
i2cHeaderFile

/***

*

* Atmel Corporation

*

* File : TWI_Slave.h

* Compiler : IAR EWAAVR 2.28a/3.10c

* Revision : $Revision: 2475 $

* Date : $Date: 2007-09-20 12:00:43 +0200 (to, 20 sep 2007) $

* Updated by : $Author: mlarsson $

*

* Support mail : avr@atmel.com

*

* Supported devices : All devices with a TWI module can be used.

* The example is written for the ATmega16

*

* AppNote : AVR311 - TWI Slave Implementation

*

* Description : Header file for TWI_slave.c

* Include this file in the application.

*

**/

/*! \page MISRA

 *

 * General disabling of MISRA rules:

 * * (MISRA C rule 1) compiler is configured to allow extensions

 * * (MISRA C rule 111) bit fields shall only be defined to be of type unsigned int

or signed int

 * * (MISRA C rule 37) bitwise operations shall not be performed on signed integer

types

 * As it does not work well with 8bit architecture and/or IAR

 * Other disabled MISRA rules

 * * (MISRA C rule 109) use of union - overlapping storage shall not be used

 * * (MISRA C rule 61) every non-empty case clause in a switch statement shall be

terminated with a break statement

*/

/**

 TWI Status/Control register definitions

**/

#define TWI_BUFFER_SIZE 4 // Reserves memory for the drivers transceiver

buffer.

 // Set this to the largest message size that will be

sent including address byte.

/**

 Global definitions

Page 1

i2cHeaderFile

**/

union TWI_statusReg_t // Status byte holding flags.

{

 unsigned char all;

 struct

 {

 unsigned char lastTransOK:1;

 unsigned char RxDataInBuf:1;

 unsigned char genAddressCall:1; // TRUE = General

call, FALSE = TWI Address;

 unsigned char unusedBits:5;

 };

};

extern union TWI_statusReg_t TWI_statusReg;

/**

 Function definitions

**/

void TWI_Slave_Initialise(unsigned char);

unsigned char TWI_Transceiver_Busy(void);

unsigned char TWI_Get_State_Info(void);

void TWI_Start_Transceiver_With_Data(unsigned char * , unsigned char);

void TWI_Start_Transceiver(void);

unsigned char TWI_Get_Data_From_Transceiver(unsigned char *, unsigned char);

/**

 Bit and byte definitions

**/

#define TWI_READ_BIT 0 // Bit position for R/W bit in "address byte".

#define TWI_ADR_BITS 1 // Bit position for LSB of the slave address bits in the

init byte.

#define TWI_GEN_BIT 0 // Bit position for LSB of the general call bit in the

init byte.

#define TRUE 1

#define FALSE 0

/**

 TWI State codes

**/

// General TWI Master staus codes

#define TWI_START 0x08 // START has been transmitted

#define TWI_REP_START 0x10 // Repeated START has been transmitted

#define TWI_ARB_LOST 0x38 // Arbitration lost

Page 2

i2cHeaderFile

// TWI Master Transmitter staus codes

#define TWI_MTX_ADR_ACK 0x18 // SLA+W has been tramsmitted and ACK

received

#define TWI_MTX_ADR_NACK 0x20 // SLA+W has been tramsmitted and NACK

received

#define TWI_MTX_DATA_ACK 0x28 // Data byte has been tramsmitted and ACK

received

#define TWI_MTX_DATA_NACK 0x30 // Data byte has been tramsmitted and NACK

received

// TWI Master Receiver staus codes

#define TWI_MRX_ADR_ACK 0x40 // SLA+R has been tramsmitted and ACK

received

#define TWI_MRX_ADR_NACK 0x48 // SLA+R has been tramsmitted and NACK

received

#define TWI_MRX_DATA_ACK 0x50 // Data byte has been received and ACK

tramsmitted

#define TWI_MRX_DATA_NACK 0x58 // Data byte has been received and NACK

tramsmitted

// TWI Slave Transmitter staus codes

#define TWI_STX_ADR_ACK 0xA8 // Own SLA+R has been received; ACK has

been returned

#define TWI_STX_ADR_ACK_M_ARB_LOST 0xB0 // Arbitration lost in SLA+R/W as Master;

own SLA+R has been received; ACK has been returned

#define TWI_STX_DATA_ACK 0xB8 // Data byte in TWDR has been transmitted;

ACK has been received

#define TWI_STX_DATA_NACK 0xC0 // Data byte in TWDR has been transmitted;

NOT ACK has been received

#define TWI_STX_DATA_ACK_LAST_BYTE 0xC8 // Last data byte in TWDR has been

transmitted (TWEA = “0”); ACK has been received

// TWI Slave Receiver staus codes

#define TWI_SRX_ADR_ACK 0x60 // Own SLA+W has been received ACK has been

returned

#define TWI_SRX_ADR_ACK_M_ARB_LOST 0x68 // Arbitration lost in SLA+R/W as Master;

own SLA+W has been received; ACK has been returned

#define TWI_SRX_GEN_ACK 0x70 // General call address has been received;

ACK has been returned

#define TWI_SRX_GEN_ACK_M_ARB_LOST 0x78 // Arbitration lost in SLA+R/W as Master;

General call address has been received; ACK has been returned

#define TWI_SRX_ADR_DATA_ACK 0x80 // Previously addressed with own SLA+W;

data has been received; ACK has been returned

#define TWI_SRX_ADR_DATA_NACK 0x88 // Previously addressed with own SLA+W;

data has been received; NOT ACK has been returned

#define TWI_SRX_GEN_DATA_ACK 0x90 // Previously addressed with general call;

data has been received; ACK has been returned

#define TWI_SRX_GEN_DATA_NACK 0x98 // Previously addressed with general call;

Page 3

i2cHeaderFile

data has been received; NOT ACK has been returned

#define TWI_SRX_STOP_RESTART 0xA0 // A STOP condition or repeated START

condition has been received while still addressed as Slave

// TWI Miscellaneous status codes

#define TWI_NO_STATE 0xF8 // No relevant state information available;

TWINT = “0”

#define TWI_BUS_ERROR 0x00 // Bus error due to an illegal START or

STOP condition

Page 4

