
 
 

 
 

 

 

Automated Brew Extractor 

Group 10 

 

 

 

Robert Bower – Electrical Engineer 
David Rodriguez – Computer Engineer 

Alonzo Ubilla – Electrical/Mechanical Engineer 
Kleber Valencia – Electrical Engineer 

 

December 4, 2014



i 
 

 

Table of Contents 

 

1.0 Executive Summary ..................................................................................... 1 

2.0 Automated Brew Extractor Description ...................................................... 2 

2.1 Motivation and Goals ................................................................................... 2 

2.2 Project Objectives ....................................................................................... 3 

2.3 Automatic Brew Extractor Requirements ..................................................... 5 

2.4 Automatic Brew Extractor Specifications ..................................................... 5 

2.4.1 The Brew Kettle .................................................................................... 5 

2.4.2 The Mashtun  ........................................................................................ 6 

2.4.3 The Cooling System  ............................................................................. 6 

2.4.4 The Chugger Pump  .............................................................................. 6 

2.4.5 The Control Unit  ................................................................................... 7 

2.4.6 The Interface  ........................................................................................ 7 

3.0 Research Related to Automation and Home Brewing ............................... 8 

3.1 Existing Similar Projects and Systems ........................................................ 9 

3.1.1 “The Brew Boss” ................................................................................... 9 

3.1.2 “SYNEK” ............................................................................................. 10 

3.1.3 “Pico Brew” ......................................................................................... 11 

3.2 Relevant Technologies .............................................................................. 12 

3.3 Strategic Components ............................................................................... 15 

3.4 Possible Architectures ............................................................................... 15 

4.0 Brew Extractor Hardware and Software Detail ......................................... 17 

4.1 Initial Architecture and Related Diagrams ................................................. 18 

4.2 The Brew Extractor Support Structure ....................................................... 19 

4.3 The Brew Extractor Thermodynamics ....................................................... 23 

4.3.1 Kettle Heater ....................................................................................... 24 

4.3.2 Wort Cooling ....................................................................................... 29 

4.4 Brew Extractor Automation and Control .................................................... 32 

4.4.1 Communications ................................................................................. 32 



ii 
 

4.4.2 Recipe Inputs ...................................................................................... 40 

4.4.3 Process Control .................................................................................. 41 

4.4.4 Temperature Control ........................................................................... 43 

4.4.5 Fluid Level and Flow Control ............................................................... 43 

4.5 Brew Extractor Analog Data Acquisition .................................................... 46 

4.5.1 Sensors ............................................................................................... 47 

 4.5.1.1 Temperature Sensors .................................................................. 48 

 4.5.1.2 pH Sensors .................................................................................. 51 

 4.5.1.3 Fluid Levels .................................................................................. 53 

4.5.2 Components ........................................................................................ 55 

 4.5.2.1 Microcontrollers ............................................................................ 56 

 4.5.2.2 Operational Amplifiers .................................................................. 58 

4.5.3 Output Circuit Designs ........................................................................ 60 

4.5.4 I/O Pin Layout ..................................................................................... 66 

4.6 Brew Extractor Power Supply .................................................................... 72 

4.7 Raspberry Pi B+, Data Logging & In-System Web Server ......................... 79 

4.7.1 Raspberry Pi Model B+ Introduction & Overview ................................ 81 

4.7.2 Raspberry Pi Model B+ vs A13-OLinuXino, Cubieboard2 & Banana Pro

 ..................................................................................................................... 84 

4.7.3 External/Internal Communications with Raspberry Pi B+ Overview .... 86 

4.7.4 Data Logging Software Details ............................................................ 87 

4.7.5 Data Logging: Microcontroller Communications .................................. 88 

4.7.6 Web Serve Specifications and Usage ................................................. 89 

4.8 Brew Extractor User Interface Overview ................................................... 90 

4.8.1 Python GUI & Android App Development ........................................... 90 

4.8.2 Discussion of User Interface Software Layout .................................... 92 

4.8.3 Detailed Discussion of All UI Functionalities  ...................................... 93 

5.0 Design Summary of Software & Hardware Integration ........................... 98 

6.0 Brew Extractor Prototype Testing ........................................................... 101 

6.1 Hardware Testing Environment ............................................................... 103 

6.2 Hardware Specific Testing....................................................................... 105 

6.3 Software Test Environment ..................................................................... 108 



iii 
 

6.4 Software Specific Testing ........................................................................ 110 

7.0 Parts Acquisition and Bill of Materials ................................................... 112 

8.0 Administrative Content ............................................................................ 116 

8.1 Milestone Discussion ............................................................................... 116 

8.2 Milestone Issues ...................................................................................... 118 

9.0 Executive Summary ................................................................................. 119 

Appendix ......................................................................................................... 121 

Copyright Permissions .................................................................................. 121 

Datasheets .................................................................................................... 129 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

 
1.0 Executive Summary 

 
The proposed Senior Design project at hand is to effectively build, format, test and 
engineer an automated home brewing system tailored to the specific needs of the 
home brewer and his/her recipe(s). With no doubt in mind this is something that 
has already been invented and can be mass produced for profit with parts and/or 
materials that are much cheaper. Nevertheless the main goal is not to present a 
for-profit project, instead it is to bring a tailored finished product that can be freely 
manipulated by the home brewer for a more precise and genuine home tasting 
brew finish. The automated home brewing system, or A.B.E as it is to be known, 
will be comprised of a portable stable aluminum frame, along with the various 
sensors and circuits that are needed for the internal system, a central unit for data 
gathering and processing, three to four microcontrollers for ease with the internal 
process communications, and finally a web server available for the user of the 
Internet along with a very simple Android application for on-the-go monitoring. 
 
There are many moving parts to this specific design, discussed in much detail 
throughout this paper, but the outcome should still be roughly 99.0% equal to as if 
it had been done with human supervision (the remaining 1% can be accounted for 
the human/machine errors in the process). With an automated brewing system, 
the user can not only be more effective with the specific brewing recipe but they 
can also aim for a much higher percentage in overall quality. Being able to control 
specific sensors (whether they be level or temperature sensors), start and end 
times, along with gathering and displaying this invaluable information makes this 
mechanically driven logical system a home brewer’s dream come true. A home 
brewer is just that, a home brewer, meaning most times rather than not the brewer 
is taking this as a hobby or as a personal/family tradition; either way the time factor 
is a huge overhead for this process if done manually. Typically taking anywhere 
between four to six hours (this time does not include the fermentation period nor 
the bottling period which occurs post-fermentation). Making this practically a half-
day to an all-day event, for some home brewers this would not be a problem, for 
this case, the group is looking to simplify the lives of the other home brewers who 
don’t want to manually spend this much time every couple of months/weeks for a 
home brewed beer. 
 
Creating the solution to this time management versus home brewing quality 
problem is at the top of this project’s objectives. Therefore this objective, along 
with demonstrating this project’s engineering capabilities, will be seen all 
throughout this report and of course in the live presentation of this one of a kind 
automated brewing system. With such a project, spread out over several months 
there will be times when things won’t go according to plan, either with the 
manufacturers’ parts or just with the design/test phases of this project. the main 
goal as a group regarding this matter will be to stay very close to the proposed: 
design specifications, testing requirements, build schematics, circuit design 



2 
 

layouts, software schemas, etc. that are documented in the following pages of this 
document. The build time for this specific project is estimated to be around ten to 
twelve weeks, this time includes debugging and time needed for modifications 
and/or issues that typically arise during a project of this magnitude and scope. The 
finished product will in fact produce drinkable beer, but due to regulatory laws this 
part of the project will not be showcased in the Senior Design Showcase in April 
2015, unless given special permission by the required University of Central Florida 
department. 
 

2.0 Automated Brew Extractor Description 
 

This section will cover the description of the Automated Brew Extractor as well as 
discuss the motivation, goals, objectives, requirements, and specifications.  As 
students who enjoy making beer, the group identified several features that they 
would like to see included in the final design. 
 

2.1 Motivation and Goals 
 
Making beer is an enjoyable and rewarding experience.  This is science people 
can eat.  Whenever one sets out to make beer, the first thing they must do is 
acquire the equipment necessary to accomplish this task.  The equipment can 
range in price from about 100 to 1000 thousand dollars depending on both the 
quantity one wishes to make, and the type of process one wants to go through.  
After one has acquired the equipment, the actual brewing process itself requires 
attention and can be very time consuming.  The set up process alone, takes around 
2 hours and makes a mess if they choose to brew inside their home.  The actual 
time spent making the wort that will be fermented, takes significantly less time than 
the set up and cleanup process.  One of the main motivating factors for this design 
project was the significant amount of preparation time required.  The group plans 
to significantly reduce, if not eliminate the process of setting up the equipment.  
Aside from the set up and clean up time, the equipment required to transfer liquids 
into different containers is a bit of a hassle to maintain and store.  The brewer is 
required to have an automatic syphon, and lots of rubber tubing to transfer the 
liquid into different containers.  The brewer must also have tools to securely 
connect and disconnect hoses to the containers they plan to use.  The complexity 
and hassle of liquid transfer was another main motivating factor for the design 
project.  The group plans to completely eliminate the need for equipment to transfer 
liquid from container to container.  This will reduce the time required to set up the 
transfer equipment as well as help prevent the introduction of contaminants to the 
brew system, which is always a major concern when preparing substances that 
will be ingested by humans.  Now looking closely at the actual brewing process, 
most home brewers use their kitchen stove as their source of heat when making 
home brewed beer.  Even though this is probably the easiest way to heat things at 
home safely, there is no accurate way to control the temperature of the stove.  
Having said that, one can simply measure the temperature and adjust the power 



3 
 

setting of the stove to either raise or lower the temperature during the process, but 
this requires constant attention and is very inaccurate.  Home brewers can also 
invest in temperature controllers and separate heating apparatuses, but these can 
be costly and require lots of equipment.  The lack of a reliable, controlled heating 
process, and need for equipment to accomplish this goal was another huge 
motivating factor for the design project.   The group wants to completely automate 
the heating process using PID control as well as have this information made 
available to the user.  Another key step in the brewing process that motivated the 
design project, was timing.  Home brewers must accurately track time using egg 
timers or something similar.  There are systems in place that track the process for 
you, however, most home brewers opt to monitor the system constantly.  This 
motivated us to design the system with built in timing control.  Another major goal 
for the design project was to have the system time each step in the process on its 
own, and prepare itself for the next step so that the home brewer can focus on 
more important aspects of the process.  On the next page Table 2.1 shows a 
breakdown of all the project motivations and goals. 
 

Table 2.1: Motivations and Related Goals 

Motivation Goal 

Time Consuming Set up / Cleanup process 

Eliminate the need for equipment setup by 
having one piece of equipment to handle the 

brewing process.  Incorporate a self-
cleaning cycle to eliminate the need for 
lengthy and messy cleaning process. 

Need for equipment to transfer liquids 
between tanks during the process. 

Eliminate the home brewer’s involvement in 
liquid transfers by automating the liquid 

transfer process. 

Inaccurate or Unreliable temperature control 
or the need to purchase equipment for 

temperature control. 

Incorporate accurate temperature 
measurement as well as temperature control 

through the use of PID and heating 
elements. 

Need for automated timing and control 
Program the microcontrollers to time each 

step in the process and respond 
accordingly. 

 

2.2 Project Objectives 
 

In this section the group will outline the objectives for the Automated Brew 

Extractor.  The main objective of the design project is to automate the process of 

extracting sugar from barley to allow the home brewer to focus on the data, rather 

than the process.  This main objective can be broken down into several small 

objectives.  The objectives and there sub categories are listed below. 



4 
 

 

1. Design a counter-top system that can be used for the sugar extraction 

process. 

a. Make a frame that can hold all of the compartments needed for the 

sugar extraction process. 

b. Design the frame so that it can be moved easily, and also allow for 

the transfer of liquids without additional tools. 

c. Design the frame to hold a display unit to allow the user to monitor 

all of the process data. 

2. Automate liquid transfer  

a. Configure the setup of the system to permit gravity fed flow in order 

to reduce loss of product in the transfer lines. 

b. Use solenoid valves to automatically control water fed into the 

system as well as the path the product takes through the system. 

c. Use microcontrollers to monitor and control the liquid transfer 

process. 

d. Use microcontrollers to monitor the liquid levels of each 

compartment. 

3. Automate the heating process 

a. Use microcontrollers and PID algorithms to monitor and control the 

heating process of the system. 

b. Use a built in heating element to achieve specific temperatures 

throughout designated by the user and eliminate the need for an 

outside heat source. 

c. Incorporate a system that will monitor temperatures and verify that 

they are within the safe limit.  This will prevent personal injury and 

property damage. 

4. Automate the Timing of the process 

a. Use microcontrollers to monitor the timing of each step and react as 

needed, depending on what stage of the process the system is 

currently in. 

b. Set triggers to activate steps in the process. 

5. Incorporate a user interface for the system 

a. Design an easy to use integrated user interface that can send recipe 

information to the system. 

b. Design an interface that allows the user to monitor all process 

information in real time. 

6. Make all process data available to the user 

a. Log all data 

b. Make the data available via a web server. 

c. Make the data easy to understand 

 



5 
 

 

2.3 Automated Brew Extractor Requirements 
 

In order for the system to accomplish the goal of automating the process of 

extracting sugar from barley, the system must satisfy certain requirements.  These 

are the requirements necessary for the design project to truly be an Automated 

Brew Extracting System.  The list below illustrates the requirements that the group 

outlined for the project. 

 

1. The user must be able to place the ingredients into the system, and let the 

controls handle the rest of the process. 

2. The user must be able to input recipe specifications, and have the system 

respond appropriately to these specifications. 

3. The system must produce a safe and consumable finished product. 

4. The system must operate safely when not under supervision. 

5. The system must control all heating, flow, and filling processes according 

to specifications set by the user. 

6. The system must have an interface that allows the user to monitor all 

system related information. 

7. The system must log all process information, so that the information can be 

reviewed on a later date. 

8. The system must be portable and easy to use. 
 

2.4 Automated Brew Extractor Specifications 
 

2.4.1 The Brew Kettle 
 

This section will cover the specifications for the brew kettle that the group decided 

to implement in the design.  The brew kettle will be used in all heating processes 

for the system.  The Brew kettle is used initially to heat the water, then again to 

boil the sugar water extracted from the barley.  This sugar water must be boiled in 

order to make sugar that can be used by the yeast during fermentation.  Below is 

list of the specifications and equipment connected to the brew kettle. 

 

 1 - 7.57 liter brew kettle 

 1 - 2000 watt heating element 

 1 - temperature probe 

 2 - ¼” NPT female threaded outlets 

 2 - ¼” NPT manual ball valves 

 2 - ¼” NPT 24V solenoid valves 



6 
 

 2 - pressure sensors 

 

2.4.2 The Mash Tun 
 

This section will cover the specifications for the mash tun that the group decided 

to implement in the design.  The mash tun holds all of the grain during the sugar 

extraction process.  The grain is put into the mash tun by the user before the 

process begins.  A pump connected to the brew kettle sends 70 degree Celsius 

water into the mash tun and sits for 1 hour.  Below is a list of specifications and 

equipment connected to the mash tun. 

 

 1 – 7.57 liter insulated cooler 

 1 – temperature probe 

 2 – ¼” NPT 304 SS female threaded outlets 

 2 – ¼” NPT 304 SS manual ball valves 

 1 – Grain Bed 

 2 – pressure sensors 

 

2.4.3 The Cooling System 
 

The section will cover the specifications for the cooling system that the group 

chose to implement in the design.  The cooling system extracts heat from the wort 

after the boiling process has taken place.  This helps put the finished product at a 

safe temperature so that the yeast can be added to the wort.  Below is a list of the 

specifications and equipment connected to the cooling system. 

 

 1 – 10 gallon insulated cooler 

 2 – ½” 304 SS female threaded outlets 

 1 – Plate Chiller 

 1 – 7.57 liter per minute pond pump 

 1 – temperature probe 

 2 – ½” 304 SS ball valves 

 

2.4.4 The Chugger Pump 
 

The section will cover the specifications for the wort pump that the group decided 

to implement in the design.  The wort pump will be used to transfer all liquids 

throughout the system, excluding the liquid be transferred through the plate chiller 

on the cold side.  The specifications of the wort pump are listed below. 

 



7 
 

 

 

 In line 304 SS pump head 

 2 – ½” NPT male threaded inlets 

 Maximum head of 4.1 meters 

 Maximum flow of 22.7 liters per minute 

 1/20 HP 

 115 V 50/60 Hz 

 Non – Submersible 

 1.7 Full Load Amps 

 Maximum Liquid Temperature through pump 121 degrees Celsius 

 FDA Food Compliant 

 UL Recognized 

 

2.4.5 The Control Unit 
 

This section will cover the specifications of the control unit that the group will be 

implementing in the design.  The control unit monitors all system processes and 

controls the flow of the product through the system.  Below is a list of the 

specifications for the control system. 

 

 2 – Atmel ATMEGA328 8-bit microcontrollers 

 12 – relay outputs 

 1 – solid state relay output 

 2 – programming ports 

 1 – 5V power input 

 1 – 5V power output 

 1 – 3.3V power output 

 1 – Two Wire Interface Port 

 Communications via TWI (I2C) 

 On board logic level shifter  

 

2.4.6 The Interface 
 

This section will cover the specifications for the user interface that the group are 

implementing in the design.  The interface will take in information from the user 

and send that information to the control unit.  Below is a list of specifications for 

the interface. 

 

 1 – Embedded Computer with Linux Operating System 

 1 – 19” HP flat panel computer monitor 



8 
 

 1 – keyboard 

 1 – mouse 

 Wi-Fi connectivity 

 Two Wire Interface to the control unit 

 12 - general purpose input/output ports 

 Data logging capabilities 

 

3.0 Research Related to Automation and 

Home Brewing 
 

When Prohibition was passed in 1920, Americans began brewing their own 

alcoholic beverages at home.  This may not have been the beginning of home 

brewing, but Prohibition certainly pushed Americans find other means to enjoy the 

beverages they love.  When Prohibition ended in 1933, the beer market was tightly 

regulated forcing most small time brewers or start-ups, out of the market 

altogether.  In 1979 Jimmy Carter deregulated the beer market and made it 

possible for small time breweries to gain a foothold in the American beer industry.  

Figure 3.1 illustrates the growth of microbreweries in the United States since 1979. 

 

 
Figure 3.1: Growth of Craft Breweries in the United States 

 

The growth of craft breweries in the United States brought along with it, a market 

for home brewing products.  In the sections to follow there will be an analysis of 

the existing systems that inspired the automated brewing system that the group is 

designing. 

 

0

500

1000

1500

2000

2500

3000

3500

1979 1984 1989 1994 1999 2004 2008 2012 Present

Growth of Craft Breweries in The United States

Number of Microbreweries



9 
 

 

3.1 Existing Similar Projects and Systems 
 

There are several home brewing systems that one can purchase when looking to 

get started.  They range in complexity and price.  There are three systems in 

particular that the group reviewed during the research.  These systems were 

chosen because they contained similar design specific features that the group is 

trying to capture in the project.  These systems are the “Brew Boss”, “SYNEK”, and 

the “Pico Brew.”   

  

3.1.1 “The Brew Boss”  
 

One of the systems the group came across during the research was “The Brew 

Boss.”  This system was one of the simpler designs that the group found.  “The 

Brew Boss” uses a 7” Android tablet to communicate via Wi-Fi with the system.  

The tablet allows the user to control temperature and timing during the brewing 

process.  Alongside control, the tablet allows the user to monitor temperature and 

timing variables while the brewing process is taking place.  Aside from control, 

“The Brew Boss” allows the user to do all-grain batches as well as extract brewing.  

The system comes in a 120V or 240V version.  The image on the next page shows 

“The Brew Boss” system.  “The Brew Boss” contains many of the features that the 

group is looking to capture in the design.  This system has connectivity and control 

which gives the user all of the necessary information that one would want during 

the brewing process.  Below is an image and block diagram of the system.  Figure 

3.2 on the next page show the actual system and a block diagram breakdown. 

 
Figure 3.2: Block Diagram of Brew Boss brewing system. 



10 
 

 

3.1.2 “SYNEK” 
 

The next system the group discovered during the research is called “SYNEK.”  This 

is the first crowd funded draft beer dispensing system that has several backers on 

Kickstarter.  This system is more of a preservation device than a brewing device.  

However, “SYNEK” utilizes temperature and pressure control to keep beer fresh.  

Although this strays away from the actual brewing process, the controls behind 

preserving the beer were of interest to us.  “SYNEK” uses digital temperature 

control and a cartridge system to allow the user to obtain beer from any bar, pub, 

or restaurant, and bring it back to their very own home.  The temperature controlled 

box squeezes the cartridge to keep the beer at pressure which greatly extends the 

shelf life of the beer.  Figure 3.3 and 3.4 show the SYNEK system. 

 

 
Figure 3.3: Block diagram of SYNEK system 

 

 
Figure 3.4: SYNEK beer preservation system.   

(Source: SYNEKsystem.com) 



11 
 

 

3.1.3 “Pico Brew” 
 

The “Pico Brew” is the exact design that the group is trying to achieve.  This system 

is an all in one brewing system and beer dispenser.  The “Pico Brew” is a suit case 

sized stainless steel box with a polycarbonate drawer that pulls out from the front 

of the box.  Inside of this polycarbonate drawer, the user can put grain, hops, and 

other flavor additives that they wish to add to the beer.  Once all of the ingredients 

have been deposited inside of the drawer, the user sets all of the recipe parameters 

through an OLED screen that is attached to the system.  Once all of the recipe 

parameters are set, the “Pico Brew” initiates the brewing cycle and controls all of 

the user specified inputs.  This system closely monitors temperature, liquid level, 

and time.  Aside from controlling the user specified parameters, the “Pico Brew” 

system is also fully automated in terms of liquid transfer.  The beer starts in the 

main reservoir inside of the polycarbonate drawer, and ends up inside of the 

fermenter at the appropriate temperature for pitching yeast.  All of the liquid 

transfers occur inside of the steel box.  The “Pico Brew” perfectly captures the goal 

that the group has in mind for the system.  Since the 3 systems that this section 

covered, vary greatly in design and purpose, Table 3.0 shows a break-down of the 

features of each unit.  The tables will include the plans for the unit in red for 

comparison purposes. Figures 3.5 and 3.6 show the PicoBrew system and block 

diagram of the system configuration.  

 

 
Figure 3.5: Pico Brew craft brewing system 

(Courtesy of PicoBrew) 

 

 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Top view of Pico Brew craft brewing system. 

 

Table 3.0: Systems Comparison 

Name 
Temperature 

control 

Liquid 
Level 

control 

Flow 
Control 

Automated 
Ingredient 
Addition 

Connectivity 
(Wi-Fi) 

Brew Boss Yes No No No Yes 

SYNEK Yes No Yes No No 

Pico Brew Yes Yes Yes Yes Yes 

Automated 
Brew Extractor 

Yes Yes Yes Yes Yes 

 

3.2 Relevant Technologies 
 

While examining the existing designs, there were several things that the group 

came across that would have been advantageous to include in the design.  The 

main goal is automating the process of extracting sugar from barley so that it may 

be used to produce alcohol.  In order to achieve this goal this project will be using 

many of the technologies found in the 3 systems examined in the previous section.   

 

The most important aspect of extracting sugar from barley would be temperature 

control.  The process must hit the perfect temperature in order to extract the 

maximum amount of sugar from the barely without burning off too many sugars.  

The “Brew Boss” as well the “Pico Brew” both use a heating element and computer 

control to maximize the accuracy of the temperature during the brewing process.  



13 
 

It was not specified in the design how exactly they achieved this goal, however, 

PID seems to be the most efficient means of controlling temperature throughout 

these processes.  Since the group intends to use a heating element and PID 

control in the design, this will be discussed in detail throughout the design portion 

of this document.  Aside from heating the liquid, removing heat from the liquid is 

also an important part of the brewing process.  The “SYNEK” system uses some 

form of heat exchange, similar to that of a small refrigerator, to keep the 

temperature of the beer in a desirable range which increases the shelf life of the 

product substantially.  For the design project purposes, the group will be using a 

counter flow plate chilling system to remove the heat from the finished product.  

The speed at which the heat is removed, dictates how well particulates, left over 

from the heating process, coagulate and precipitate from the finished product.  This 

increases clarity and helps to remove unwanted flavors from the beer.  Table 3.1 

shown below compares the technologies related to heating discussed above.  The 

group will include the technologies it intended to be used, in red, for purposes of 

comparison. 

 

Table 3.1: Heating and cooling system comparison 

System Name Heating System Cooling System 

Brew Boss Heating Element None 

SYNEK None Refrigeration Unit 

Pico Brew Heating Element Refrigeration Unit 

Automated Brew Extractor Heating Element Counter Flow Plate Chiller 

 

Since the goal is to fully automate the sugar extraction and breakdown process, 

flow control is another “must have” for the system.  The only system discussed 

previously in this section that utilizes flow control is the “Pico Brew.”  Transferring 

liquids from place to place is necessary to treat the liquid during and after sugar 

extraction.  There are several ways to achieve the goal of transferring liquids.  

Some of the most popular methods are gravity fed systems.  This involves 

transferring liquid by water pressure from the city, to a tank that sits high above the 

rest of the system.  Then by opening and closing valves, gravity can be used to 

allow the liquid to move down the system to the various places that it needs to go 

during the process.  Another method is pump control.  Using pumps, the liquid can 

be transferred throughout the system depending on what stage of the process is 

taking place.  The “Pico Brew” uses a reservoir that is filled from the tap to 

introduce liquid into the system.  Since the design of the system is proprietary, it 

was hard to discern how exactly the “Pico Brew” transfers liquid from place to 

place.  Through observation of the system, it would appear that the “Pico Brew” 



14 
 

uses a combination of automatic valves and pump control. The group intends to 

use pump control, gravity feed, and automatic valves to direct the flow of liquid 

through the system.  This will be discussed in detail throughout the design portion 

of this document.  Table 3.2 below illustrates a breakdown of the flow control 

system.  The group will include the plans for the design project in red for purposes 

of comparison. 

 

Table 3.2:  Flow control comparison 

System Gravity Fed Pump Fed Automatic valves 

Brew Boss No No No 

SYNEK No No No 

Pico Brew Yes (Speculated) Yes (Speculated) Yes (Speculated) 

Automated Brew 
Extractor 

Yes Yes Yes 

 

Another important aspect of the designs that were reviewed was the interface.  All 

three systems featured some method of data input and monitoring.  The “Brew 

Boss” featured a 7” Android tablet which allows the user to monitor all of the 

heating processes taking place.  The tablet could also be used to input data for the 

recipe settings, which is achieved via Wi-Fi communication.  For the “SYNEK” 

system, the only interface available is an LCD screen that shows temperature 

readout and settings.  This allows the user to monitor the temperature of system 

at all times and make adjustments accordingly.  This is probably perfect for what 

the “SYNEK” system is because this is mainly a preservation device.  The “Pico 

Brew” utilizes an OLED screen which gives the user much higher resolution when 

trying to view process variables and settings.  The “Pico Brew” also allows the user 

to monitor data via their PC, tablet, or phone through a server that is supported by 

the “Pico Brew” website.  For the system, it is intended to use a PC to input data 

and also have that data available through some kind of data logging mechanism.  

This will be discussed in more detail throughout the design portion of this 

document.  Table 3.3 below illustrates the interface options for each of the systems 

discussed.  The plans will be included for the design project in red, for comparison 

purposes. 

 

Table 3.3:  Interface comparison 

System Interface Type 

Brew Boss 7” Tablet with Wi-Fi Communication 

SYNEK LCD Screen 

Pico Brew PC/Tablet/Phone and OLED Screen 



15 
 

Automated Brew Extractor PC (Raspberry Pi Computer) 

 

3.3 Strategic Components 
  

In this section there will be a discussion of some of the strategic components that 

will be used in the system.  All of the components were chosen with the goal of 

implementing the requirements.  The first component that will be examined is the 

Raspberry Pi computer.  This computer was chosen to serve as the interface and 

I2C master.  Although there are several comparable systems that could accomplish 

the same goal, the online development community behind the Raspberry Pi is the 

best in its class.  This made several websites available as resources throughout 

the design stage of this project.  Since the system needs an interface that allows 

the user to input specifications and monitor data, the Raspberry pi seemed like a 

great starting point.  This computer allows us to program in the Python language 

and generate a graphical user interface, to receive data from the user.  The 

graphical user interface will be discussed in detail throughout the design portion of 

this document.  The Raspberry Pi also contains general purpose input and output 

pins that are also directly accessible through the use of the Python language.  

These pins can be used as digital inputs and outputs or, drive an I2C bus.  The 

Raspberry Pi comes equipped with an I2C module that allows the computer to drive 

any I2C device connected to the bus.  Since the ability to move data from the 

interface, to the microcontrollers is required, this was an attractive feature for this 

project.  The I2C bus configuration is discussed in detail throughout the design 

portion of this document.  The Raspberry Pi is the most critical component in 

allowing all of the subsystems to work together.  It is able to serve as a user 

interface, data transmitter, data receiver, and data logger. 

 

The components chosen to help us accomplish of goal of automating the brewing 

process were the microcontrollers. The system uses two ATMEGA328P 

microcontrollers to manage all of the processes as well as relay information back 

to the raspberry pi.  Specific details about this configuration will be discussed 

throughout the design portion of this document.  The use of two microcontrollers 

allows us to divide the work required by the system into two separate jobs.  This 

allows us to make the programming for the microcontrollers simpler as well.  

Instead of combining all of the code on one chip, the group will divide the code into 

two smaller, more manageable code sections.  This also helps us reduce the time 

it takes to debug certain functionality should a problem arise during testing or 

operation.   

 

3.4 Possible Architectures 
 



16 
 

While researching for this project the team came up with several system 

configurations.  Diagrams and descriptions of the possible system configurations 

can be seen below.  Each system description and diagram was considered as a 

potential configuration.  The finalized system configuration is shown in the design 

portion of this document.  The group will take a look at each of the possible 

configurations and discuss the advantages and disadvantages of each.  The first 

configuration the team will examine is a side-by-side brewing system.  In this 

configuration all of the equipment is located at the same level.  Liquids can then 

be moved from one side of the set-up to the other side via pumps and valves.  

Figure 3.7 shows the side by side configuration that was initially considered for the 

design. 

 

 
Figure 3.7: Side by Side brewing system. 

 

Ultimately the team decided to not use this configuration for several reasons.  

Firstly, loss is a big issue in a side by side configuration.  Without the use of self-

priming pumps, the lines used to transfer liquid from one side of the system to the 

next, will be full of the product and will ultimately be lost by the end of the brewing 

cycle.  This is because liquid pumps cannot pump liquid once air is in the line.  

Another major disadvantage of this system was the heating element arrangement.  

Some configurations use electric burners and others use propane heating 

systems.  While propane is probably the most efficient, the equipment is expense, 

which is why the team opted for the heating element configuration.  The side by 

side configuration also requires the use of two transfer pumps to move the liquid 

from one side of system to the other.  The pumps needed to move high 

temperature liquid, and still keep that liquid safe for human consumption, are 

expensive as well.  The side by side configuration also takes up a lot of space 

horizontally.  This is not desirable unless the user has a lot of space free in his or 



17 
 

her home.  Ideally the team wanted something compact that could easily find a 

place in the user’s home.  There are some advantages to using this configuration 

however.  The fact that all of the brewing apparatuses are on the same level, make 

it easy for the user to see what is going on inside of the system.  This also gives 

the user the ability to add ingredients easily if necessary.  From an automation 

point of view, the side by side configuration offers no real advantage.  The next 

configuration the team examined was the self-contained system.  This system is 

much like the Pico Brew discussed previously in this document.  All of the systems 

and processes required to make the beer would occur inside of one “box.”  

Although this would be the most ideal configuration, the manufacturing of these 

device would be too expensive for the budget.  Figure 3.8 shows the self-contained 

brewing configuration. 

 

 
Figure 3.8: Self Contained Brewing Configuration 

 

4.0 Brew Extractor Hardware and Software 
Design Detail 

 
This specific section will cover the integration details of the hardware and software 
aspects of the automated system. It will go into the specifics of each individual 
subsystem, such as the structure design, heating and cooling systems, 
communications, analog data acquisitions, system power supply, user interface 
and functionalities. 
 



18 
 

4.1 Initial Architectures and Related 
Diagrams 

 
When beginning the project the group had several ideas of how they wanted to 
achieve the goal of automating the sugar extraction process.  Throughout the 
research stage the group came across several great designs that influenced how 
they would achieve that goal.  This section will cover the initial designs for the 
project that group came up with after the research stage.  Initially the group decided 
to configure a 22 Liter brewing system.  Table 4.0 shows the components required 
to operate a 22 liter brewing system.  The group eventually decided that the cost 
of implementing a 22 liter brewing system for the design project would be too costly 
mainly because of issues that occurred during the heat exchange process.  This 
issue is discussed in detail in the upcoming sections.  Not only were there 
challenges during the heat exchange design, this configuration took up a lot of 
space.  This may not be convenient for someone who does not have a lot of space.  
This also makes the system incredibly time consuming to clean, which is 
something the group wanted to avoid in the end.  Table 4.1 shows the configuration 
for the 22 Liter brewing system. 

 

Table 4.1: Configuration of 22 Liter System 

Equipment Needed Quantity Needed 

37 Liter Brew Kettle 1 

37 Liter Mash Tun 1 

22 Liter Glass Jug (Carboy) 1 

Plate Chiller 1 

Stainless Steel Head Pump 1 

½” Stainless Steel Solenoid Valves 8 

½” Copper Tubing 10 Meters 

70 Liter Cooling Reservoir 1 

20 Liter Sparge Tank 1 

 



19 
 

 
Figure 4.1: The 22 Liter Brewing System Configuration  

 

4.2 Brew Extractor Support Structure 
 
In this section, the design process for creating the Brew Extractor's support 
structure is reviewed in detail. Some of the key design requirements for the 
structure were a strong, lightweight, low profile, modular structure. 
 
Much like a great suspension bridge, a masterfully designed sky scraper, or even 
a chair in a living room, a strong and properly designed support structure is 
necessary in order to ensure safe and reliable operation. The maximum loads of 
each component in this system are not entirely large, and most common building 
materials would suffice in terms of basic strength and vibration resistance; 
however, the temperatures achieved during device operation are an important 
factor in material choice. During the wort "boil" cycle, the kettle has the potential to 
reach temperatures of 100 ºC in the form of boiling water. The boiling water will 
not only conduct its high temperatures through the kettle and into the structure, but 



20 
 

the rising water vapors will also condense onto the structure, requiring the structure 
to be resistant to corrosion. In Table 4.2 below, different possible building materials 
are compared by considering some important properties. Each property is ranked 
on a scale between 1 and 5, 1 being undesirable and 5 being ideal.  
 

Table 4.2: Support Structure Material Comparison 

Material Strength Weight 
Corrosion  & 

Wear 
Resistance 

Cost 
Operating 

Temperature 

Steel 5 2 1 5 5 (500 °C) 

Stainless Steel 5 2 5 2 5 (760 °C) 

Aluminum 4 4 4 4 5 (460 °C) 

Wood 3 3 1 5 4 (300 °C)  

PVC 2 4 5 5 1 (70 °C) 

 

In order to choose a main structure material the material properties are weighted 
with a factor that dictates how important each is in relation to the others. For 
example, weight is not as large of a factor as corrosion\wear resistance, neither of 
which are as important as strength and operating temperature. The cost factor 
depends on how funds are acquired and allocated throughout the project. Table 
4.3 shows the weights designated to each material property and Table 4.4 shows 
the weighted total scores of each material. 
 

Table 4.3:  Material Property Weights 

Strength Weight 
Corrosion & Wear 

Resistance 
Cost 

Operating 
Temperature 

5 3 4 3 5 

 

Table 4.4:  Material Weighted Scores 

Steel Stainless Steel Aluminum Wood PVC 

75 82 85 63 62 

 
From the material comparisons done above, it is clear that Aluminum is the choice 
material for the main skeleton support structure. Aluminum is a largely versatile 
material and it is available in a huge range of sizes and shapes. Aluminum also 
has an advantage of being a softer metal, allowing it to be cut and drilled with ease. 



21 
 

 
The next structural hurdle to overcome would be the dimensional design of the 
stand including major part orientation. The process flow and full subsystem 
dimensions are the key factors in choosing the stand design. Ideally the entire 
structure will consume as little space as possible, as one goal of the design is for 
the system to be able to live on an average kitchen counter top. One major limiting 
factor for physical size constraints is the size of the cold water reservoir. The cold 
water reservoir will be too large to fit onto the countertop design; therefore, it will 
be omitted from the stand design and will simply be placed in a nearby location 
within range of the stand. The key sub-systems occupied by the stand are the 
sparge water tank, the mash tun, the kettle, and the carboy. Due to the gravity fed 
nature of most of the system, a 4-teir setup will be used. Other systems that will 
be incorporated into the stand but are not being incorporated in the stand design 
include pumps, solenoids, and tubing for flow. These are not being considered in 
the stand design because their sizes are currently unknown and it is assumed that 
their footprints will be small enough that adding them into the design will be an 
unchallenging task once the parts have been chosen.  
 

 
Figure 4.2: Sub-system Configurations 

 
As stated earlier, total system footprint would ideally be as small as possible. 
Figure 4.2 above shows different generic 4-tier configurations. In configuration (a) 
the sparge tank. mash tun, kettle, and carboy are arranged in a ladder 
configuration where each stage of the brew process moves in one direction. This 
configuration would be the simplest to implement and allow for the most room for 
"extras" underneath the top 3 stages; however, this will also consume the largest 
area possible and is therefore not an entirely desirable configuration. Looking at 
configuration (c), a tower (completely vertical flow) would have an ideally small 
footprint and would also be the most aesthetically pleasing form that the system 
could take. Form (c) does come with a few negative aspects though, the form factor 
leads to a very top heavy design during the grain steeping cycle where the carboy 
and kettle are empty and the mash tun and sparge tank are filled water and grain. 
This is a dangerous scenario where the only solution is to increase the system 
footprint. Form (c) also leaves very little room to add the pumps and solenoids to 
the system as everything, in this stacked fashion, is within close proximity of each 



22 
 

other. Configuration (b) combines designs (a) and (c) into a hybrid configuration 
that can have both a small footprint, and a "stacked" design with open room for 
additional hardware.  
 
Finally, assembly of the stand is to be considered.  With aluminum, there are a 
huge number of options for assembly which include but are not limited to welding, 
fitted pieces, and hardware; each with its own appealing characteristics. 
Unfortunately not all of these options will fulfill the design requirements for the 
structure. Specifically, while welding a stand together would create a very strong 
structure, it will lose modularity due to the inherent permanence that is a weld. 
Hardware allows for the assembly and disassembly of the stand while maintaining 
a strong structure when designed properly. One option for a hardware assembled 
design would be to purchase raw aluminum tubing and drill holes for hardware. 
This is a viable option and allows for a lot of creativity in shaping of the structure. 
Another option is to use extruded slotted aluminum profiles known in the industry 
as 80/20. These extruded profiles allow for the construction of a fully modular stand 
with strong joints which is also modifiable without the need of a machine shop full 
of tools. The 80/20 1010 series aluminum profile is shown below in Figure 4.3(a).  

             
Figure 4.3: (a) 080/20-1010 Series Profile.              (b) 80/20 Fastener. 

 
Utilizing profiled aluminum bars like this allows ease of assembly, modification, 
and without major tooling required. In Figure 4.3(b) the standard assembly fastener 
is shown. The trapezoidal figure inside the slot of the aluminum profile is a block 
with a threaded hole in the center of it, to attach objects to the profile, the block is 
simply slid to the desired location and a bolt clamps the object being fastened to 
the outside of the profile. Figure 4.4 shows a render of one possible stand 
configuration using the 80/20 profiled aluminum bars. A bill of materials required 
to assemble this style of stand is shown in Table 4.5. 
 



23 
 

 
Figure 4.4: Configuration (b) using 80/20 extruded aluminum profiles. 

 

Table 4.5: Stand Bill of Materials 

Item Quantity Part Number Unit Cost 

80/20 Aluminum - 10 series, 97" length 3 1010-97 $31.30 

80/20 10 Series, Fasteners (25-pack) 1 3393-25pk $17.12 

80/20 10 Series, Corner Bracket 8 4119 $3.81 

 

4.3 Brew Extractor Thermodynamics 
 
Across the entirety of the brewing process, thermodynamics are at play. The 
brewing process requires a great deal of temperature changes, many of which are 
time sensitive. When the brew extractor user enters a recipe into the central control 
unit, it is necessary that the brew process adheres closely to the user set 
temperatures and times. A lack of accurate repeatability defeats the purpose of the 
automated brew extractor. This is where thermodynamics come into play. Using 



24 
 

some basic thermodynamic and fluid heat transfer concepts, it is possible to obtain 
estimates of timing, temperatures, and volumes required to achieve the user’s 
recipe. For example, sourcing a part for the kettle heating element requires 
knowledge of fluid volume, target elapsed time, and fluid properties. 

Similarly with the wort cooling system, the system needs to be capable of reaching 
the user defined target temperature with the cooling device and have cooling 
capacity to spare. Thermodynamics and fluid heat transfer concepts are used to 
calculate the necessary starting temperatures of the cooling fluid as well as 
estimate the total cooling capacity of the system given a worst case scenario. 
Being able to calculate some of these figures beforehand will give the user insight 
into what kind of changes to the recipe could affect brew time or even overload the 
system. 
 

4.3.1 Kettle Heater 
 
Throughout the brewing process water and wort must be heated to user specified 
temperatures for user specified amounts of time. It is important that the method of 
heating is able to be controlled in a manner that will allow for the user defined 
recipes to be repeatable and accurate. First the heater must heat water to a 
temperature for steeping the grain. This process was reviewed in higher detail in 
the Process Control section, it is important to note that this temperature will vary 
based on the recipe input by the user. The next stage of heating requires sparge 
water to be heated to another user defined temperature for extracting as much 
wort from the steeping process as possible, this process must be accurate in order 
to ensure the sparge water mixing with the wort does not cause any unwanted 
heating or cooling. Finally the heater is used to "boil" the wort. The temperature of 
the wort "boil" process is not necessarily at the point of boiling, but is actually 
another user defined temperature that will likely be near the boiling temperature of 
water. It is clear now that the heater will be used throughout the brewing process 
many times and it is therefore an incredibly vital component to consider.  

Four heating methods were considered and are outlined thoroughly in the following 
sections. The four methods considered were gas burner, stove top style resistive 
heating element, water heater style resistive heating element, induction heating 
coil. The factors to be considered in each of these heating methods included size, 
efficiency, cost, and power output (effective heating time). 



25 
 

 
Figure 4.5: Gas burner style heater. 
(Courtesy of WEBstaurantstore.com) 

 
The first method considered was the gas burner. An example of a gas burner is 
shown in Figure 4.5. This method of heating is what most home brewers use when 
any sort of heat needs to be introduced to the system. It allows for the quickest 
heating due to the immense amount of energy released during carbon fuel 
combustion. Burning a carbon fuel may not seem like the most efficient method of 
heating liquid, but it is actually more efficient than utilizing electrical appliances 
when the source of the electrical power is considered. Power plants than are 
burning carbon fuels to convert chemical energy into electrical energy and 
subsequently deliver this energy to a home suffer large losses throughout the 
process. Burning the fuel for direct heating is a more efficient method of using the 
carbon fuel. That being said, the efficiency being considered for this project is 
viewed from a different perspective. The available energy is compared to the 
energy transferred into the fluid for heating, and in this respect, gas heating is fairly 
inefficient due to the inherent inability to direct heating directly to the liquid and not 
into the surrounding air and structural materials. The temperatures reached in the 
gas flame also are high enough to cause loses from radiation. There is also the 
inconvenience of possibly running out of fuel during brewing alongside the dangers 
of leaving a burning fuel unattended during brewing that reduce the favorability of 
this method. 
 
Before reviewing the next three methods, it is necessary to evaluate a key 
limitation of the next three options. This limitation is that the power source for the 
entire brew extractor is limited to a common household outlet which are usually 
tied into a 20A breaker. Assuming household mains voltage to be 110V, this limits 



26 
 

the power consumption of the entire assembly to 2200 watts. A safe margin from 
this limit would be to cap the total power consumption to 2000 watts. Assuming the 
rest of the electronics used throughout the project consume no more than 200 
watts, this leaves 1800 watts available for heating. 
 

𝑡 =
𝐶𝑝 ∙ 𝜌𝑚 ∙ 𝑉𝑚 ∙ (𝑇𝑓 − 𝑇𝑖)

𝑃
 

 
According to thermodynamics, the time for a fluid to change in temperature given 
the system properties is shown in the equation above. In this equation, t is time, 

Cp is the specific heat of the fluid, 𝜌𝑚 is the density of the fluid, 𝑉𝑚 is the volume of 

the fluid, 𝑇𝑓 is the final temperature of the fluid, 𝑇𝑖 is the initial temperature of the 

fluid, and P is the thermal power being transferred into the fluid. Assuming the 
initial fluid temperature is 25°C, the fluid being heated is water, the volume of fluid 
being heated is 1 1/2 US gallons, and the heating element is able to transfer all 
power drawn (1800 watts) into thermal energy with no losses; then time to reach 
boiling temperature would the following calculation: 
 

𝑡 =
(4.18 

𝑘𝐽
𝑘𝑔 ∙ 𝐾

) ∙ (999.9 
𝑘𝑔
𝑚3) ∙ (5.678(10)−3𝑚3) ∙ (373 𝐾 − 298 𝐾)

1.8 𝑘𝑊
∙ (

1

60
∙

𝑚𝑖𝑛

𝑠𝑒𝑐
) 

 

  𝑡 = 16.74 𝑚𝑖𝑛 
 
This figure represents the amount of time it would take to boil 1 1/2 gallons of water 
given no energy loss during the heating process, assuming 1800 watts of energy 
being fed into the system. In the following three options, this is the theoretical limit 
to heating speed, but other inherent losses will cause the speed to drop.  
 

 

Figure 4.6: Stovetop style resistive heating element. 
(Courtesy of WEBstaurantstore.com) 

 
 
 



27 
 

The second method considered was the stovetop style resistive heating element 
(STRE). An example of a stovetop style resistive heating element is shown in 
Figure 4.6. This device uses mains power to heat a coil of resistive material which 
the brew kettle would sit on top of. Resistive heating is a very effective technique 
because it is very efficient, in the sense that nearly all of the power drawn will be 
converted into thermal energy. It is also a fairly cost effective solution as resistive 
heating elements are very common and easy to manufacture. The device is fairly 
slim therefore its size can be easily accommodated into the design of the stand 
too. One drawback of this style of device is that it is used to heat the kettle primarily, 
which in turn heats the liquid inside through conduction, this causes a slight loss 
in efficiency. The device also could also obstruct the measurement of the kettle 
weight, which will be used to track the fluid level within the kettle, because both the 
stovetop style resistive heating element and the weight sensor need to be placed 
below the kettle. 

 
Figure 4.7: Water heater style resistive heating element. 

(Courtesy of WEBstaurantstore.com) 
 

The next method considered was water heater style resistive heating element 
(WHRE). An example of a water heater style resistive heating element is shown in 
Figure 4.7. This device functions similarly to the stovetop style resistive heating 
element in the sense that they both take in mains power and convert this power 
with high efficiency into thermal energy. The fact that this device does not function 
as a stand or come with extra power controls actually makes this even more cost 
effective however. The heater shown in the figure shows mounting holes for 
mounting the element directly into the side of the kettle, which allows the heating 
element to be in direct contact with the liquid being heated, this causes less losses 
as the primary item being heated is the liquid and the kettle is only heated through 
conduction. These types of heaters are also available with the mounting option of 
threading the element into a fitting on the side of the tank/kettle which allows for 
standard industrial sealing methods to be used to prevent leaks. Since the element 
is placed in the side of the kettle it takes up virtually no space outside of the kettle 
and is therefore the smallest option. 



28 
 

 
Figure 4.8: Inductive heating coil (stovetop style). 

(Courtesy of WEBstaurantstore.com) 
 

The final option considered was an inductive heater. An example of a stovetop 
style inductive heater is shown in Figure 4.8. The fundamental principal of an 
induction heater is that it utilizes a high current carrying coil to induce eddy currents 
into magnetic materials placed within the magnetic field of the coil. The eddy 
currents induced into the magnetic metal object cause the object to heat. In the 
case of this project, a stovetop style heater is not necessary as the coil could be 
wrapped around the brew kettle and the current induced directly into the walls of 
the kettle. Again this style of heating will be susceptible to greater losses due to 
the fact that the kettle is being heated primarily and the liquid through conduction. 
Designing this style of inductive heater will also be much more costly and time 
consuming than a resistive heating element. The material used in the brew kettle 
could also affect efficiency negatively, because most brew equipment is stainless 
steel, and stainless steel in only mildly magnetic. Induction heating efficiency is 
directly proportional to the magnetic permeability of the material within the coils 
magnetic field. 
 
Now that all four options of have been reviewed, a comparison of the options is 
done with weighted parameters; size, efficiency, cost, and power output (effective 
heating time) is shown in Tables 4.6(a), (b), and (c).  
 

Table 4.6(a): Comparison of Heating Methods 

Method Size Efficiency Power Output Cost 

Gas 2 5 10 3 

STRE 5 7 3 8 

WHRE 10 9 3 10 

Induction 8 7 3 3 

 



29 
 

Table 4.6(b): Heating Parameters Individual Weights 

Size Efficiency Power Output Cost 

5 3 4 3 

 

Table 4.6(c): Comparison of Heating Methods Weighted 

Gas STRE WHRE Induction 

74 82 119 82 

 
It is clear that the most desirable method to use given these weights is option 
number three, the water heater style resistive heating element. These elements 
are available in range of output wattages for different applications. In the case of 
this project, a 1500 watt resistive heating element will be used as these elements 
are typically found in increments of 500 watts. Knowing that the element is nearly 
100% efficient, the lossless time required to bring 1 1/2 gallons of water to a boil 
from room temperature is recalculated using this lower power element. Plugging 
1.5 kW into the formula used above yields an ideal time of roughly 20 minutes. A 
bill of materials for this heating element and its installation hardware is shown in 
Table 4.7 

Table 4.7: Heater Bill of Materials 

Item Part Number Unit Cost 

Stainless Steel Heating Element - 1500W, 1" NPT Camco 02142 $9.42 

Stainless Steel Weld On Bulkhead Fitting, 1" NPT (MCM) 1698T32 $10.12 

Viton O-ring, AS568A, FDA Approved (5-pack) (MCM) 5577K219 $8.28 

 
 

4.3.2 Wort Cooling 
 
Depending on the user defined recipe, the target wort "boil" temperature could 
range anywhere from 93 °C (199 °F) to 100 °C (212 °F). When brewing the target 
maximum of 1 1/2 US gallons of unfermented beer, it can be quite a huge 
undertaking to cool that volume of fluid to below room temperature in a short period 
of time. It is necessary to use a heat exchange system capable of rapid cooling 
with plenty of headroom to spare. One key piece of knowledge to take from the 
basic principles of thermo dynamics is that when using one fluid to cool another 

the ∆𝑇 (difference in fluid temperatures) is proportional to cooling time assuming 
all other system parameters are held constant. That is, if the fluid being cooled is 
50 °C and the target temperature is 30 °C, a coolant at 0 °C will reach this target 
temperature more quickly than a coolant running at 10 °C. This is because heat 
flux is proportional to the difference in temperature given a static temperature 



30 
 

exchange medium, much like current is proportional to a difference in electrical 
potential (voltage) given a static electrically conductive medium (such as a 
resistor). 
  
Given the maximum capabilities of the automated brew extractor to be a volume 
of 1 1/2 US gallons at a temperature of 100 °C, and the assumed lowest likely target 
temperature for fermentation is 15 °C, it is possible to calculate the "cooling load" 
using the following formula: 
 

𝑄 = 𝐶𝑝 ∙ 𝜌𝑚 ∙ 𝑉𝑚 ∙ (𝑇𝑓 − 𝑇𝑖)                                                                         

                 = (4.18 
𝑘𝐽

𝑘𝑔 ∙ 𝐾
) ∙ (999.9 

𝑘𝑔

𝑚3
) ∙ (5.678(10)−3𝑚3) ∙ (288 𝐾 − 373 𝐾) 

                       = 2.017 𝑀𝑒𝑔𝑎𝑗𝑜𝑢𝑙𝑒𝑠 𝑂𝑅 1911.7 𝐵𝑇𝑈                                                                 
 
 

In order to achieve this magnitude of cooling capacity, a much larger reservoir of 
cold fluid must be used to absorb the thermal energy in the heated wort. A ten-
gallon cooler will be used as a cold fluid reservoir due to space constraints. This 
reservoir will have a connection to city water and will be filled to capacity minutes 
prior to utilization to minimize losses. A 10 gallon reservoir of city reservoir at room 
temperature will not have the capacity to reach an equilibrium temperature of 15 
°C or lower because room temperature is already above the target low temp. In 
order for the wort and the cooling fluid to exchange thermal energy and have an 
equilibrium temperature of 15 °C or lower, the cold reservoir must be lower than 
15 °C. In order to achieve this, the user will deposit a predetermined amount of ice 
into the cold water reservoir prior to brewing. The amount of ice necessary can be 
calculated using basic thermodynamic principles, as well as recipe parameters 
such as wort volume and boil temperature. By adding ice to the reservoir the cooler 
is taking advantage of waters high latent heat of fusion. Latent heat of fusion is 
defined as the amount of energy required to be removed from a substance to 
change from a liquid to a solid per unit mass. This value is equivalent in the reverse 
direction, that is, it can also be viewed as the amount of energy added to a 
substance per unit mass to cause a state change from solid to liquid. In the case 
of this cooler, the ice is absorbing the thermal energy from the hot wort but not 
changing temperature until all of the ice has changed state to liquid water. 
 
It was calculated that a 1 1/2 gallon batch of 100 °C wort exchanging thermal energy 
with a 10 gallon cooler of room temperature (25 °C) water mixed with 9 kg (20 lbs.) 
of ice will in a lossless closed system will reach an equilibrium temperature of 12.7 
°C. The losses within the system will most likely work in favor of the user because 
the temperature differential with the surroundings is greater for the wort. That is to 
say that since the wort will not only be exchanging heat with the cold water 
reservoir, but also with the air via natural convection as well as solids it comes in 
contact with via conduction. The large temperature differential will work to help cool 
the wort. Even so, if a recipe calls for a 1 1/2 gallon batch of 100 °C wort with a 



31 
 

target temperature of 15 °C, the user will most likely be prompted to add additional 
ice to lower the equilibrium set point further. Adding an additional 1 kg of ice will 
lower the equilibrium point of the heat exchange process to 10.4 °C which is a 
safer margin. In the end, however, the user will have the ability to add as much ice 
as seen fit, the program will simply suggest a bare minimum amount of ice to 
ensure the target temperature is reachable. 
 
In order for this heat exchange to take place, a medium between the two fluids is 
necessary. A counter-flow heat exchanger is used to cause this interaction 
between the two fluids. A counter-flow heat exchanger is any device that allows 
the flow of two substances in opposite directions separated by a thin thermally 
conductive layer of material. The flow allows for a high rate of heat transfer through 
the thin wall between the two substances without mixing the two substances 
together. In this project, the cold water from the reservoir will be pumped into one 
side of the counter flow heat exchanger while the hot wort is pumped into the 
opposite side. The coolant water will then flow out of the counter-flow heat 
exchanger at a much higher temperature, and into a water to air finned heat 
exchanger which utilizes forced convection to dissipate a great deal of the thermal 
energy in the water into the air. The water then returns to the cold water reservoir 
for recirculation. Meanwhile the wort is circulated back into the kettle until the mean 
wort temperature in the kettle has reached the target temperature. A block diagram 
of the system is shown in Figure 4.9. 
 

 
Figure 4.9: Block diagram of heat exchanger system. 

 
There are many different types of counter flow heat exchangers available, the main 
difference between most of them being size and geometry, both which affect 
cooling speed. For this project, budget is a large concern therefore an economical 
counter-flow plate chiller was chosen. A plate chiller uses the concept of a counter-
flow heat exchanger, but the conducting path between the two fluids are thick 
copper or stainless steel plates. The fact that the conduction medium is thin allows 
for larger thermal flux through the plates and the geometry of the plate maximizes 
surface area available for heat transfer, all the while being an inexpensive device 
to manufacture. Most commonly available counter-flow plate chillers are also 
stainless steel, which is ideal for this project due to stainless steels corrosion 



32 
 

resistance and inert nature. The plate chiller chosen is shown below in Figure 4.10. 
This plate chiller, from dudadiesel.com, is capable of a maximum of 17,000 BTU/hr 

of cooling potential, assuming this cooling capacity is attainable, the a 1 1/2 gallon 
batch of 100 °C wort example would be cooled in roughly 7 minutes. Table 4.8 
below shows the bill of materials for installation of this heat exchanger. 
 

 

Figure 4.10: B3-12A counter-flow plate heat exchanger. 
(Courtesy of dudediesel.com) 

 

Table 4.8: Wort Cooler Bill of Materials 

Item Part Number Unit Cost 

Stainless Steel 10 Plate Heat Exchanger,  
1/2" hose barb 

B3-12A $48.87 

Stainless Steel Hose Clamps, SAE 6, 10-pack (MCM) 54155K11 $11.13 

24V Submersible pump, 30L/min (eBay) 1E96208F54 $6.99 

 

4.4 Brew Extractor Automation and Control 
 
There are several subsystems involved in achieving the goal of automating the 
process of extracting sugar from barley to produce beer.  Each of the automation 
and control subsystems was designed to satisfy certain criteria needed for each 
step of the process.  In order for this process to be truly automated, the group 
needed to incorporate, communications, recipe control, temperature control, fluid 
level control, and fluid flow control.  All of these automated subsystems work 
together to produce the finished product.  This section will cover all of the 
automation and control subsystems designed for this project. 
 

4.4.1 Communications 
 
The communications for the system was a crucial instrument that the group 
needed, to achieve the goal of automating the process of sugar extraction.  The 
group needed to be able to send and receive information from the user interface, 



33 
 

into the system, and have the system interpret that data as usable and reliable 
information.  In order to accomplish this goal the group decided to use the Phillips 
I2C communications protocol.  Since the group decided to interface three control 
devices, I2C was desirable because it required less space to implement, making 
the printed circuit board cheaper to manufacture.  The programming associated 
with implementing this protocol also seemed more compact and intuitive, when 
compared to SPI.  Implementing the SPI protocol would have occupied twice as 
much space as the I2C protocol, when looking at the additional hardware needed 
to successfully implement.  The group was also interested in learning to use the 
I2C protocol because it seems to be the most commonly used form of 
communication between integrated circuits that are on the same circuit board.  
Figure 4.11 shows a block diagram of how the group connected each of the control 
devices to the I2C bus. 
 

 
Figure 4.11: Block diagram of I2C bus 

 
Had the group decided to use SPI as the protocol for transferring and receiving 
data, an additional two connections would be needed per chip, and additional two 
connections would be need on the Raspberry Pi.  This configuration seemed less 
desirable because not only would this occupy more space on the circuit board, it 
would also take pins away from the microcontrollers that could be used for 
something else.  Aside from the additional connections that would be required, the 
protocol itself seemed less intuitive for the design project.  SPI uses two shift 
registers to exchange data between devices.  Since the system only needs to send 
data in one direction a majority of the time, it seemed more intuitive to use the I2C 
protocol.  Figure 4.12 shows a block diagram of the SPI implementation would 
have looked like, had it been chosen for the design project. 



34 
 

 
Figure 4.12: Possible SPI configuration 

 
Although all of the devices connected to the I2C bus support I2C, the group could 
not simply connect them together because of their operating voltages.  The 
Raspberry Pi operates a 3.3V I2C bus and because the chosen voltage for the 
ATMEGA328P microcontrollers is 5V, the group could not connect them directly to 
one another.  The data sheet for the microcontrollers indicates that the I2C bus 
must operate at 0.7*Vcc.  The Raspberry Pi is not 5V tolerant.  Although this may 
not destroy the Raspberry pi, it can significantly reduce its operating lifetime.  It 
would have been possible to operate the microcontrollers at 3.3V, however, this 
would significantly reduce the resolution of the sensors.  In order to overcome this 
challenge the group implemented a level shifting circuit using two 2N7000 n-
channel MOSFETS.  The serial data lines, and serial clock lines, were interfaced 
to this circuit.  The raspberry pi supplies the 3.3V needed to drive the gates of each 
MOSFET.  In addition to the level shifting MOSFETS, the group also needed pull 
up resistors to connect the power to the low voltage side as well as the high voltage 
side.  Each I2C module pulls the bus low to send and receive data.  Since each 
device provides some level capacitance to the bus, the group calculated the 
optimal pull up resistor value to be 1.5k Ohms.  The group needed to calculate this 
value to ensure that the devices were getting the appropriate edges required by 
the I2C protocol.  Figure 4.1 shows the level shifting circuit the group implemented 
in the design including the pull up resistors and terminal blocks used to connect 
the Raspberry Pi to the printed circuit board.  If SPI had been chosen to be the 
main protocol for communications, an additional four pull up resistors would have 
been needed along with four additional transistors.  This would have occupied a 



35 
 

significant amount of space on the printed circuit board that the group is planning 
to have manufactured when the design is finalized. 
 

 
Figure 4.13:  Level shifting circuit 

 
Aside from the level shifting circuit, the group also wanted a way to utilize the 
remaining inputs and outputs on the microcontrollers that were not used to operate 
the system.  In order to achieve this goal the group included male header pins that 
would allow them to connect the programmer and utilize all of the remaining input 
and output ports.  This would allow the group to program the chips in circuit.  This 
functionality could be useful if the user ever decided they wanted to make changes 
to the existing system configuration.  This will also allow for flexibility with the 
current system configuration, giving the user a creative grasp of their equipment 
and freedom to change that equipment as necessary.  Figure 4.14 shows the 
connections made in order to implement the group’s plan for in circuit 
programming.  Figure 4.15 shows the finalized communications circuit for the 
project. 

 
 
 
 
 
 



36 
 

 

 
Figure 4.14: Male header connections for in circuit programming 

 



37 
 

 
Figure 4.15: Complete communications circuit 

 



38 
 

The communications subsystem will be expected to transmit all of the necessary 
data between the chips and the user interface.  It will also provide the user with the 
ability to change any of the functionality of the input and output pins as needed.  
Using the I2C protocol, the level shifting circuit, and in circuit programming 
capabilities, the communications system will provide all of the functionality that the 
design project needs.  Aside from the hardware used to implement the I2C protocol, 
the group also had to prepare the software side.  In order to have a functioning I2C 
bus, the group obtained the I2C slave drivers for the microcontrollers from Atmel.  
Although this driver contained all of the necessary code to control the registers that 
operate the I2C module on the microcontrollers, significant modification was 
needed to make the driver work for the design project.  The I2C driver is interrupt 
driven, therefore, delays are needed to allow certain steps of the control program 
to execute before transmitting data.  Without the delays the I2C module would 
remain in an active state preventing the microcontrollers from performing other 
tasks. This was also controlled by only sampling the data at specific intervals. For 
example, instead of continuously reading the temperature of one step of the 
process, the microcontroller only reads the temperature every three seconds. This 
is sufficient in helping the group obtain meaningful data, and also helps stabilize 
the control process by preventing the rapid fluctuation of the data. All of the delays 
were implemented using the Python code that was written for the Raspberry Pi I2C 
master.  Since the ATMEGA328P microcontrollers operate as slaves, only the 
Raspberry Pi can initiate a transfer of data. Adding the delays on the 
microcontroller side would have been ineffective considering the interrupt would 
essentially override the delay operation. Figure 4.16 and Figure 4.17 Show how 
the program uses delays to smooth out the operation of the system. 
 

 
Figure 4.16: Raspberry Pi I2C Master Delay Structure 



39 
 

 
Figure 4.17: ATMEGA328P I2C Slave operation  

(Visibility decreased with smaller size) 
 

 



40 
 

4.4.2 Recipe Inputs 
 
With the communications setup implemented, the group could now look at how 
they were going to control the system using recipe information. Each brewing cycle 
will be driven by specific temperatures, boil times, and liquid levels. In order for the 
system to be truly automated, the user must be able to specify this information, 
send it out to the system, and have this system respond appropriately. When the 
user enters the data into the interface, and sends the data to the microcontrollers, 
the Raspberry Pi will work with the microcontroller to make sure that the recipe 
information is assigned to the appropriate variables in the microcontroller’s code.  
In order to accomplish this goal, the Raspberry Pi will first send a hexadecimal 
value that corresponds to the type of data that will follow. The microcontrollers will 
call a function that returns the hexadecimal value sent by the Raspberry Pi, then 
decide which variable needs to be assigned the next byte of data that will be sent.  
Once the second byte of data is received, the microcontroller places that value 
according to the previously received hexadecimal value and waits for the next 
variable to be sent. This allows the microcontroller to differentiate between a 
temperature specification, time specification, and liquid level specification. The 
hexadecimal codes are shown in table 4.9. 
 

Table 4.9: Data codes for recipe information 

Hexadecimal Value Variable To Assign 

0x01 Mash Temperature 

0x02 Boil Temperature 

0x03 Pitching Temperature 

0x04 Mash Time 

0x05 Boil Time 

0x06 Mash Liquid Level 

0x07 Boil Liquid Level 

 
Included in the recipe codes there are also some other commands that the 
microcontrollers can interpret.  Since the group want to use the Raspberry Pi as 
an interface, it will also need other functions such as starting a recipe cycle, 
stopping a recipe cycle, and a cleaning cycle. These are other things that they 
found to be a necessity when trying to implement an automated home brewing 
system.  The command codes will function very much in the same way as the 
recipe input codes.  Table 4.10 shows the list of command codes. 

 

 



41 
 

Table 4.10: Command codes for system operation 

Hexadecimal Value Operation to Perform 

0x08 Start Recipe 

0x09 Master Stop Command 

0x10 Clean Cycle Start 

 

4.4.3 Process Control 
 
Once all of the necessary data has been received by the appropriate variables, 
and a start command has been issued, the brewing cycle will begin.  As previously 
mentioned the group divided the work of process control, between two 
microcontrollers. The first microcontroller will have received all of the temperature 
specifications while the second microcontroller will have received liquid level 
specifications and timer specifications. These two will work together to monitor the 
process and ensure proper operation. Table 4.11 shows how the work load is 
divided among the microcontrollers. 
 

Table 4.11: Division of labor amongst microcontrollers 

Microcontroller 1 Microcontroller 2 

Maintain Proper Temperatures Control Fluid Levels 

Disable Heating  if an above necessary  
temperature occur 

Control Fluid direction (flow paths) 
 

Disable Heaters When Steps are Complete 
Monitor the Timing of Each step in the 

Process 

Store temperature information so that it may 
be retrieved by the Raspberry Pi 

Store Liquid level information so that it may 
be retrieved by the Raspberry Pi 

 
The process will start by filling the boil kettle to the specified level as input by the 
user.  Once that level has been achieved, the heating cycle will begin.  When the 
Mash Temperature specified by the user has been achieved, the first transfer of 
liquid from the boil kettle to the mash tun will take place. Once the level in the mash 
tun has been achieved, the mash timer will begin. When the mash timer is done, 
the liquid in the mash tun will return to the boil kettle during the sparge process. 
This rinses the sugar water from the grain that is in the mash tun. Now that the boil 
kettle has all of the liquid returned, the boil is ready to begin. The boil temperature 
will be achieved and maintained for the specified amount of time indicated by the 
user. Once the boil is complete, the liquid will be transferred through the cooling 



42 
 

unit until the pitching temperature is achieved. After this step is complete, the liquid 
is transferred to the carboy.  This completes the automated portion of the process. 
The user will add the yeast and attach the airlock for fermentation. Throughout all 
of these steps the microcontrollers will send information back to the Raspberry pi 
to indicate when it has completed a step.  This helps coordinate all of the work 
between the two microcontrollers. The Raspberry Pi, upon receiving notification of 
a step completion, will then send new instructions back to the microcontrollers in 
the form of the hexadecimal commands shown previously. Table 4.12 shows the 
hexadecimal notifications for step completion that will be sent back to the 
Raspberry Pi.  Figure 4.18 shows how the notifications effect the system 
throughout the process. 
 

Table 4.12: Process Notifications 

Hexadecimal value Notification 

0x01 Mash Step Complete 

0x02 Boil Step Complete 

0x03 Cooling Step Complete 

0x04 Cycle Complete 

 

 
Figure 4.18: Flow chart for process notification handling 

 



43 
 

4.4.4 Temperature Control 
 
Throughout the process there will be several stages where temperature control is 
a necessity. The entire sugar extraction process can be very sensitive to 
temperature when dealing with how efficient the system is at removing sugar from 
barley. There are very specific temperatures that are used in the brewing 
community. For the purposes of this project, the group decided to use PID 
temperature control to handle all of the heating processes used in this system.  
This was the most desirable means of temperature control because it will allow the 
system to hit accurate temperatures given changes in the surrounding area. For 
example, if the ambient air around the brewing system is warmer or cooler, the 
PID temperature control can compensate for the changes in the surrounding. It 
should also be mentioned that all of the heating control will be taking place on one 
microcontroller.  It was determined to be less confusing to have one microcontroller 
dedicated to temperature control. This was stated previously in the design section 
of this document. 
 

4.4.5 Fluid Level and Flow Control 
 
While the heating control is taking place, the second microcontroller will handle all 

of the fluid filling and transfer. For each stage of the process valves will work 

together with the pump to transfer liquids to their appropriate destinations. Figure 

4.19, 4.20, 4.21, 4.22, 4.23 and 4.24 show each of the stages and valve 

configuration for those steps of the process. The Filling and transfer stages are 

also listed below. 

 

1. Valve to main water supply opens and the filling of the brew kettle Begins. 

 

 
Figure 4.19: Main Fill Stage 



44 
 

2. Once the brew kettle is full and mash temperature is reached, water is 

transferred from the brew kettle into the mash tun. 

 

 
Figure 4.20: Mash Fill Stage 

 

3. Once the mash tun is full, the sparge tank is filled with heated water from 

the brew kettle. 

 

 
Figure 4.21: Sparge Fill Stage 



45 
 

4. After this step, the remaining processes except for the cooling will be fed by 

gravity. Once the mash time is completed, the liquid will drain from the 

sparge tank into the mash tun and the liquid in the mash tun will drain back 

into the brew kettle. 

 

 
Figure 4.22: Sparge Stage 

 

5. Once the brew kettle is filled, the boil will take place. Once the boil is 

complete, the liquid will be cycled through the cooling unit until the specified 

temperature is achieved. 

 

 
Figure 4.23: Cooling Stage 



46 
 

6. Once the cooling stage is completed, the transfer valve for the carboy 

opens, and the liquid is drained from the system. 

 

 
Figure 4.24: Carboy Stage  

 

7. This completes the fluid transfer control process. 

 

4.5 Brew Extractor Analog Data Acquisition 
 
The group decided to keep track of the temperature, fluid levels, and pH of the 
fluids in the brew extractor. The data will be collected using an array of sensors 
that constantly is tracked. The fluid levels and temperature are important for the 
automation process. The pH information is for the user to keep track of the wort 
and sparge water pH and adjust as necessary. It is important that the worth 
maintain a pH of 5.3-5.5. To collect and store the data a combination of 
microcontroller and a web server is going to be implemented.    
 
The plan initially was to collect the analog data and send it through an ADC so 
both the web server can collect the data and the microcontroller will be able to use 
the data. As the team progressed a microcontroller was picked due to its 
performance, price, and amount of analog to digital pins. The microcontroller 



47 
 

needs to come with analog to digital pins to remove the need for an ADC.  Having 
one would take up board space.    Once the data has been collected, it can be sent 
from the microcontroller to the web server. 
 

4.5.1 Sensors 
 
The temperature sensors will be used to keep track of the kettle water, wort, and 
sparge water. The sensors will be used to maintain target temperatures depending 
on the step in the brewing process. For instance the user will want the water to be 
heated to 95˚C before being pumped into the mash tun. Also the sparge water 
used to wash the sides of the mash tun need to maintain 76˚C. The wort also 
should be around this temperature when it returns to the kettle. The most important 
point being when the wort needs to be chilled for the distillation. The wort needs to 
go from 95˚C to 20˚C in an expedient manner and the process shouldn’t stop until 
it is chilled. The temperature sensors will keep track of the changing temperature 
and send a signal to the solenoid switch to close. This will let the fluid sensor to 
control the pumps returning the wort form the plate chiller.       
 
The next sensor needed are fluid level sensors. The importance is obvious and 
necessary to the system. The fluid level sensors ensures that there are no leaks 
in the A.B.E. Pumps will move fluids between the different containers. If an unequal 
amount of fluids is found the user is altered to a leak in the tubes. The fluid sensors 
will also alert the user to wort being left in the lines if there are no leaks. This 
sometimes happens, in a system such as this, product tends to get stuck in the 
lines if the pumps are not strong enough to move it through the lines. The other 
purpose of the fluid level sensors will be to send the signals to the solenoid 
switches to open and close for the pumps connecting the kettle to the mash tun 
and the plate chiller.  The fluids sensors become integral in running the pumps 
controlling the flow of fluids throughout the system, especially while the wort flows 
through the plate chiller. The temperature sensors and the fluid sensors are both 
important for this process. The group needs the solenoid switches to remain open 
and the pump running until the target temperature is met and the fluid level 
reached.    
 
The pH sensors are only important when the grains are added to the heated water.  
The pH needs to be maintained for the yeast to create an excellent batch of beer.  
The target pH is 5.4-5.6. Depending on the location the user is in the water’s 
starting pH is important; however, that becomes part of the recipe inputted by the 
user. Sending the data of the pH levels will allow for A.B.E to adjust the levels while 
the sparge water is added to wash down the sugars as the wort water is brought 
back to the kettle. The A.B.E will add Calcium and Magnesium Salts to help lower 
the pH in the mash tun during the process. The group doesn’t need to be 
concerned with increasing the pH because the sparge water being added 
increases the pH. Small adjustments in a brews pH affects the taste of the batch 
made. The information provided by the pH probe will assist the user to creating a 



48 
 

better tasting beer. There are negatives to using a pH probe to automate the 
process but that will be discussed later with the selection of the probe itself.  
 
 

4.5.1.1 Temperature Sensors 
 
The operating range of the Brew Extractor 20˚C-95˚C. There are three ways the 
group looked into for obtaining temperature readings: Thermocouples, resistance 
temperature detector (RTD), and thermistors.  Thermocouples, while having the 
largest range of temperature values, didn’t have the accuracy needed for the 
group’s application.  They also lose accuracy over time much quicker than an RTD 
or thermistor.   Because high temperature measurements are not planned and 
accuracy is fairly important to the system, the group decided to look further into 
RTDs and thermistors.  
 
Thermistors and RTD perform in the same functionality at lower temperatures.  As 
temperature increases so does the resistance in the RTD.  For thermistors it 
depends of the doping type thus creating two types of thermistors: Positive 
temperature coefficient (PTC) for p-type and negative temperature coefficient 
(NTC) for n-type.  Three ways to use these devices are to create a current source 
and measure the changing voltage due to the change in resistance in the device.  
Another is to use a simple voltage divider circuit with a reference resistor.  The 
third is to use a Wheatstone bridge circuit and use either the RTD or thermistor as 
one of resistors and measure the voltage across the bridge. Perhaps the biggest 
difference between the two are the temperature ranges and sensitivity of the two 
devices.  RTDs have a large temperature range and a linear change in voltage.  
This works well with the application but the device doesn’t react quickly to changing 
temperatures and is more expensive then thermistors. Thermistors react quickly 
and, although do not maintain a linear temperature to voltage, will help monitor the 
wort more accurately especially during the cooling process.  One thing to note, the 
thermistor can maintain a mostly linear curve at lower temperatures usually around 
100˚C or below. Because of the average cost of an RTD and the operating range 
being relatively small, the group has decided to use thermistors for temperature 
sensing.  
 
There are three immersion thermistors the grouped looked into using for A.B.E.: 
Vishay NTCAIMME3C90080, Vishay NTCAIMME3C90373, and the Honeywell 
590-59AD02-104.  The first thing the group wanted out of the temperature sensor 
was the ability to be immersed in both the water and the wort. The temperature 
sensors are going to be exposed to products meant for human consumption. This 
leads to the second most important part, the housing of the thermistor. The housing 
needs to be food safe; thus, the housing needs to be stainless steel. The previously 
mentioned thermistors fulfills the criteria. The two Vishay thermistors found have 
an advantage in being that can be screw mounted. This make it easier to have 
multiple points of temperature sensing to see how the wort/water is boiling and the 
wort is cooling off.  It also makes it easier to avoid the heating elements at the 



49 
 

bottom of the kettle. Another feature these two sensors have are the can be 
soldered directly onto a PCB or used in a breadboard for testing.  
 
The two Vishay sensors do have their differences.  The NTCAIMME3C90373 is a 
bullet shaped sensor with PVC cable.  This sensor is the easiest to mount.  
Collecting accurate data easily because it maintains the most linear temperature 
to resistance ratio.  The thermistor unfortunately has only a temperature range of 
-25˚C to 105˚C.  While within the temperature range there is a discrepancy at the 
high end.  The group runs the risk of obtaining inaccurate data while the wort and 
water are boiling.  The NTCAIMME3C90080 is a rod shaped thermistor with similar 
mounting.  The rod length is 6.5 inches.   Female fasten is needed to collect the 
data off the thermistor.  The best feature is the temperature is the temperature 
range of -25˚C to 125˚C.  The housing is also 100% water tight.  The 
NTCAIMME3C90373 is only water proof up unto the brass or ring.   When the 
group first designed the brew extractor the brew kettle was expected to be much 
larger.  This rod type shape was perfect and could fit along with the heating 
elements.   With the change in the amount worth the A.B.E will make, the rod no 
longer fits in the kettle.  
 
Finally the Honeywell 590-59AD02-104.  Similar to NTCAIMME3C90373 in its 
bullet shape form this sensor is immersed in the fluid from the top or any other 
form of mounting. The temperature range is -60˚C to 300˚C.  The leads are covered 
in nylon can be implemented with a Wheatstone bridge, using a current source, or 
a voltage divider circuit.  This thermistor though is not completely watertight.  The 
group would have to construct a thermal well for the thermistor.  This particular 
thermistor also is more expensive than the other two.  Performance wise this is the 
best thermistor except for not having the perfect housing.  The price of this 
thermistor is more than the others and the group plans only using several for A.B.E.   
 
The thermistor the group decided to use is the NTCAIMME3C90373.  The 
temperature range maybe smaller than the others but still performs well within the 
operating range.  The price of this particular thermistor is fantastic at only $1.31.  
This makes it easier to get several temperature measurements different parts of 
the kettle.  The housing is already made for it and can easily be mounted with a 
sealing O-ring and screw.  Table 4.13 lists the main operating constraints the group 
was researching into. 
  

Table 4.13: Thermistor Comparisons  

Thermistor Temperature Range Casing 

NTCAIMME3C90373 -25˚C-105˚C 
Stainless steel bullet with 

brass O seal 

NTCAIMME3C90080 -25˚C-125˚C Stainless steel threaded rod 

590-59AD02-104 -60˚C-300˚C 
Stainless steel bullet with 

exposed leads 



50 
 

 

 
Figure 4.25: Thermistor Circuit Design  

 
Figure 4.25 above illustrates how the group plans to measure the changing voltage 
according to temperature. The NTCAIMME3C90373 is a negative temperature 
coefficient.  As the temperature increases the resistance decreases.  In the voltage 
divider that means as temperature increases the measured voltage decreases.  
The reason behind the unity buffer is to make it easier to implement a low pass 
filter and amplifier circuit if necessary. V1 and V2 are both 5V.  The team needed 
to ensure the voltage entering the operational amplifier is less than 2.5V so 
accurate readings can be taken by the microcontroller.    
 
 
 
 
 



51 
 

4.5.1.2 pH Sensors  
 
The pH sensors or probes work like a glorified multimeter.  Measure the change in 
voltage between and electrode and the solution the probe is in.  No matter which 
probe the group decides to use a basic unity gain circuit will be used to read the 
change in volts depending on the pH.  Because of the small range in pH, the group 
must also amplify the signal going to the microcontroller. The change in voltage 
will be in smaller then 0 to 60mV.  The amount of amplification has not been 
decided yet.  Figure 4.26 illustrates the initial planned circuit is below without 
amplification.  Amplification will be needed because mV measurements will be 
taken.  A low pass filter will be needed to deal with the noise coming from the 115 
VAC powering the system.    
 

 
Figure 4.26: pH Probe Circuit Design  

 
The wort made while brewing needs to maintain a pH of 5.2-5.6.  This wort will 
also be at higher temperatures then what a probe normally checks which changes 
the type of probe the system needs.  The probe selected needs to be able to 
operate at temperatures at and above 95˚C.  The probe used must also be able to 
accurately check the pH at those temperatures not just measure it.  Most pH 
probes are made for room temperature and pH of fluids change along with 
temperature.  If one looks only at water with a pH of 7 and increase the temperature 
then there doesn’t appear to be any error.  Take the pH of a base or acid and that 



52 
 

is no longer true.  Some probes come with an automatic temperature 
compensation (ATC) while others are manual.  In other similar applications most 
people ignore the change in pH due to temperature.  Because the system’s target 
range is small, the group cannot ignore temperature.  The last thing the probe 
needs to be is low maintenance.  Probes, no matter how good, eventually will need 
to be recalibrated or replaced. Also while A.B.E is not in use the probe must be 
submerged in liquid.  The final part of the criteria is cost.  Most probes are 
expensive and making one had proved to be problematic.  The probes the group 
looked into are Milwaukee MA917B/1, the Fluka 53162, and ALDRICH Z113077. 
 
The Milwaukee MA917B/1 offers ATC and uses a BNC connector to collect data.  
The Milwaukee uses a glass shaft with makes it food safe.  This probe operates at 
0˚C to 100˚C.     This is barely within the upper operating range.  This probe does 
require less maintenance once calibrated.   The approximate change in voltage to 
pH is about ±60mV depending on the change.  At more acidic pH’s this change is 
greater which is where the operating range is taking place.  This is important to 
note when amplifying the voltage to see the changes more accurately.  This shows 
that this probe might not be as accurate as the system needs with a ± .25pH 
variance.  Storage of this electrode is important in order for the user to increase 
longevity of the probe.  While not in use it is important to store in 7.0 buffer solution 
versus just storing in distilled water.  The electrode solution may migrate from the 
probe if this is done. This electrode can last from six months to a year when cared 
for properly.  What makes this probe viable is the cost being only $82 versus others 
that easily go to $120 or more.   
 
The Fluka 53162 is very similar to the Milwaukee in its tolerances, operating range, 
and housing.  It has a glass shaft, operates at 0˚C to 100˚C, and an accuracy of ± 
.25pH.  The probe also offers ATC.  The data sheet lacks the approximate change 
in voltage to pH so experimentation would be involved in obtaining the data and 
how much amplification it would need to see the difference, especially because of 
acidic nature the wort is in. The probe uses an S7 connector for data collection.  
The probe uses cartridge electrodes so it will last longer without maintenance and 
makes it easier for the user to replace.  The Milwaukee uses a gel electrode.  For 
the user, this probe has less hassle for storage because tap water can be used.  
This probe is more expensive at $110.   
 
The ALDRICH Z113077 uses a pin connection instead of a BNC connection.  While 
not really making a difference it does somewhat simplify the overall design for the 
probe. The operating temperature for the probe is -5˚C to 110˚C. This outperforms 
the other two prospective probes. It has a glass shaft and gel electrode like the 
Milwaukee. It shares an accuracy of ± .25pH with the other two probes. This probe 
would also require experimentation to see the voltage to pH change. Storage of 
this probe also will require a 4.0 pH buffer or a 7.0 pH buffer. This probe also has 
manual temperature correction. That is counterproductive to the automotive 
process. This probe is the most expensive out of the three having a price tag of 
$117.   



53 
 

 
The pH probe the group decided to use is the Milwaukee MA917B/1. This model 
overs the pH to voltage ratio and notes the change as the solution becomes more 
acidic. The probe is the cheapest of the three and the BNC connector is easy to 
implement.  Finding an extremely accurate probe was troublesome considering the 
budget. Looking at the Milwaukee probe it is the most useful. It performs the best 
considering the conditions. Price played a big part in this decision. The only place 
this probe falls short is storage and maintenance. This probe requires more user 
interaction then was initially planned on. Table 4.15 below does a comparison of 
the various pH probes researched. 
 
 

Table 4.15: pH Probe Comparisons  

Probe 
Temperature 

Range 
Accuracy Storage Voltage/pH 

Z113077 -5˚C-110˚C ±.25pH Buffer Solution unknown 

53162 0˚C-100˚C ±.25pH Tap Water unknown 

MA917B/1 0˚C-100˚C ±.25pH Buffer Solution ±60mV/pH 

 

4.5.1.3 Fluid levels 
 
Fluid sensors play an important part in the system.  They will control the solenoid 
switches controlling the flow between kettle, mash tun, plate chiller, and finally the 
keg.  There are several different ways to measure fluid levels such as: load cells/ 
strain gauges, floats, phototransistors with LEDs, and for simple fluids a solid state 
electronic tape. 
 
Strain gauges are an easily implemented way for measuring the fluid levels in the 
different tanks the systems has.  It works the same way an electronic scale works 
at home.  It measures the change of weight, in this case amount of fluid, buy 
measure the voltage change as the resistance in the strain gauge changes.  The 
circuit would implement a Wheatstone bridge and would act as one of the four 
resistors on the circuit.  A.B.E would then measure the voltage across the bridge 
to calculate the fluid levels.  Another implementation circuit would is to use all four 
resistors in the bridge as strain gauges and have to be place in opposite directions 
of one another and create a balance for the load.   This sort of configuration would 
make the measurements extremely accurate and sensitive to change is fluid level.  
Because the strain gauges will be in opposite directions it also counters the effect 
heat will have on the system.  Figure 4.27 below helps to illustrate the strain gauge 
placement. 
 



54 
 

 
Figure 4.27: Strain gauge Circuit   

 
Floats or float switches are a basic solution to measure fluid level.  It’s a 
mechanical solution.  While not something the group will use for the kettle or mash 
tun environments provides an easy solution to preventing the overflow of the water 
tank.  The fluid level in the water tank is not as important to the system like the 
sparge tank level or kettle level.  
 
Phototransistors with LEDs provide an interesting new way of measuring the fluid 
levels in tanks.  The phototransistor acts like a trigger waiting for light to be present 
of not.  An LED is housed with a phototransistor in a dome and waits for liquid to 
be present.  When no liquid is present the LED will be reflected onto the transistor.  
With fluid present the LED light escapes the dome indicating there is liquid at the 
sensors position.  This however makes the system discrete in measuring fluid 
level.  While very fast, resolution will depending on the numbers of LED-
phototransistor pairs are in the system.  A device that works like this is the 
Honeywell LLE Series.  This device does integrate directly into a microcontroller 
freeing up an analog to digital pins on the microcontroller. 
 
Finally a solid state “eTape” for measuring fluid levels in a tank.  It is a solid state 
device that acts like a resistor.  The functionality is similar to a thermistor or RTD.  
As the water level rises in the tank the resistance of the eTape decreases.  This 
drop in resistance is linear in fashion.  Figure 4.28 below is shown to display the 
effects depth has on the resistance.  The drawback is that this only work in water 



55 
 

or other low acidic fluid environments.  The temperature range on the tape though 
is -9˚C to 65˚C.  This limits the tape to the sparge tank and water tank; however, 
this covers an electrical solution over the float switch.   
 

 
Figure 4.28: eTape Depth vs. Resistance  

 

4.5.2 Components 
 
Two of the most important components to the brew extractor are the operational 
amplifiers and microcontroller(s).  The number of microcontroller is limited to the 
number of pins it has and how the team will unitize them. The microcontroller will 
be tasked with storage and sending of the data collected by the sensors; however, 
if the data is not seen clearly or over a large enough scale the user could lose data.  
Thus the groups need for operational amplifiers.   
 
The operational amplifier will be used in two way.  The first is obviously the 
amplification of the analog signals before it reaches the microcontroller.  Many of 
the signals are two low to see any significant change it voltage for instance of the 
pH sensors only changes ±460mV per pH level.  That does not provide the 
necessary resolution to track properly considering slight changes only should 
about 46 mV.  The second is the role it will play in the extractor’s active filter 
circuits.   
 
The main purpose of the operational amplifier is to filter out noise for the brew 
extractors more sensitive measurements.  The noise the team is most concerned 
with is coming from the AC to DC converter driving the system’s power.  This leads 
to the operating conditions the operational amplifier is required to have.   
 
The operational amplifier needs to be low power in the milliwatt range.  It must also 
be low noise as low noise as possible.  Amplifying the noise will be detrimental to 
the data acquisition.  The final criteria is the operating voltage range.  Operational 
amplifier needs to be able to operate from a single power supply because the team 
does not plan on using any negative power supplies.  The next is that the 



56 
 

operational amplifier can operate with only 5VDC.  With the operating range being 
small, the circuit designs have to take in consideration the outputs coming from the 
sensors may hit the rails after amplification.  
 

4.5.2.1 Microcontrollers 
 
The microcontroller is an amazingly versatile piece of hardware that is found in 
nearly any electronic component that requires some form of control, from 
refrigerators to RC cars, to light switches. The function of the microcontroller in this 
project is to implement cause and effect situations as well as communicate data to 
a more powerful central computer. The range of microcontrollers available in 
today's market is truly vast, with huge scope of options like inputs, outputs, 
communication protocols, size, and analog to digital converters, led controllers, 
PWM controllers, and many others. The number of microcontroller options 
available is so great, that many of the available options are capable of performing 
the same tasks, at similar price points, footprints, and availability. It is because of 
this that only a few microcontrollers were compared when venturing to choose the 
right one. When comparing these microcontrollers, the parameters considered 
were size, number of analog inputs, number of digital inputs and outputs, 
communication protocols available, size of memory, and ease of use. The 
microcontrollers that chosen for analysis were the Texas Instruments 
MSP4302553, Freescale Semiconductor MC9S08SE8CRL, Microchip 
Technologies PIC16C73B, and the Atmel ATMEGA328P-PU. Table 4.16 
compares some of the hardware features of these microcontrollers. All of the 
microcontrollers chosen use PDIP packaging so that the group could gain 
experience soldering printed circuit board through-hole components.  
 

Table 4.16: Hardware Comparison of Select Microcontrollers 

 
Texas 

Instruments 
MSP4302553 

Freescale 
Semiconductor 

MC9S08SE8CRL 

Microchip 
Technologies 
PIC16C73B 

Atmel ATMEGA 
328P-PU 

Package PDIP-20 PDIP-28 PDIP-28 PDIP-28 

ADC Channels 8 10 5 6 

ADC Bit Size 10 10 8 10 

I/O 16 24 22 23 

Communication 
I2C, UART, SPI, 

IrDA 
SCI I2C, USART, SPI I2C, USART, SPI 

Supply Voltage 1.8 - 3.6 V 2.7 - 5.5 V 4.0 - 5.5 V 1.8 - 5.5 V 

Timers 2 2 3 3 

RAM size 512 Byte 512 Byte 192 Byte 2 kByte 

Program 
Memory 

16 kByte 8 kByte 4 kByte 32 kByte 

Max Clock Freq. 16 MHz 20 MHz 4 MHz 20 MHz 

 



57 
 

It is clear that a few any of these options could be made to work for the application 
of controlling the automated brew extractors I/O interface, analog input, and 
communication. The task of choosing the right microcontroller to use ends up being 
based more on user experience rather than hardware capabilities, however, the 
elimination process can place weight on certain hardware parameters to make one 
microcontroller more desirable than the others. The communication protocol the 
group decided to use to communicate between microcontroller and the main 
computer was the I2C protocol, this decision eliminated the Freescale 
Semiconductor MC9S08SE8CRL from further consideration as it does not have 
I2C communication built into the hardware. Next the decision to use a 5VDC supply 
was made. Having a higher supply voltage would increase the accuracy of the 
analog to digital converters onboard as well as allow for the I/O pins to function 
with more reliability. The Texas Instruments MSP4302553 microcontroller has a 
maximum supply voltage of 3.6VDC and was therefore eliminated from further 
consideration. This leaves the final choice between the Atmel ATMEGA328P-PU 
and the Microchip Technologies PIC16C73B. Comparing some of the key features 
of these two chips reveals that the Atmel ATMEGA328P-PU is superior in nearly 
all fields. The Atmel chip has more ADC channels, a higher ADC bit size, more I/O 
pins, and substantially larger RAM size and program memory size at no extra cost. 
These factors led to the decision to use the Atmel ATMEGA328P-PU. 

The Automated Brew Extractor requires constant reading of 6 different analog 
signals as well as control of 12 outputs for operating solenoids, pumps, actuators, 
and heaters. This is achievable with a single Atmel ATMEGA328P-PU; however, 
in order to make programming simpler for the group, the decision to split the work 
load onto two separate chips was made. The analog signals that need to be 
sampled are measuring the weight of subsystems that require certain fluid levels 
as well as the fluid temperature at different points of the brew process. The 
temperature and weight measurements are then logically split between the two 
controllers so that different people are able to work on these programs 
simultaneously. The I2C communication protocol is interrupt based and is initiated 
by the host computer; therefore, timing does not need to be done by the 
microcontroller and communication between each microcontroller and the host 
computer will never clash. All unused I/O pins on each microcontroller will be 
routed to empty output trigger circuits to allow for later device upgrades.  
 

 
Figure 4.29: Atmel ATMEGA328P-PU microcontroller. 

 



58 
 

The Atmel ATMEGA328P-PU microcontroller, shown in Figure 4.29, is in the AVR 
family of microcontrollers, most notably used in the popular development board 
"Arduino". Development for this family of microcontrollers has become so popular 
due to its use within Arduino development boards, that a large host of programming 
and development tools are available for these chips. Atmel has released its own 
proprietary development studio, free of charge, called "AVR Studio", which 
includes everything necessary to begin development on any AVR chip including 
line by line debugging. Also due to the popularity of the AVR chips, low cost 
programmers are available to flash programs onto the chips. All of these factors, 
as well as Atmel's comprehensive and easy to navigate datasheets, make the 
Atmel ATMEGA328P-PU microcontrollers an ideal platform for the Automated 
Brew Extractor. 

4.5.2.2 Operational Amplifiers 
 
As with any application using analog sensors is needed to amplify the signal output 
for it to be of any use to the system.   The operational amplifiers will act as unity 
buffers between operating stages.  The signals also need to be filtered to reduce 
the voltage noise coming from the other components in the system.  For the most 
part low pass active filters will be used 2nd order filters will be use.  The planned 
type of filter is a Butterworth filter.  Figure 4.30 below is an example of a 40Hz low 
pass filter.  The team has shown other examples of how the system will implement 
the operational amplifiers for the sensors. 

 

 
Figure 4.30: Second Order Butterworth Filter  



59 
 

 
Several operational amplifiers (operational amplifiers) were considered for the 
brew extractor. The operational amplifiers needed to be unipolar because the 
application lacks a negative voltage source.  The circuits are also used as if normal 
amplification is needed on that powered side.   It needed to be low power and be 
able to run on 5 Vcc.  The operational amplifiers that met the criteria: TI LM158, 
LT1006, LT1013DN, and the MCP60x family of op amps.  

 
The TI LM158 is the first operational amplifier the group considers for the 
amplification stage and filter designs.  The real draw of this operational amplifiers 
the low power consumption has compared to other operational amplifiers. It comes 
packaged only in a dual chip. It requires the highest turn on voltage but well within 
the voltage supply range of 5V.  It is also the most expensive of the operational 
amplifiers considered.  The group plans to order in bulk and that price does not 
agree with the budget.   

 
The Linear Technology LT1006 is the next operational amplifier.  Very similar in 
performance to the LM158J. It has a voltage supply range 2.7V to 22V.  This is 
well within the operational range.  At max operational voltage the most power it will 
draw is 3.4mW.  This is the highest draw out of the three operational amplifiers.  
Another down side is it only comes with one operational amplifier per chip.  Another 
chip is the same operational ranges is the LT1013DN; however, this chip is 
available in dual/quad chips.  An added bonus is that it draws less power than its 
single operational amplifier brother. The downside to this operational amplifier is 
that it requires 5V to operate.  For the system that give no leeway in the voltage 
supply and presents the chance the operational amplifier won’t turn on.  

 
The Microchip MCP60x family of operational amplifiers.  The reason the group 
looked at the family of operational amplifiers because the only difference between 
the chips was the amount of operational amplifiers on one chip.  The operating 
range on this operational amplifiers is the smallest at 2.7V to 6V.  It has a medium 
power draw on the system compared to the other operational amplifiers.  This chip 
is also ideal for the driver amplifiers for the ADC pins on the microcontroller. The 
real draw this operational amplifier has is the price tag to the other features it has.  
At only 44¢ it is the cheapest in the bunch. The negative to this chip is the lack of 
dual/quad chips.  Meaning that these chips will take up more space on the teams 
PCB.  Because of the small operating range though the group will have to be 
careful with the tolerance of this operational amplifier. Table 4.17 below shows a 
comparison of the operational amplifiers researched for filters and amplification. 
Parameters such as power dissipation, price, and supply voltages are considered. 
 
 

 



60 
 

Table 4.17: Operational Amplifier Comparison  

Operational 
Amplifier 

Supply 
Voltages(V) 

Max Power 
Dissipation 

(mW) 
Price ($) 

Number of 
Amps/chip 

MCP60x 2.7-6 1.65 0.44 1 

TI LM158J 3-32 7.50E-04 7.74 4 

LT1006 2.7-22 3.4 1.92 1 

LT1013DN 5-22 2.75 2.67 2 

LT1014DN 5-22 2.75 4.17 4 

  

4.5.3 Output Circuit Designs 

The I/O circuit designs represent the integration of components being controlled 
by the microcontroller as well as the components that trigger cause and affect 
situations within the microcontroller programming. A thermocouple cannot simply 
be connected to the microcontroller input and be expected to get accurate 
temperature readings. The analog inputs must be amplified and filtered to obtain 
as consistent and accurate data as possible. Similarly, microcontrollers are 
incapable of operating devices which requite > 5VDC and/or >20 mA. The outputs 
must have circuitry that will successfully trigger a high voltage and/or high current 
device while isolating the microcontroller from the damaging effects of the high 
voltage or high current. The following subsections review how these goals are 
achieved as well as outline a plan for the I/O ports and ADC port on each of the 
microcontrollers being used. 
In this section the design process leading to a finalized "standard" microcontroller 
controlled output circuit will be reviewed. The function of these standard circuits is 
to have a default circuit that will take a very low current low voltage signal from an 
output pin of the microcontroller and will be able to activate some of the higher 
power electrical components used throughout the system, components such as: 
resistive heaters, solenoid valves, relays, and actuators. 

Microcontrollers are, in general, very low power devices. In fact, most 
microcontrollers are only able to output signals in the 5ma-25ma range due to their 
small size and low cost. This creates a problem for someone looking to switch on 
a solenoid valve or control a heater using a microcontrollers output ports. 
Microcontrollers also run on relatively low input voltages, in the range of 1.8V-5.5V, 
which limits the types of electronics they can directly power or control with the 
output ports. Often the devices that need be switched on or off are being powered 
by higher voltages. It is for this reason that it is important to implement some form 
of isolation between the microcontroller output circuit and the higher voltage circuit 
that is being controlled.  



61 
 

Two main devices will be utilized in the following designs that provide high degrees 
of circuit isolation as well as control. First is the electromechanical relay. A relay 
utilizes the magnetic field created by a properly designed coil to physically pull or 
push contacts in a different circuit. The amount of electromagnetic force required 
to move the contacts in the other circuit will tend to be greater when the contacts 
can handle a greater current. In a roundabout fashion, the current required on the 
coil side of the relay is related to the load capability of the output side of the relay 
because of the change in electromagnetic force required to move these contacts. 

The other circuit isolation technique used is the opto-isolator. An opto-isolator can 
take many forms but only two will be discussed in this text, those are the 
optocoupler and the optotriac. An optocoupler is a 4-pin device with a 2 pin input 
side and a 2 pin output side. This device functions by placing a light emitting diode 
on the input side and a BJT on the output side, where the base of the BJT is biased 
by the input side LED. This creates a device that allows current to pass through 
the output side only when the LED on the input side is lit, all while being completely 
separate circuits. An optotriac functions in a very similar manner. The main 
difference between the optocoupler and the optotriac is that the optotriac has a 
triac on the output side rather than a BJT. A triac can be modeled as a pnp 
transistor connected to an npn transistor by joining the base of the pnp transistor 
with the collector of the npn transistor and the base of the npn transistor to the 
emitter of the pnp transistor. This creates a 4 layer device that is able to pass an 
alternating current signal through its output when the gate is biased. The gate of 
the triac is nearly synonymous with the base of the BJT in the optocoupler, in the 
sense that when the LED on the input side is turned on, the gate/base is biased to 
allow current to flow through the output of the device. 

Given the previous circuit isolation devices, a total of four output "turn-on" circuits 
were considered. It is important to note that each of the four following example 
circuits assume the microcontroller used has the current output capability to light 
an LED or bias a BJT directly. In each of the 4 following options VCC is assumed 
to be the operating voltage of the microcontroller and therefore equivalent to the 
output voltage at the microcontroller output pin. VDD is considered to be a DC 
voltage greater than VCC, and 115VAC is mains voltage connected directly to a 
household wall socket or the power supplies mains throughput.  

The first option utilizes a low power optotriac to enable the gate of a larger power 
triac. The power triac then allows current to pass through it to the load, which in 
this and the following three cases, has been modeled as a solenoid valve because 
that will be the most common load in the system, the circuit is shown in Figure 
4.31. Inductive loads such as solenoid valves tend to cause large spikes in current 
when initially triggered, for this reason an RC snubber is connected in parallel to 
the power triacs output terminals to protect it from damage. Since triacs are 
typically used for switching of AC sources, the solenoid in this example circuit is 
shown to run directly from 115 VAC mains voltage, but it could easily be any other 
device that is powered by mains voltage.  



62 
 

 

Figure 4.31: Output trigger circuit #1, used for switching 115 VAC. 

The second output circuit once again utilizes an optotriac for high voltage isolation 
from the microcontroller circuit. This circuit; however, assumes that the designer is 
able to find an optotriac with an output current rating high enough to run the 
solenoid valve directly. The RC snubber circuit is still used to protect the optotriac 
in this circuit. An optotriac that has the capacity to run the solenoid valve directly 
may require a strong LED to bias the gate on the triac internally; because of this, 
it may be wise to power the LED with a direct connection to a 5V power source 
and use a low power BJT to switch the LED on and off according to the 
microcontroller output. In Figure 4.32 it is assumed that the microcontroller is able 
to put out enough current to activate the optotriac fully. 

 

Figure 4.32: Output trigger circuit #2, used for switching 115 VAC. 

The third output circuit considered utilizes a relay for voltage isolation between the 
microcontroller circuit and the higher voltage circuit. This circuit is the most 
versatile circuit for switching higher power loads because by choosing a properly 
sized relay and BJT, nearly any sized load at any reasonable voltage, AC or DC, 
can be switched on; the circuit diagram is shown in Figure 4.33. In this circuit, the 
microcontroller output pin is used to bias a BJT into conducting which then grounds 
the relay. The relay coil acts an inductor and is capable of storing a charge, this 
can be damaging to the BJT. The diode placed in parallel with the relay coil is 
placed there to protect the BJT from charge stored by the relay coil. When the 
magnetic field around the coil is building or collapsing, creating a spike in 



63 
 

voltage/current, the diode causes the charge to dissipate as heat through the coil 
itself as well as the diode. It is also important to note that in this case, Vcc is 
equivalent to the microcontroller power input voltage, and is therefore equivalent 
to the microcontroller’s output port voltage. Vdd on the other hand, represents any 
voltage, AC or DC that is used to power virtually any load. 

 

Figure 4.33: Output trigger circuit #3, used for switching any reasonable AC or 
DC voltage. 

The fourth and final output circuit considered utilizes an optocoupler for voltage 
isolation between the microcontroller circuit and the higher voltage circuit. This 
circuit is just as versatile as the previous circuit for switching higher power loads 
because it is able to trigger solenoids that require an AC voltage source, however, 
the circuit is more robust in the sense that it separates high voltage and high 
current from the microcontroller circuit using both an optocoupler and a relay; the 
circuit diagram is shown in Figure 4.34. In this circuit, the microcontroller output 
pin is used to bias a BJT into conducting which then grounds the optocoupler input. 
The optocoupler input side is then triggered which grounds the relay coil which is 
operating at a higher voltage, therefore requiring a lower current to pass through 
the output side of the optocoupler. Finally this completed conduction path for the 
relay coil triggers the output of the relay to enable the solenoid. The relay coil, once 
again, acts an inductor, this can be damaging to the optocoupler. The diode placed 
in parallel with the relay coil is placed to protect the optocoupler from charge stored 
by the relay coil when the magnetic field around the coil is building or collapsing, 
creating a spike in voltage/current, the diode causes the charge to dissipate as 
heat through the coil itself as well as the diode.  



64 
 

 

Figure 4.34: Output trigger circuit #4, used for switching DC voltage equal to the 
solenoid trigger voltage (special case). 

The four output circuits designed are summarized and compared below in Table 
4.18. Each output trigger circuit configuration is analyzed to determine which one 
will be most suitable for the application of triggering solenoids, actuators, and 
heating elements by considering elements including but not limited to: bill of 
material count, bill of material cost, versatility, and durability. 

Table 4.18: Trigger Circuit Comparison 

 Pros Cons 

Trigger Circuit #1 

 Durable for switching 
AC loads. 

 High BOM count. 

 High BOM cost. 

 Only AC loads. 

Trigger Circuit #2 
 Low element count. 

 Simple circuit design. 

 Operating near device 
limits. 

 Only AC loads. 

Trigger Circuit #3 
 Useful for switching any 

AC or DC loads. 
 Operating near device 

limits. 

 High BOM cost. 

Trigger Circuit #4 
 Durable for switching 

AC or DC loads. 
 High BOM count. 

 

The decision was made to eliminate as many AC loads as possible in order to 
reduce issues with noise, shielding, and switching wear. Since trigger circuit #4 
can be easily adapted to switch any kind of load and has the versatility as far as 
design goes to allow operation in ranges far from maximum ratings, it is chosen to 
do the switching for the bulk of the output operations. Figure 4.34 shows the design 
when triggering a load that operates at the same DC voltage as the relay coil, but 
this design can easily be adapted to trigger high current AC loads by removing 



65 
 

VDD from the common pin on the relay and applying the AC source to that pin 
instead. This design then isolates the low DC voltage microcontroller from the 
higher DC voltage relay trigger circuit, which is isolated from the mains voltage via 
said relay. This is the type of adaptation that is required to operate the heating 
element in the boil kettle as it will most likely be a resistive AC load. The adapted 
circuit design is shown in Figure 4.35. 

 

Figure 4.35: Output trigger circuit #4, used for switching an AC resistive heating 
element (special case). 

This circuit does have a larger bill of materials/element count than most of the other 
options, but it was determined that the versatility and durability of the circuit 
outweigh the minor price that will be paid in board space and element cost.  

When choosing elements to turn this conceptual circuit design into a functional bill 
of materials, certain assumptions must be made. Current through the IC's, electro 
mechanical, and electro optical devices is the main concern when choosing 
components. In order to keep current as low as possible, devices to be switched 
will operate at a reasonably high DC voltage. The highest common DC voltage 
used in the industry is 24VDC, which devices are commonly made to operate at. 
It is assumed that the common solenoid used throughout this project will be one 
with coil operating parameters that are shown in Table 4.19 below. 

Table 4.19: Solenoid Operating Parameters 

Voltage Current Power Coil Resistance 

24 VDC 333.3 mA 8 W 72 Ω 

 

Knowing these operating parameters, it is possible to begin finding components 
for the design. A relay that can handle over 333mA of current on its output side 
and consumes as little current as possible on its input side is ideal. Next after 
finding the proper relay, an optocoupler with a high output current capability and a 
low input current draw is necessary. The transistor chosen to operate the 



66 
 

optocoupler input must be capable of being saturated by the microcontroller output 
voltage, VCC, which will be assumed as 5VDC. Finally the resistor values must be 
chosen to ensure proper operation. The final bill of materials per solenoid is shown 
in Table 4.20 along with key features considered in the design. 

Table 4.20: Trigger Circuit Bill of Materials 

Part P/N Design Features Cost 

Relay 
(low contact current) 

OJ-SS-124LMH2 

 Icoil = 8.3 mA 
(nominal) 

 Rated Current = 3 A 
(max) 

$1.12 

Relay 
(high contact current) 

FTR-K3JB024W 
 Icoil = 31.2 mA 

(nominal) 
$2.21 

Optocoupler FOD817A 

 Icollector = 50 mA 
(max) 

 Iforward = 20 mA 
(nominal) 

 Vforward = 1.4 V (max) 

$0.43 

Transistor 2N3904BU 
 Icollector = 200 mA 

(max) 

 Vce = 0.3 V (max) 

$0.19 

Resistor 1 
MFR-12FTF52-
1K 

 R = 1000 Ω (1% 
tolerance) 

$0.12 

Resistor 2 RN55D1650FB14 
 R = 165 Ω (1% 

tolerance) 
$0.10 

Diode 1N4149TR - $0.09 

 

The bill of materials for the default output trigger circuit shows two different relays, 
a low contact current relay, and a high contact current relay. The purpose of having 
two different relays rather than solely using the high contact current relay is to save 
on utilized board area. As will be discussed later in this report, manufacturing of 
custom printed circuit boards is typically charged by the square inch. This fact 
alone is reason enough to attempt to create a board layout that functions properly 
with as small of a footprint as possible. The low current relay will not be able to 
switch devices such as heaters and larger pumps, but the low current relay has a 
much smaller footprint and will suffice for actuators and solenoid valves. 

4.5.4 I/O Pin Layout 

In this section the input and output pins of the microcontrollers will be discussed in 
a specific manner. The pin inputs and outputs will be split between two 
microcontrollers as discussed previously in section 4.5.2.1. The temperature and 
fluid level measurements will be split between the two microcontrollers which will 
be referred to as MCU1 and MCU2, respectively, from this point on.  

 



67 
 

 

Figure 4.36: MCU1 output port circuit. 



68 
 

 

Figure 4.37: MCU1 analog input port circuit. 



69 
 

 

Figure 4.38: MCU2 output circuit. 

 



70 
 

 

Figure 4.39: MCU2 analog input port circuit. 



71 
 

Figure 4.36 shows the MCU1 output circuit diagram, all of the transistors 
connected to the microcontrollers I/O port will be connected via a cable, all of the 
circuitry beyond the transistors will be placed on an entirely separate board in order 
to keep the high voltage away from the microcontroller and operational amplifier 
circuitry. Figure 4.37 is a continuation of the MCU1 I/O design showing the analog 
temperature measurement circuits with amplification and filters. Figure 4.38 
displays the output circuit for MCU2, four of the outputs are connected to low 
current relays and the remaining four outputs on the same port are connected to 
high current relays which trigger 115VAC mains voltage. This totals up to 12 low 
current relays on 24VDC and 4 high current relays switching 120VAC. Figure 4.39 
shows the analog inputs for MCU2 which are the strain gauges that are used as 
fluid level sensors. Finally Table 4.21 explains which pins/ports are dedicated to 
which measurements.  

 

Table 4.21: Microcontroller Pin Assignments 

Pin # Port Function 

MCU1  

2 D.0 Low current output trigger. (Solenoid #1) 

3 D.1 Low current output trigger. (Solenoid #2) 

4 D.2 Low current output trigger. (Solenoid #3) 

5 D.3 Low current output trigger. (Solenoid #4) 

6 D.4 Low current output trigger. (Solenoid #5) 

11 D.5 Low current output trigger. (Solenoid #6) 

12 D.6 Low current output trigger. (Solenoid #7) 

13 D.7 Low current output trigger. (Solenoid #8) 

23 C.0 Analog temperature. (Boil Kettle #1) 

24 C.1 Analog temperature. (Boil Kettle #2) 

25 C.2 Analog temperature. (Heat Exchanger Exit) 

26 C.3 Analog temperature. (Mashtun) 

MCU2  

2 D.0 Low current output trigger. (Coolant Pump) 

3 D.1 Low current output trigger. (Open) 

4 D.2 Low current output trigger. (Open) 

5 D.3 Low current output trigger. (Open) 

6 D.4 High current output trigger. (Wort Pump) 

11 D.5 High current output trigger. (Heater) 

12 D.6 High current output trigger. (Open) 

13 D.7 High current output trigger. (Open) 

23 C.0 Analog weight. (Boil Kettle Liquid Level) 

24 C.1 Analog weight. (Mashtun Liquid Level) 

 

 



72 
 

 
4.6 Brew Extractor Power Supply 
 
In this section, the design process for creating the Brew Extractor's main power 
supply is reviewed in detail. The role of the power supply in this project is to supply 
power to every component within the system in a safe, stable, and reliable manner. 
The challenge in the power supply design for this system is the different voltage 
potentials employed throughout the system as well as their varying loads. Table 
4.22 below shows the different voltages being utilized and some of the components 
in the system that will function on that specific voltage. 

Table 4.22: List of Required Power Supply Outputs 

Voltage Use 

115 VAC Mains system input, resistive heating element, solenoids 

24 VDC Solenoid valves 

5 VDC 
Microcontroller power, analog reference voltage, sensor amplifier 
power 

3.3 VDC I2C communication, raspberry pi 

 

The design of the power supply begins with the current requirements at each 
specified voltage. The current outputs for each voltage is estimated by roughly 
summing the maximum current ratings for the components running on that 
respective voltage. For example, at 24 VDC only solenoid valves will be drawing 
power from the power supply; therefore, the estimated current requirement from 
the 24 VDC rail of the power supply design is the sum of the total current drawn 
by every solenoid valve. It is always good to have a factor of safety as well in the 
event that some component fails, the system will have the headroom to push out 
as much current as necessary in order to safely activate a fuse or breaker which 
will shut that specific rail down. 

If the maximum current capable of being drawn from a certain rail is in the range 
of 1-1.5A, it is then possible to use voltage regulating integrated circuits, like the 
LM78xx series chips, for a reliable and stable voltage output device. These 
integrated circuits are very economical and easy to use, which is one reason they 
are very common in many circuits that require voltage regulation. Another good 
reason to use this integrated circuits, is that they have a multitude of different 
protection circuits built in to the chip that will shut it down when certain ratings are 
exceeded. To use the LM78xx series voltage regulators as an example again, they 
employ a thermal overload protection circuit as well as a short circuit protection. 
The amount of power that the IC needs to dissipate is shown in equation below.  

𝑃𝑑𝑖𝑠𝑠 = (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡) ∗ 𝐼𝑙𝑜𝑎𝑑 

These regulators, essentially dissipate the excess voltage beyond their set output 
voltage as heat, while the total heat is a function of the current draw from the load. 
In the power supply being designed, three of these regulators could be used in a 



73 
 

series formation with "outputs" in between each stage, but power dissipation 
becomes an issue. Take, for example, the largest voltage difference between any 
two DC rails. In this power supply, that would be the 24 VDC and 5 VDC rails. 
Assuming the 5 VDC and 3.3VDC cascaded sources are able to draw 1.5A of 
current that leaves the 5 VDC linear voltage regulator to dissipate: 

𝑃𝑑𝑖𝑠𝑠 = (24 − 5) ∗ 1.5 = 28.5 𝑤𝑎𝑡𝑡𝑠 

That is a huge amount of power to dissipate, even with a very large heat sink. This 
type of configuration would also limit the maximum current draw of the parent 
regulator when the lower tier regulator begins to draw more current. The 
combination of these problems will lead to a severely handicapped power supply 
and an overall poor design. The circuit in bypasses the tiered relationship between 
the regulators allowing each to draw 1.5A on its own, but the power dissipation 
issue is worsened. These regulators have a minimum dropout voltage of around 
2V, meaning, the input voltage to the regulator is required to be at least 2V higher 
than the output voltage in order to operate. Using these numbers, if the 3.3V 
regulator were to draw 1.5A it would need to dissipate:  

𝑃𝑑𝑖𝑠𝑠 = [(24 + 2) − 3.3] ∗ 1.5 = 34 𝑤𝑎𝑡𝑡𝑠 

This form of power supply design is also very poor and would not perform 
adequately. These also assume that 1-1.5A is adequate current output which 
simply is not the case for each voltage.  

Another method of regulating a voltage is with the use of a "zener diode". A zener 
diode utilizes the breakdown voltage characteristics of a reverse biased p-n 
junction. The breakdown voltage can be manufactured to almost any reasonable 
voltage. In the case of a power supply, the zener diode would simply be used as a 
reference voltage while a bipolar junction transistor would be used to amplify 
current. This type of supply is still unable to supply enough current to outperform 
the voltage regulator ICs discussed previously. It is for this reason that a second 
transistor is added to the design. Now, instead of the transistors DC current gain 
being restricted to "ß" of one BJT, the cascaded configuration of transistors 
increases the DC current gain capabilities to "ß2". This transistor configuration is 
known as a "Darlington Pair", and they are available in a single package. 

The output voltage of this supply will be regulated to a value which is calculated 
by subtracting the voltage drop across the base of the darling pair from the zener 
voltage of the diode. The power consumed by the Darlington pair transistor 
package is then exactly the same as the power dissipation formula for the regulator 
ICs discussed above. The advantage to using this circuit instead of the regulator 
integrated circuits is that the maximum current draw is now determined by the 
transistor specifications, which are typically able to handle a much higher current 
than the integrated circuits.  

Both of the voltage regulation methods that have been discussed thus far assume 
an unregulated DC input as Vin, but how does the system get that input? What is 
readily accessible in all households is 115 VAC mains power. This is going to be 



74 
 

the source for the power supply being designed. In order to convert the alternating 
voltage source into a direct current source with a lower voltage, a power 
transformer, rectifier diodes, and filtering capacitors must be used.  

The transformer, rectifier, and filter combination can be viewed as the 
"unregulated" DC power supply, because the output signal after the filter will be a 
jumpy DC signal. Next the design of the unregulated supply will be reviewed. 

With a transformer, the designer is able to dictate the output voltage based solely 
on the ratio between the number of windings on the primary side of the transformer 
(where the 115 VAC is connected) to the number of windings on the secondary 
side of the transformer. The relationship between the output voltage and number 
of windings is proportional.  

The fact that it is so simple to increase or decrease the voltage on the secondary 
side of the transformer allows for transformer manufacturers to mass produce 
transformers with nearly any reasonable voltage output. This fact allows the design 
to leave this parameter as a variable which can be manipulated after the design is 
near finalization without much consequence. The rectifier to be used will be a 
simple 4 diode configuration which will effectively rid the power supply of negative 
voltages. 

The addition of a filter will clean the output of the rectifier such that voltage will 
reach the peak of the sinusoid, then, rather than drop immediately, it will stay 
relatively close to the peak voltage as long as the current draw from the power 
supply stays low enough. In order to achieve this, a smoothing capacitor is used. 
The capacitor can only store so much charge, therefore the size of the capacitor 
used will decide the rate of voltage decline between sinusoidal peaks. This rate is 
also a function of current draw, because the larger the current draw, the faster the 
smoothing capacitor will discharge. The calculation for the capacitor value to use 
can be shown as a function of these elements: 

𝐶 =
𝐼𝑙𝑜𝑎𝑑

𝑓∗𝑉𝑟𝑖𝑝𝑝𝑙𝑒
      or     𝑉𝑟𝑖𝑝𝑝𝑙𝑒 =

𝐼𝑙𝑜𝑎𝑑

𝑓∗𝐶
 

Where Iload is the current draw from the unregulated supply, f is the frequency of 
the rectified signal, and Vripple is the peak-to-peak differential voltage between the 
peaks of the rectified sinusoid and the lowest voltage reached before the next 
sinusoidal cycle recharges the capacitor. An important note is that now that the 
signal being smoothed is a rectified signal, it is no longer the same frequency as 
the mains voltage. The frequency of the rectified signal is now double that of the 
input signal, so in the case of a standard 60 Hz mains line that has been rectified 
with a full wave rectifier, the frequency used in this formula is 120 Hz. 

Increasing the size of the smoothing capacitor can help to eliminate the ripple, but 
with an increasing load, the capacitor required to reduce the ripple becomes far 
too large. In this respect the design must strike a balance between smoothing 
capacitor size and acceptable voltage ripple. This unregulated supply ripple could 
have an effect on the regulator circuit if the voltage dips low enough. 



75 
 

In order to obtain a highly regulated 24VDC output a tool called WEBENCH® 
created by Texas Instruments was utilized to automatically create regulated 
24VDC output. The tool is able to create multiple designs with varying efficiencies, 
footprints, bill of materials count, and total cost to suit nearly any application given 
the users input constraints. 

The output of the unregulated DC power supply is assumed to be a target of 
25.25VDC with a maximum ripple of ± 0.75V making the range of possible 
regulator input voltages to 24.5 - 26V. The maximum current output is assumed to 
be 3A, much greater than what will most likely be necessary, but will provide good 
headroom. Putting these figures into the WEBENCH® power supply design tool 
yielded a total of 16 different designs. Some of these designs had the possibility of 
becoming unstable so they were eliminated from consideration. Three designs 
were chosen to be compared. These reference designs are shown below in Figure 
4.40(a), (b), and (c) respectively. 

 

Figure 4.40(a): Reference design 1 for 24VDC power supply. 

 

Figure 4.40(b): Reference design 2 for 24VDC power supply. 



76 
 

 

Figure 4.40(c): Reference design 3 for 24VDC power supply. 

All of the designs chosen are buck converter topologies. These designs were 
chosen because they represent the strengths and weaknesses associated with 
power supply design. While these designs look very similar, efficiencies, footprints, 
bill of materials count, and total cost of each design is different. These parameters 
are compared for each of the designs below in Table 4.23. 

Table 4.23: Buck Converter Power 

 Efficiency Footprint BoM Count Cost 

Design 1 99% 617 mm2 15 $4.76 

Design 2 98% 337 mm2 17 $7.59 

Design 3 99% 1329 mm2 14 $4.39 

 

Any of these designs would work well for the application. Design 3 was chosen 
due to its larger footprint making it easier to make changes to the board if 
something were to go wrong, as well as the low cost and low element count. Since 
this supply is a 24VDC, the microcontroller and I2C bus still require 5VDC and 
3.3VDC. These voltages will not be used for high current purposes, so simple 
linear regulators discussed earlier will suffice for these applications. In the case of 
the 5VDC supply, two separate regulators will be used, one powering the 
microcontroller board, the other powering the output trigger board. The 
combination of the unregulated supply ~25VDC supply, regulated 24VDC supply, 
5VDC linear regulators, and 3.3VDC linear regulator creates the full power supply 
for the Automated Brew Extractor. Figure 4.41 demonstrates the efficiency of the 
power supply 24VDC rail against current output. Figure 4.42 shows the power 
dissipated by all of the components in the 24VDC power supply rail. The schematic 
for the full design is shown in Figure 4.43. A full bill of materials for the components 
used in the power supply design is shown in Table 4-6. 



77 
 

 
Figure 4.41: Efficiency vs output current of Design #3 

 

 
Figure 4.42: Power dissipated vs output current of Design #3 



78 
 

 

Figure 4.43: Completed Power Supply Design 



79 
 

Table 4.24: Power Supply Bill of Materials 

Item Part Number Quantity Unit Cost 

Transformer 186F20 1 $22.36 

Bridge Rectifier 583-BR62 1 $0.96 

C1 - 6800 uF - 1 $1.68 

C2 - 47 uF - 1 $0.42 

C3 - 1 nF - 1 $0.15 

C4 - 120 pF - 1 $0.15 

C5 - 33 uF - 4 $0.20 

C6 - 0.1 uF - 3 $0.06 

R1 - 17.8 kΩ - 1 $0.10 

R2 - 20 mΩ - 1 $0.10 

R4 - 182 kΩ - 1 $0.10 

R5 - 10 kΩ - 1 $0.10 

L1 - 15 uH - 1 $0.12 

Zener Diode MBR0540T1G 1 $0.36 

MosFET SI4401BDY 1 $1.26 

Buck Controller LM3485 1 $1.68 

5V Linear Reg LM7805T 2 $0.69 

3.3V Linear Reg L78L33ACZ 1 $0.42 

 

 

4.7 Raspberry Pi B+, Data Logging &  
      In-System Web Server 

 
One of the previously discussed purposes of having an automated wort extractor 
was that a home user could have control of the entirety of the automated process 
from beginning to end while being able to obtain system data for post-production 
analysis. In order to obtain this goal, the group has decided that the system, since 
it will already be connected to the Raspberry Pi, will have its own internal 



80 
 

Apache/MySQL server running on the Pi itself. Controlling this service will be a 
Python 2.7 driven GUI (graphical user interface) that will be connected to a laptop 
or desktop in order to transmit the user driven interface data. With the Raspberry 
Pi being the central unit, it will also need to have a couple Python 2.7 scripts that 
will interface between the GUI being displayed, the internal Apache/MySQL server 
and the ATMEGA328P control chips. This functionality in specific, was the team’s 
purpose all along: to have the Raspberry Pi Model B+ handle all of the routing 
communications that weren’t internal to the actual automated system (i.e. the 
sensors, control valves, power control signals, etc.).  
 
All in all the Raspberry Pi will act as a traffic light situated in a very busy 
intersection. Directing outgoing traffic, that is the data gathered from the internal 
sensors and various control valves, and the incoming traffic into the system itself, 
mainly being the user inputted data for the specified brew recipe and all of its 
parameters (or taking already stored data for a recipe stored on the server). The 
overall idea here is that the system will generate and control about 99% of the data 
that is navigating throughout the Raspberry Pi at any given time and the remaining, 
fractional 1% will be derived from the initial recipe initiation done by the user; which 
is important as it is needed to initiate the process.  
 
Throughout the whole process the system will be reading and relaying data that 
will be transferred from the control chips to the Raspberry Pi and then to the tables 
in the server accordingly. As mentioned above several Python 2.7 scripts will take 
care of translating the incoming system data to its appropriate destination; reading 
the incoming data written in C language and interacting with the Python 2.7 
language. In doing so, accessing and manipulating this information will be much 
cleaner, simpler and more manageable for later analysis if the home brewer sees 
it necessary to access this valuable information. The server installed on the master 
unit, the Raspberry Pi, will be a key part in the system because of its centralized 
work flow layout. The server, alongside the interface, will undertake fully the task 
to store previous inputted ‘favorite’ recipes, along with giving the user the option of 
opening previously saved recipes which will be stored on the server at all times. 
These values and their relevant data will be stored in their own separate tables in 
order to avoid any data compromise/mismanagement.  
 
Having this option undoubtedly gives the home brewer quite the versatility, not to 
mention this software option inside the GUI allows the system to be very user-
friendly and flexible in its interaction with the user. The server helps to organize 
the massive amount of small time-driven data that will be generated in cycles 
throughout the process, keeping in line with the initial concept that this system will 
be as autonomous as possible. The concept of this data logging, from the sensor 
readings to the recipe initiations, is that in the end the home brewer will be able to 
access all of this rich-data after process termination. This can be hours after or 
days, as long as the system keeps generating the system data the user will be able 
to obtain this information by being able to access the server on the Raspberry Pi 
through the internet or the Android application (under consideration). 



81 
 

 
The group will have a website running off of the Raspberry Pi’s internal IP address 
that will be available for access through any internet network as long as the user 
has the correct IP address. In this modern age of smartphones and data mobility 
having this system offer this option was not only crucial for the group but also 
somewhat necessary. They wanted to appeal to the modern home brewers whom 
in some cases have become quite tech-savvy fairly quickly. If the system is allowed 
to go off on its own after the home brewer initiates the process, while also allowing 
him/her to access ‘real-time’ data (there might be a few seconds delay between 
batches of information depending on the network connectivity and also because 
the system might have some short periods of lag) is something that is highly 
beneficial to all parties. Just this functionality alone gives the main goal of freeing 
the home brewer from the strenuous task of being present to take measurements, 
record them and keep track of specific recipe restricted given times, a huge win. 
The group wants to reduce the amount of physical human overhead and having 
this system do data logging and web server acquisitions to this data, make this an 
undeniably needed modern day functionality. 
   

4.7.1 Raspberry Pi Model B+ 
  Introduction & Overview 

 
In this section the advantages as to why the group decided to select the Raspberry 
Pi Model B+ as the driving machine behind this automated system will be 
discussed. As seen below in Figure 4.44, this small CPU can easily be comparable 
in size to a modern credit card with the dimensions shows above. The size of this 
small, yet powerful CPU was a top decisive factor in choosing it, along with its 
many incorporated high-tech parts which set it apart from its predecessors and 
other competitors out in the market currently. The group from the beginning knew 
that they would need a powerful and cost efficient central unit which could handle 
the highly involved software aspects of this automated system, with little to no 
addition of hardware components to the central unit. In the end it was the 
Raspberry Pi Model B+ which landed the long term job. Not to mention the cherry 
on top: its operating system is a Linux based operating system called Raspbian 
(Raspbian is a registered trademark of the Raspberry Pi Foundation); this makes 
the world of a difference when integrating this part with the rest of the circuit since 
Linux is one of the less complex operating systems out there. This is also true not 
only from a programmer’s point of view but also from a designer’s point of view, 
making the design aspects of the project and the ATMEGA328P chips much 
simpler. 
 



82 
 

 
Figure 4.44: Mechanical Specifications for Raspberry Pi Model B+ 

(Courtesy of the Raspberry Pi Foundation) 
 
This small, powerful unit has seen its popularity rise since its incorporation in the 
technology market for not only its simplicity in operation but also its cost along with 
the versatility in handling various tasks. The Model B+ comes at a cost of just $35, 
before tax and shipping, making it a very competitive modern day “all in-one” 
computer for small time developers, programming enthusiasts or beginners. 
Having just the Model B+ alone looks boring, but it can deliver a lot more than 
meets the eye at a first glance. Of course if the job requires a little more 
components, the Raspberry Pi Model B+ can be adjusted to hold various external 
components. As seen in Figure 4.45 below, the Model B+ has four USB ports, 
along with an HDMI port, a 4-pole 3.5mm jack, an Ethernet socket, 40 GPIOs 
(seven of these being general GPIOs) and a DSI display connector (for a ribbon 
cable connection). This credit card-sized computer can handle high capacity 
operations since it comes with a 512MB RAM capacity along with its ARM 
1176JFZ-S 700 MHz processor. 
 

 
Figure 4.45: Layout of Components for Raspberry Pi Model B+ 

(Courtesy of the Element14 Community) 



83 
 

The specifics for the pin layouts can also be seen in Figure 4.46 below. The Model 
B+ also offers one 3.3V source along with two 5V sources, allowing for the group 
to utilize these three pins to their advantage when sending control signals to the 
ATMEGA328P chips and all other connected devices. Pin #27 and #28 will also 
be very useful since the group will be utilizing the Raspberry Pi Model B+’s I2C 
(pronounced ‘I squared C’) input/output protocol. This great, already built in tool, 
serves as the platform for the internal communication protocols that the Raspberry 
Pi will handle. It is an extremely useful tool that allows the group to facilitate 
communications and transfers of data between the ATMEGA328P chips and the 
central unit. Another fascinating fact about this model according to the Element 14 
Community is the fact that it is very low power in consumption; in specific just 
operating with the basic Wi-Fi adapter, a USB connected keyboard and a wireless 
mouse it is able to keep under 700mA or less than 3.5 Watts (this is using the 
suggested 5V micro USB power supply for the Model B+). With more than enough, 
this affordable pocket sized computer weeded out other models that were in 
consideration for the job. Seeing as to how this project also required, as mentioned 
in the executive summary, a user interface, the Model B+ running its small 
Raspbian operating system (3.2 GB large) on an installed 8GB Micro SD card 
allowed for the group to create a great interface and the many different 
functionalities which could not have been achieved so easily with another small 
based CPU in its place. 
 

 
Figure 4.46: GPIO Pin Layout for Raspberry Pi Model B+ 

(Courtesy of the Element14 Community) 



84 
 

 

4.7.2 Raspberry Pi B+ vs. A13-OLinuXino,  
 Cubieboard2 & Banana Pro 

 
 

Table 4.25: Raspberry Pi B+ VS. Other Modern Single Board Computer Models 
(Information for Raspberry Pi courtesy of the Raspberry Pi Foundation, A13-OLinuXino Wi-
Fi courtesy of Olimex, Cubieboard2 courtesy of the Element 14 Community, Banana Pi 
courtesy of Banana Pi) 

Single Board 
Computer Name: 

Raspberry Pi 
Model B+ 

A13-OLinuXino 
Wi-Fi Enabled 

Cubieboard2 Banana Pi 

Developer: 
Raspberry Pi 
Foundation 

Olimex Cubieboard LeMaker 

Release Date: Summer 2014 April 2012 November 2012 2014 

Cost: $35.00 $68.70 $49.00 $54.99 

Processor: ARM11 ARM Cortex-A8 
ARM Cortex A7-

Dual Core 
ARM Cortex A7-

Dual Core 

SoC (Software 
on Chip): 

Broadcom 
BCM2835 

Allwinner A13 Allwinner A20 Allwinner A20 

GPU: 
Dual Core 

VideoCore IV 
ARM Mali-400 ARM Mali-400 ARM Mali-400 

Clock Speed: 700 MHz 1.0 GHz 2 x 1.0 GHz 2 x 1.0 GHz 

RAM/Memory: 
512MB SDRAM 

/ None 
512MB / 4GB 
NAND Flash 

1GB DDR3 / 
3.4GB NAND 

Flash 

1GB DDR3 / 
None 

OS Image 
(Linux/Android): 

Linux Android 
Linux OR 
Android 

Linux OR 
Android 

Power Supply: 5V, 2A 
6-16V 

(Battery 
supported) 

5V, 1-2A 5V, 2A 

GPIO Count: 27 8 - 7 

I2C Support: Yes Yes Yes Yes 

HDMI Port: Yes No Yes Yes 

Ethernet Port: Yes No Yes Yes 

USB Port(s): 4 hosts 
4 hosts 

(3 for users) 
2 hosts 2 hosts 

Video/Audio Out: Yes Yes Yes Yes 

Dimensions: 85mm x 56mm 
120mm x 
120 mm 

100mm x 60mm 92mm x 60mm 

Weight: 45g n/a n/a 48g 

 



85 
 

In the following section and in Table 4.25 above, the detailed specs and 
comparisons between the Raspberry Pi B+ and its other three competitors will be 
made. Although there are quite a few other “small single board computer” models 
out there, these four are the ones that more closely met the needs of the group 
and fulfilled most of the objectives list. The three runner-ups are as follow: the A13-
OLinuXino by Olimex, the Cubieboard2 by Cubieboard and the Banana Pi by 
LeMaker. The group did not have a specific budget for the central unit that would 
be controlling most of the communications internally and externally, nevertheless 
prices for all four SBC’s (single board computer) have been listed.  
 
At the bottom of the price range, $35.00 to be precise, is the chosen CPU, the 
Raspberry Pi Model B+. As mentioned in the above sections, this model just 
outperformed the others when it came to the needed requirements for this project. 
The group knew that they would need a small computer with a good size RAM 
memory along with the ability to extend system memory if needed. It most of the 
SCB’s the operating system image is mounted through an SD or Micro SD card, 
and most offer the option to open up all of the card’s memory for system memory 
(as Raspbian does). The group also needed a central unit with the capability of 
running in a low-power mode at times when it is idle, along with the support for 
HDMI to be connected to any monitor. Having a high number of general GPIO’s 
was a very must have feature, along with also having a high number of GPIO pins. 
Compared to the other three models the Raspberry Pi B+ had the highest number 
of GPIO’s in total out of its 40 pin header, and 7 general purpose GPIO’s. The 
other models had high pin counts too, but most of the pins had been designed for 
other special purposes and functionalities.  
 
Supporting I2C in one of those pin(s) configurations was also important, since the 
group had already decided that was the communications protocol that they would 
be using all throughout. If the Raspberry Pi can be seen as the central unit, I2C is 
the central artery that leads to the “heart” of this digital communication highway. 
Without I2C support the chosen SCB would have not been of service to the group, 
thankfully all four models had a special pin supporting I2C communications. 
Another factor was the ability to quickly give internet connection to the central unit, 
whether it be through an Ethernet port connection or through the ability to do it 
wirelessly through Wi-Fi. This option is important since the user will be accessing 
the central unit and its internal server constantly throughout the automated 
process. The Raspberry Pi beats the three competitors by giving the group4 
general purpose USB ports, with no strings attached as the A13-OLinuXino does.  
 
Having the correct RAM capacity along with the right amount of available system 
memory was also a huge concern for the group since most of the time these small 
based single board computers don’t focus too much on high capacity memory 
systems. Luckily the four models selected had a good high amount of RAM and 
on-board memory. The highest being both the Cubieboard2 and the Banana Pi 
with both having 1GB DDR3 RAM and the Cubieboard2 having an extra 3.4GB 



86 
 

NAND Flash memory. On paper so far it would seem that the A13-OLinuXino by 
Olimex would be winning the race, but the Raspberry Pi B+ is still leading.  
 
This is mainly because of two to three reasons: one being that the Raspberry Pi 
B+ is still cheaper, two the power supply for the A13-OLinuXino is much higher (6-
16V) making the power supply for the system a little higher than the group wanted, 
and third the Raspberry Pi B+ is the newest/latest model out of the two. With its 
512MB RAM and its 700MHz clock speed along with its option to extend the SD 
card for extra system memory beyond the 3.2GB needed for the operating system, 
the Raspberry Pi B+ just seems to fit the necessities of the project. Not to mention 
in size compared to the other models the Raspberry Pi is the smallest in size.   
 
Worth mentioning is that all of the models compared in Table 4.6-1 above operate 
with the “System on Chip” (SoC) integrated circuit design, which works to the users 
advantage since the system will be a much smaller, faster, more compact 
integrated computer chip generating most often much lower power consumption 
than other designs. In the end the winner of the group’s vote was the Raspberry 
Pi Model B+ for its outstanding performance in theory and on paper compared to 
the A13-OLinuXino Wi-Fi, the Cubieboard2 and the Banana Pi single board 
computer models.  
 

 

4.7.3 External/Internal Communications With  
         Raspberry Pi B+ Overview 
 
At the moment, this portion of the project is still under careful planning and 
construction while the group waits to have all of the parts together so they could 
start to build a concrete model of chip-to-chip communications. What is known so 
far is that the ATMEGA328P chips will be the managers of the incoming sensor 
data taken straight out of the system by the various, carefully placed sensors (i.e. 
temperature sensors, PH sensors and level sensors). In turn it will then turn on its 
communication portal with the Raspberry Pi through the I2C protocol, who will then 
delegate the appropriate procedures to get the incoming data to its correct 
recipient location. There will be a hardline connecting the Raspberry Pi to the 
ATMEGA328P chips, this communication has been decided that it will not be done 
wirelessly. At this time the group knows that it will be using a ribbon cable to 
connect the correct GPIO pins to the correct ATMEGA328P chips. 
 
On the other hand, the communication output from the Raspberry Pi will be of the 
same manner as that out of the input protocol. Once the Raspberry Pi has data it 
needs to get out, at this time this is only done at the initiation of the process, it will 
alert the chips connected to its I/O pins and pass the data along accordingly. The 
group decided it would be much simpler in design and debugging purposes if the 
data sent from the Raspberry Pi to the ATMEGA328P chips would be done in the 
order they were received through the interface application the user used to input 



87 
 

the initialization data. Since each ATMEGA328P chip will take care of at least one 
type of sensor, no more than two sensors on a single chip, it will need a set amount 
of time to process the new given data and pass it along to the sensors/other 
connections it may control. By allowing the communication to be sent and received 
in a particular order it makes the delay on the chip’s side to be lower since there 
will be order in the data flow from the beginning and hopefully no confusions or 
“NACKS” (no acknowledgment) sent from the chips.  
 
Since the system will be using solenoid valves to direct the liquid flow in several 
parts of the process, these valves would need to receive electrical signals that 
would indicate what position they should be in (open/closed) all throughout this 
precisely timed automated process. These solenoid valves will be controlled by the 
ATMEGA328P chips themselves, no interface with the Raspberry Pi should be 
needed for this point. But relaying this opening and closing actions will be relayed 
to the Raspberry Pi, so if at a certain point the user wants to know why or what 
valve did or didn’t close they can easily see that recorded information.  
 
Another important aspect that needs to be detailed, which was touched upon 
earlier, is the communication protocol that will be used to implement all of these 
communications within the integrated system. For the purpose of not making this 
part any more complicated, the group will be using the I2C protocol that already 
comes packaged (not installed) on the Raspberry Pi. According to definition 
provided by www.WhatIs.com “The I2C (Inter-IC) bus is a bi-directional two-
wire serial bus that provides a communication link between integrated circuits 
(ICs)”. This is more than enough for what the system requires, for the majority of 
the time the I2C will just be receiving incoming system data after the system begins. 
Unless something goes wrong it shouldn’t have sending and receiving signals at 
the same time, nevertheless the group has implemented a try and catch system to 
prevent the system from crashing, stopping abruptly or producing unwanted 
results. The specifics for this solution though will be discussed in later drafts when 
the system is being wired, written and tested in its environment.  
 

4.7.4 Data Logging Software Details 
 
The specifics of the data logging is still being written and it is in its infancy stage; 
for the moment what will be discussed are the steps that will be taken to get the 
software aspects of the data logging functionality working properly. Along with what 
will be needed to get this step from the design stages to the fully automated and 
functional stage. Since the build time for the system is estimated to be at roughly 
ten to twelve weeks, at each phase of the build time frame portions of this very 
important highly dependent software component must also be in the pipeline for 
integration with the system.  
 
Data logging can also be thought of as the data mining portion of this project, since 
in that sense the system is also giving the user the capability of being able to go 
back after the termination of the process and look at the data that was fed into the 

http://searchcio-midmarket.techtarget.com/definition/serial
http://searchstorage.techtarget.com/definition/bus
http://searchcio-midmarket.techtarget.com/definition/integrated-circuit


88 
 

server from the system. This form of data logging is small in scale but will be very 
precise and time drive, which is something that even at a smaller scale takes 
precision and perfectly calibrated hardware and software components. It all starts 
from the time the user starts up the ‘Automated Wort Extractor Recipe Application’ 
interface and decides to enter the required variable inputs for the various system 
start/end points. By start and end points this means the required brewing 
instruction(s) needed to make the wort extraction process correctly. This refers 
specifically to temperatures before/after the wort enters boil kettle, how long should 
the wort be circulating through the wort chiller and what temperature it should exit, 
etc.  
 
The specific functionalities along with their equivalent recipe implications will be 
discussed in much greater detail in section 4.7.3 of the document. Following this 
inputting of data the data will be saved, as a specific recipe with a name given by 
at the user’s discretion. All of the collected data will be stamped with a date and 
time when saved to the server entries to avoid confusion and mislabeling 
information. This will be helpful not only during the test stage but also for when the 
user is combing through the data post-process termination.  After relieving the 
interface of its data the next part takes us to the actual start of the process, in which 
it is kicked into high gear and from this moment forward it will start to collect its 
information. Up until the wort makes its way into the glass carboy at the bottom of 
the frame at which point it is ready for fermentation and the system can alert the 
user and safely go into standalone mode or shutdown.  

 

4.7.5 Data Logging: Microcontroller  
   Communications 

 
This section goes more in depth about the specifics of the numerous data transfers 
and communications between the Python scripts in the Raspberry Pi and the C 
language written drivers for the ATMEGA328P chips. Every time a sensor is 
supposed to read some data, for example the temperature inside the boil kettle, it 
will translate this signal from the ATMEGA328P chip to the Raspberry Pi to the 
Python script then lastly to the correct table on the server. Now of course the 
specifics of this may vary from sensor to sensor because each one will have 
different frequencies in which it will need to be reading data at, but the overall idea 
stays the same. Each step after the data is taken requires precise calculation and 
manipulation of the communication flow using the I2C protocol and any internal 
commands that the Raspberry Pi may offer to get the data to the right place.  
 
The reviewer of all this information can be said to be the Python script that will take 
this fresh raw data from the microcontroller organize it and translate it so that it can 
be shipped off to the server for logging. This script will not be seen by the user, 
like the GUI application, it will act in the background running at all times as long as 
the Raspberry Pi has power and listening for incoming data. Variable assignments 
will be made at this point in time so that it will correlate with the variables already 



89 
 

defined inside the tables of the server, this makes logging this information much 
more organized. Since the data being sent and received will be at a synchronized 
order the system should not have a problem during the variable assignment 
process. The Python script will also organize the data coming into it, it will make 
the decision to go into a specific set of code (or function for simplicity) based on 
what microcontroller sent the information. This allows the script to maintain total 
control over what data is where and what data is being written where and into what 
variables.  
 
Having the information being sent and received be in that certain order set by the 
programmer from the beginning slows this recognition script to be more accurate 
and precise. Using data logging in the end, is for the purpose of having readable 
and understandable data at the end of a certain time period. This is the whole point 
of having this ‘middle man’ Python script embedded in the background receiving 
these bands of information. The most favorable thing about this piece of code is 
that it can be easily manipulated and changed if one of the microcontroller’s 
changes or its function becomes to control a different sensor than it can adapt 
easily. At this point all the programmer would have to do is to adapt the code and 
verify that the order characteristics of the data have not been breached and are 
still intact. Having a script that can do this makes a big difference for any 
programmer, and techy-savvy home brewer, if they want to change specific layouts 
of the system at any given point. 

 

4.7.6 Web Server Specifications and Usage 
 
The web server will help to facilitate the access of the gathered information for the 
user; the server will serve as the human “eyes” overlooking the automated system. 
Since there will be no human interaction after the user begins the process from the 
comfort of the interface application, the time-driven data collected will give the user 
a very accurate insight into each of the system’s subsystem. At any given point in 
time the user will have easy access to the data that was gathered by connecting 
to the Raspberry Pi’s home network and use a standard web browser to navigate 
to the web site being hosted off of the Raspberry Pi’s IP address. Issues with 
security are still being discussed and researched, since the user is leaving specific 
ports open on the network router they can cause unwanted breaches. The purpose 
of this functionality is not to put the user’s internet service and its components in 
jeopardy but to allow for a modern mobile environment for data access. The other 
option of course is just to limit the external access to the Pi’s internal data and just 
allow the user to access this data on the server if they are connected to their home 
network.  
 

 
 
 



90 
 

4.8 Brew Extractor User Interface Overview  
 
The group decided that, having already a Linux environment on the Raspberry Pi 
itself, it would be more efficient and a lot more manageable to integrate the 
graphical user interface (GUI) using the Python 2.7 language. Since Linux and 
Python already get along so easily and there exists so many external resources 
on these two topics, it was a simple choice. At the moment the group is still 
discussing whether or not to incorporate a mobile application (most likely Android 
based), to allow a home brewer to connect remotely to the automated system to 
keep track of how the process is coming along. It will basically show the web server 
information in an organized matter, this data is the same data that the application 
will have access from the Raspberry Pi itself. It is still under discussion and an 
executive decision will be made at a later time in Senior Design II.  
 
For the time being the majority of the discussion will be focused on the interface 
application that will give the user the creativity and accuracy that they will need to 
get their batch started. When coming up with how to get the user to feel in control 
of such an automated system, the group decided that it would be most appealing 
if the user could in turn see what he/she were doing actually turned into what they 
had hoped for. The user has a sense of complete control from the very beginning, 
even though this is a highly autonomous systems, the user commands it to begin 
and do what they tell it to do. In order to get this portrayal across to the user, the 
interface has to be well organized along with having an appealing touch. The group 
wanted to make sure the user knew exactly what the system needed to know right 
from the get go, but not so  much information that it would drown and confuse the 
user.  
 
Establishing a GUI to head this “first impression” friendliness was designed with 
non-technical users in mind. Seeing as it is the non-technical users whom this 
automated home brewing system should benefit the most. Examples of the 
interface and their specific characteristics and functionalities will be discussed in 
detailed in a later section. The group also needed a reliable way to communicate 
within the Raspberry Pi’s I2C protocol and writing the Python scripts was going to 
be the easiest way to get internal communication across to the microcontrollers. 
Having the Raspberry Pi running Raspbian with Python being so light and already 
installed made the design process for this interface to be rather simple.  
 

4.8.1 Python GUI & Android App Development  
 
The automated process being created has to be driven by at least an initialization 
phase done by an actual human. This is where the group decided to establish a 
graphical user interface, and in this case it will be written in Python 2.7. Wanting 
to use technology to its most advantage, the group established that the user will 
bring up this interface “application” on the laptop/desktop connected to the 
automated system, enter all of the required information and send the information 



91 
 

collected on its way. From the point that the user verifies and send the information, 
the GUI will start its I2C communications (done via the Raspberry Pi) with the 
microcontrollers on the other side of the data line feed.  
 
After this is completed, the overall job of the GUI is finished and the GUI itself will 
be rendered idle for the continuation of the process. Closing the application could 
be an option that is still being investigated, at the moment the group has decided 
it will be left open in the background without any conflicts to the other tasks being 
handled. It is important to see the effect(s) of closing the initial window of 
communication, seeing as it would free up more memory for the Raspberry Pi to 
do its other tasks on the 512MB RAM that it comes equipped with. The reason this 
is being discussed now is because the GUI will also be communicating with the 
server on the Raspberry Pi, dealing with the functionalities mentioned in section 
4.6.6, and further testing with these scenarios is still needed. The entirety of this 
discussion will be further determined, analyzed and resolved during the test 
phases of this project in the coming semester; a layout of the testing phases will 
also be detailed in sections 7.3 Software Test Environment and 7.4 Software 
Specific Testing later in this document.  
 
For the Android application portion of this project the group is still discussing as to 
whether to fully integrate it in the final portion of the project or not. It has been 
added to this document because it was in the initial draft for the scope of the 
project, and if it does become an integrated part of the final design it will be detailed 
in the final draft of this document next semester. Having the Android app integrated 
with the data communication levels is an excellent idea on paper and in thought, 
seeing as this could facilitate the user experience and information management 
and viewing on the go. The conclusion the group discussed was that it would be 
better to wait until all other major parts of the automated system were designed, 
drawn out, and build specifications were in place in order to see if in fact the group 
would be able to complete the project with incorporating the Android app or leaving 
it out. For this document the overview of the “functionality” of this Android app is 
discussed below.  
 
The idea behind the Android app is to give the user the modern technological 
mobility and flexibility to the fullest, since one of the main objectives is to have the 
human user physically interact with the actual brewing system as least as possible. 
The app will have a very simplified yet appealing interface with a couple options to 
view the data that the system has been gathering. There could be an option to look 
at a graph representation of the different temperature sensors and their activity 
over a certain time period, and there could be an option to look up certain recipes 
that have been saved to the server on the Raspberry Pi. One thing this Android 
app will not be designed to do is to send data to the system, the only thing it may 
be designed to do is to send a “STOP” command to the Raspberry Pi that will in 
return tell the system to halt all of its operations. As mentioned above the full scope 
and design of this portion on the project will be assessed and put into the final draft 
after the build stages have begun next semester.  



92 
 

 

4.8.2 Discussion of User Interface  
   Software Layout 

 
The software layout of the graphical user interface is very much simplified as can 
be seen in the UML diagram in Figure 4.47. The bulk of dependencies of classes 
in this code are mainly centered on the Tkinter Python interface package. The 
interface itself sits on this “Tkinter Frame” that allows the programmer to insert 
objects and functionalities into the frame at any point in time. The bulk of the code 
sits on the window initialization function of the interface that basically brings to life 
all of the text boxes and buttons that are needed to gather the information from the 
user. From the UML diagram not much of this can be seen because as stated 
above this interface is “Tkinter driven”, the actual buttons, textboxes, info boxes, 
help messages, etc. are all derived from this package in Python 2.7.  
 
The Tkinter frame is the overseer of all items that are located within its boundaries, 
and most of what’s inside of it is considered a “widget”. In order to have an 
appealing user interface the team needed to modify and rearrange these widgets 
using the four of the classes shown in the diagram below: Tkinter.BaseWidget, 
Tkinter.Grid, Tkinter.Pack and Tkinter.Place. The interface needs to have flexibility 
which is why the main window can be adjusted to various sizes and the widgets 
inside the Tkinter frame within this window will move accordingly. Of course when 
the user opens up the interface application it will have a set size, they may see the 
need to maximize or minimize the window. Currently there is not a scrolling bar 
option that will allow the user navigate smoothly through the application if it is 
resized too small, but this is a layout functionality that the group is working on to 
incorporate. 
 
The group discussed that the interface should flow freely from top to bottom and 
left to right, as most users tend to feel more comfortable with that configuration. 
Another layout feature is that the interface application will have a top bar menu 
which will be displayed at all times for the convenience of the user(s). It will mainly 
feature important information about the application and an open/save option for 
data control. It is a bit of a drawback that the software layout is completely 
dependent on the Tkinter package and its hierarchical classes, but it was the best 
option the group found when it came to Python graphical user interface designs. 
All throughout the interface there will be “user error” detection, in case the user 
makes a mistake while using the interface. One example would be if the user 
accidently hit the “EXIT” button instead of the “SEND” button, the system will give 
them a chance to rethink their decision and continue. Further design specifications 
and interface layouts will be discussed in the next sections.  
 



93 
 

 
Figure 4.47: UML Representation/Dependencies of Classes, Python 2.7 

(Designed by David Rodriguez) 

 
 

 
4.8.3 Detailed Discussion of all UI   
      Functionalities 
 
The GUI itself will consist of a window, or “container”, that will pop up when the 
user runs the Python script on the laptop/desktop connected to the system. It will 
then show the home brewer the elaborate layout in which he/she will be able to 
edit the various input variables that he/she will have to enter to initiate the 
automated process. Of course as mentioned in earlier sections, the user has the 
choice to: 1. Enter a new recipe 2. Open an old recipe 3. Save a recipe (this option 
is unique, because it is available automatically from the system); further discussion 
in detail of each “recipe” option will be discussed later. Those options can be seen 
if the user navigates to the ‘File’ menu on the top left hand side as shown in the 
Figure 4.48 below. This preview of what the interface is going to look is at its best 
a rough draft of the final version, some of the text boxes will need to be modified 
for each sensor that needs to be initialized and for each control signal that will need 
to be set in the system by the user.  
 



94 
 

 
Figure 4.48: Overview of Automated Home Brewing System Interface, 

 Python 2.7 (designed by David Rodriguez) 
 
 
 
The window shown above in Figure 4.48 is very plain and straight to the point, the 
group did not want this to be a distracting interface by bombarding it with many 
different functionalities. The less the user is distracted the more focused he/she 
will be when filling out the form, because without the initialization of these variables 
the system won’t start. As mentioned in earlier sections the group did want to give 
the sense of a “friendly” interface though, so that the user would not become 
uninterested and not feel connected to this process. Although the main objective 
is to take out the human interaction as much as possible for brewing beer at home, 
giving the sense that the user is still in control of parts of this process can be 
beneficial. The group did not want to create an automated system that was rugged 
and not look appealing to the home brewer’s eyes. Having the interface have a 
sense of flow with eye-catching colors, along with giving the user that initial 
responsibility of initializing the system, makes for a very functional UI. 
 
The main functionalities of this interface that can be seen are: the main menu 
options in the top left hand side, the save and exit buttons kindly located at the 
bottom of the window (‘EXIT’ colored red and ‘SEND’ green to catch the eye), the 
welcome message briefly stating the purpose of this application and lastly the text 
boxes that will be used to input the required system information. The text boxes in 



95 
 

particular will hold variable assignments that are of StringVar () type and will later 
be casted to the specific int or float data types as needed. Doing so makes the 
much formatting simpler and not constrained by the data type of each field. While 
at the same time giving the code and the programmer that flexibility to adapt the 
interface at later times. Each text box has its own individual green ‘OK’ button in 
order to let the user know that they have to check if what they’ve typed into the box 
is accepted by the program and it formatted correctly. This “checking” call will be 
done with a simple command function called each time the user presses the ‘OK’ 
button. Because this is an interface, for every action there’s an action driven 
response that will occur, whether it is an information box like the one seen in Figure 
4.49 below, or an error sound/error message that will communicate to the user the 
issue(s). For the “Information Message” seen below, it is found under the ‘Help’ 
and ‘About’ menu options in the top left hand side. It gives a brief overview of the 
purpose and options the user may want to utilize.  
 

 
Figure 4.49: Overview of Functionality: ‘About’ Option found in the ‘Help’ Menu 

Python 2.7 (Designed by David Rodriguez) 
 

The information message box seen above is an example of an “event-driven 
action”. It was important to have a message display like this in order to provide the 
user with a more in depth explanation of the application. In the figure shown below, 
Figure 4.50, it can be seen in more detail the layout for the various labels, text 
boxes, and buttons. That exact formatting will be used for the other text entry boxes 
that are not shown in Figure 4.50; these “widgets” are set on the Tkinter frame 
itself and placed in specified x and y coordinates carefully calibrated so that even 
if the window expands the widgets are still in place properly. Many of the widgets 
added to this interface are derived from the Tkinter Python GUI library, using this 
tool is very simple and very common since it is Python’s standard interface tool 
alongside the Tk GUI toolkit and there are many open source help tools for it. In 
the two images below it can be seen how the text entry box interface will look and 
feel to the user; it is straight forward, clear in instruction and it even reminds the 
user to enter the values in specific units (the units shown below are just for test 
purposes, the specific units for each input variable have not yet been finalized 
100% and may or may not follow the metric system, these specifics will be decided 
when in the build stage). 
 



96 
 

 
Figure 4.50: Overview of Different Input Variable Text Boxes 

Python 2.7 (Designed by David Rodriguez) 
 

In the image below, Figure 4.51, a closer look is taken at two of the most important 
features of this interface: the send and exit functions. Of course the user has the 
option of just exiting from the interface window like all other window modules, but 
the group wanted to centralize these two options to give that “flow” characteristic 
to the design. The functionality of the red ‘EXIT’ button is simple: to exit the 
interface. Nevertheless the group also wants to have the user tend to exit the 
program, if that is their true intention, through the red button located near the 
bottom. It is ideal for the user to utilize this functional button because it will alert 
him/her in the case that they did not wish to truly exit. The functionality of the green 
‘SEND’ button is to correctly open up the I2C communication portal between the 
interface on the Raspberry Pi and the ATMEGA328P chips connected to the 
GPIO’s, and send the data on its correct path. Once the user selects to send all of 
the inputted information, the system will collect it in the specific order (not specified 
at the moment, the group will decide at a later time) and pass it along to the 
corresponding data line to the correct ATMEGA328P chip.  

 

 
Figure 4.51: ‘Send’ or ‘Exit’ option for GUI, Python 2.7 

(Designed by David Rodriguez) 
 

Figures 4.52 and 4.53 below show the event-driven response that the interface will 
have when either one of the functions discussed above are pressed by the user. 
The first figure explicitly shows the user that once he/she clicks ‘Yes’ all of their 
information will be sent to the system and saved appropriately in the server. As 
planned these actions will be done simultaneously, unless otherwise interrupted 
by the Raspberry Pi itself. There will be a check to make sure all of the fields have 
been properly formatted, so if the user selects ‘Yes’ and there is an error the 
system will communicate that to them. The ‘No’ option from this pop-up will simply 



97 
 

take the user back to the main interface application. For Figure 4.3 the system will 
clearly inform the user of the hazards of the exiting the main application at the time. 
In this case no data is saved, the Raspberry Pi will not be programmed to have 
some sort of “backup” for unsaved progress. Once the user opts in to exit the 
interface application will shut down and all communications will be turned off. 

 

 
Figure 4.52: ‘Send’ Option Selection Prompt, Python 2.7 

(Designed by David Rodriguez) 
 

 
Figure 4.53: ‘Exit’ Option Selection Prompt, Python 2.7 

(Designed by David Rodriguez) 
 

The whole purpose of the different functionalities of this interface are to also cut 
down the time needed to figure out what the user should type into each box and 
where. Since most brewing kits come with specifically laid out instructions and list 
of measurements that need to be taken at each of the crucial steps throughout the 
wort extraction processes. What the group decided was to get as much of that 
relevant information into text entry boxes that the user can fill out straight from the 
recipe the specific brewing kit brought, in turn having the system follow most of the 
same guidelines as that specific recipe. Transferring the data from paper to digital 
seems cumbersome, and in most cases it is, but for this automated system the last 
thing the group wanted was to add more overhead into a process that’s already 
time consuming on its own. The simple design and great flow layout put that 
drawback on the back of the user’s mind while interacting with interface 
application. The group would like to have the process be started with as little 
human interaction as possible and more technology driven interactions, leaving 
the cumbersome tasks to be more easily managed.  
 
 



98 
 

5.0 Design Summary of Software & 
      Hardware Integration  
 

 
Figure 5.1: Software Integration Diagram for  

Automated Home Brew System (Designed by David Rodriguez) 
 

In Figure 5.1 seen above, the group demonstrated the high level software 
integration of the automated system. For the hardware integration discussion it will 
be assumed that the object labeled “Automated Home Brewing System” in the 
diagram below will be the connection between the two diagrams. These two 
diagrams discussed in detailed are drawn to be a high level representation of the 
data flow and integration parameters that need to take place in order for this 
system to function as stated  in the executive summary. Software and hardware 
integration are crucial discussion points in such a diverse and highly automated 
system. There are internally so many components that need to fit together and talk 
to each other, with the help of the software written for this system, that no one 
single part in this automated system can be seen as truly independent of its 
neighboring components. 
 
From a purely software perspective the diagram below doesn’t make much sense, 
it is really more of a software blended with hardware interpretation which is what 
is needed. It is clearly depicted starting from the upper left hand side that the user 



99 
 

initiates this automated process at the beginning. They enter the Python 2.7 GUI 
application that appears to them on a monitor, they then will be prompted with 
various commands and visual cues by the interface as to what they are able to do 
next. When the user is ready the requested information will be transferred onto the 
first hardware component the data comes in contact with, the Raspberry Pi (also 
referred to as the central unit). In technical terms the computer on which the 
interface in running on is the first actual hardware component, but that is a part 
that can be interchanged whereas the Raspberry Pi is a static built component for 
the system.  
 
If the user decides they want to go back for an older recipe the interface gives them 
that option. It is when this data comes at the intersection of the red diamond and 
the user is requesting access to specific data that is when a communication must 
be opened between the server and the interface. Hence the representation with a 
bidirectional arrow, information will be moved from server to interface and vice 
versa for the initialization period. Once the data is in the system, it is read into the 
Raspberry Pi taken in the order it came in and relayed to one of the three data feed 
lines that connect each of the three ATMEGA328P chips to the GPIO’s. It is at this 
crucial point that software must maintain the correct order while navigating through 
the hardware components. The execution of the high priority of keeping the data 
order will either make or break the automated system from this point forward. The 
data that was received from the user will also be stored accordingly in its correct 
place in the server table frame. At this intersection only data will be flowing to the 
server from the Raspberry Pi, there will not be bidirectional data flow here.  
 
From the diagram it can also be seen the access point the user has once the 
automated system has begun. It is also one directional because it is only accessing 
the collected data being fed from the Raspberry Pi at the appropriate time intervals 
all throughout the system’s up time. Once the correct orders have been established 
and the data gathered from the interface is set up with its synchronization times, it 
will be sent to the system accordingly. It is clearly labeled as “Send Initialization 
Data to System”, in which case the one data line feed will split into three different 
line feeds for each of the three microcontrollers. Once the microcontrollers have 
received their appropriate information and have been formatted, this takes place 
in the box labeled ‘ATMEGA328P Micro-controller Chips’, they then relay the 
information to the actual system and the correct parts/sensors accordingly. 
 
Once this information is inside the automated system, the internal system 
communications will take over and being the process. The software job at this point 
is to remain attentive with open communication ports for when the flow of data 
begins. As can be seen in the figure, there is a bidirectional arrow connecting the 
ATMEGA328P chips and the automated system. The flow of data needs to be both 
directions since that it what the objective called for in the initial scope of the design. 
The communication from the sensors inside the system are not detailed in the 
diagram but their gathered information at the specified time intervals will be relayed 
through that bidirectional line. The flow of data from the automated system will 



100 
 

pass through the ATMEGA328P chips which will then integrate the data to the 
Raspberry Pi, it then goes to the server to be stored for later analysis by the user. 
The software integration portion of this project is a bit complex, next the specifics 
for the hardware components will be discussed. 
 

 
Figure 5.2: Hardware Integration Diagram for 

Automated Home Brew System (Designed by David Rodriguez) 
 

Figure 5.2 shown above demonstrates the hardware integration into the automated 
home brewing system along with its high level individual components. In the 
previous section the software integration was discussed and certain aspects of the 
hardware were mentioned; this will cover the detail extensions of that. Once again 
as stated above with the software integration portion of this section, this diagram 
only covers the high level scope of the hardware integration aspect of this project. 
It will only show the necessary components needed to facilitate the integration 
process specifically. In turn the group looks to open the current design layouts to 
display this automated process’ unique hardware integrations.  
 
Beginning with the user entering their data into automated system, the hardware 
components will begin to play a role. The grain hopper, which is the container that 
will hold approximately 1.5 lbs. of grain, will be the shining star at the top of the 
frame. It will receive its signal to drop the grain into the mash tun for mixing from 
the interface application once the user hit the ‘SEND’ button. Once again at this 
point in this process all data has been checked for anomalies and corruption so 
that automated system is ready to go. Following the release of the grains the 



101 
 

solenoid valve on the mash tun will open up, with the signal sent specifically to it, 
to let the flow of water begin and the mixing process to start. The diagram above 
shows that the city water connection will be left on, leaving the solenoid valve to 
control the flow.  
 
Once it is properly mixed, it must sit in the mash tun anywhere from 20-30 minutes 
in order for the water to absorb all of the flavors from the grain. Inside this mash 
tun there will be a small filtering hose that will sit at the bottom of the tank in order 
to drain only the extracted wort, leaving the grains behind. Another single, initiated 
by the time the user entered at the beginning of the process, will let the solenoid 
valve at the bottom of the mash tun be drained into the boil kettle. Once inside the 
boil kettle, the temperature for the heating elements have already been set and 
turned on. A temperature sensor along with a timer will let the system know when 
the wort is ready to be transferred to the cooling stage(s). Sometime before the 
wort begins to exit, the system will make a call as to when to add the needed hops 
and yeast to the wort. It is shown in the diagram next to the boil kettle but there is 
no specific design feature yet on how this will be done. The group will analyze 
different methods to make this injection into the wort as smooth as possible, while 
maintaining the integrity of the signals within the system. All throughout this 
intricate process the data being gathered from each internal subsystem is being 
analyzed by the Raspberry Pi’s Python scripts. It is at these stages where the user 
can tap into the system to also make sure things are running smoothly.  
 
 
As the wort reaches its threshold temperature, a signal will let the solenoid valve 
at the bottom of the boil kettle open up and begin to gravity feed the wort to the 
plate chiller located directly below it. The plate chiller has to inputs, one coming 
straight from the boil kettle and the other feeding in from the cold reservoir the 
group decided to include in order to cut down the cooling process. Another 
temperature sensor and a timer is needed to make sure the wort cooled properly 
and it is at the needed minimum temperature specified by the user’s input data. At 
this point in the process the majority of the data taken from the various sensors 
has been received and stored. Once the system drains into the glass carboy sitting 
at the very bottom of the frame, the system will alert the user by pushing a 
notification to the: web server and web page, and the interface application. The 
group is still trying to discuss how to properly handle this last step, since it is crucial  
 

6.0 Brew Extractor Prototype Testing 
 
The prototype has many areas that need to be tested both mechanically and 
electrically.  The first step is to test the extractor electrically though dry runs and 
see if the signals and data are being sent and received by the different 
components.  Once the group knows that the electrical components are working, 
focus on testing the mechanics of the system can begin.  These systems include 
the solenoid switches controlling the flow between kettles and the cooling 



102 
 

processes trough pumps.  Also the method of cooling through the plate chiller.  
These test; however, are secondary to the teams design process.   
 
Testing the automatic brew extractors electrical components can be broken down 
between two parts: the hardware and software.  Hardware that will be tested are: 
the power supply, sensor outputs, filters, amplifiers, and the connection between 
the ATMEGA328P and raspberry pi.  The software that needs to be tested are: 
communications between the ATMEGA328P and raspberry pi, the user interface, 
and reliability of the I2C protocol.  
 
The brew extractor has several hardware and software stages.  Each of the 
hardware stages needs to be tested individually before applying to the system.  For 
instance each of the sensors need to be tested before sending through the 
amplification and filter circuits.  One place both hardware and software need to be 
tested together is the transmission of data between the ATMEGA328P and the pi.     
This is absolutely vital to system’s web server functionality. This will be discussed 
in the hardware specific testing and software specific testing.  Once individual 
stages have been tested the entire systems itself needs to be tested to see if the 
hardware and software have been integrated correctly.   
 
As stated before a dry run will be used to test the overall electrical system.    
Brewing takes time and would be a mess to clean if the system fails to operate as 
expected.  Certain aspects will be simulated such as the weight on the kettles and 
the temperature of the liquids to activate the pumps and solenoid switches.   Other 
simulated aspects will be the pH in the sparge tank and the time it takes to cool 
the wort down. The exact methods will be specified later in the paper. 
 
Once all the electronics are tested and operating as expected a full test of the 
project will occur.  The test will see if the components will still behave under a live 
test.  The secondary purpose of the test is to see if the structure for the brew 
extractor is built properly.  For instance the strain gauges help to see if any leaks 
have sprung in the system.  This project is supposed to be automated even though 
the group can see if all the components were built correctly during this run.   
 
Testing the mechanical portion, while secondary to the overall project, is still 
important to the final project.  This group’s main focus was the electrical system, 
but what is the point of just having the electrical subsystem and no mechanical 
system to make the wort.  The overall process is simple; however, there are several 
process that need to be address during the final test phases of the automatic brew 
extractor.  The testing of the individual stages is covered later in the paper.  For 
now the group will cover the final test stages assume each individual stage pass 
its test.  The first step in testing the structure is seeing of it supports the brew kettle 
once filled and seeing if the strain gauges are taking the correct measurements.  
Once taken care of the water within the brew kettle is heated to the target 
temperature of 95˚C.  Once the microcontroller has received that the target 



103 
 

temperature has been reached the solenoid switches will open and the pumps 
should turn on.  
 
If all is operating correctly the strain gauges should take over the control of the 
pump and solenoid switches.  As the mash tun is filled with hot water the grain 
from the grain hopper will fill the mash tun as well.  The strain gauge in the heating 
kettle determines how long the pump runs and the grain hopper remains open.  
Once the brew kettle is emptied that will turn the solenoid switch off and gravity 
feed the wort back to the brew kettle.  This will also turn on the sparge water system 
to wash the sides to capture all the sugars for the wort.  The strain gauges in the 
boil kettle needs to be calibrated for the additional weight coming into kettle after 
the heating process.  Once the target weight has been met the sparge water will 
be turned off and close the solenoid controlling the gravity feed.  
 
The kettle strain gauges will now control the chilling process.  The pumps control 
the flow of wort and chilled water through a plate chiller to lower the kettle.  The 
final target temperature before fermenting is 30˚C.  The temperature sensors will 
tell the pump and solenoid switches when to stopping sending the wort through the 
plate chiller and return it to the boil kettle.  Once the wort is returned the user will 
bottle the wort for fermentation or chill further depending on type of beverage 
looking for.  After checking the systems to see if any damage was found in any of 
the tanks, leaks in the tubes, or if the levers controlled by the solenoids are 
performing correcting then the system should be ready for general use.   
 

6.1 Hardware Testing Environment 
 
The hardware as mention before needs to be tested in stages to see if all the 
components are working properly.  The typical environment most of the testing will 
occur will be primary through a bread broad.  Using an oscilloscope to observe the 
correct outputs are being produced within the tolerance of the device.  This is safer 
and will help with troubleshooting should it not work correctly on the PCB.  The 
exception to this will be the power supply.  The test will simply be an observing of 
the outputs through a voltmeter of oscilloscope.  
 
Two separate power supplies are needed.  A 5V for the electrical components on 
the PCB and a 24V for the solenoids.  The group intends to use low resistances to 
observe the voltage dip from the two sources.  Attention needs to be paid to the 
5V power source and that two much dip does not occur with the test load.  This 5V 
power supply needs to power the systems LT1014 operational amplifiers and the 
ATMEGA328P microcontrollers.  Too much dip and the components may not turn 
on.   
 
Now testing the different sensors.  A 5Vcc will be used to power all of the sensors.  
The first one that will be tested is the NTCAIMME3C90373 thermistor.  5V will be 
sent through the thermistor will be wired in series of a reference resistor.  The 
thermistor will be placed in several drink bodies of water of known temperatures to 



104 
 

check for accuracy of the thermistor.  This thermistor temperature range reaches 
105˚C and controls the turn on of the solenoid and turnoff of the heating element.  
To control misreading’s in temperature due to thermistor variance, two thermistor 
will be used to measure the temperature in the heating kettle.  
 
The next sensor to design an environment for are the strain gauges.  They play an 
important role and thus must maintain accuracy throughout the process.  They will 
need to be tested with and without the heating element in use to understand how 
heat effects the reading on the strain gauges.  The stand will be used with the 
actual kettle fill with water to measure the accuracy and effectiveness of the strain 
gauges.  Using varying temperature to see if it affects the measurements or not.  
The specifics are outlined later on.  
 
Next the filter design and amplification steps are to be tested.  This circuit is tested 
on a breadboard and simulated to see if the design works.  The reason for both is 
to see if the theoretical calculations will filter out the 60Hz power supply noise 
affecting the sensor measurements.  The breadboard is also used to test to see if 
the LT1014DN is turning on from the power supply.   
 
The final test environment will be for the I2C connections between the 
ATMEGA328P and the raspberry pi.  An oscilloscope will be used to see if the 
appropriate signals are being sent back and forth between the two.  This is initially 
tested through the software; however, should the task not be handled as expected 
then the previous method of testing shall occur.  Many times the signal 
communication using I2C is the hardware’s and not the programming’s error. The 
signal simply does not travel across the connections. 
 
Now that each individual stage has been tested integrating the separate stages is 
the next task. The breadboard is used to test each of the next components. A 5Vcc 
is set up thanks to the power supply and powers both the thermistor and 
operational amplifier.  Due to the amplification from the filter the voltage being 
measured needs to be attenuated.  The thermistor measurements could easily 
reach the rails at low temperatures while observed through simulation.  Testing is 
done to see the temperature to voltage range to help write the program to measure 
the voltage due to the temperature change not being linear.  
 
The strain gauge implantation is similar to the thermistor.  The 5Vcc is sent through 
the strain gauge whetstone bridge and the change in voltage is sent through a 
unity buffer.  That measurement is then sent through the filter/amp stage and 
measured.  The pH probe will be tested in a similar manner. 
 
The next test stage is making sure the ATMEGA328P is receiving all the data and 
is recording them appropriately.  The breadboard continues to be used as the test 
environment.  The outputs from the previous test stages are used as the test 
signals.  An oscilloscope is used to confirm that the output from the filter is correct 
and that is the input for the ATMEGA328P.  Through the software it was confirmed 



105 
 

the data was input correctly in the ATMEGA328P.  The final step is to see if the 
ATMEGA328P will power on the solenoid power supply once the appropriate 
inputs from the sensors are received. 
 
The test environment for the solenoids is simple.  It takes the signal for the turn on 
from the ATMEGA328P to turn on and remain on until the sensors signal to turn 
off.  This will be left for the dry run of the complete system and the signals will be 
simulated first by using high and low voltage signals from the ATMEGA328P.  Then 
once the solenoids are shown to be functioning correctly the signals from the 
sensors will be used to see if control is maintained through the test.   
 

6.2 Hardware Specific Testing 
 
The actual testing expectations and necessary results will be discussed here along 
with a summary table for each of the individual hardware testing stages discussed 
in the environment of testing. 
 
Testing the 5VDC power source is first is the first step.  The 24VDC power source 
for used for the solenoid will also be tested.  As previously stated a low resistance 
will be used to test the effects of voltage lag on the system.  The drops will be 
measured through a voltmeter.  Voltage lag should not be less than 4.8VDC or a 
third power source will have to be created for the LT1014DN rated at 6VDC will be 
need.  The LT1014DN will be tested using the two resistors wired in parallel as an 
input load and the operational amplifier as a part of a unity gain buffer.  If an input 
is produced then the LT1014DN can operate with the 5VDC power supply.  Table 
6.1 and Table 6.2 show what results should be produced based on the different 
load resistances and amperage rating for the power supply, respectively. 
 
 

Table 6.1: Test Loads for 24V/3A Power Supply  

Loads(Ω) Voltage Measurements(Volts)  

3 23.5 

5 23.8 

8 24 

10 24 

12 24 

  
 
 
 



106 
 

Table 6.2: Test Loads for 5V/1A Power Supply 

Loads(Ω) Voltage Measurements(Volts) 

3 4.8 

5 5 

8 5 

10 5 

12 5 

 
Each of the NTCAIMME3C90373 thermistors needs to be tested individually to test 
for accuracy and variance between them.  The plan is to use five different water 
temperatures measuring from 25˚C - 95˚C.  The test will be produced for both the 
thermistor before being amplified through the filter and after to make sure all 
calculations are correct.  Table 6.3 records the test values and expected results 
for the thermistor before the filter stage.  Table 6.4 will show the voltage values 
after filter stage. Using the table provided in the NTCAIMME3C90373 the group 
will convert voltage to temperature in the ATMEGA328P. For purposes of testing 
the output only the voltages are measured.  
 

Table 6.3: Thermistor Temperature Test Values Before Filter 

Water Test 
Temp. 

Nominal 
Value(V) 

Thermistor 
1(V) 

Thermistor 
2(V) 

Thermistor 
3(V) 

Thermistor 
4(V) 

25˚C 0.220 0.209 0.2134 0.2244 0.2112 

40˚C 0.398 0.3781 0.386 0.406 0.382 

60˚C 0.781 0.74195 0.758 0.797 0.750 

75˚C 1.188 1.1286 1.152 1.211 1.148 

95˚C 1.851 1.758 1.796 1.889 1.778 

 
The information gathered while testing the outputs of the entering the filter and 
amplification stage will determine whether or not an attenuation stage is needed.  
The maximum output from that stage cannot exceed a 5V.  Another solution to 
consider is changing the power supply of the LT1014DN as previously discussed. 
The expected values are in Table 6.4.  
 



107 
 

Table 6.4: Thermistor Temperature Test Values After Filter  

Water Test 
Temp. 

Nominal 
Value 

Thermistor 
1(V) 

Thermistor 
2(V) 

Thermistor 
3(V) 

Thermistor 
4(V) 

25˚C 0.506 0.4807 0.491 0.516 0.486 

40˚C 0.9154 0.870 0.888 0.516 0.486 

60˚C 1.7963 1.707 1.742 1.832 1.724 

75˚C 2.7324 2.595 2.650 2.787 2.623 

95˚C 4.2573 4.044 4.130 4.342 4.087 

 
The next sensor to be tested is the strain gauges.  The maximum load the strain 
gauges can hold is 50kg.  The method for testing the strain gauges will be to 
repeatedly test the same weight and see if the same output is produced each time.   
The weight used will be a 20kg weight and the output voltage will be measured. 
The output of the strain gauge circuit will be compared based on the voltage 
measured each time the test is run when only one strain gauge is used in the 
Wheatstone bridge.  The measurements that are expected are outlined in Table 
6.5 before the amplifier stage.  Table 6.6 shows the strain gauge values after 
amplification through the filter.  Then after observing the values obtained through 
the Butterworth filter a second amplification stage with a gain of 10 is needed to 
increase resolution of the measured weight.  The total gain is the Butterworth filter 
gain multiplied with the cascaded amplifier, which comes out to be 23. These 
values are subject to change depending on the strain gauge chosen for the final 
design, other strain gauges may require higher amplification. 
 
 

Table 6.5: 20 kg Load Applied to Strain Gauge  

Test 1  3.74 mV 

Test 2 3.76 mV 

Test 3 3.79 mV 

Test 4  3.76 mV 

Test 5  3.80 mV 

 
 
 



108 
 

Table 6.6: 20 kg Load applied to Strain Gauge Amplified 

Test 1 86.02 mV 

Test 2 86.48 mV 

Test 3 87.17 mV 

Test 4 86.48 mV 

Test 5 87.40 mV 

 
The next stage of testing is communication of the ATMEGA328P and the raspberry 
pi.  This stage is easily tested and mentioned in the testing environment portion.  
The oscilloscope will be used to see if data is transmitting through the I2C 
connections.  The software in the pi will confirm whether data was received or not 
by sending a message back to the microcontroller and vice versa.   
 
Testing the solenoids will occur after the power supplies are tested with their load 
resistances.  The solenoids are observed to see if they turn on or not when 
powered.  The second stage of testing will occur while testing the strain gauge 
values and the software of the ATMEGA328P.  If the solenoids do not react with 
the signal input from the ATMEGA328P then either the solenoid is not functioning 
or the software is not working. The other possibility is that the output pin is not 
functioning.  
 

6.3 Software Test Environment  
 
The testing environment for this very unique project would have to be in the exact 
environment that it is being designed to function in specifically. The group will have 
to have most of the system up and connected, preferably at least mounted 
components on the control board in place; this would be the best thing to do simply 
because it is hard to test software if one does not have the exact environment in 
which it is going to run it. The testing environment nevertheless could be simulated, 
in the case of the temperature, level or PH sensors to see if the microcontrollers 
are relaying the correct data and timing to the Raspberry Pi. The bulk of this 
software test will be to analyze the information that the microcontrollers are 
gathering at each step of the actual dummy test process. By dummy test, the group 
suggests running the automated system with half a gallon of grain, a very small 
amount so that precision and perfect timing can be analyzed through the 
information collection process.  
 
The bulk of this software testing will most likely be done towards the end of the ten 
to twelve week build time set aside in the scope stated in the executive summary. 
Throughout this build time, certain components will be tested for accuracy and 



109 
 

timing as is the case of the three sensors mentioned above. But for other 
electrically driven parts a connection to the microcontroller and the Raspberry Pi 
should suffice. Parts like the solenoid valves will need to have been set into their 
containers and fastened correctly in order to test their reliability and efficiency in 
opening/closing the liquid flow at critical intersections of the brewing process. In 
order to test the integrity of parts like this, the group will have to have the main 
frame built to the specifications discussed in the sections above.  
 
When running this test in this environment, the group will need to make sure that 
the pumps and hoses are aligned correctly since parts of this system will be gravity-
fed. Positioning the equipment correctly is crucial to the correct outcome of the 
software test and its very valuable information. The group needs to know the 
specifics of the rate of flow of the liquid when it exits each container so that the 
timer for the next stage can be set correctly internally. Once calculations like that 
are figured out they can be adjusted for the up to one a half gallons that this 
automated system will be able to handle. Knowing the little details like that will 
facilitate the various testing phases that will need to be done in order to calibrate 
all of the internal systems.  
 
Another big aspect that needs to be taken into consideration is the temperature of 
the environment in which the testing will take place. Although the majority of these 
parts are able to withstand over 100 degrees Fahrenheit temperatures, it is not a 
good idea to put this system in an enclosed area where temperatures can go 
several Fahrenheit degrees above normal room temperature (by room 
temperature the group will refer to it as being in between 76 degrees Fahrenheit 
and 78 degrees Fahrenheit). The reason being is that as all things, whether 
electronic, metal, wood, etc. they react differently to abrupt changes in their 
ambient temperatures. The group wants to make sure that this automated home 
brewing system will be specifically set up in an area that will hold those 
temperature boundaries, for testing and for operational purposes. This time driven, 
time sensitive information collecting machine needs to be at its utmost operation 
capacity near the 99.9% mark, which makes this testing environment restriction a 
must to follow.  
 
Software components don’t really rely on the temperature on the surroundings, but 
the hardware that it talking to the software does. Therefore assuring a stable 
environment for the test to begin is crucial. Having the aluminum frame already 
built and the components in place is a very good way to insure this stable 
environment. Although software does become corrupt in occasion’s independent 
to the hardware and its surroundings that is something that will have to be handled 
through error detecting and error correcting scripts within the program(s). Another 
important aspect of the environment that needs to be controlled is that of the 
cooling process, seeing as there needs to be a “cold” reservoir in place for the wort 
chiller to utilize when minimizing the cooling time frame of the hot wort. This is 
another aspect of this system that relies heavily on the room temperature control 
in order to achieve the lowest possible cooling time.  



110 
 

 
These processes are mentioned because the software is dependent on their 
specific hardware components working properly, and the testing environment can 
clearly affect these processes. If the Raspberry Pi doesn’t receive the correct 
signal from one of the microcontrollers it can’t fully and reliable direct the traffic 
flow like it is supposed to. The reliability of the software in this test environment 
relies somewhat heavily on the ability of the hardware components, big and small, 
to function properly within their specific margin of errors. Data corruption can be 
taken during test phases, and if the testing environment is the culprit further 
analysis will be done to indicate how badly it affected the hardware and in turn the 
software communication corruption. The specifics for the handling of data 
corruption will be discussed in the following section geared towards the software 
testing. 
 

6.4 Software Specific Testing  
 
For this portion of the testing requirements the necessary software tools to achieve 
high quality, precise and lasting results will be discussed. In order to have a reliable 
software integrated with the hardware it is required that several high frequency test 
are done for the data communications portion of the system. The group has found 
that if the clock frequency and the period interval of receiving data are too high 
there will occur several fallouts of communications throughout the send/receive 
automated process. Finding the right balance of interval for data sending and the 
correct low clock frequency is key to making sure that this autonomous system 
doesn’t break down with its internal communication protocols. Of course there is a 
need for an error handling code on the microcontroller side that will restore the 
communication layer if in fact it does break.  
 
Testing to see how far the Raspberry Pi’s RAM is able to go is another good idea. 
It does come with a standard 512MB RAM, which for a processor its size is quite 
excellent, but for the amount of back and forth communications it is best to make 
sure that the internal mechanism of the Raspberry Pi are up to the challenge. 
Conducting some sort of stress overload test would be of an excellent idea, 
although ideally the user would never want to reach the highest capacity for the 
automated brewing system since data logging is such dependent on the compact 
time intervals. This sort of stress test can be done by increasing the intensity in 
which the Raspberry Pi is reading the collected values; not necessarily does it have 
to be actual data, it could be coded into the chips to send high frequency, high 
priority data for an allotted time. Running out of RAM is never an option, especially 
if there is an automated process that will be running anywhere from two to three 
hours respectively. Making sure that all available extra memory is extended for the 
system to use will be necessary, it is at this point in the testing phase where the 
group will realize if they need a higher capacity Micro SD card or if the current 8GB 
one that is in scope will do. The group could also do away with unwanted operating 
system programs or cancel automatic updates in order to save memory. Since this 
is basically a closed system, except for the data access done externally by the 



111 
 

user, the Raspberry Pi will be doing the same job(s) over and over again. Having 
this repetition of tasks will put the Raspbian operating system at test to see how 
well it does with memory management and thread prioritization. It is not always 
good to give the system higher memory access but this portion of the software 
testing phase will conclude whether it is needed or not.  
 
A crucial aspect of this communication highway is also how well the server will be 
able to update its tables efficiently and correctly while at any given time the user 
may want to access information within these tables. Testing the integrity of the 
server and its control over its information can prove to be beneficial if the user 
decides to collect data at a safer higher time interval. Reading and writing requests 
can be complex at times depending which portions of the data the user is looking 
to access. This makes for a very sticky situation if proper software testing is not 
done with this system functionality. Although theoretically the data is always, 100% 
available to the user, when an external request comes in to read certain data and 
the server is currently busy listening and/or talking to the Raspberry Pi then it can 
throw a warning error/flag. This can let the user know that some information 
requested may be delayed or not accurate. Doing this error control or error 
handling in the server side of the system is good practice, since the Raspberry Pi 
already has so many things to control at once.  
 
The integrity of the ATMEGA328P chips needs to also be tested with scrutiny, 
since it is not known 100% whether they will work flawlessly or falter during a period 
of high requests from the system sensors. Since each chip will be in charge of a 
specific set of sensors, it is necessary to make sure that they are taking all of the 
readings coming in from the sensors at all times. The chips have to be multitaskers 
and jugglers all the same time since they will not be able to be idle while the system 
is functioning. The software dependencies dealing with these scenarios on the 
chips lie within their driver code(s) and the appropriate C header files. Therefore, 
the group must make sure to isolate code for handling errors occurring within these 
dependencies during the test phases. By ‘dependencies’ it is inferred to be the 
written software that will be placed on the chips themselves, this of course is the 
software that will work hand in hand with the hardware control units and sensors, 
so the reliability of that data needs to be at least 99.99% accurate for the system’s 
purposes. In order to test this specific software component it would be best if the 
group set up an environment where the sensors and control units would 
send/receive unordinary values of information. One example could be the putting 
a temperature sensor in constant hot, very hot, cold and very cold reading 
environments to make sure the reading capabilities of the ATMEGA328P chips are 
intact and that in fact the software is being able to keep up and read accurately 
what is going on.  
 
The group’s main board will also have to be tested vigorously since it will integrate 
all of these data lines and power supplies from the hardware to the software. In 
specific the power supply will need to be tested as well, in case there were to occur 
a power outage or an abrupt spike in the current for the system the group needs 



112 
 

to make sure the software is able to respond quickly and correctly to these 
unknowns. A quick spike in current can affect some hardware components, in turn 
affecting the software. Although the group does have a power supply protection 
established, it is in the group’s best interest to have the software listening in closely 
to the power supply status all throughout the process. In the case that there is a 
power failure or a power surge, the software must be able to perform adequately 
to maintain the system intact an operational. This can be tested with a small 
controlled lab experiment to see how well the board does with its power protection 
software.  
 
In the end following these software specific testing guidelines will make sure that 
the automated system is running full speed and correctly. With so many integrated 
components, both electrically and in hardware, it can be easy to overlook certain 
software test specifics. Throughout the life cycle of the project, especially during 
the build time set for this system, the group will add more and more software 
specific tests. At the end of the day every software component needs to be tested 
for complete accuracy. The high level software components specified above will 
be followed step by step, and necessary steps will be taken, also recorded and 
incorporated, if unplanned behaviors occur during the testing phases.  
 

7.0 Parts Acquisition and Bill of Materials 
 

An overview of the total cost for the project systems is detailed in the tables below. 

Table 7.1 covers the communications materials, Table 7.2 covers the 

instrumentation materials, Table 7.3 covers the power supply materials, and Table 

7.4 covers the apparatus materials. Table 7.5 sums the cost of each sub system. 

 

Table 7.1: Communications Bill of Materials 

Description Part Number Vendor Quantity Unit Price Extended Price 

ATEMGA328P 68T2944 Newark 2 $3.38 $6.76 

MOSFET 58K9650 Newark 2 $0.38 $0.76 

1kΩ Resistor 38K0327 Newark 10 
0.02 

 
$0.20 

150Ω Resistor 38K0339 Newark 10 $0.02 $0.20 

1.5kΩ Resistor 78R4869 Newark 10 
0.32 

 
$3.20 

4.7kΩ Resistor 38K0376 Newark 5 $0.02 $0.10 

Green LED 58K2496 Newark 10 $0.18 $1.80 

Red LED 96K2564 Newark 10 $0.07 $0.70 

Subtotal $13.72 

 



113 
 

 

Table 7.2: Instrumentation Bill of Materials 

Description Part Number Vendor Quantity Unit Price 
Extended 

Price 

Quad Op-Amp LT1014DN Linear Tech. 4 $4.17 $16.68 

Thermistor 
NTCAIMME3C

90373 
Mouser 4 $1.88 $7.52 

470Ω Resistor 02F1416 Newark 4 $0.10 $0.40 

4kΩ Resistor 846FD35 Newark 12 $0.10 $1.20 

1kΩ Resistor 5489451D Newark 6 $0.10 $0.60 

2.3kΩ Resistor 8416955D Newark 6 $0.10 $0.60 

9kΩ Resistor 2162FDB5 Newark 2 $0.10 $0.20 

1uF Capacitor 1654484C Newark 12 $0.19 $2.28 

Strain Gauge - eBay 2 $6.85 $13.70 

Relay  
OJ-SS-

124LMH2 
Mouser 12 $1.12 $13.44 

Relay  
FTR-

K3JB024W 
Mouser 4 $2.21 $8.84 

Optocoupler FOD817A Mouser 20 $0.43 $8.60 

Transistor 2N3904BU Mouser 20 $0.19 $3.80 

1kΩ Resistor 
MFR-

12FTF52-1K 
Mouser 20 $0.12 $2.40 

165Ω Resistor  
RN55D1650F

B14 
Mouser 20 $0.10 $2.00 

Diode 1N4149TR Mouser 20 $0.09 $1.80 

Subtotal $84.06 

 

 

 

 



114 
 

 

Table 7.3: Power Supply Bill of Materials 

Description Part Number Vendor Quantity Unit Cost 
Extended 

Cost 

Transformer 186F20 Mouser 1 $22.36 $22.36 

Bridge 
Rectifier 

583-BR62 Mouser 1 $0.96 $0.96 

C1 - 6800 uF - Mouser 1 $1.68 $1.68 

C2 - 47 uF - Mouser 1 $0.42 $0.42 

C3 - 1 nF - Mouser 1 $0.15 $0.15 

C4 - 120 pF - Mouser 1 $0.15 $0.15 

C5 - 33 uF - Mouser 4 $0.20 $0.80 

C6 - 0.1 uF - Mouser 3 $0.06 $0.18 

R1 - 17.8 kΩ - Mouser 1 $0.10 $0.10 

R2 - 20 mΩ - Mouser 1 $0.10 $0.10 

R4 - 182 kΩ - Mouser 1 $0.10 $0.10 

R5 - 10 kΩ - Mouser 1 $0.10 $0.10 

L1 - 15 uH - Mouser 1 $0.12 $0.12 

Zener Diode MBR0540T1G Mouser 1 $0.36 $0.36 

MosFET SI4401BDY Mouser 1 $1.26 $1.26 

Buck 
Controller 

LM3485 Mouser 1 $1.68 $1.68 

5V Linear Reg LM7805T Mouser 2 $0.69 $1.38 

3.3V Linear 
Reg 

L78L33ACZ Mouser 1 $0.42 $0.42 

Subtotal $32.32 

 

 

 

 



115 
 

 

Table 7.4: Apparatus Bill of Materials 

Description Part Number Vendor Quantity Unit Cost 
Extended 

Cost 

80/20-10series 
97” length 

1010-97 Amazon 3 $31.30 $93.90 

80/20-10series 
fasteners (x25) 

3393-25pk Amazon 1 $17.12 $17.12 

80/20 10series 
Corner Bracket 

4119 Amazon 8 $3.81 $30.48 

Heating 
Element 

Camco 02142 Amazon 1 $9.42 $9.42 

Bulkhead 
fitting 

1698T32 McMaster 1 $10.12 $10.12 

Viton O-ring 
5577K219 McMaster 1 $8.28 $8.28 

Heat 
Exchanger 

B3-12A Duda Diesel 1 $48.87 $48.87 

Hose Clamps 
54155K11 McMaster 1 $11.13 $11.13 

Submersible 
Pump 

1E96208F54 Ebay 1 $6.99 $6.99 

Solenoid 
Valves 24VDC 

2WJ04008N Duda Diesel 8 $28.49 $227.92 

Carboy - 
Northern 
Brewer 

1 $4.95 $4.95 

2gal Kettle - 
Northern 
Brewer 

1 $14.95 $14.95 

Mashtun - Walmart 1 $14.95 $14.95 

Sparge Tank - Target 1 $6.99 $6.99 

Wort Pump Chugger 
Northern 
Brewer 

1 $130.00 $130.00 

Subtotal $636.07 

 

 

Table 7.5: Total Bill of Materials 

Sub-System Subtotal 

Communication Bill of Materials $13.72 

Instrumentation Bill of Materials $84.06 

Power Supply Bill of Materials $32.32 

Apparatus Bill of Materials $636.07 

Total $766.17 



116 
 

8.0 Administrative Content  
 

The following information is on the budget and milestones set for this project.  The 
initial budget planned for the project was $800 and then adjusted to $1000 when 
cost of the different components was considered.  The most expensive portions of 
the system were the mechanical subsystems.  The mechanical subsystems also 
caused issues elsewhere and is discussed in the milestone sections.  

 
Budgeting was given more to the mechanical subsystem. All the subsystems taken 
into account are the mechanical, electrical, PCB cost, and power supply.  The 
complete system expense of the project will be broken down at the bill of materials.  

 
The milestone section will breakdown the group’s schedule for completing the 
automatic brew extractor.  It covers the overall plan for both sections of senior 
design.  The milestones were set at the beginning of the project and made to 
change as the group continued on.  The changing milestone goals moved the 
project along.  Any issues that occurred with the schedule will be discussed along 
with the solutions that the team implemented.   
 

8.1 Milestone Discussion  
 

The group’s overall milestone timeline for both senior design 1 and 2 is listed as 
the following.  Using this timeline the team kept organized and steady as the initial 
project comes to an end and the construction of the brew extractor begins.  
Discussed in the outline are the expectations of each goal how the group planned 
on reaching it.  Later on the paper discusses the issues reached and overcame 
through the semester.  It will also cover what milestones were not reached and 
why.  
 
1) Milestones: Fall 2014  

a) September 18th – Finalized preliminary system’s structure. 
i) The mechanical subsystems are defined and divided amongst the 

members 
ii) The electrical subsystems driving the mechanical ones are discussed  
iii) Initial budget is decided. 

b) September 25th – Subsystems identified and divided 
i) The electrical subsystems are decided and extra attention is brought 

based on what each member wishes to bring to the extractor.  
ii) Preliminary research is done on the necessary components i.e. 

microcontrollers and operational amplifier research. 
c) October 2nd and 9th – Subsystem milestones set and research ongoing 

i) Research to be completed on microcontrollers and operational 
amplifiers within one week. 

ii) Research into effective ways of cooling wort for fermentation 
preparation. 



117 
 

iii) Research into effective single board computer for storing data and 
controlling a web server. 
(1) Possible android application to go with web server. 

iv) Research into effective ways of collecting analog data from the extractor 
that are necessary for the user to effectively make wort. 

d) October 16th – Subsystem initial design collaboration and review 
i) The operational amplifiers for the filter design and amplification stage 

are decided.  
ii) The microcontrollers and web server host are decided. 
iii) Sensors decisions are completed 
iv) Power supply is to be discussed either built or bought. 
v) Considerations about the budget should be addressed here. 

e) October 23rd – Continued design review 
i) Final power supply decision is made. 
ii) User interface is researched. 
iii) Initial power supply designs are made. 
iv) Completed filter and amplification circuit designs integrated with 

sensors. 
f) October 30th- Continued design review 

i) Finalized design is made and plans for building prototype begins. 
ii) Testing criteria is made with conjunction with specifications of the brew 

extractor.  
g) November 6th – Order parts for prototyping 

i) Testing criteria is finalized for each of the subsystems 
ii) Any budget adjustments will be made here.   

h) November 13th – Breadboard Testing (if parts are here), coding, and 
continued planning 
i) The coding for communication and between microcontroller and single 

board computer is started. 
ii) Actual testing of the sensors begin through the filter and amp stages.  

i) November 20th – Breadboard Testing, coding, and continued planning 
i) The coding for communication and between microcontroller and single 

board computer is finished. 
j) December 15th – Breadboard Testing, coding, and design finalization 

i) PCB layout begins to be laid out in Eagle. 
2) Milestones: Spring 2015(dates subject to change) 

a) January 8th – PCB layout done in CADSoft Eagle/all parts ordered 
i) Final simulations are ran and hardware board testing is complete for 

individual stages of the subsystem  
ii) The individual hardware stages are integrated together on PCB layout. 

b) January 12th – Send design to board house 
i) Troubleshoot any system integration issues. 

c) January 15th – Begin assembling brewing system 
i) The construction of support structure for mechanical subsystems begins 
ii) Final dry runs are made using the breadboard before applying to the 

PCB.   



118 
 

iii) Full integration of hardware and software plans to begin. 
d) January 22nd – Continue assembling system 

i) Continued dry run test are made if necessary 
ii) Web server to be set up and complete to be used in dry run test 

e) February 5th - User interface integrated 
i) Dry runs are in conjunction with user interface to test software. 
ii) Coding corrected if necessary 
iii) Hardware tested for continued reliability  

f) February 26th – System assembled and ready for testing 
i) Mechanical and Electrical subsystems are integrated 
ii) Final testing of the extractor begins 
iii) Troubleshooting if necessary. 

g) April 2nd – Project complete and operational 
 

8.2 Milestone Issues  
 
The team’s initial milestone goals were met rather well.  The team was performing 
according to schedule until the subsystems were divided up. The decisions of 
components to be used took slightly longer because power supplies were not 
decided at an earlier time and decided.   

The other issues were the power being single supply or double supply for the 
operational amplifiers.  Creating a negative source was considered to be more of 
a hassle and thus single supply was chosen.  Single supply source operational 
amplifier usually turn on at higher total voltages then a dual power supply.  An 
example an operational amplifier operating with ±1.5Vcc dual supply would need 
at least 3.5Vcc single supply to operate.  This made looking for operational 
amplifiers that could run at the desired criteria harder to find.   

The I2C protocol was another issue that slowed down the design process.  The 
ATMEGA328P and raspberry pi were not communicating with each other.  Signals 
were being sent to the pi and it was unresponsive.  The pi was not verifying data 
was sent to it by sending a receive signal.  After testing and looking into the code 
program and hardware specifications, it was found that the pi was sending back 
data at two low of a voltage.  That is why a level shifting circuit was implemented 
into the I2C bus.    

There were problems with achieving the initial mechanical subsystems goal.  The 
biggest being the heating of the boil kettle and chilling of the wort.  The time and 
energy consumption for heating a ten gallon kettle was too much on the system.    
The team could not lower the amount of time the kettle needed to reach a rolling 
boil without drawing too much power. The same issue with power consumption 
was encountered with the chilling process.   

The chilling subsystem was remedied by replacing the initial idea of using a coolant 
system with a plate chiller.  Solving the heating problems became a bigger problem 



119 
 

as it drew more power to heat in twenty minutes.  Solving the problem was tied in 
with the structural problem solution.  

The structural problem was designing the overall frame of the brew extractor.  The 
group noticed that the frame itself was too tall for the average user.  The original 
scope of the project was more directed at an experience brewer looking to make 
larger batches.  The design was changed toward smaller, more experimental 
batches.   

It was determined that the focus should be on the electrical components; therefore, 
the overall mechanical subsystem was downsized to a tenth of the original plan.  
This solved both the structure height and heating problems.  The heating problems 
were solved because a smaller kettle could be used; therefore, a smaller heating 
element will be used drawing less power.   

Another issue encountered was parts not coming in on time.  This slowed down 
the hardware testing process.  This also affected the testing criteria implemented 
for the system.  This made the hardware testing fall behind schedule and thus pull 
back the software integration.  This was resolved by simulating the values 
assumed from the sensors and the software was tested. In the end the original 
plan was flipped with the coding being tested and mostly complete.  The hardware 
will continue to receive testing to remedy the issue. Many of the systems have 
been simulated so any other problems were addressed in the previous sections of 
this paper.  

 

9.0 Executive Conclusion 
 
The proposed Senior Design project at hand made significant progress this 
semester towards effectively building, formatting, testing and engineering an 
automated home brewing system tailored to the specific needs of the home brewer 
and his/her recipe(s). The group discovered that there are several products on the 
market, some of which emulate the goals of this design team perfectly.  Through 
gathering the bill of materials the group discovered that the design project was 
comparable in price to a lot of the existing systems on the market currently. Which 
was surprising to the group since this system incorporates quite a few electronic 
elements that most other systems do not carry on their own. 
 
Nevertheless the team's main goal is not to present an affordable and fine-tuned 
piece of machinery, instead it is to bring a tailored finished product that can be 
freely manipulated by the home brewer for a more precise and genuine home 
tasting brew finish.  Furthermore this project is mainly to demonstrate a proof of 
concept. The automated home brewing system, or A.B.E as it is to be known, 
remains to be comprised of a portable stable aluminum frame, along with the 
various sensors and circuits that are needed for the internal system, a central unit 
for data gathering and processing, two microcontrollers to ease the workload of 
programming communications and control, and finally a web server available for 



120 
 

the user of the Internet along with a very simple Android application for on-the-go 
monitoring.   
 
As detailed previously in this document, there are several components that are 
being planned to be installed in this automated system.  However, since the project 
was scaled down to produce significantly less product per cycle, the system will no 
longer be as complex as originally projected.  The end user will lose no functionality 
in the system performance but will experience a decrease in the output per cycle.  
However, since the process output has been decreased, we are predicting an 
overall decrease in the amount of time required to perform a single brewing cycle.  
This will allow the user to theoretically produce the same amount of beer, but not 
necessarily all at once, and will in turn allow for a relatively quick turnaround time 
between batch cycles.   
 
The group worked hard to find ways to keep the system interesting to the user as 
well, all throughout the design process. Since brewing beer is a hobby for most 
home brewers, the group wanted to keep the system interesting and enjoyable 
while maintaining the autonomy of the system and the hobbyist with more free 
time. Some of options sacrificed in the design stages were reworked into different 
features that the team wanted to provide to the end user. The group was able to 
focus on usability and smoothness of software structures as well as the overall 
aesthetic feel to the project. Furthermore, the group focused on improving features 
that had already been planned for this design project, mainly the electrical 
components that would drive the automation of the system. 
 
As the group moves closer to creating the solution for this design project, the 
problem of time management versus home brewing quality remains at the top of 
the project's main objectives. Therefore this objective, along with demonstrating 
this project’s engineering capabilities, will be seen all throughout next semester’s 
progress, and of course in the live presentation of this one of a kind automated 
brewing system. There were several challenges for this semester that the group 
encountered.  These challenges were met and overcome with a fantastic group 
effort and the team succeeded in meeting the milestone goals set forth at the 
beginning of the semester.  As the group continues to move forward, the main goal 
as a group regarding this matter will be to stay very close to the proposed: design 
specifications, testing requirements, build schematics, circuit design layouts, 
software schemas, etc. that were documented in the previous pages of this 
document. The build time for this specific project has changed slightly considering 
the modifications and changes to the initial design that were met this semester.  
The group now estimates that the remaining time left for the build will be very close 
to ten weeks.  The hardware testing and software debugging will be done towards 
the end of the second semester with the intention of completing a working system 
3 weeks before the due date of the project. The finished product will in fact produce 
drinkable beer, but due to regulatory laws this part of the project will not be 
showcased in the Senior Design Showcase in April 2015, unless given special 
permission by the required University of Central Florida department. 



121 
 

Appendix  
  

Copyright permissions 
 

Element 14 Community Copyright 
Permission 
 

Complete thread can be found at: 

http://www.element14.com/community/message/131162/l/re-copyright-permission-to-

use-a-picture-from-element14#131162 

 

Copyright permission to use a picture from Element14 
This question is Not Answered. 

 
drodriguez128 Nov 11, 2014 8:37 PM 

Hello, 

I am currently a Computer Engineering student at the University of Central Florida, for 

our senior design project we are utilizing the RaspberryPi Model B+ and I was wondering 

if it would be ok to use the image that I found online belonging to Element14. I could not 

find anywhere on your website who to contact regarding this matter, so I turned to this. I 

would just like to know if it is ok for my team and I to utilize this picture of the GPIO 

layout for our project documentation. 

 

Thank you, 

David Rodriguez  

 

 

1. Re: Copyright permission to use a picture from Element14 

 
element14jamie Nov 12, 2014 9:59 AM (in response to drodriguez128) 

Hello David, 

We have no issues with members using photo's from our site as long as they are for non-

profit and as well as putting courtesy of element14 Community along with the picture. 

  

Thank you, 

  

Jamie 

http://www.element14.com/community/people/drodriguez128
http://www.element14.com/community/people/element14jamie


122 
 

Banana Pi Copyright Permission 

 
Dear David: 
 
Ok, no problem.  
 
Best regards, 
 
Banana Pi R&D team 
 

從我的 iPhone 傳送 
 

drodriguez128 <drodriguez128@knights.ucf.edu> 於 2014/12/3 5:18 寫道： 

Good evening, 
  
My name is David Rodriguez, I am a senior at the University of Central Florida in Orlando, FL, and 
I am currently in Senior Design I (for computer & electrical engineers). For our two semester 
project we have decided that in our automated system we will be using the Raspberry Pi model 
B+ as our main controller. But we need to compare it to other similar “small single board 
computer” models,  I was wondering if it would be okay to use some of the images and 
information I found on your website, more specifically the Banana Pi 
http://www.bananapi.org/p/product.html , this will be incorporated into our detailed report on 
our two semester project. 
  
We will of course give 100% credit to Banana Pi(or the website) for allowing us to use the 
copyrighted material, in the report. 
  
Thank you, 
  
David Rodriguez 
                

 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:drodriguez128@knights.ucf.edu
http://www.bananapi.org/p/product.html


123 
 

Raspberry Pi Copyright Permission 

 
Hi 
 
Thank you for your interest in Raspberry Pi.  It is very important to follow the instructions on the 
Trademarks page at http://www.raspberrypi.org/trademark-rules/.  
 

Regards 
 
Nicola Early 
Administrator 
Raspberry Pi 
nicola@raspberrypi.org 
 
From: drodriguez128 [mailto:drodriguez128@knights.ucf.edu]  
Sent: 30 November 2014 01:11 
To: Admin 
Subject: Image Copyright Permission 
 
Good evening, 
 
My name is David Rodriguez, I am a senior at the University of Central Florida in Orlando, FL, and 
I am currently in Senior Design I (for computer & electrical engineers). For our two semester 
project we have decided that in our automated system we will be using the Raspberry Pi model 
B+ as our main controller. I was wondering if it would be okay to use some of the images I found 
on your website, www.raspberrypi.org, since we also have to write a detailed report on our two 
semester project. 
 
The images my group and I will use will only be the Raspberry Pi B+ images, and we will give 
100% credit to the Raspberry Pi Foundation (or the website) for allowing us to use the 
copyrighted images. 
 
Thank you, 
 
David Rodriguez 
 
 
 
 
 
 
 
 
 
 
 

http://www.raspberrypi.org/trademark-rules/
mailto:nicola@raspberrypi.org
mailto:drodriguez128@knights.ucf.edu
http://www.raspberrypi.org/


124 
 

Olimex Copyright Permission 

 
Hi David, 
no problem to use pictures and information from our web site if you make sure that you quote 
the source of this information. 
Thanks 
Tsvetan 
 
On 12/03/2014 12:36 AM, drodriguez128 wrote: 
Good evening, 
 
My name is David Rodriguez, I am a senior at the University of Central Florida in Orlando, FL, and 
I am currently in Senior Design I (for computer & electrical engineers). For our two semester 
project we have decided that in our automated system we will be using the Raspberry Pi model 
B+ as our main controller. But we need to compare it to other similar "small single board 
computer" models,  I was wondering if it would be okay to use some of the images and 
information I found on your website, more specifically the A13_OLinuXino-WiFi Enabled 
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/resources/A13-
OLINUXINO.pdf  , this will be incorporated into our detailed report on our two semester project. 
 
We will of course give 100% credit to Olimex (or the website) for allowing us to use the 
copyrighted material, in the report. 
 
Thank you, 
 
David Rodriguez 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/resources/A13-OLINUXINO.pdf
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/resources/A13-OLINUXINO.pdf


125 
 

SYNEK Permission 
 

 
 
 
 
 
 
 
 



126 
 

PicoBrew Image Use Permission 
 

 
 
 
 
 
 
 
 



127 
 

Duda Diesel Copyright Permissions 
 
You may use the photos and send me an address and contact information for 

the heat exchanger. 

 

CHRISTOPHER BOLTON  

DUDA ENERGY LLC 

1112 BROOKS ST SE 

DECATUR AL 35601 

256-340-4866 

 

-----Original Message----- 

From: aubilla@knights.ucf.edu [mailto:aubilla@knights.ucf.edu]  

Sent: Tuesday, December 02, 2014 10:15 PM 

To: technical@dudadiesel.com 

Subject: DudaDiesel Question 

 

I apologize for using this contact form for something other than its 

intended use, but I could not see any other method of contact. 

 

Hi, I am an engineering student at the University of Central Florida. I am 

currently writing a report about designing an automated home brewing system 

for personal use. I will be using your B3-12A heat exchanger for the wort 

chilling process and I was wondering if you could grant me permission to use 

the following two images in my report. 

 

http://www.dudadiesel.com/img/HXflow2.jpg 

http://www.dudadiesel.com/img/items/HX1210_ID648-S.jpg  

 

I was also wondering if you would be interested in donating the heat 

exchanger in exchange for dudadiesel.com advertising during our senior 

design showcase where hundreds if not thousands of engineers and DIY's alike 

will see the product in operation. 

 

Thank you for your time. 
 
 
 
 
 
 
 
 

mailto:aubilla@knights.ucf.edu
http://www.dudadiesel.com/img/HXflow2.jpg
http://www.dudadiesel.com/img/items/HX1210_ID648-S.jpg


128 
 

WEBstaurant Copyright Permission 
 
Hello, 
Thank you for your interest in our website! You may use those images but you will need to site 

out store as the place you got the images. Just let me know if you have any questions. Thanks! 
Tricia Wilkerson 
Kentucky Customer Solutions Specialist 
Customer Support @ WEBstaurantstore.com 
 “Like” us on Facebook 

 Follow us on Twitter, Google+, Pinterest 

 

On Dec 2, 2014 5:22 pm, aubilla wrote: 

Hi, I am an engineering student at the University of Central Florida and I am currently 
writing a report considering possible designs for standalone beer brewing systems. In 
this report I detail different methods of heating liquids which are necessary throughout 
the brewing process.  
I would like permission to use some of your product images in my report. Please note 
that none of these products will be spoken about in a negative light, I simply need 
examples of products in which I will compare the technologies represented by each 
product.  
These are the images which I intend to use for my report: 
http://www.webstaurantstore.com/images/products/main/36606/40239/backyard-pro-
square-single-burner-outdoor-patio-stove-range-sq14.jpg 

http://www.webstaurantstore.com/images/products/main/32777/83092/avantco-
eb100-single-burner-countertop-range-120v.jpg 

http://www.webstaurantstore.com/images/products/main/108158/132588/sink-heater-
element-208v-3000w-1-3-4-oc.jpg 

http://www.webstaurantstore.com/images/products/main/17169/129455/avantco-
icbtm-20-countertop-induction-range-cooker-120v-1800-watt.jpg? 

Thank you.  
  
CaseID: 0D18834D-C35B-0180-5B506C1E47BFE941 

 
 
 
 
 
 
 

http://www.facebook.com/WEBstaurantStore
https://twitter.com/Webstaurant
https://plus.google.com/u/0/b/103054615262390836989/103054615262390836989/about
http://pinterest.com/webstaurant/
http://www.webstaurantstore.com/images/products/main/36606/40239/backyard-pro-square-single-burner-outdoor-patio-stove-range-sq14.jpg
http://www.webstaurantstore.com/images/products/main/36606/40239/backyard-pro-square-single-burner-outdoor-patio-stove-range-sq14.jpg
http://www.webstaurantstore.com/images/products/main/32777/83092/avantco-eb100-single-burner-countertop-range-120v.jpg
http://www.webstaurantstore.com/images/products/main/32777/83092/avantco-eb100-single-burner-countertop-range-120v.jpg
http://www.webstaurantstore.com/images/products/main/108158/132588/sink-heater-element-208v-3000w-1-3-4-oc.jpg
http://www.webstaurantstore.com/images/products/main/108158/132588/sink-heater-element-208v-3000w-1-3-4-oc.jpg
http://www.webstaurantstore.com/images/products/main/17169/129455/avantco-icbtm-20-countertop-induction-range-cooker-120v-1800-watt.jpg
http://www.webstaurantstore.com/images/products/main/17169/129455/avantco-icbtm-20-countertop-induction-range-cooker-120v-1800-watt.jpg


129 
 

DATASHEETS 
 

 



130 
 



131 
 

 

 



132 
 

 


