
Beacon Indoor Navigation
System

Andre E. Compagno, Joshua J. Facchinello,
Jonathan E. Mejias, and Pedro Perez

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — This paper discusses the design methodology
for creating an indoor navigation system using beacons that
emit Bluetooth signals to a listening Android device, which
provide important localization information. Topics included
in the beacon design range from proper antenna design to
utilizing solar cells and various batteries for power to
interface with the Nordic nrf51822 system on a chip QFN
package. Topics involved in the application software design
include Bluetooth signal processing within the Android
operating system, algorithms for user localization, optimal
pathfinding for navigation, DynamoDB utilization for
retrieving environment information, and user interface
design for ease of use.

Index Terms — Indoor navigation, Bluetooth, beacons,
antennas, low power.

I. INTRODUCTION

 This project provides an inexpensive, low-power, and
expandable infrastructure for an indoor navigation system.
The goal of this system is to allow a user that has an
Android device to be able to connect to a building’s
navigation network, input where they need to go within
the building, then be guided by audio through the building
to their desired destination. GPS is not a viable option for
moving through a structure indoors due to the possibility
of signal loss and the inability to localize a user in a
building with multiple floors due to GPS only working in
latitude and longitude and not three dimensions, which is
the reason for using beacons. Android was chosen as the
application platform due to its wide prevalence in the
mobile device market as well as its open-source model.
The specific device chosen for navigation in particular
will be Google Glass, which will allow navigation
information to be easily conveyed to the user.
 The hardware design for the beacons, which will be
placed throughout a building, consist of using the Nordic
nrf51822 SoC, containing an ARM Cortex M0 processor
as the controller, which is powered by both a Lithium-ion
battery and a solar cell with the solar cell being the
primary source. At a determined rate, the Bluetooth signal

is emitted from an omnidirectional antenna. The Google
Glass device then receives the signal along with a
received signal strength indication (RSSI) value. Using
the RSSI value the user’s approximate location within the
building is snapped to the known location of the beacon
that is closest to the user. Then, with a destination given
by the user, a path is constructed between the user and
their destination. The user is then guided by Glass to the
destination with the application tracking the user’s
progress warning the user if they go off the path. Upon
reaching the desired destination, the process is complete.

II. APPLE IBEACON PROTOCOL

iBeacon is a Bluetooth Low Energy (LE) protocol
developed by Apple in order to extend Location Services
in iOS [1]. Fig. 1 displays all of the data included in an
iBeacon message.

Fig. 1. iBeacon advertisement package

The iBeacon protocol carries three separate values: the

Universally Unique Identifier (UUID), the Major value,
and the Minor value. The UUID is a sixteen byte ID. The
UUID defines a broad group of iBeacons and would be
common to all iBeacons being used by a specific
application or location. The Major value is a two byte
unsigned integer and is usually used to define a more
specific group of iBeacons within the group defined under
a UUID. The Minor value is also a two byte unsigned
integer that defines a specific iBeacon within a group of
iBeacons with the same Major value. There are other
values, which are not explicitly specified by Apple. One
of these values is the calibration RSSI. This value is the
two’s complement of the measured RSSI value at one
meter. It is used to calculate the estimated distance
between the user and the beacon. Due to the imprecise
signal readings, using the beacon signals to directly
approximate user distance is impractical, thus forcing
proximity to be used as the method for localizing the user.

If the signals were more reliable, trilateration could be
done to more accurately determine the user’s location. The
iBeacon prefix is nine bytes of information including
manufacturer information and Bluetooth signal flags.

III. AMAZON'S DYNAMODB FOR BUILDING INFORMATION

In order for the user to be able to navigate through a
building, the application must have access to the building
information that is important for navigating. Important
aspects of traversing through a building include room
names, number of floors, beacon positions, and a
collection of virtual nodes that map out the structure of the
building, which is used within the pathfinding module.
DynamoDB will be responsible for holding all of this
building information and for giving the information
whenever the application requests it.

DynamoDB is a NoSQL database provided by Amazon,
which offers a generous free-tier service. Using the
service also remains simple due to the Amazon Web
Services (AWS) SDK, which provides an API for creating
and querying tables using the Java programming
language.

Upon startup of the application, the application waits
for a certain number of different beacon signals to be
received. Once the number is reached, the UUID, which
uniquely specifies the building the user is in, with the
highest frequency amongst the set of beacon signal
readings is assumed to specify the building the user is
currently located in. This UUID is then used as a primary
key to query for all of the building’s navigation
information. The application waits until the query is
successful and the information is received before parsing
it and using it for the rest of the application’s processes.
 Another purpose for the database is to hold the tags of
specific nodes that are in the building. Within the
pathfinding module discussed later, some virtual nodes
will contain special names or tags that describe the
particular node and its role within the building. Tags can
be viewed as words that describe the node’s location
within the building. For example, if the building being
mapped is a school, one of the nodes might be at the
entrance to a classroom. Some tags for that node might be
the room number of the classroom, the name of the
teacher that teaches within the classroom, or the purpose
of that classroom, such as biology lab or chemistry lab. In
order for the mapping from tags to nodes to work
properly, each node must have tags that are unique from
any other node within the building, so that a unique tag
maps to one and only one node. Only nodes that mark
building landmarks need to have tags. The rest of the
nodes do not need tags, because they are only used to

traverse to the landmark nodes as sort of a middle point.
Some examples of landmark nodes are nodes that are
entrances to rooms, elevators, staircases, or any node that
can be used as a possible destination of the user. Once the
tag-to-node mappings are stored in the database, the
database will be able to accept a tag as an input and return
the node mapped to that tag. This specific query will be
used to determine where the user would like to go within
the building. The application will ask the user where they
would like to go and the user will be able to input tags for
their desired destination. If the tag cannot be found in the
system, then the user will be notified. The user will also
be able to view all of the tags or rooms within the building
in a list format, so that if the user’s given tag does not
match any in the database, they can still select the room
they want from the list if somehow they did not input the
right tag.
 Ultimately, if anything within the navigation system is
needed to be stored, it will be held in the database.
Currently, there is just the beacon and node information
stored, but if any other data is needed to be added to make
the system work more efficiently, it can be added to the
database.

IV. APPLICATION USER INTERFACE DESIGN

The Google Glass application is designed to be usable
by both visually impaired and non-visually impaired
users. Text and images will be displayed on the screen,
but the device will also communicate with the user by
speaking any text currently being displayed. In most
cases, the user will communicate with the application by
simply using their voice to speak a key phrase. The only
times the user will need to use the touchpad on the device
is to wake the device in order to start the application and
exit the application. Visually, the application will mostly
consist of brightly colored text and images on a black
background. This is due to the way in which the display
on the device works. The black sections will actually look
transparent, while the other sections will be visible.
Having a brightly colored background will direct too
much light into the user’s eyes making it uncomfortable,
especially in a dark environment.

Whenever the device is on the home screen, as
indicated by the clock and the “ok glass” prompt, the user
can simply speak the key phrase “ok glass” in order to
access the list of application-specific key phrases. This list
includes many different key phrases specified by
applications which correspond to an action the device
carries out. In order to start the directions application, the
user will simply say “get indoor directions.” This will start
the indoor navigation application which then prompts the
user to speak their desired destination. The application

then checks that the location is valid by cross-referencing
the database. If the destination is invalid, the application
prompts the user and shortly after closes. In order to
specify a new destination, the user will need to start the
application again from the home screen. If the destination
is valid, the application starts generating directions from
the user’s current location to their specified destination.

Once the application has generated the directions for the
user, it will start prompting the use to follow said
directions. The application will display a marker on the
screen to visually guide the user. The application will also
periodically speak to the user by dictating the next step of
the directions. If at any time the user starts going off-
course, the application will prompt the user that they are
in a warning zone, both by displaying a message and
speaking to the user to get back on course. Once the user
gets back on course, the application continues to display
and dictate the directions as it was before. If the user
continues moving more and more off-course, they will be
notified that they are off-course and new directions are
generated. Once the user reaches the destination, the user
is notified and the application exits. If at any time the user
wants to exit the application, they can simply swipe down
on the touchpad located on the side of the device.

V. BEACON DETECTION LIBRARY

Within the application is a beacon detection library that
was built around the Android’s Bluetooth LE SDK and is
used to facilitate the process of scanning, filtering, and
interpreting the beacon’s modules.

Even though it has already been supported by the
hardware in the past, the Bluetooth LE support was not
introduced into the Android operating system until the
release of Android 4.3 (Jellybean). With the update,
Google introduced the startLeSan method into the
BluetoothAdapter class, which allows the developer to
scan for Bluetooth LE devices and consume the data being
advertised by those devices. Although this allowed for
some Bluetooth LE support, it was still behind the
Bluetooth LE APIs offered by other mobile operating
systems, like iOS and Windows Phone 8. Since Android
only allows for scanning, it means it can only act as a
central device and does not support acting as a peripheral
device. With the recent release of Android 5.0 (Lollipop),
Google has added software support for the emulation of
multiple simultaneous peripheral devices.

In order to use Bluetooth LE in an Android application,
two system permissions are needed to be declared in the
application manifest: android.permission.BLUETOOTH
and android.permission.BLUETOOTH_ADMIN. If the
permissions are not declared, the operating system will not

allow the application to access the Bluetooth hardware.
All Bluetooth activity is done through the
BluetoothAdapter. This object is shared across all
applications that use Bluetooth.

Fig. 2 shows a high level view of the architecture of
Bluetooth LE in Android. With permissions correctly set
in the application, the BluetoothAdapter can be extracted
from the BluetoothManager. If the device does not
support Bluetooth or Bluetooth is not enabled, the
BluetoothManager returns null. In order to define what
happens whenever a device is found, an LeScanCallback
object is created with the onLeScan method overridden.
Whenever a Bluetooth LE device is found, the onLeScan
method from the LeScanCallback object is called. In order
to start the scan, the startLeScan method form the
BluetoothAdapter is called with the LeScanCallback
object passed in as a parameter.

Fig. 2. Architecture of Bluetooth LE in Android

 While scanning for beacons, all Bluetooth LE devices
show up in the scan. This requires that the application
filter out the miscellaneous Bluetooth LE devices that are
unrelated to the indoor navigation system. This check is
performed when the data scanned in is being transformed
into a Beacon object. The method uses a Regex expression
to check the advertisement data. If the check fails, a null
value is returned instead of the Beacon object telling the
application to ignore the data scanned.
 With each device scanned, three parameters are
received: a BluetoothDevice object, the RSSI value, and a
byte array with the advertisement data. The advertisement
data is converted from a byte array to a String so the
Regex expression can be used. The Regex expression
being used is the following: “^0201[a-f0-9]{2}1aff[a-f0-
9]{4}0215[a-f0-9]{42}.*”. The “0201” section is found in
all beacons. This is followed by “[a-f0-9]{2}” which
matches by any two hexadecimal digits which represent
flag values in the advertisement. The following section,

“1aff” is also constant across all beacons. This is followed
by the company identifier “[a-f0-9]{4}” which is made up
of any four hexadecimal digits. The next three digits,
“0215”, correspond to the iBeacon advertisement
indicator and is constant across all beacons. Lastly, the
“[a-f0-9]{42}” section ensures that there are forty-two
hexadecimal digits. This corresponds to the UUID, Major
value, Minor value, and the calibration RSSI value.

VI. USER LOCALIZATION

For user localization, trilateration was researched as a
possible method in which to calculate the user’s location.
Trilateration takes the known beacon positions and the
approximate distances between the beacons and the user
to calculate the user’s approximate position within a given
space. However, due to the imprecise distance
approximations between the beacons and the user
determined from the Bluetooth signals, trilateration was
found to be an inadequate method for localization.

The next option was to use the user’s proximity to the
beacons as a method for determining their location.
Instead of calculating the user’s location, the user’s
location is set to the position of the closest beacon. As
beacon signals are received by the Android device, the
average for each beacon is used to determine whichever
one is closest. The downside of this approach is that it
requires many more beacons than when using trilateration
due to the beacons actually becoming part of the path of
the user. The approach is not the most optimal, but it is
ultimately more effective than trilateration.

An optimization to this proximity method that is done to
lower the number of beacons needed for a given area is to
spread the beacons farther apart from one another, take
the average of each incoming beacon signal, take the two
closest beacons and then determine if they are within a
given threshold value. If both beacons are within the
threshold, then the user can be snapped to a location
exactly in between both beacon locations. This nearly
doubles the area the same number of beacons can cover
compared with the previous method of snapping the user
to the closest beacon while not jeopardizing localization
accuracy. With the previous method, beacons spaced three
meters apart produced adequate results. However, with the
optimization, beacons spaced five meters apart produced
comparable results to the previous method. In an effort to
have more resolution for the user’s location, the
optimization was tried with beacons three meters apart,
but it produced a user location with too much noise
constantly snapping back and forth between the two
closest beacons and the position in between both beacons.
For this reason, a beacon spacing of five meters is used.

VII. PATHFINDING

The pathfinding module is responsible for using the
collection of virtual nodes queried from DynamoDB that
map the layout of the building the user is in to generate an
approximate shortest path from the user’s location to their
desired destination. Pathfinding within any system
involves moving from one point to another within some
sort of space. The process involves determining the area
one can traverse, as well as determining obstacles that
block the path needed to move from one location to
another, if possible.

Most pathfinding algorithms use a collection of nodes
giving the positions of all obstacles and open areas within
the traversal space. Within the beacon navigation system,
these nodes represent either open, walkable areas within a
building, or walls that block off movement from the user.
The pathfinding module takes in the node closest to the
user determined by the user localization module and the
desired destination node to find the shortest viable path
between both nodes. If a path cannot be found, the user
will be notified that there is no valid path that can be used
to reach the user’s destination. This, however, should
never happen, because a given room should always be
able to be visited if the building is of sound design and the
data is without error. If the destination node is located on
a different floor than the user is currently on, it should be
able to guide the user to the staircase or elevator that
would lead to taking the shortest, most efficient path.
However, the actual algorithm that handles finding the
shortest path between two nodes does not have knowledge
of multiple floors, but rather searches a two-dimensional
space that maps out a floor. Another object must be added
to handle connecting the paths of each floor into one
multi-floor path, which is discussed later on in this section
when discussing floor sequencing.

Pathfinding within the indoor navigation system will
require a significant amount of computing power. Because
of this, the module should be limited to run only when
needed for the user to be able to reach their destination.
Updating the user’s path constantly would use excess
battery within the Android device and possibly slow down
the system. For this reason, the path is not calculated at a
rate, but is only calculated towards the beginning
following the user’s destination input and whenever the
user goes off the path. Functionality for determining if a
user is off-course is discussed in the next section.

There are a variety of different pathfinding algorithms
that have been used in many systems throughout the past.
A number of tweaks and variations have been made to
long-used pathfinding algorithms that introduce small
improvements that give more efficiency to particular use

cases. However, even though an algorithm may add to a
previous one, it does not automatically make the newer
one better. Each specific system must look at what the
requirements are that system and which algorithm is better
suited for the system. This not only holds true for
pathfinding algorithms, but also any other type of
algorithm in general.

A* was heavily considered as a possible pathfinding
algorithm for the navigation system. A* uses a few
distance approximations to generate the shortest possible
path, or close to it, from one node to another within a
graph of nodes. A* traverses through the graph by looking
at each of the neighboring nodes to the current node and
checking if the distance from the neighboring node to the
starting node using the current path, and the approximate
distance from the neighboring node to the destination
node is smaller than when calculating it from a different
path. If the sum of these two distances is greater than
when following a previous path, the neighboring node’s
values are left alone. If the sum is less, then the
neighboring node’s two distance values are updated to the
current calculation and the parent is updated to be the
current node. The parent is used to store the path so that
when backtracked to the start node, the path taken can be
constructed. Once all neighboring nodes to the current
node have been updated, the node that has the smallest
sum of the two distance values is made to be the current
node. This process loops until the destination node is
reached. The path can then be reconstructed by
backtracking through the parent nodes.

Similar to A* is Theta*, which follows the exact same
process with the added step of checking line of sight
between the current node’s parent and the neighboring
nodes. If the current node’s parent is within line of sight
of the neighboring node and the path to the neighboring
node is shorter following the current path, then the
neighboring node’s parent is set to the current node’s
parent. If there is no line of sight, then the current node is
set as the neighbor’s parent as long as taking the current
path is shorter than taking a previous, different path. In
the end, this results in paths that have fewer turns and
longer straightaways. Paths with fewer turns are easier to
give directions for as adjacent nodes in the calculated path
do not have to be adjacent nodes in the graph, which gives
results similar to how a human would walk through a
building. They would not turn every meter to stick with
the A* path, but rather just walk straight and turn only
when they really need to. Fig. 3 shows the difference
between the A* and Theta* algorithms when calculating a
path between two nodes. The path is in green, while the
start and destination nodes are in red, the obstructed nodes

that cannot be walked through are in gray, and the open,
walkable nodes are white.

Fig. 3. A* (A) versus Theta* (B) path comparison

 Another aspect of pathfinding that remains to be
discussed the floor sequencing for paths that move across
multiple floors. The floor sequencer is responsible for
stringing together the paths generated from Theta* into a
multi-floor path that the user can follow. Because Theta*
only calculates the path of one floor at a time and the
system needs to be able to calculate the shortest path
across multiple floors, an extra step must take place to
connect the different paths from each floor into one long
path. The link between the floors are staircase and
elevator nodes that must be stored with the building
information inside DynamoDB. In order to link Theta*
paths together, an adjacency list of elevator and staircase
nodes is constructed, so that if a user is on one floor and
needs to get to another, every possible route of staircases
and elevators will be calculated that an take the user to
their destination. Fig. 4 provides a visualization of how
the adjacency list connects different floors.

Fig. 4. A building with three floors and connections

 Once all possible routes are calculated, each connector
node, which is red in Fig. 4, is used as a start and end
node and is passed into Theta*. Once Theta* returns, the
path is appended onto the previous paths calculated by
Theta*. The floor sequencer then returns the multi-floor

path that is calculated the fastest as the approximate
shortest path.

VIII. USER STATE TRACKING

 The application must also be able to handle the
possibility of the user moving off-course from the
determined path, which is handled in the user state
tracking module. Because the nodes in a Theta* calculated
path can vary in distance from one another a perimeter
system is used to surround the user as they move from one
node to another. Fig. 5 shows how the perimeter works by
surrounding the two current nodes of the path the user is
currently on. One node is the previous node the user
passed, while the other node is the node the user still
needs to reach.

Fig. 5. A graph showing the perimeter that surrounds the two
nodes that mark the node that the user has passed and the node
they are headed to. The perimeter is the dashed purple rectangle
with the two nodes being red in the figure. The blue dots
represent beacons and the blue lines represent the walls of a
building.

 Initially a circular perimeter was thought to have been a
simple solution. By placing the center at the center
between both nodes, a radius threshold could be used to
ensure that the user stayed within the perimeter. However,
because nodes can be very far apart, it would result in
large space to the sides, which would not be effective at
warning the user that they are headed in the wrong
direction. Thus, a rectangular perimeter is used. To be
more specific, two rectangular perimeters are used. The
inner perimeter marks the boundary between an on-course
and warning state for the user, whereas the outer perimeter
marks the boundary between the user being in a warning
zone where the application warns them they are close to
being off-course, and being off-course.

IX. RF OPTIMIZATION

 Indoor environments pose great challenges for the
implementation of wireless systems. Our system utilizes
the Bluetooth LE protocol which operates at around the
2.4 GHz frequencies. Using this protocol is hugely

advantageous in that it is supported by the majority of
modern handheld and wearable wireless consumer
electronics which increases the possible user base
considerably. This protocol also allows for superior low
power usage which suits our low bandwidth, low power
specifications of our system. A few drawbacks in working
with this system is the inherent occupied spectrum at
around 2.4 GHz – i.e. Bluetooth shares radio spectrum
with other wireless communications protocols such as
WiFi. At this frequency, indoor Bluetooth LE signals
quickly attenuate and limit the effective distances of each
beacon.
 Due to these disadvantages, great consideration was
exercised when deploying the indoor navigation system
beacons. Through hypotheses and testing, it was
determined that the best location for each individual
beacon is on the ceiling, center of the hallway. Beacons
placed on walls proved highly ineffective due to the
nature of microwave radio propagation in an indoor
environment – e.g. multipath fading effects were easily
observed in this configuration. Beacons were also most
effective placed above the average pedestrian height in
order to reduce the attenuation stemming from foot traffic.
It was also largely helpful to run a rudimentary site survey
to locate any potential sources of interference such as
WiFi transmitters; beacons were not placed near strong
sources of interference in order to obtain optimal RF
performance.
 Another consideration for beacon placement is the
displacement between each beacon node in our system.
The goal is to be able to maximize the distance between
each node without sacrificing accuracy of the indoor
navigation system in order to keep implementation costs
down. The software algorithm for indoor mapping relies
on the perceived RSSI and thus the distance between these
beacons are limited by the useful data reading of the
RSSI. At a certain displacement, RSSI values became
unreliable. We gathered experimental data and used
statistical analysis (i.e. curve fitting, linear regression) in
order to optimally determine the distance between each
beacon to be approximately five meters. Further
optimization of our system can improve these figures.

X. HARDWARE DESIGN

 Due to the nature of high speed digital electronics and
operating in the microwave radio frequency, great care
was taken in the layout of the PCB, choice of passive
components, and choice of antenna.
 Our beacon is powered by the Nordic nrf51822 which
provides a differential antenna output with an embedded
low noise power amplification for the antenna. A pi circuit

shown in Fig. 6 matches the antenna output to 50 ohms
and also converts the differential output to a single ended
output which allows for increased compatibility with
many 2.4 GHz antenna designs. The capacitors and
inductors of the pi network are all kept as close as
possible to the chip in order to limit parasitic and stray
effects of long feed lines. Using freeware antenna design
software such as AppCad, the antenna output copper trace
is specified at 30 mil thickness in accordance to our board
thickness, material, wavelength, impedance, etc. Other
electronics are kept far away from the pi network to
further reduce possible interference. Vias are limited in
order to further reduce potential change to the RF
environment. Decoupling capacitors are terminated as
soon as possible near the chip and power traces are kept
short in order to further keep unwanted electromagnetic
interferences away.

Fig. 6. The pi network matching the antenna output to 50
ohms and providing a single-ended antenna output is shown.

 Our beacons utilize a PCB trace antenna, shown in Fig.
7 is in the “Inverted-F” configuration which is a standard
in many wireless handheld applications. This design
choice allows for decreased form factor which allows for
the device to remain miniature. The basic operations of
the Inverted-F Antenna (IFA) rely on the capacitive
effects between the long arm of the antenna and the
ground plane in addition to the inductive effects of the
shorting trace. The ground plane copper pour is abstained
from being directly under the antenna. This antenna
provides an omni-directional radiation pattern making it
useful for ease of placement and 360 degree coverage of
indoor corridors and atriums.

Fig. 7. The overall layout of the PCB including the inverted-F
antenna. Note the tight spacing of passive components, short
traces, and vias close to the chip. Board measurements are in
inches: 1 x 1.04 inches.

 A 1 oz. pour copper plane is used on the bottom layer
with an overall 2-layer PCB thickness of 1.6 mm FR4.
The copper plane serves as a ground plane allowing for
the reduction of electronic noise caused by high speed
digital electronics and also works in conjunction with the
PCB trace antenna. Alternatives considered include using
Teflon for overall increased RF performance and utilizing
4-layer PCB for more efficient routing. These, however,
would unnecessarily increase our budget.

XI. POWER DESIGN

 The nrf51822 QFN chip is meant for low power
applications. The chip requires 1.8 – 3.6 volts to operate
and a minimum of 10 mA. The 2032BP 3V button
batteries have been chosen as a source because they
provide 3.3V fresh out of the package and can still
function when slightly worn out. Also, the same battery is
already used within the industry for beacons that are
manufactured. Since many beacons will be set up
throughout a building for long periods of time, efficiency
of the batteries must be considered.
 Solar power is also incorporated in the power design.
The MP3-37 solar strip was chosen due to its small and
flexible profile as well as its output voltage. Being four

and a half by one inches in dimensions, the flexibility
allows for the creation of a beacon housing that is not
bulky. The solar strips have been tested indoors and
outdoors; outside with direct sunlight, a voltage of 3.6
volts can be obtained. Indoors, depending on the location
of the strip, 2.8 to 3.1 volts can be obtained. The solar
strip will be beneficial for devices set on the ceiling near a
light source and those placed near a window. Also,
improving the beacons with solar energy use is a new
effort that has not yet been done with beacons in the
industry, which still must rely on battery power, which
can diminish quickly depending on the beacon’s settings.
 A chip that can manage interchanging between the
button battery and the solar strip was chosen. This chip,
the ICL7673, provides a battery backup system for the
beacon. The beacon’s primary source of voltage will be
the solar strip with secondary (or backup system) being
the battery. The chip works by multiplexing both power
sources into the nrf51822 SoC. The ICL7673 gives
priority to the solar cell. If the solar cell is producing
enough power for the beacon to operate, then solar power
is used. However, if the solar cell is not producing enough
power, then the battery is used as the source of power.
When the battery wears out and the solar strip provides
suboptimal power, between 1.8 and 2.4 volts, the device
will still work, but the signal will be weak. Another power
consideration is when the device is programmed or
flashed to act as a Bluetooth device. The input voltage
must be 3.3 volts in order for the pin headers to transmit
the information to the system. In order to meet this
requirement from the pin header datasheet, a power
supply will be used to supply 3.3 volts in order to flash the
beacon to act as a Bluetooth device.

VII. CONCLUSION

This discussion shows the basic overview of the indoor
navigation system and all of the system’s main processes
and components. Though beacons with Bluetooth remain
a challenge for indoor localization, certain techniques
discussed can be used to create an adequate indoor
navigation system that can guide a user easily through a
building. With improved Bluetooth signal detection and
precision, a more effective navigation system could be
developed. Furthermore, research into other possible

mediums for localization other than Bluetooth could also
be done in the future to possible improve the effectiveness
of the indoor navigation system.

BIOGRAPHY

Andre Compagno is currently a senior at
the University of Central Florida. He
plans to graduate with his Bachelor of
Science in Electrical Engineering in May
of 2015. He completed an internship
during the summer of 2014 and received a
full-time offer.

Josh Facchinello is currently a senior at
the University of Central Florida. He
plans to graduate with his Bachelor of
Science in Computer Engineering in May
of 2015. He is currently interning at
Lockheed Martin with UCF’s YES
Program and will work full-time with

Lockheed Martin upon his graduation.

Jonathan Mejias is currently a senior at the University of

Central Florida College of Electrical
Engineering and Computer Science
and is pursuing a Bachelor of Science
in Electrical Engineering. He has a
concentration in communications in
addition to past industry experience
working with AT&T.

Pedro Perez is an Electrical Engineering
student at the University of Central
Florida and will be graduating in the
spring of 2015. He will pursue a career
in power engineering and work towards
obtaining a PE license in the future.

REFERENCES
[1] Apple Inc, 2 June 2014. [Online]. Available:

https://developer.apple.com/ibeacon/GettingStarted-with-
iBeacon.pdf. [Accessed November 2014]

	Beacon Indoor Navigation System
	Dept. of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-2450
	Abstract — This paper discusses the design methodology for creating an indoor navigation system using beacons that emit Bluetooth signals to a listening Android device, which provide important localization information. Topics included in the beacon ...
	Index Terms — Indoor navigation, Bluetooth, beacons, antennas, low power.
	I. Introduction
	II. Apple iBeacon Protocol
	III. Amazon's DynamoDB for Building Information
	IV. Application User Interface Design
	V. Beacon Detection Library
	VI. User Localization
	VII. Pathfinding
	VIII. User State Tracking
	X. Hardware Design
	XI. Power Design
	Biography
	References

