
 

4.2.1 C Code Programs 
 

4.2.1.1 C Code for the PIC18F 
 
Although the PIC18F will not be used in the final Glove Drummer design, the team 
learned about using timer interrupts with this MCU.  The C code for using a timer 
interrupt is show in the figure below.  In this code, once the timer’s initial value is 
set, a forever while loop is fallen into.  The interrupt service routine (ISR) function 
written at the bottom of the figure below interrupts the forever while loop whenever 
the timer overflows.  Overflowing is when all bits of the timer are one.  When this 
happens, the interrupt flag is set.  It was important to clear the interrupt flag each 
time after toggling the LED.  Another important task was to disable and enable 
interrupts at the appropriate times.  In a system using more than one interrupt 



Group 15 

45 

enabling and disabling the interrupts becomes even more important so that a data 
race is not created between ISRs. 
 

 
Figure 29: An example of using a timer interrupt with the PIC18F 

 

4.2.1.2 Atmel Studio C Code for Atmega88 
 

4.2.1.2.1 Two Byte messages via USART 
 
When relaying sensor information between the Glove Drummer modules, a 
stripped down version of the MIDI protocol will be used.  The baud rate will be at 
least 115,200bps and only two bytes will be sent per drum hit.  Messages sent at 
greater than 115,200bps may require a synchronous serial protocol.  Since all note 
off messages are ignored for drum controllers, this data can be discarded.  Also 
since there are only six sensors, less bits will be needed to represent each sensor 
versus the MIDI protocol which has 127 key numbers.  Theoretically, only ten bits 
of data would be needed, seven for velocity and three for sensor 
identification.  Most likely though, two bytes will transmitted with start and stop bits 
for each drum hit which allows for expandability.  Expandability here could mean 
more piezo sensors or possibly implementing some type of CC message capability 
within the hand modules, such as a positional snare or hi hat.  Two bytes sent with 
one start and one stop bit each at 115,200bps will take 174us to transmit.  This 
amount of time is inconsequential when compared with the nominal 15ms latency 
threshold the team has defined.   
 
Once the Tiva C has received one of these two byte messages, it will have all the 
information it needs to produce an appropriate drum sound.  In order to send actual 
MIDI messages to a MIDI sequencer, the two byte message will be transformed 
back into a five byte note on/ off combo message before being sent to the FT232 
board.  The Glove Drummer team has seen that the MIDI protocol can be scaled 
down to aid in meeting design specs.  Part of this is because MIDI was not initially 
created just for the drums, but it is also limited by the 31,250bps baud rate 
restriction. 
 



Group 15 

46 

4.2.1.2.2 Open Source NRF24L01 RF Module C Library 
 
For this project an open source C library for the nRF24L01 will be used 
(source6). This library contains header files which allow for ease of programming 
with the wireless transmitter. The library works by establishing “pipes” along 
which data is transmitted. These “pipes” are basically different listening channels 
available to the transmitter and receiver, and must be provided an address at 
creation. Once the pipes are addressed, the device is set to either transmit or 
receive. The device can then write data to, or read data from, the established 
pipes.  The following are the main functions the team will be using from the 
library: 
 

 RF24 (uint8_t_cepin, uint8_t_cspin): This function tells the Atmega88 
which pins the nRF24L01 is connected to. 

 void Begin(void): This function initializes operation of the nRF24L01 with 
the pins setup in RF24. 

 void openWritingPipe (uint64_t address): Open a pipe for writing at 
specified address. 

 void openReadingPipe (uint8_t number, uint64_t address): Open pipe 
number specified for reading at specified address. 

 bool write (const void*buf, uint8_t len): Writes specified number of 
bytes from specified buffer to writing pipe. 

 void startListening (void): Initializes chip to listen on open reading pipes. 
 void stopListening (void): Stop listening on reading pipes, enables 

writing on writing pipe. 
 bool read (void *buf, uint8_t len): Reads specified number of bytes from 

reading pipe, puts in designated buffer. 
 

In addition to the functions provided in the library, the team will need to write a few 
additional functions: 
 

 bool getdata (const void*buf): This function will test if the most recent 
MIDI message was already sent. If not, it will retrieve the message, place is 
in the specified buffer, and mark it as “read”. It will also returns “true” if the 
message needs to be sent. 

 

Based on the functions above, the team arrived at the following transmit and 
receive examples: 
 



Group 15 

47 

 
Figure 30: Example Wireless Transmission Code 

 

 
Figure 31: Example Wireless Receive Code 

 

4.2.1.2.3 C Code in CCS for Tiva C MCU 
 
The team has had years of experience writing in the C language.  Writing C code 
for the Tiva C will be very similar to working the Embedded Systems course labs 
in school.  CCS will be used for creating and debugging projects.  The main 
difference will be in what the team is trying to accomplish.  By referencing the 
peripheral libraries written for the Tiva C, the team will learn to use the parts of the 



Group 15 

48 

chip that relate to the Glove Drummer project.  Another added advantage of using 
CCS is the ability to export projects from Energia to CCS.  Energia provides 
additional abstractions and many well written libraries and by porting to C, the 
codes performance can be further improved.   
 

4.2.2 Energia Code for Tiva C series 
 
In short Energia is an open source software framework that gives us an easier way 
to communicate and manipulate our Tiva C Series microcontroller. A lot of the code 
is reusable and the team has already taken down a few code segments that will 
help with the multiple SPI communications that are needed. The API’s are not so 
hard to pick up so this will help with the teams pressured time constraint to pick up 
new ways of coding. Many libraries help developers make the code optimal to 
everyday use. And of course since Energia has been used with Texas Instruments 
launch pads there is a huge community of support and for it. There are many ways 
to advance on the code we are making, so the Glove Drummer team can focus on 
other tasks. 
 

4.2.2.1 On-Board ADC 
 
It is nearly decided that for our project the team will be using the Tiva C 
microcontroller for handling a few of our processes. Because of this the team will 
be using the On-Board ADC to handle all digital audio the team will record onto the 
SD card and all that will playback. This analog voltage converted into a discrete 
digital number is an important process of our project. Two converter modules are 
on the board, one of which if fully dedicated to be our ADC with 12 input channels. 
It is the TM4C123GH6PM, and the team picked it for a few reasons. Just one 
module has four programmable sequencers which let us work with multiple analog 
inputs at one time without interruption.  The team needed our ADC to have an 
easily configurable input source, dependable trigger events, sequencer priority and 
interrupt generation. It can also be switched to digital to analog converter for our 
playback. Having eight digital comparators means cleaner conversions. The team 
also notes that there are two onboard ADCs, and if the other does not have many 
instructions to handle it can do some of the conversion for us and this may reduce 
any latency the team might come across. Other notable abilities of our ADC is that 
it has an on-chip internal temperature sensor, very good sample rate which the 
team will need (one million samples/second),and flexible trigger control.  
 
Another notable thing the team came across when researching this ADC is its 
prioritization. When sampling events trigger at the same time, they go into the ADC 
Sample Sequencer Priority register. Priority values are 0-3, 0 being the highest. 
When the sensors are hit, the appropriate sounds should be created as soon as 
possible. So if the sensors that were hit first have a higher priority, this could help 
when the user bangs on many fingers at once. One last feature that is also of great 
importance is the ADC Processor Sample Sequence Initiate register. This allows 
for the two independent ADC modules to operate from the same trigger source, 



Group 15 

49 

potentially doubling the sample rate of our input. The figure below illustrates this 
feature. This would create a sample rate of one million samples/second at 16MHz.  
 

 
Figure 32: Tiva C ADC timing diagram 
 

4.2.2.1.1 Initializing the ADC 
 
Before using the ADC, it needs to be initialized of course. This consists of enabling 
and programming the PLL so that it may communicate with the RCC register 
effectively.  
 
These steps must be made when programming to ensure proper usage: 
 

1. Enable the ADC clock using the RCGCADC register  
2. Enable the clock to the appropriate GPIO modules via the RCGCGPIO 

register  
3. Set the GPIO AFSEL bits for the ADC input pins  
4. Configure the AINx signals to be analog inputs by clearing the 

corresponding DEN bit in the GPIO Digital Enable register 
5. Disable the analog isolation circuit for all ADC input pins that are to be 

used by writing a 1 to the appropriate bits of the GPIOAMSEL register 
6. We may need to reconfigure the sample sequencer priorities, which range 

from 0-3. 

 

4.2.2.1.2 Peak Detection Algorithm 
 
There are many peak detection algorithms to choose from, and we are trying to 
find the best for our project.  It would be wise to choose one of these to make it 
simple for us in the long run. The purpose for this peak detection in our project 
relates to the spike of voltage we receive from our piezo sensors when they are 
struck at many different levels. It also relates to our analog waves that come into 
the converter then must be cutoff at a reasonable level to convert to a good digital 
readout. These algorithms automatically detect peaks at any given time-series 
(Palshikar). 
 
These manipulations of our C code try to look for the true peak in order for Glove 
Drummer to operate correctly. It works with spike detection as well as peak 
detection to even out the edges of any given wave. When a peak is detected, 
analysis of our algorithm starts with finding periodicity of the peaks, predicating 
next occurrence, dependencies among peaks, and the actual value of the peak. 



Group 15 

50 

 
Many things go into the analysis of these algorithms and the team fears with time 
constraints we will need to pick a basic algorithm and edit it to fit our needs as 
much as possible. There is a comparison between different functions that will 
greatly help us in our search. The team needs to note the basic layout of these 
functions. Input in time series is needed, window size around the peak, and set of 
peaks detected. Looping through each of our points and compute the standard 
deviations to find all the peaks (Sholkman, Boss, & Wolf, 2012). If the team  
doesn’do this correctly the algorithm can skip over peaks that were not as great, 
but nonetheless still peaks. In the figure below a psuedocode activity diagram is 
given for how to obtain a piezo signal’s peak value.  The window of time around 
when the signal breaks the preset threshold is a major concern in creating the 
correct sound using the MIDI protocol. 

 
Figure 33: Activity Diagram of velocity sensitive MIDI controller MCU program 

 
 

4.2.2.1.3 Algorithm for Reading the Hi Hat Pedal Signal 
 



Group 15 

51 

The algorithm for reading the hi hat pedal will have to take into account rate of 
change of the IR sensors signal.  CC messages must be sent when the pedal 
moves and more messages should be sent the slower the pedal moves.  If the 
pedal moves very quickly it should produce a note on/ off combo message for the 
foot splash or foot chick sound depending on the direction of the pedal’s travel. 
The last reading should always be stored so that if the hi hat is struck while the 
pedal remains stationary, that CC reading will be sent before the note on/ off 
combo produced by hitting the hi hat.  Depending on the MIDI sequencer used, 
this algorithm will need to fine-tuned to produce a realistic hi hat sound and 
control. 
 

4.2.2.2 Hardware UARTs 
 
The TM4C123GH6PM controller the team has chosen includes eight Universal 
Asynchronous Receiver/Transmitters and the team will most likely use most of 
them in our project. There are many abilities of the UARTs the team has picked 
such as the baud-rate generator each one contains that allows speeds up to 10 
Mbps for max speed. Each UART is not register compatible but is parallel to serial 
and vice versa, and transmits and receives in FIFO which we will need. The 
construction of the UART character frame is displayed in the figure below. 
 

 
Figure 34: UART timing diagram 

 
Flow control can be done by either hardware or software on these UARTs but I 
think we will chose to implement it in software. Interrupts are used to achieve this 
by showing the status of the UART at the time of the interrupt. Other notable 
features relevant to the team are it has line-break generation and detection, fully 
programmable serial interface, and effective transfers using the Micro Direct 
Memory Access Controller.  
 

4.2.2.2.1 Initializing the UARTs 
 
Before starting to use the UARTs, the team needs to enable it and go through a 
series of steps to initialize it. This section will help to refer back to and quickly see 
what steps are needed to take to make sure it is done properly.  
 

1. Enable the UART module using the RCGCUART register 



Group 15 

52 

2. Enable the clock to the appropriate GPIO module via the RCGCGPIO 
register 

3. Set the GPIO AFSEL bits for the appropriate pins 
4. Configure the GPIO current level and/or slew rate as specified for the mode 

selected  
5. Configure the PMCn fields in the GPIOPCTL register to assign the UART 

signals to the correct pins 

 

4.2.2.3 The Open Source FAT File System/ SD Card 
Library 
 
The SD library allows for reading from and writing to SD cards. The library supports 
FAT16 and FAT32 file systems on standard SD cards which is just what the team 
needs for this system. The file names passed to the SD library functions can 
include paths separated by forward-slashes for example "directory/filename.txt". 
Because the working directory is always the root of the SD card, a name refers to 
the same file whether or not it includes a leading slash. 
 
SD memory card uses SPI bus. Using the provided library, all the SPI parameters 
are automatically set. User should only write in firmware what Flyport pins are 
connected to SD card connector, using the function SDInit. If the SD card is not 
connected with the correct pins the team won’t be able to use the library. The team 
will need to find an SD card library that works well with what we are trying do to. 
Writing our files to the SD card will be a one-time thing, so we will not need library 
functions for that purpose. However reading and communicating with the SD card 
quickly and effectively is a must for us, so predefined functions in a SD library that 
do this is what we are looking for. Functions like position(), seek(), size(), 
isDirectory(), close() etc is what we need. Luckily for us there is an abundance of 
open source code and examples for the FAT file system regarding embedded 
systems using microcontrollers much like ours. Implementing the two will prove to 
be rewarding when we have all he functions at our disposal. 
 

4.2.2.3.1 Reading from the SD Card 
 

It is important to note that before the team can read and write data to the SD card. 
It must be initialized first which requires going through some important steps. 
Assuming that power is on, the list goes as follows: 
 

 Make sure clock speed is at or less than 400kHz 
 Hold CS line low and send some manual clock pulses 
 CS line too is held high to show there is communication 
 Send the reset command (CMD0) 
 Wait for the SD card to respond with 0x01 
 Send initialize command (CMD1) 



Group 15 

53 

 Continue sending CMD1 until card responses with 0x00 
 Set sector size to 512 bytes each (CMD16) 
 Turn off the CRC by sending CMD59 (now we no longer need to use CRC 

values) 

Now, when the card responds a final time, it has finally been initialized!  

 
4.2.2.3.2 Improving the Speed of Reading from the SD Card 
 
Reading and writing from our external memory device that has all of our wav files 
stored on it is very important. We need this process to be as quick as possible in 
order to reduce the latency when we need to call our card and playback a sound 
the user has requested. There are a few ways to increase this read speed that we 
have been researching. One way is that if you have an SD card with cache, you 
can adjust the amount of cache used by the card and significantly increase read 
speeds. You must modify the amount of available read-ahead cache for reading 
SD Card data. By default, most ROMs will have anywhere from 4KB up to 128KB. 
This approach is used by a lot of android users but may have a lot of effect on our 
embedded system.  
 
Further research showed that newer SD cards can improve reading and writing 
speed by increasing the bus rate which is the frequency of the clock signal that 
grabs all the information the team needs from the card. With this functionality the 
card goes into a state where it is not disturbed or interrupted until the read or write 
is complete. With either of these methods, if we can get to a speed of about 20 
Mbps we can achieve what we want for playback. 
 

4.2.2.3.3 A First In First Out (FIFO) Buffer for smooth Audio 
Playback 
 
Because the SD card can only send data to the MCU in chunks and because 
there is some amount of time it take to receive each chunk, A FIFO buffer will 
need to written.  Without using a FIFO, the audio playback would be glitchy and 
no fun to listen to.  This buffer will keep sound production going while the MCU is 
retrieving a new chunk of data. Also because Glove Drummer will mix audio files, 
several FIFOs may be used. 
 

4.2.2.4 Mixing Digital Audio Samples 
 
Glove Drummer will need to be able to create multiple sounds at once since the 
user will be simulating playing the drums. To do this our hardware and software 
will have to handle many audio playbacks being requested at once, and our 
speaker will have to play back all of these. This will require us to mix the audio 
samples together, the most important stage being the mixing of the digital audio, 
but before doing so it needs to be understood at a sound wave level. Mixing two 
sound waves is basically observing their interference (source7). When waves hit 



Group 15 

54 

each other, they can interfere constructively or destructively. That is, when wave 
crests come together, a crest and a valley cancel each other out and two valleys 
form a bigger valley. More complex sounds, like music or speech, are merely the 
result of mixing sound waves of different frequencies, but we will be mixing many 
short, around 2 seconds, drum audio sounds. We don’t want these sounds to play 
as one and mess together, but for them to play independently of each other. 
 
With Digital audio mixing it is hard to avoid overflowing and clipping. When mixing 
it is important to keep the dynamics of each sound intact as much as possible and 
for this we will need a good algorithm in our code. If it isn’t correct one sound may 
be doubled in noise while the other is much quieter so it’s important we find the 
right algorithm for our system. There are 3 important things to note when analyzing 
how we are going to mix. They are quoted from a great source: 
 

1. “If both samples are positive, we mix them so that the output value is 
somewhere between the maximum value of the two samples, and the 
maximum possible value” 

2. “If both samples are negative, we mix them so that the output value is 
somewhere between the minimum value of the two samples, and the 
minimum possible value” 

3. “If one sample is positive, and one is negative, we want them to cancel out 
somewhat” 

 

4.2.2.5 PCM to PWM Conversion: Driving the Speaker 
 
For our software and the way the team has created the first design of the system 
using Pulse Width Modulation to drive the speakers. However all the hardware is 
designed to take Pulse Code Modulation (PCM) and it is usually what form the 
digital input is. We will need to make sure the conversion from PCM to PWM is 
smooth and without issues. The first step is for a digital amplifier to do digital 
conversion on a PCM digital input into PWM. The PWM modulator then makes a 
high voltage signal which needs to be filtered to recreate the original audio input. 
The reconstruction of this signal is very important, so the time alignment of the 
wave and the voltage needs to be noted. The PWM signal is generated digitally 
and s pulse widths are quantized. Also we need to make sure resolution in the 
PWM waveform is dependent of the ratio of the Master Clock frequency to know 
we are on the right path. Digital amplifiers must have the following: Power supply 
purity and impedance, PWM switching speed and resolution, and Master Clock 
frequency. We are choosing PWM mainly because of the FPGA we are producing 
because it will work very well with it. With our designed FPGA we can run a couple 
hundred MHz and it will have plenty of available multiplier blocks to use.  A 
graphical representation of PCM to PWM conversion is show in the figure below. 
 



Group 15 

55 

 
Figure 35: PCM to PWM Conversion 

 

4.2.3 Verilog Code for the Spartan FPGA 
 

4.2.3.1 The ADC0820 Interface Verilog Module 
 
Although the team has proposed to use the ADC0820 in read mode, later coding 
sessions have yielded a better method.  The snippet of code shown below shows 
how the team created some sequential and combinational logic to use the 
ADC0820 in write/ standalone mode.  Using this technique conversions are 
completed in 1.9us and no interrupt signal is needed by the ADC0820 (source8).  
As shown below, a seven bit counter helps to create the control signal WR’. WR’ 
is driven low to start a conversion.  After 600ns WR’ is driven high again.  Another 
800ns after that, the converted data is available.  Finally, 500ns after the data 
beomes available the ADC is ready to begin another conversion. 
 

 
Figure 36: Verilog logic for controlling and reading ADC0820 



Group 15 

56 

 

4.2.3.2 The UART Verilog Module 
 
To start the process of building the hand modules, an open source Verilog module 
from OpenCores.org was used to send single byte messages to RealTerm terminal 
software on a PC.  This UART module required a one clock pulse signal to latch 
data into its shift register and begin transmitting.  For generating a one clock cycle 
pulse, a push button was used.  Because the push button bounces and is 
asynchronous to the clock it has to be “debounced” before using it to trigger the 
transmission of a message.  The code written to debounce the push button 
counted the number of times the push button signal bounced between zero and 
one, and after 32,768 bounces the signal PB_down was asserted for one clock 
cycle only.  From this point, PB_down was used to start the transmission of a single 
byte.  Tests using RealTerm showed the proper transmission of 0xD6 with each 
press of the push button. 
 
Using the running status technique mentioned in Section 2.1, a single press of the 
push button would need to trigger five separate one byte messages.  These five 
bytes are what is required to turn a note on and then off with the MIDI protocol.  Of 
course a pushbutton does not give any velocity information, but the team felt that 
velocity sensitivity would not be a far leap from using a push button to trigger fixed 
velocity drum sounds.  In order to create five separate one clock cycle pulses and 
to latch the correct data into the UART’s shift register, a new state machine was 
created.  It included and idle state as well as a state for transmitting each of the 
five bytes, as shown in the figure below.  The process of sending the five bytes 
began with the assertion of the synchronous, debounced PB_down signal.  After 
this time, the state machine cycled through the next five states and then returned 
to the MSG_IDLE state.  A shift register and some combinational logic was then 
used to create a one clock cycle pulse with each change of state as shown in the 
figure below containing Verilog code. 



Group 15 

57 

 
Figure 37: State Machine for sending five bytes from the UART at PB_down 

 

 
Figure 38: Logic for creating a one clock cycle pulse with each change of state 

 

4.2.3.3 The Peak Detection Verilog Module 
 
After successfully sending some fixed velocity MIDI messages and learning to 
control and read the ADC0820, the time came to implement a velocity sensitive 
MIDI controller.  This sequence is a very good example of using the divide and 
conquer method.  A state machine designed by the Glove Drummer team for 
finding the peak of a single piezo signal is shown below.  Two timers are involved 
with this state machine.  The first timer decides how long to search for a peak after 
the piezo signal breaks a preset threshold parameter.  The second timer stalls the 
system for a period of time in order to prevent unwanted double triggering of the 
drum sound.  These timers are parameterized and can be easily tuned to give a 
low latency, responsive feel to playing a single drum.  When the state machine 
transitions from SEND to HOLD, a one clock cycle pulse begins sending a running 
status MIDI message.  The peak value has already been assigned to data2_on 
when message transmission is initiated.  Later more sensors will be added and the 
five byte messages will be stripped down to two bytes that will be sent wirelessly. 
 



Group 15 

58 

 
Figure 39: Verilog State Machine for Peak Detection 

 

4.2.4 Hex Editor Software 
 
If the team decides against using a files system on the SD Card, then a Hex Editor 
will be needed.  A Hex Editor simply allows the user to manage and change 
hexadecimal values of our wav files. It is a software program that can manipulate 
binary data that will eventually run computer files. The editor can parse and edit 
data on sectors straight from the physical SD card. Its mainly for viewing and 
editing the exact contents of the file, without changing the structure of the file 
format. If something goes wrong with our system and we need to make a slight 
alteration to one of our files in the editor, we can go inside the file and correct 
corrupted data, or set up exception handling since our system is structured slightly 
different than usual and may throw some unwanted errors. In our Hex Editor the 
data of the computer file is represented as hexadecimal values grouped in 4 
groups of 4 bytes, followed by one group of 16 ASCII characters which are derived 
from each pair of hex values. In the figure below, we can see a brief example of 
how a file would be structured in the Hex editor, and it is important for us 
understand how to edit it. It closely resembles the file allocation table format, which 
makes sense since this will be used to work with our SD card that is in the FAT file 
system. Another strength with our editor is that it will use a template system to 
structure our file to the format we choose. This is helpful for code generation 
because you can enter variable type, decimal number or offset and the basic layout 
will be made. 



Group 15 

59 

 

 
Figure 40: Screenshot shot of an html file inside hex editor software 

 
 

4.2.4.1 Anatomy of a *.wav File 
 
A wave file is an array of uncompressed numbers which represent an analog 
waveform when referenced in time to the sample rate the numbers were sampled 
at.  Of course there must be some information in the file that imparts the sample 
rate, name of the file, etc.  This information is contained within the wave header.  
The wave header is placed before the audio data and can be viewed in Hex editor 
software as shown in the figure below.  You can clearly see the ascii text in the 
left-hand column, intuitively this could not be audio data.  Since the audio data 
shown here is unsigned, the near silence that occurs at the start of the audio data 
has a value close to 127 decimal.  A signed .wav file would contain numbers closer 
to zero for near silence.  This data will be helpful even if the team decides to use 
the FAT file system because it give a better understanding of what exactly a .wav 
file is. 
 

 
Figure 41: An unsigned .wav file opened in Hex editor software 

 

http://upload.wikimedia.org/wikipedia/commons/2/2c/Hexedit-screenshot.png


Group 15 

60 

4.2.5 Audacity Digital Audio Workstation (DAW) 
 
Audacity is the teams’ Digital Audio Workstation of choice for recording and editing 
wav audio files. The main use of a DAW is to be a simple program that will let us 
change and mix audio recordings to better fit our needs. This software will not run 
real time on our computer, but will be used to match different pitches of sounds we 
want for our drum pedals, hi hat, and other drums. Before we match the different 
voltage readouts to what sound we want to output, we have to create these in our 
DAW. We can make these files here, and then save them as a wav file for use 
later.  
 
The DAW has four basic components: “a computer, a sound card a digital audio 
editor software, and at least one input device for adding or modifying musical note 
data”. This could be as simple as a mouse, and as sophisticated as a MIDI 
controller keyboard or an automated fader board for mixing track volumes. Here 
the computer acts as a host for the sound card and software and provides 
processing power for audio editing. The sound card or external audio interface 
typically converts analog audio signals into digital form, and for playback 
converting digital to analog audio. The DAW software controls all related hardware 
components and gives a user interface to allow for recording, editing, and 
playback. Most computer-based DAWs have extensive MIDI recording, editing, 
and playback capabilities, and some even have minor video-related features, we 
will take advantage of these for our system. Our system will mainly be used for 
recording the sounds we want from a MIDI device. Then we can carefully pick and 
choose the exact segment we want to match to say a 3 voltage signal from one of 
our sensors. Paired with the ability to get MIDI recording, editing, and playback is 
a great feature for us. The countless plug-ins available give us hope that if we run 
into a particular or unique problem we will be able to fix it.  
 

4.2.6 BFD3 Drum Software 
 
BFD3 is a sophisticated piece of drum software that was designed to be used with 
many different types of electronic drum kits.  Its flexibility in adapting to the different 
types of messages used by these different edrum kits gave the team a good lesson 
in how to design the tabletop module.  A screen shot from the program is shown 
below.  In the figure you can see how BFD3 assigns a “key map.”  As discussed in 
the MIDI section, MIDI drum controllers equate drums sounds to the keys of a 
musical keyboard.  From the screen shown below, a user can simply drag and drop 
keys to certain drums or even areas of a certain drums (ie. rim and center). 
 



Group 15 

61 

 
Figure 42: The BFD3 key map screen 

 

4.2.7 WAV2C Software 
 
Once an audio file is created within Audacity at a specifici bit depth and sample 
rate, Wav2C then takes that file and converts it to a C header file that can be 
included within the teams’ C code.  This is useful if audio files are small enough to 
be stored within the systems RAM or ROM.  It has great open source code with 
many uses, so it will adapt well with what we are doing. In short this software will 
create an array out of the wav files we give to it, allowing those arrays to represent 
our sound. Research showed that it is also heavily used on a lot of Arduino audio 
players.  Although the Glove Drummer will require a much greater storage capacity 
than can be supplied by RAM or ROM, Wav2C software may be helpful in 
debugging some portions of code where large audio files do not need to be stored.  
For example, in trying to implement a very simple audio player, a short audio file 
could be stored in RAM so that a push button may trigger playback.  This test could 
be used while the SD card code is being written/ debugged so that the team has 
some hands on experience with playing audio. 
 

4.2.8 Hairless Serial to MIDI Software 
 
Hairless serial to MIDI software has allowed the team to use a baud rate faster 
than the traditional MIDI baud of 31250bps.  It also allows the use of two stop bits, 
which has been used in the Verilog UART module.   As seen in the figure below, 
each message is recorded in plain text, similar to the MIDI Ox software used in 
Section 3.0.  In contrast to RealTerm serial capture software, the velocity data is 
displayed in decimal versus hex which made debugging using Hairless more 
convenient.  It takes the serial data from the FT232, which is connected to the PC 
via USB, and routes it to another required piece of software which is called 



Group 15 

62 

LoopMIDI.  The Hairless software not only allows for faster baud rates, but also 
decreased the amount of hardware Glove Drummer will require to communicate 
with a PC MIDI sequencer.  Normally a “MIDI out” circuit would be required along 
with some sort of MIDI to USB interface.  Another Senior Design team at another 
institution once created just a MIDI to USB converter for their entire Senior Design 
project.  For this reason, the team decided not to incorporate an original MIDI to 
USB converter into Glove Drummer’s design. 
 

 
Figure 43: Hairless Serial to MIDI Converter Software GUI 

 

4.2.9 LoopMIDI Software 
 
LoopMIDI is software that is designed to route the converted MIDI data from 
Hairless MIDI/ Serial to a DAW on the PC.  Its GUI, shown below, keeps a tally of 
how many bytes have been transferred as shown in the figure below.  Inside the 
user’s DAW software of choice, under preferences, LoopMIDI will appear as a MIDI 
input.  Once selected as the MIDI input source, the user will be able to control 
sounds within their DAW using Glove Drummer.  Before doing so, a custom key 
map will need to be assigned.  The key map can be assigned however the user 
sees fit, usually by dragging and dropping keys to sounds or vice versa. 
 

 
                Figure 44: LoopMIDI GUI 

 



Group 15 

63 

5.0 Prototyping 
 

5.1 Construction of Piezo Sensors 
 
Starting with 9.5mm diameter piezoelectric transducers the Glove Drummer team 
successfully created a sensor that would fit on the fingertip and create a quick 
voltage response to mechanical vibration.    The voltage response was shown in 
Section 5.1 to die out long before the finger would have a chance to make a 
subsequent tap on the table.  Other glove controllers have used different types of 
sensors including force sensitive resistors and piezo films, but the team feels that 
these piezo discs are superior.  Cost alone makes them a better choice as they 
can purchased in lots of 50 for $35.  It is a wonder that no other glove controllers 
for the drums have used them, since all electronic drum kits use piezos. 
 
The bare piezo sensor contains a thin piezoelectric ceramic disc attached to a thin 
brass disk.  An anode is applied is applied to the top side of the ceramic disk while 
the bottom side ties the cathode to the brass disk.  Wires stripped from USB cables 
were chosen to connect to the sensors because of their small diameter and 
availability.  Wires had to be carefully soldered to the tiny piezo disk.  The process 
of soldering these connections also had to be done very quickly so that the Curie 
point of the ceramic disk was not exceeded for too long. citation If the Curie point 
of any piezoelectric material is exceeded for too long, that material will lose its 
piezoelectric properties and no longer generate any sort of voltage response. 
 
Once the wires were soldered into place, the team came to the realization that the 
solder joints were actually stronger than the bare piezo disk itself.  Strong hits 
against the table would therefore cause the solder joint to bend the brass disk and 
crack the ceramic disk on top.  Luckily the team found some 1.0mm brass disks 
that are much stronger than the brass disk of the bare piezo.  These slightly larger 
brass disks were then glued to the bare piezo disk for reinforcement.  For additional 
protection, the team added a 1.0mm foam rubber disk on the top side of the bare 
piezo to finish Glove Drummer’s fingertip sensors. 
 

 
Figure 45: Bare piezo transducers (front and back) and finished sensors (front and 
back) 



Group 15 

64 

5.2 Construction of the Gloves 
 
Thin, stretchy gloves were selected so that the hands could move unimpeded.  The 
thinnest wires that could be found were used for the same reason.  The team found 
after much searching that the wires within USB phone charging cables were 
actually thinner than any wire offered by electronics suppliers.  The wrist of the 
glove will be attached to a band of Velcro in order to keep the piezos firmly pressed 
against the finger tips.  An IR sensor and switches which can disable the 
functionality of IR will then be mounted to this Velcro strap.  Some sewing will be 
required to construct the gloves.  Sensors will have to be sewn onto the fingertips.  
Wires will also be secured with needle and thread near the base of the wrist to 
prevent breakage.  This thread should not be excessively robust so that a 
damaged sensor can be removed and replaced efficiently. 
 

5.3 Construction of the Hi Hat Pedal 
 
The hi hat pedal was created starting with a USB foot pedal controller shown in the 
figure below.  This pedal housing will also be used in the bass drum pedal.  All 
electrical components were removed from the interior of pedal so that the teams’ 
own circuitry would fit inside.  The cable was however reused as it was cleanly and 
securely connected to the pedal housing.   Following the application note 
mentioned in the TCRT5000 datasheet, the IR sensor was mounted into the pedal 
using hot glue as shown in the figure below.  A white piece of plastic was fixed to 
the ceiling of the pedal housing so that the IR light was better reflected.  Resistors 
were then soldered into to the sensor and three of the four wires inside of the pedal.  
Some of the resistors served to bias the BJT amp while other limited current 
through the IR LED.  The three wires running into the pedal are Vcc, ground, and 
the sensor signal output wire.  The fourth unused my in the future be soldered to 
a piezo transducer to create the foot chick sound.  This sound can however be 
created through software as well, so the fourth wire may never be used. 
 

 

Figure 46: Assembled hi hat or bass drum pedal housing 



Group 15 

65 

 
Figure 47: Hi hat pedal construction using the TCRT5000 IR Proximity Sensor 

 

5.4 Construction of the Bass Drum Pedal 
 
The bass drum pedal will use the same plastic housing as the hi hat pedal, however 
the inner circuitry will be much more simple.  A piezo transducer will be fixed to the 
bottom of the pedal.  A small piece of plastic bent at a right angle will then be fixed 
to the ceiling of the pedal.  This piece will provide the mechanical means for striking 
the piezo when the pedal is fully depressed.  This is the only function of the bass 
drum pedal— to impart velocity data upon each full press of the pedal 
 

5.5 Left/ Right Hand Module in the Breadboard 
Phase 
 
Connecting the ICs and circuit modules via the breadboard and jumper wires 
served as means for the team to verify the functionality of the hand modules long 
before the PCB design could be finished.  One of the early hardware configurations 
used during the prototyping phase is shown in the figure below.  The DG508 8:1 
MUX and single ADC0820 was later replaced by a DG509 dual 4:1 MUX and dual 
ADC0820s.  This new configuration will allow for faster sample rates and was 
found to be necessary through the prototyping process.  Other alterations have 
been and will be made based out of necessity until the team is satisfied with the 
functionality of the prototype.  This stage in the design is crucial in eliminating flaws 
that may render the final PCB design useless.  It gives the team a chance to get 
hands on experience with the components and learn by doing. 
 



Group 15 

66 

 
Figure 48: The Left/ Right Hand Modules in the breadboard phase 

 

5.6 Table-top Module in the Breadboard Phase  
 
The tabletop module in the breadboard phase is shown in the figure below.  This 
figure will also closely resemble the tabletop module in its final form since no PCB 
is being designed for the tabletop module.  A basic hardware configuration is 
shown in the figure below.  The team may experiment with a home etched PCB in 
order to bring all of the sub-modules together more efficiently than just using 
jumper wires.  Perf board may also be used as all of the pins on each device are 
broken out at a 2.54mm pitch.  A soldered connection is desirable and this perf 
board approach will most likely be implemented.  The perf board will be large 
enough to house the different development boards and circuit modules and may 
even require two levels stacked on top of each other.  Because the tabletop 
enclosure will house a speaker, the size of this PCB is not of importance.  While 
no custom PCB will be designed and ordered for the tabletop module, the team 
hopes their PCB designing skills will be evident in the realization of the hand 
modules. 



Group 15 

67 

 

 

Figure 49: The Tabletop Module in the breadboard phase 

 

5.6.1 Sub-Modules 
 
Since the tabletop module will house a speaker which needs to housed inside a 
large enclosure, the team has decided there is no need to design a compact PCB 
for the circuits contained in this module.  Some circuits built by the team will be 
assembled on perf board and soldered for robust connections.  Other circuits 
requiring surface mounted devices (SMD) will designed in eagle and etched from 
copper clad boards so that the surface mount pins can be broken out for access 
to jumper wires.  The Tiva C dev board, the ATmega88 dev board, the SD card 
module, the wireless modules, and the analog conditioning circuit will all be 
connected either by jumper wires or by a large home-etched PCB.  In the case that 
the team has time to etch this large PCB, all other smaller modules will plug into 
the large PCB to make the connection between them.  In addition to the 
components mentioned here, the tabletop module may include another FPGA dev 
board if needed to reduce latency.  It remains to be seen that the Tiva C will be 
able to sample the pedals, read incoming serial data from the hands, output MIDI 
messages to a PC, and drive the speakers from the SD card.  Since the Waveshare 
FPGA board costs only $35 and since it has already been used in the hand 
modules, this may be advantageous in reducing latency. 
 

5.6.1.1 Power Supply  
 
No AC to DC conversion will occur within the tabletop module because of the 
abundance of AC to DC converters today.  The team feels that many users may 
already own a suitable power supply at home that will work with the use of linear 
DC to DC voltage regulators within the tabletop module.  A wall wart supply with a 
minimum current capability of 500mA operating at a voltage between 7V and 15V 
should be suitable. A 7805 IC will then create the 5V supply rail.  The Tiva C’s 
onboard 3.3V regulator will bring the 5V supply down to 3.3V to be used by the 



Group 15 

68 

rest of system including the SD card and the wireless modules.  Sufficient current 
must be supplied to these components and may require an additional 3.3V 
regulator.  This additional regulator, if required, will be soldered to perf board and 
mounted with the rest of the circuit modules to the speaker enclosure.  As usual 
the supply will be filtered so that each circuit receives a stable supply or reference 
voltage without excessive ripple. 
 

5.6.1.2 Atmega88 MCU (3.3V) 
 
The ATmega88 may not be required in the tabletop module if the wireless modules 
are connected directly to the Tiva C.  There are advantages and disadvantages to 
using this MCU between the Tiva C and wireless modules.  Advantages include 
only having to implement one NRF24L01 SPI library and less tasks assigned to 
the Tiva C so that audio quality/ latency may be improved.  One disadvantage is 
the added cost of the additional MCUs.   
 

5.6.1.3 NRF24L01 Module  
 
The NRF24L01 will be connected to the SPI port of the Tiva C to accept messages 
from hand modules.  Shown in the figure below, the module will be connected 
either directly to the Tiva C to the ATmega88 which will relay data to the Tiva C as 
discussed in the precious section.   Female headers will be soldered to the perf 
mother board so that these modules will simply plug in. 

 
Figure 50: The NRF24L01 Wireless Module 

 

5.6.1.4 SD Card Module  
 
To connect an SD card to our Tiva C Series microcontroller Glove Drummer will 
require an SD card Module that is connected with the correct pin assignments. SD 
cards of any size can be used with ease. Note that the mainboard has to support 
the FAT file system. Our Tiva C series supports the FAT file system so the team 
doesn’t need to worry about that. This kind of SD module makes use of the SPI 
based (1-bit bus)  to access the memory card. They also include a 3.3v regulator 
chip on-board (the same as our microcontroller) so we can supply +5v if we need 
to. This gives us a simple way to connect/disconnect our SD card and know that 
is it connected to our system correctly. Below is the SD card module the team has 



Group 15 

69 

decided on for our project, and it has plenty of documentation to provide a smooth 
integration. 
 

 
Figure 51: SD Card Logging Shield to be connected to Tiva C 

 

5.6.1.5 Bass Drum Pedal Piezo Conditioning Circuit 
 
One of the analog input pins of the Tiva C will need to be connected to the circuit 
shown in the figure below.  Since the Tiva C is a 3.3V MCU, the opamp will be 
biased with 3.3V opposed to 5V.  This circuit is the same one that is being used in 
the hand modules as the bass drum pedal uses the same piezo sensors.  A piezo 
sensor will be mounted in the bottom of the pedal housing.  The top of the pedal 
housing will have an attached piece of plastic bent at a right angle.  This piece of 
plastic will strike the bass drum pedal piezo when the pedal is full depressed.  A 
similar approach may be used in the hi hat controller pedal in order to generate to 
the foot splash sound. 
 

 

Figure 52 : First prototype bass drum pedal conditioning circuit on perf board 

 



Group 15 

70 

5.6.1.6 Audio Amplifier Circuits 
 
The tabletop modules headphone and speaker amplifier circuits will be built onto 
perf board as well.  The OPA134 will be used in conjunction with metal film 
resistors and capacitors.  Connections to the Tiva Cs PWM port will be made via 
the header pins.  A panel mount 1/8th inch jack will facilitate the connection of the 
headphones.  This headphone jack is a “switched” type jack which detects the 
insertion of the headphones and opens a switch.  When this switch is opened, the 
PWM signal will be routed to the headphone amp circuit rather than the speaker 
amp circuit.  Panel mount logarithmic potentiometers will allow for volume 
adjustment of the headphones and speaker.   
 

5.6.1.7 Tabletop Module I/O 
 
All data input to the tabletop module will be obtained wirelessly through the 
NRF24L01 module.  Data outputs of the tabletop module include the speaker and 
the headphone output jack.  The headphone output jack is a “switched” type jack 
which allows for the speaker amplifier circuit to be bypassed upon insertion of the 
headphones.  As for power input to the tabletop module, a simple PCB mount 
barrel jack connector will be used.   
 

6.0 Piezo Signal Conditioning 
 

6.1 The Unconditioned Piezo Signal 
 
In planning the piezo conditioning circuit, the Tektronix Digital Storage storage 
oscilloscope (scope) was used to view the pulses generated by striking the piezo 
against the table.  The sensors were fastened to the index fingertip of the glove 
and the resulting signal was observed on the scope.  The proper trigger setting 
had to be determined in order to properly capture the pulses.  These trigger 
settings were documented for future work with the sensors and oscilloscope. 
 
The sensor, which is made up of a 9.5mm piezo transducer sandwiched in 
between a brass disk and a foam rubber disk, creates an AC voltage when the 
piezo crystal inside is deformed.  Positive and Negative pulses are produced as 
the piezo crystal reverberates as shown in the figure below.  Additionally, the force 
exerted in striking the sensor against the table is proportional the peak magnitudes 
of those pulses.  This is a very important characteristic for the sensor to have since 
Glove Drummer will play back different drum sounds for a certain drum hit with 
varying force.  Surprisingly, the peak voltages were lower than expected based on 
electronic drum projects using larger piezo sensors.  The team reasoned that since 
the size of the piezo crystal used here is smaller than in those projects, the 
resulting voltage waveform would also be smaller.   
 



Group 15 

71 

Exceptionally hard hits of the sensor against the table resulted in clipping on the 
scope which could mean a few different things.  One is that the sensor is simply 
not meant to be struck this hard and more padding should be added to the overall 
sensor design.  Other theories are that the rise time was too fast  or the peak was 
too high for scope to capture.  In either case, not striking the sensors “too hard” 
and clamping the sensor signal to +Vref = 5V or 3.3V, depending on which ADC is 
used, will be a good idea.  Of course the negative portions of the signal will need 
to be rectified as well in order to interface the sensors to one the ADCs available 
to the team. 
 

 
Figure 53: The Tabletop Module in the breadboard phase 

 
In addition to evaluating the magnitudes of the waveforms generated during a 
strike of the sensor, the length of the response was also noted.  In Figure below, 
a waveform resulting from striking the index fingertip sensor repeatedly against the 
table at the fastest speed attainable by the members of the team is shown.  Each 
individual strike of the sensor creates a pulse that dies out long before the next 
strike of the sensor.  This is a very important characteristic for the sensor to have 
since users will be tapping their fingers very quickly at times.  The ~150ms time 
period in between strikes correlates to about a 400 beat per minute (bpm) tempo 
for a single finger tap.  Therefore with two fingers tapping alternately, a “drum roll” 
of approximately 800 bpm in tempo should be achievable.  Also, noting the 150ms 
period between strikes will be useful in “debouncing” the sensor.  Some strikes 
produce unwanted spikes in voltage long after the initial pulse. This would result in 
a “double trigger” where the drum sound plays more than once resulting in a 
machine gun type sound.  This double trigger effect could be avoided using a 
counter that counts to 150ms after a valid strike before it allows another valid strike 
message to be sent.  These preliminary tests proved to the team that while this 
exact sensor design has never been used in glove controllers, it could be very 
effective. 
 



Group 15 

72 

 
Figure 54: Time in between pulses produced by fastest single-finger tap possible 

 

6.2 The Piezo Conditioning Circuit 
 

6.2.1 Op Amp Selection 
 
Since the piezo transducer has a high output impedance, amplification is 
necessary.  Viewing the scope screen shots of the piezo sensors illustrated the 
need to rectify and clamp the sensor signal but did not account for the high 
impedance setting of the oscilloscope.  The input specifications of the ADCs 
available to the team all include a max value for the output impedance of what is 
connected to the ADC.   For this reason, JFET op amps were an obvious choice 
because of their high input impedance.  The differential pair found at the input of 
these JFET op amps are made with transistors that are a mixture of BJTs and 
MOSFETs.  This will result in a higher input impedance than if a standard BJT 
differential pair was used.   
 
Another figure of merit in selecting an appropriate op amp was the range of 
voltages available to DC bias the chip.  A “single-supply” op amp that can output 
voltages from rail to rail was desired for the ease of providing dc power.  With 
a  single-supply op amp,  the negative DC supply terminal is connected ground 
and the positive DC terminal is connected to Vcc  (Vcc = 5V in this case).  This 
type of op amp operates solely off the regulated 5V power supply and ground with 
no negative DC bias needed.  It is also desirable that the conditioned piezo signal 
will clip exactly at 5V, so the op amp should be able to drive output voltages from 
“rail to rail.”  If an op amp cannot drive its output to the top rail of 5V, then the full 
zero to five volt range cannot be used and velocity sensitivity would be 
diminished.  As cost is always an issue, no op amps costing more than a few 
dollars each will be considered.  The current choices are dual and quad op amp 



Group 15 

73 

Dual Inline Packages (DIPs) which will fit in the breadboard and not take up too 
much PCB real estate versus single op amp chips.  Another important factor in 
selecting parts is that the team is able to obtain free samples.  More expensive op 
amps based on CMOS transistors which consume less power and have even 
higher input impedance may be sampled at no cost.  For this reason alone the 
team may choose to experiment with some more costly op amps and other higher 
priced ICs.  A comparison of some of the op amps chosen is shown below.  All of 
these ICs were chosen first based on if a DIP packages have been made so that 
the team could experiment with them in the breadboard. 
 
Table 5: Op Amp Comparisons 

Part # Manufacturer Technology 5V Single Supply ? Rail to Rail ? 

LM324 TI BJT N N 

TL072 TI JFET, BJT N Y 

AD822 Analog Devices JFET, BJT Y Y 

OPA350 TI CMOS Y Y 

 
The team’s final decision was to use the OPA350 op amp from TI.  With CMOS 
technology, the analog conditioning circuitry will consume less power.  The added 
cost of using CMOS transistors was of no concern since the team will be sampling 
the parts from TI.  This a high performance, low voltage chip that may be excessive 
to use in this situation.  If Glove Drummer went into production, a les expensive op 
amp might be chosen.   
 

6.2.2 Bounding the Piezo Signal between Ground and 
Vcc 
 
The exact allowed range of input voltages to the ADC0820 chip are defined in the 
datasheet as -200mV to 4.8V where Vcc=5V.  Figure below illustrates the effect of 
adding a simple 1n4148 diode in series with the positive piezo terminal for a light 
and a hard strike of the sensor against a table.  The diode effectively removes the 
negative portion of the piezo signal, which is good for the ADC but may have some 
repercussions.  If the first largest peak produced by the strike of the sensor was 
negative then the half wave rectifier circuit would discard the larger negative peak 
leaving the ADC to read the following smaller positive peak.  It may be a good idea 
to use a full wave rectifier circuit in order to keep this negative peak information. 
 



Group 15 

74 

 

Figure 55: Light and Medium strikes of the sensor after half-wave rectification 

 
Some very hard strikes will still produce a peak voltage of >10V so this peak must 
be attenuated somehow before interfacing the sensors to the ADC.  This is where 
the addition of a BAT85 Schottky diode can be of use.  When placed between the 
signal and ground, it effectively limits the output voltage to 5V.  The voltage will be 
limited furthermore by the addition of an op amp circuit which cannot amplify past 
its upper supply rail. 
 

6.2.4 The Final Conditioning Circuit Design 
 
The final circuit for interfacing the piezos to the ADC is shown in the schematic 
figure below . This circuit was modeled after several circuits that have been built 
for the purpose of building an electronic drum kit.  One in particular electronic drum 
project which very well documented was found at edrum.info (source_8).  This 
circuit not only amplifies the signal, but also filters out the components of the signal 
that are far from the piezos resonant frequency.  The pass band of this circuit is 
centered at 20Hz.  Also shown below are screenshots of the fully conditioned 
signal.  It should be noted that there is not a drastic difference in these signals 
when compared to the half wave rectified signals.  This is because of the high input 
impedance of the oscilloscope.  If the half wave rectified signal were fed into the 
ADC0820 the voltage drop across the piezos output impedance would reduce the 
signal's magnitude, resulting in reduced velocity sensitivity. 
 



Group 15 

75 

 
Figure 56: The Piezo Conditioning Circuit 

 

 

Figure 57: Screenshots of the Conditioned Piezo Signal 

7.0 PCB Planning 
 
Planning the PCB design is an arduous process where small mistakes can cost 
dearly in both time and money.  Having built most of the circuits on the breadboard, 
the team has the working knowledge of how to interconnect the different functional 
blocks.  Designing a PCB is similar to imaging the wires and layout of the 
breadboarded design shrinking down to the smallest possible size.  Pads and 
traces will be at scale almost too small for human eyes in some cases and parts 
will shrink as well.  While the team has selected parts in DIP packages for 
prototyping, surface mount devices (SMDs) will be used on the PCB.  This works 
out since DIP packages are becoming less popular and almost any DIP device will 
also be manufactured as SMD.  Resistors and capacitors, like ICs, will also be 
SMD and will be chosen at the same power rating (1/4W) as the through hole 
resistors (Rs), diodes (Ds), and capacitors (Cs) used in the breadboards.  As the 
power rating of an SMD R or C determines its size, if the power rating is found to 
be excessive it will be reduced.  Some SMD Rs and Cs with very low power rating 
are even too small for the Glove Drummer team to solder by hand to the 
PCB.  Therefore a happy medium between small size and a high enough power 
rating should be found when choosing SMD Rs, Cs, and Ds. 
 
The team has decided to focus their PCB efforts on the hand modules to reduce 
the bulkiness of the project enclosure mounted to the forearms.  Careful planning 



Group 15 

76 

of the overall size of the PCB will be taken into account in selecting a proper 
enclosure.  The enclosure will be clear plastic so that status LEDs may be viewed 
without mounting them externally.  Another reason to choose plastic for the 
enclosure is that the team worried a metal box would mean trouble for any type of 
wireless communication. The enclosure will also facilitate the connection to a 
2.1mm PCB mount barrel jack for charging of an 18650 lithium ion battery as well 
as an opening for an on/ off switch.  Sensor input wires will be connected with 
2.54mm header pins so that sensors may be easily replaced if they are damaged 
in any way.  A slot will routed from the enclosure near the wrist in order to connect 
the sensors to these header pins.   
 
Once designed in Eagle CAD software, the PCB design will be sent to Osh 
Park.  Osh Park was is a good choice since the sell PCBs in lots of three and this 
project requires two identical PCBs.  The extra PCB will be good to have as a 
backup in case of soldering difficulties.  If the budget allows, a four layer PCB will 
be ordered.  A four layer PCB will allow the PCB to be much smaller and the project 
enclosures strapped to the forearms to be even less bulky.  Components will be 
soldered by reflow using a hot plate.  Some components may also be soldered by 
hand.  Because of the low cost and complexity of the Spartan FPGA development 
board, it will be plugged into the custom PCB.  This development board has an 
unknown amount of layers which is greater than four and cannot be reproduced in 
the same footprint by the Glove Drummer team.  The ability to simply plug in the 
FPGA board to the custom PCB will also mean reducing the overall footprint of the 
PCB.  The clear project enclosure will fit the stacked boards with room to spare 
and the space underneath the FPGA can then be populated with traces and 
components.  PCB mount female headers with a pitch of 2.0mm will be created in 
Eagle and spaced exactly to accommodate the 124 pins of the FPGA dev board. 
 

7.1 Signal Integrity   
 
Anywhere high frequencies are transmitting through the copper traces on the 
Glove Drummer PCB are areas of concern for ringing.  If input and output 
impedances are not matched properly, signals will reflect causing momentary 
overshoot of the proper logic level (ie 5V or 3.3V).  This can lead to intermittent 
failures in the circuitry which can be even worse than complete failure when trying 
to find a solution.  Input and output impedances can be properly matched by 
calculating the inductance for the area of a copper trace while considering the 
parasitic capacitances of the header pins.  By calculating the correct component 
values required and implementing a “snubber circuit” impedances will be properly 
matched and intermittent failures can be avoided.  Ground planes can also help by 
supplying some capacitance nearby hi frequency copper traces which can 
effectively eliminate the inductance of  that trace. In the teams’ Embedded 
Systems course over the Summer of 2014, Dr. Weeks stressed the importance of 
signal integrity in hardware design.  This information will be of great use to the 
team in avoiding some potential pitfalls of PCB planning. 
 



Group 15 

77 

7.2 Custom PCB for Left/ Right hand Modules 
 

7.2.1 Power Supply 
 
In designing the PCB, the team has planned for a wireless implementation of the 
hand modules.  This meant including a portable power source.  The 18650 lithium 
ion battery was chosen because of its high power desnity and relatively low cost.  
It was also chosen because of the wealth of information that exists about using 
these batteries.  A solution had to be found that regulated the varying voltage that 
comes from these batteries.  Lucky for the team, Texas Instruments has taken a 
lot of time to consider battery powered device design.  The TPS line of ICs from 
T.I. were selected as they give the most complete power solution compared to 
other power management ICs.  The BQ24074 is designed to charge a single 18650 
lithium ion cell while at the same time powering the system.  A boost DC to DC 
switching regulator is used to create a +5V supply rail.  To create a +3.3V rail, a 
buck/ boost regulator will be used.  These ICs have a special pad on their 
underside which is meant to be connected to “power ground.”  This makes for three 
separate grounds that can be found in the Glove Drummer schematic.  Each of 
these grounds will make use of a start pattern to return current from each 
respective component.  All three of these grounds will all come together at one 
point as well. 
 

 
 

Figure 58: Battery charger and voltage regulators for custom PCB 

 
 
 
 

7.2.3 Integrated Circuits (ICs) 
 

7.2.3.1 ICs Tied to Analog Ground 
 



Group 15 

78 

The first ICs tied to analog ground in the signal chain are the OPA350 op 
amps.  Though they are shown in the figure below as discrete components, the 
actual PCB will contain two quad packages.  This quad package is called the 
OPA4350.  There will be two unused op amps in this configuration.   The array of 
op amp circuits shown in the figure below make up the complete analog 
conditioning circuitry that prepare the piezo signals for interfacing to the ADC. 

 
Figure 59: Array of six piezo conditioning circuits 

 
After the analog conditioning circuitry, the next IC tied to analog ground is the 
DG509B dual 4:1 MUX.  The connections are shown in the figure below.  The 
inputs to the DG509B route the conditioned analog signals to one of two 
ADC0820s.  Only one ADC0820 is shown in the figure below however.  The 
ADC0820s will leave the LSb of their parallel output unconnected.  The reason for 
discarding this bit of information is to adhere to the MIDI protocol of using seven 
bits for velocity data.   



Group 15 

79 

 
Figure 60: DG509 connection to one ADC0820 

 

7.2.3.2 ICs tied to Digital GND 
 
The first ICs in the signal chain tied to digital ground will be the level shifter ICs.  
Each will require a 5V and a 3.3V supply.  According to whether the DIR pin is 
driven low or high (with respect to Vcca), the direction of data flow is determined 
as shown in the two figures below.  Additional filter capacitors will be added as 
close as possible to the shifter Vcc pins (not shown in figures).  Data outputs from 
the ADC will need to be shifted down, while control signals from the FPGA will 
require shifting up.  The FPGA dev board that plugs into the custom PCB as well 
as the ATmega88 and NRF24L01 will also be tied to the digital ground.  These 
devices create fast switching currents that if allowed to return through an analog 
ground will create undesirable effects.  This is the main reason to separate analog 
and digital grounds as much as possible before connecting them at some point 
near the power management section of the PCB.  Some of these ICs can be found 
in the following figures and in the complete schematic given at the end of this 
section. 



Group 15 

80 

 
Figure 61: Level Shifter for ADC data output and interrupt signals 

 
Figure 62: Level Shifter for MUX and ADC control signals 

7.2.4 Clock Circuits 
 
The ATmega88 MCU will require an external clock.  The team has chosen to 
design the clock circuit after the Atmega88 development board with a 16MHz 
crystal and two matching ceramic capacitors as shown in the figure below.  This 
clock signal may have been provided very easily by the FPGA and may be 
changed to operate in this manner.  The reason for not providing the ATmega’s 
clock from the FPGA was a matter of not knowing the correct manner to make the 
physical connection.  Having seen examples of clock circuits used in breadboards 
with MCUs, the team decided to work with what they have seen works. 



Group 15 

81 

 
Figure 63: Atmega88 clock circuit 

 

7.2.5 Programming Interfaces 
 
Since the FPGA development will be plugged into the Hand Module PCBs, all 
programming of the FPGA will be done through the included JTAG 
header.  However the ATmega88 will require an In Circuit Serial Programming 
(ISP) header to be installed somewhere on the PCB.  Atmel uses a ten pin header 
connected to the SPI bus of the MCU for programming their dev board mounted 
chips.  Special care must be taken when using the SPI bus for tasks other than 
programming (source9).  The programmer needs to be able to access the SPI port 
during programming and in this case the NRF24L01 needs to access it later.  In 
order to accomplish this, 1kOhm series resistors are added to each wire on the 
SPI bus in between the programming header and the NRF24L01. With the setup 
shown below, the ATmega88 will be able to be programmed throught the ISP 
header after the IC has been soldered to the PCB and will also be able to 
communicate with the NRF24L01 after programming. 



Group 15 

82 

 
Figure 64: ATmega88 ISP header and NRF24L01 connection 

 

7.2.6 Bill of Materials (BoM) 
 
Found below is the bill of materials for one hand module PCB.   Surface mount R, 
L, C and D are being purchased from eBay in lots of 50 for around a dollar per lot.  
Accordingly, many of these components will have a blank space in the Cost 
column.  Also the total cost of both hand modules will be less than the amount 
given at the very bottom as lots of 50 inmost cases will accommodate the 
construction of both hand modules.  The ICs listed in the BoM having $0.00 cost 
to the team were sampled from T.I. and Vishay. 
 

Item 
Schematics 

Ref 
Value Packaging Part # or Description Source Cost 

1 C1 100n C1206 SMD Capacitor eBay $0.99 

2 C2 100n C1206 SMD Capacitor eBay   

3 C3 100n C1206 SMD Capacitor eBay   

4 C4 100n C1206 SMD Capacitor eBay   

5 C5 100n C1206 SMD Capacitor eBay   

6 C6 100n C1206 SMD Capacitor eBay   

7 C7 1u C1206 SMD Capacitor eBay $0.99 

8 C8 4.7u C1206 SMD Capacitor eBay $0.99 

9 C9 100n C1206 SMD Capacitor eBay   



Group 15 

83 

10 C10 100n C1206 SMD Capacitor eBay   

11 C11 100n C1206 SMD Capacitor eBay   

12 C12 4.7u C1206 SMD Capacitor eBay   

13 C13 100n C1206 SMD Capacitor eBay   

14 C14 100n C1206 SMD Capacitor eBay   

15 C15 100n C1206 SMD Capacitor eBay   

16 C16 10u C1206 SMD Capacitor eBay $0.99 

17 C17 10u C1206 SMD Capacitor eBay   

18 C18 10u C1206 SMD Capacitor eBay   

19 C19 2.2u C1206 SMD Capacitor eBay $0.99 

20 C20 220u C1206 SMD Capacitor eBay $0.99 

21 C21 2.2p C1206 SMD Capacitor eBay   

22 C22 2.2p C1206 SMD Capacitor eBay   

23 D1 BAT85 DIODE_SMB SMD Diode eBay $1.32 

24 D2 BAT85 DIODE_SMB SMD Diode eBay   

25 D3 BAT85 DIODE_SMB SMD Diode eBay   

26 D4 1N4148 DIODE_SMB SMD Diode eBay $1.32 

27 D5 1N4148 DIODE_SMB SMD Diode eBay   

28 D6 1N4148 DIODE_SMB SMD Diode eBay   

29 D7 BAT85 DIODE_SMB SMD Diode eBay   

30 D8 BAT85 DIODE_SMB SMD Diode eBay   

31 D9 BAT85 DIODE_SMB SMD Diode eBay   

32 D10 1N4148 DIODE_SMB SMD Diode eBay   

33 D11 1N4148 DIODE_SMB SMD Diode eBay   

34 D12 1N4148 DIODE_SMB SMD Diode eBay   

35 J1   2.54mm PITCH ANALOG_IN_HEADER eBay $0.24 

36 J2   2.54mm PITCH DIGITAL_IN_HEADER eBay $0.48 

37 J3     FEMALE_BARREL_JACK eBay $0.65 

38 J4   2.54mm PITCH ISP_HEADER eBay $0.48 

39 L1 6.8u L4532P SMD Inductor eBay $1.98 

40 L2 2.2u L4532P SMD Inductor eBay $1.98 

41 LED1 GREEN LED_1206 SMD LED eBay $0.99 

42 LED2 RED LED_1206 SMD LED eBay $0.99 

43 LED3 BLUE LED_1206 SMD LED eBay $0.99 

44 LED4 WHITE LED_1206 SMD LED eBay $0.99 

45 MODULE1     FPGA DEV BOARD eBay $34.99 

46 MODULE2     NRF24L01 MODULE eBay $1.26 

47 Q1 16MHz HC49/S CRYSTAL OSCILLATOR eBay $0.96 



Group 15 

84 

48 R1 47K R1210 SMD Resistor eBay $0.99 

49 R2 47K R1210 SMD Resistor eBay   

50 R3 47K R1210 SMD Resistor eBay   

51 R4 100K R1210 SMD Resistor eBay $0.99 

52 R5 100K R1210 SMD Resistor eBay   

53 R6 100K R1210 SMD Resistor eBay   

54 R7 100K R1210 SMD Resistor eBay   

55 R8 100K R1210 SMD Resistor eBay   

56 R9 100K R1210 SMD Resistor eBay   

57 R10 1K R1210 SMD Resistor eBay $0.99 

58 R11 1K R1210 SMD Resistor eBay   

59 R12 1K R1210 SMD Resistor eBay   

60 R13 1.5K R1210 SMD Resistor eBay $0.99 

61 R14 4.12K R1210 SMD Resistor eBay $0.99 

62 R15 1.18K R1210 SMD Resistor eBay $1.98 

63 R16 1.5K R1210 SMD Resistor eBay $1.98 

64 R17 1.13K R1210 SMD Resistor eBay $0.99 

65 R18 47K R1210 SMD Resistor eBay   

66 R19 47K R1210 SMD Resistor eBay   

67 R20 47K R1210 SMD Resistor eBay   

68 R21 100K R1210 SMD Resistor eBay   

69 R22 100K R1210 SMD Resistor eBay   

70 R23 100K R1210 SMD Resistor eBay   

71 R24 100K R1210 SMD Resistor eBay   

72 R25 100K R1210 SMD Resistor eBay   

73 R26 100K R1210 SMD Resistor eBay   

74 R27 1K R1210 SMD Resistor eBay   

75 R28 1K R1210 SMD Resistor eBay   

76 R29 1K R1210 SMD Resistor eBay   

77 R30 330 R1210 SMD Resistor eBay $0.99 

78 R31 330 R1210 SMD Resistor eBay   

79 R32 330 R1210 SMD Resistor eBay   

80 R33 330 R1210 SMD Resistor eBay   

81 R34 1K R1210 SMD Resistor eBay   

82 R35 1K R1210 SMD Resistor eBay   

83 R36 1K R1210 SMD Resistor eBay   

84 U$1 3000mAh   18650_LITHIUM_BATTERY eBay $5.63 

85 U$10   TSSOP ATMEGA88 eBay $3.48 



Group 15 

85 

86 U1   SOIC OPA350 OP AMP T.I. $0.00 

87 U2   SOIC OPA350 OP AMP T.I. $0.00 

88 U3   SOIC OPA350 OP AMP T.I. $0.00 

89 U4   SOIC BQ24072 T.I. $0.00 

90 U5   SOIC OPA350 OP AMP T.I. $0.00 

91 U6   SOIC OPA350 OP AMP T.I. $0.00 

92 U7   SOIC OPA350 OP AMP T.I. $0.00 

93 U8   SOIC TPS61032 5V REG T.I. $0.00 

94 U9   SOIC TPS63001 3.3V REG T.I. $0.00 

95 
U10   TSSOP 

DG509BEJ-E3 DUAL 4:1 
MUX Vishay $0.00 

96 U11   SOIC ADC0820CCWM 5V ADC T.I. $0.00 

97 U12   SOIC ADC0820CCWM 5V ADC T.I. $0.00 

98 U13   BGA SN74LVC8T245 SHIFTER T.I. $0.00 

99 U14   BGA SN74LVC8T245 SHIFTER T.I. $0.00 

100 U15   BGA SN74LVC8T245 SHIFTER T.I. $0.00 

    Total cost for one hand  module =  $75.56 

    Total cost for both hand modules =  $151.12 

 
7.2.7 Complete Hand Module PCB Schematic 
 



Group 15 

86 

 
 
 



Group 15 

87 

 

8.0 Assessing Latency and Jitter 
 
Latency is mentioned in many of sections above for good reason – no matter what 
Glove Drummer does accomplish, none of it will be of any worth if latency is is too 
great.  A nominal value for the threshold of noticeable latency has been defined by 
the team at 15ms.  Latency is refered to here as the time between the strike of the 
sensor to the time a sound is created.  Some people may be able to recognize 
latency of less than 15ms while others might not be able to detect a latency of 
30ms.  Knowing that MCU’s have been extensively used in MIDI controllers, the 
team feels that latency should absolutely not be an issue with the use of an FPGA.  
However, the added devices which relay information between the FPGA of the 
hand modules and the Tiva C of the tabletop module will introduce additional 
latency.  In addition to latency, jitter is another timing issue which is undesirable in 
musical instrument controllers.  Jitter can be explained as individual drum strikes 
all having different latencies.  Too much jitter can even sound worse than a uniform 
latency of greater than 15ms.  The team plans to continue the design of Glove 
Drummer keeping the minimization of any latency or jitter of the utmost importance. 
 

9.0 Administrative Content 
 

9.1 Milestone Discussion 
 
During the Fall 2014 Senior Design I semester, the team focused mainly on 
defining what Glove Drummer should be.   The divide and conquer method was 
used extensively in approaching the different aspects of designing the Glove 
Drummer system.  Additionally the team used abstraction in order to focus on 
issues at an appropriate scale. Projected deadlines were made based on what the 
individual team members found through research.  For example, since research 
had shown that the 9.5mm piezo disks had never been used in a glove controller, 
verifying their functionality was an initial concern.  Therefore one of the first tasks 
the team completed was an in depth look at just how much analog conditioning 
circuitry was needed.  In this case, the team decided only as much circuitry should 
be used as was required not to damage to ADC.  Any remaining conditioning, or 
filtering, could easily be done within the FPGA. 
 
Planning the project so that no major road blocks were encountered proved a tricky 
task.  It seemed that encountering more small obstacles that were easier to 
overcome was the only way to avoid being stumped by some major problem.  The 
entire semester has been somewhat of a “sink or swim” situation.  With each small 
problem the team solved, confidence was built that Glove Drummer would become 
a reality.  After all an engineer’s main purpose is to solve problems.  Sometimes 
solving a problem meant checking whatever math was involved so that some code 
ran correctly.  Other times it meant removing unnecessary wiring or components 
from the breadboard to get rid of unwanted noise in the piezo signal.  Many times 



Group 15 

88 

wires were simply connected to the wrong pin.  Identifying the real root of each 
problem is where the team felt real success.  The team “learned to swim” with a 
little creativity, a lot of critical thinking, and the sheer determination not to sink.  By 
the end of the Senior Design I semester, the team had already put together one 
functional hand model on a breadboard using the FPGA dev board, and ADC0820, 
and the FT232 UART/Serial converter.  This was one the main goals: to get the 
MIDI controller (hand module) out of the way so that the MIDI sequencer (tabletop 
module) could be focused on in the Spring of 2015. 
 
Although one hand module had already been implemented on the breadboard, a 
custom PCB still needed to be mostly designed in the Fall semester.  Having no 
errors in the PCB design may be the most critical aspect of completing this Senior 
Design project.  Designing the schematic for the PCB was a gradual process in the 
search for a solution.  The Simulated Annealing Algorithm was considered in the 
search for a PCB design solution.  Early in the Fall semester many different 
solutions were explored, but as the end of the semester drew closer the team 
settled for the schematic shown in the PCB Planning section.  Hardware design 
was a more pressing issue than software as the code can be altered throughout 
the Spring semester.  Having said that, hardware and software design still went 
hand and hand through Senior Design I.  In order to design plan the eventual PCB, 
some thought went into what software design would support the hardware design.  
Many decisions made by the team were nested inside one another and the 
absolute best solution was not always evident.  Moving forward into the Senior 
Design II semester, the Glove Drummer team has confidence that with the 
experience gained through research and prototyping that the final realization of the 
system will be a success.  Shown below is a timeline of the milestones the team 
set out to complete in Senior Design I & II. 
 

 
Figure 65: Glove Drummer Milestone Timeline 

 
 

9.2 Budget and Finance 
 



Group 15 

89 

The financing of Glove Drummer began with some initial purchases made by 
Aaron.  Experimenting with different parts and purchasing a few tools like wire 
strippers and breadboards meant that there would be some overhead costs.  Some 
ICs that are not manufactured as DIP were found included in assembled PCBs.  
These circuit modules were very useful in prototyping, but also counted as 
overhead costs in designing Glove Drummer.  Once the team learned to search 
for free samples from vendors, parts began to be selected based on sample 
availability.  This not only reduced the total required cost but also allowed the team 
to experiment with a much wider selection of ICs.  Ebay served as the source for 
many components because of its low prices on parts that could not be sampled.  
Going into Senior Design II, roughly $275 worth of parts, including the PCB, have 
yet to be purchased. It should also be noted that much of the remaining items to 
be purchased are duplicate items required for the second hand module.  
 
Table 6: The Glove Drummer Budget 

Team Member Contribution 

Aaron $400 

Mike $150 

Tim $150 

Total Budget  =  $700 

 
Table 7: Cost of Glove Drummer Subsystems 

Parts Cost 

Hand Module Components $180 

Hand Module PCBs  (4 layer) $150 

Tabletop Module Parts $200 

Parts not used in final design $170 

Total cost of developing prototype =  $700 

 

10.0 Conclusions 
 
Throughout the course of Senior Design I the Glove Drummer team has sought to 
use the tools that have been given to us in our respective curriculums.   
Understanding how MIDI controllers and MIDI sequencers are designed has been 
a major advantage to the team.  Also, using the divide and conquer method has 
helped the team to break a seemingly insurmountable workload into small 
manageable pieces.  Division of labor amongst the team members helped to even 



Group 15 

90 

further diminish the scope of the project.  Tasks were broken down sometimes to 
the point where they were divorced from the needed solution in order to get the 
search for the solution jump started.  This would lead to a snowball effect that 
eventually led to the final solution.  This all sounds very abstract, and abstraction 
is in fact another technique the team used to focus in on a particular issue.  For 
example, when writing a “Hello World” code in the C language, no consideration 
should be given to how to write that code strictly in machine language.  The most 
important part of using these techniques is knowing how and when to use them.  
Of course having a strong mathematics and physics background is an even more 
basic and crucial skill to employ.  Maybe the most basic and crucial skill is critical 
thinking.  With all of these tools put together and a bit of creativity an engineer can 
accomplish almost anything. 
 
The initial shock at the scope of what was expected to be accomplished in Senior 
Design subsided more and more with each new problem the team overcame.  
Many new concepts such as SPI protocol, using ADCs/ DACs, wireless between 
MCUs, and files systems among other things.  Not only would the tools mentioned 
above be needed but also careful organization and planning to make sure every 
task was finished correctly and on time.  Being able to stay focused while moving 
from one task to the next required more abstraction from the tasks that were not 
being examined.  Concentrating on areas of work that were yielding more results 
kept the teams morale up in between roadblocks.  Also the time spent away from 
problem areas sometimes led to a fresh outlook and a more clever solution.  
Heading into Senior Design II, the team has many more obstacles to overcome 
and hopes to keep the momentum rolling during the transition from Senior Design 
I.   
 

Appendix: References 
 
(source1). Retrieved October 24th, 2014, from 

http://www.midi.org/aboutmidi/tut_history.php 
(source2). Retrieved November 2nd, 2014, from 

http://www.drummagazine.com/features/print/200-greatest-drumming-
moments-events 

 (source3). Retrieved November 15th, 2014, from 
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Persistence_of_
vision.html 

(source4). Retrieved November 20th, 2014, from 
http://headwize.com/?page_id=707 

(source5). Retrieved October 23rd, 2014, from 
https://github.com/maniacbug/RF24 

(source6). Retrieved November 12th, 2014, from 
http://www.voegler.eu/pub/audio/digital-audio-mixing-and-
normalization.html 



Group 15 

91 

(source7). Retrieved November 18th, 2014, from 
http://www.ti.com/lit/ds/symlink/adc0820-n.pdf 

(source8). Retrieved November 3rd, 2014, from http://edrum.info/schematics.html 
(source9). Retrieved November 18th, 2014, from 

http://avrprogrammers.com/articles/avr-spi-tips 
Palshikar, G. K. (n.d.). Simple Algorithms fro Peak Detection in Time-Series. Tata 

Research Development and Design Center (TRDDC). 
Sholkman, F., Boss, J., & Wolf, M. (2012). An Efficient Algorith for Automatic 

Peak Detection in Noisy Periodic and Quasi Periodic Signals. Algorithms, 
588-603. 

 
 

 
 
 
 

 


