
Auto Brew

Robert Bower, Alonzo Ubilla,
Kleber Valencia, and David Rodriguez

 Dept. of Electrical Engineering and

Computer Science, University of Central
Florida, Orlando, Florida, 32816-2450

Abstract — This paper presents the design

methodology utilized to create an automated home brewing
system, that should significantly reduce the amount of labor
associated with making beer. The subsystems implemented
in this design are as follows: (1) I2C Communications;
(2) Process Control; (3) Power Distribution; (4) User
Interface; (5) Process Monitoring and Notification.

Index Terms — analog amplifier, automation, beer,
graphical user interface, high-power switching, I2C
communications, linear power-supply, microcontroller,
single-board computer, temperature control.

I. INTRODUCTION

Home brewing beer can be an enjoyable hobby,

however, it can also be very time consuming. The
typical brewing time can range from 6 – 10 hours
depending on the recipe and brewing equipment used
during the process. Most of the time is spent setting up
the equipment and transferring liquids. There are 5
basic steps in this process.

1. Mash: During this step grain is soaked in hot

water with the goal of leaching the starches
out of the grain.

2. Sparge: During this step the grain is rinsed of

the starchy liquid (now called wort).

3. Boil: During this step the wort is heated to

break down the starches into simple sugars.

4. Cooling: During this step the wort is cooled
as quickly as possible to facilitate coagulation
of proteins contributed from the grain in the
mash step.

5. Fermentation: During this process yeast is

added to the wort, and now the solution is
called beer.

The expectations of the senior design team were to

research, and design a system that would drastically
reduce the time needed to produce home brewed beer.
The senior design team required that the system must

meet the following requirements: (1) Complete the
brewing process without intervention from the user; (2)
Provide real time data to the user; (3) Operate within
defined safety limitations; (4) Keep the user updated
with the process status; (5) Provide remote monitoring
of the system.

II. SYSTEM OVERVIEW

The following consist of the overall major subsystems

for the auto brew. Figure 1 depicts hardware flow for the
integration of the subsystems.

A. Graphical User Interface

The automated process being created has to be

driven by an initialization phase done by an actual
human. This is where the group decided to establish a
graphical user interface, and in this case it will be
written in Python 2.7.

B. Communication

Communication between the two microcontrollers

and the single board computer will be handled using
the I2C protocol. The single board computer is the
master while the microcontrollers are the slaves with a
3.3V to 5V level converter between the two.
Communication between the companion Android
application and the single board will be handled via
Bluetooth.

C. Data acquisition

The system will constantly be taking this will be

handled via the several analog sensors through the
system sending information to the microcontroller.
The data collected will also be the signals used to
control the overall system. Thermistor and weight
sensors contribute the most of the control conditions
the MCU uses for the process. Once data is collected
by the MCU it is then sent to the single board
computer, the Raspberry Pi B+, stored for access via
the GUI and sent to the companion app for the auto
brew via Bluetooth.

D. Power Distribution

Varying voltages, both AC and DC, were used

throughout the system, starting with 115 VAC mains
for some of the higher power components, 24 VDC for
solenoids and relays, 5 VDC for microcontrollers and
analog sensors, and finally 3.3 VDC for I2C
communication. While simple linear regulating IC’s
were able to be used for the lower voltage levels, a 24

VDC supply was designed to accommodate the
maximum possible load from the 24V components.

E. High Power Switching

Due to the low-power nature of microcontrollers,

it was necessary to incorporate a method of high power
switching within the system. The system utilizes
solenoid valves, a solenoid actuator, a heating element,
and fluid transfer pumps which run on either 24VDC
or 115VAC mains voltage and range in power
consumption from 500mW to 1500 watts,
microcontrollers are unable to supply this kind of
power. Also, the fact that the components being
switched are at a substantially higher potential, some
form of isolation would be ideal in order to protect the
microcontrollers from possible damage. For these
reasons, a circuit that has the ability to switch on high
power devices using a low voltage low current signal
was designed

Fig. 1: Overall System Integration

III. USER INTERFACE

The graphical user interface designed for the Auto

Brew system was coded using Python 2.7. The user
interacts with the interface via a single board computer
connected to a monitor and wireless keyboard. For the
purpose of this project the Raspberry Pi B+ model was
chosen as this single board computer. It runs a Linux
based operating system called Raspbian. Comes with
512MB of RAM and utilizes an external 8GB SD card
to boot the Raspbian operating system at startup.

Since one of the main objectives was to take out as
much of the human interaction as possible for brewing
beer at home, giving the user the sense they are still in
control of some manual parts of the process was
beneficial. The group did not want to create an
automated system that was rugged, looked unappealing
or unaesthetically pleasing to the home brewer’s eyes.
Having the interface embrace a sense of flow using
eye-catching colors, along with giving the user that
initial responsibility of initializing the system, makes
for a very functional user interface as shown in the
figure below.

Fig 2: Main graphical user interface

 This interface allows the user(s) to efficiently

input all of their recipe variables into the system,
which will drive all of the decisions made by the
microcontrollers. All of the data input by the user will
be packaged and sent all together to the control system
once the user clicks on the green start button.

It is at this time that a second graphical user
interface pops-up and sends a start command signal to
the microcontroller to begin step 1 of the process. This
second window allows the user to monitor the overall
process, from the status of each valve/pump to
temperature and level readings. A companion app
running on an Android device allows the user to
continue to keep tabs on the system while being away
from the monitor. This interface communicates with
the user’s Android application through Bluetooth
communication which is initialized once again through
a Python script embedded into each of the function
calls to update the individual system variables. This
second window functions as a supervisor to the system
as its running. It tells the microcontrollers when to start
each step, feeds system data to the android application
and the interface being displayed on the monitor. It is
with this interface that the microcontrollers
communicate back and forth with the most. This script
will run until the last step of the process is complete, in

which case it will send a notification to the user and
display a warning message on the monitor to bring
attention to them.

IV. COMMUNICATIONS

A. I2C Configuration

The senior design team chose to use I2C

communication to connect all of the subsystems. The
communication system is structured to have one master
and two slaves. Figure 2 shows the I2C configuration
used for the system.

Fig. 2: I2C Communication Bus

Since the operating voltage of the I2C slaves was

chosen to be 5V DC, it was necessary for the senior
design team to implement a logic level converter. This
allowed the team to interface the 5V DC I2C bus with
the 3.3V DC I2C bus of the single board computer.
Figure 3 shows the schematic of the logic level
converter implemented by the senior design team.

Fig. 3: Logic Level Converter

The logic level converter utilizes two 2N7000 N-
Channel MOSFETs to isolate the different voltage
levels. The senior design team chose the pull up
resistors used for the serial data, and serial clock lines,
based the on bus capacitance calculations given by the
data sheets for the microcontrollers. For a serial clock
frequency of less than 100 kHz, the minimum and
maximum values of the pull up resistors were given
by:

Table 1 shows the approximated range of possible

resistor values, given the calculated bus capacitance.

Bus
Capacitance

(pF)

Minimum
Resistor Value

(kΩ)

Maximum
Resistor Value

(kΩ)

22.1 1.5 45

Table 1: Calculated Range for Pull Up Resistors

Through testing different transmission rates, the

senior design team determined that 4.7 kΩ seemed to
be the optimal resistor value for minimal transmission
error.

B. I2C Implementation

Once the user has input all of the recipe data in to

the GUI, the senior design team needed a way to
package the data and send it out from the single board
computer to the microcontrollers. It was determined
that in order to properly organize the data on both the
sending, and receiving ends, the data would need to be
packaged into two byte packets. Table 2 shows the
structure for each packet sent from the I2C master to
each of the I2C slave microcontrollers.

First Byte Second Byte
Address Call + R/W bit Variable Data

Table 2: Two Byte Packet Structure

As shown in Table 2, the first byte of each packet

contains the address of the destination with the least
significant bit being a read or write bit. The second
byte contains the actual information the I2C master
wants to deliver. Once the I2C master has sent out the
packet, the senior design team needed to organize how
each of the I2C slaves processed the incoming data. In
order to organize all of the data on the slave side, the
senior design team declared two classes of data. Table
3 shows each class of data with a brief description.

Class Description
Command Data Start/Stop commands,

On/Off commands, return
specific data, etc...

Variable Data Temperatures, times,
liquid levels, etc...

Table 3: Data Classes

Each of the I2C slaves processes the data in four

byte increments. The senior design team implemented
this structure to allow for the retrieval of any data
desired, as well as the ability to fully manipulate the
hardware in the system. This means that in order to
store a variable, or execute some action, two of the
aforementioned packets are sent to a slave, each time a
command is issued. A command could tell one of the
slaves to return a process variable, or it could tell one
of the slaves to turn something on or off. Table 4
shows how command data is processed by the I2C
slaves and table 5 shows how variable data is
processed by the I2C slaves.

Byte Number Hex Value Action Taken

1 0x10 Address call
received, read
next byte.

2 0xA0 Turn on Valve
Command
Received

3 0x10 Address call
received, read
next byte

4 0x00 Null (Turn on
Valve)

Table 4: Processing of Command Data

Byte Number Hex Value Action Taken
1 0x10 Address call

received, read
next byte.

2 0xC0 Prepare to send
back process
variable

3 0x10 Address call
received, read
next byte

4 0xE0 Send back
temperature of
boil kettle

Table 5: Processing of Variable Data

C. Bluetooth Connectivity

The Bluetooth portion of the system is used to

send the data collected by the system to the companion
app on an Android device for the Auto brew. The
reason Bluetooth was implemented instead of just
using an internet connection was to ensure that any
user could use the app even without internet
connectivity.

The Bluetooth communication is one way between

the app and GUI once the system has started. The
android app was designed to act as a Bluetooth server
while the raspberry pi was implemented as a Bluetooth
client. The team implemented it this way because it
was determined that the app would work only as a way
to observe the system while away from it. When the
app starts it will start the Bluetooth server on the
device while the raspberry pi searches for the device’s
MAC address and connects to it. Once the connection
is established the app applies the data for its own
functionality.

The way the app will receive the data is through

text files telling it the progress of the system. All the
temperature data, fluid levels, and the valve status will
be displayed on the app. It will also terminate the
connection once the brew is complete. Figure 4 will
display the communications flow with the companion
app.

Fig. 4: Bluetooth Communication Flow

D. Push Notification

 The push notification method was the best way to

alert the user of major step completions. This allows
for the user to know the progress of the current brew
while away from the system. In order to have this
functionality it is assumed there is an available internet
connection to the Raspberry Pi. As long as the system
has internet connection it will send an email or text
notification to the user after the completion of each
step. This is done by running a python script to connect
to a Gmail server on a specified port and open the
connection for the message to get through. The senior
design team really took advantage of these Google
services and also gave the Auto Brew its own email
account to manage the necessary connections. This was
necessary since the Python script logs into the email
account and verifies a reliable connection to an
existing account. This script is implemented each time
the graphical user interface is given an update of a
process step being completed from the
microcontrollers. The SMS notification sent to the
user’s phone work in a similar fashion. The only prior
knowledge needed for this script to function properly is
the user’s phone carrier and/or email address in order
to send the appropriate text message and/or email
notification.

V. DATA ACQUISITION

The team focused on using analog temperature and

analog load reading to control the process. These
readings are also important for the brewer to keep track
of and improve recipes. The sensors are powered by
5VDC and amplified for the MCU to read.

The temperature reading are sent through a non-

inverting amplifier. The readings are nonlinear
voltages and need to be converted for the user to know
what the temperatures are. This is done on the MCU
and sent over to the microcomputer for the GUI. Once
the microcomputer has the data it is sent to the
companion app for display and storage of data. Figure
5 illustrates the circuit used for the readings.

Fig. 5: Thermistor Circuit

The load readings also need to be amplified. The

readings are acquired by using two strain gauges in a
Whetstone bridge circuit. The signal is sent through a
difference amplifier to get a clearer reading of the load
on the boil kettle. This was better than just using a
non-inverting amplifier because the resistance change
is only a few ohms. Once the signal gets to the MCU it
is then sent to the sent to the companion app like the
temperature readings. Figure 6 is the strain gauge
circuit used to measure the fluid level in the boil kettle.

Fig. 5: Load Circuit for Fluid Levels

The single board computer will make request for

data from the MCUs controlling the system. When a
request is made, previously sampled data is sent back
to the single board computer and a new sample routine
is initiated. The new sample routine reads the
specified ADC and increments a sample counter. It
aggregates the sample in a single variable, and once the
sample counter reaches ten, it takes an average of the
aggregate and stores the data for the next request.
Figure 6 demonstrates the routine in a flowchart.

Fig. 6: New Sample Routine

2
1

3

4

5

6

VI. PROCESS CONTROL

A. Control System Configuration

In order to fully automate the beer brewing
process, the senior design team needed to implement a
control system that would be able to monitor all of the
temperatures, times, and liquid levels within the
system, as well as control the transfer of liquids to the
appropriate locations. The same single board
computer, being used for the user interface, was chosen
to be the main controller as well. The single board
computer is responsible for timing and process flow.
Along with the single board computer, the senior
design team used two microcontrollers to help share
the work load throughout the entire process. Table 6
shows the responsibilities of each device in the control
system.

The single board computer sends hexadecimal

commands to the microcontroller board throughout the
entire process. These hexadecimal commands are used
to request data back from the microcontrollers, as well
as turn on and turn off devices according to which step
of the process the system is executing. Figure 7 shows
the flow of liquids throughout the system. The number
next to each line indicates the order in which the
transfer takes place.

Fig. 7: Fluid Flow Through System

Device Responsibility
Raspberry Pi Timing, Process Flow,

Information Display, Send
Notifications to User

Microcontroller 1 Pump Control, Heating
Element Control, Acquire
Temperature Readings,
Control Status Indicator

Microcontroller 2 Valve Control, Acquire
Liquid Level Readings,
Acquire Cooling Line
Temperature

Table 6: Device Responsibilities

B. Timing Control Implementation

The senior design team needed a reliable and

accurate real time clock to provide precise control of
the recipe times input by the user. In order to achieve
this goal, the senior design team took advantage of the
real time clock already on the single board computer.
Whenever a timed step is initiated

VII. POWER DISTRUBUTION

Within the system there is a variety of AC and DC

voltages used to power different components. The table
below shows the different voltages used within the
system and the respective component associated with
it.

Voltage Use

115 VAC Mains system input, resistive heating
element, solenoids

24 VDC Solenoid valves

5 VDC
Microcontroller power, analog
reference voltage, sensor amplifier
power

3.3 VDC I2C communication, raspberry pi

Table 7: List of Required Power Supply Outputs

The supplies for power at each voltage level are

cascaded from the highest voltage to the lowest in
series, this can be seen in figure 8. Within this
distribution system, the 24VDC power supply had to
be designed rather than using a voltage regulator IC
due to the potential for a high current draw. The lower
voltage levels utilized basic low-dropout linear
regulators as the components beneath them did not
draw much power.

Fig. 8: Power Distribution Diagram

The 24VDC power supply design begins with a

power transformer that drops mains voltage down to
24VAC. The lowered voltage power signal is then fed
into a bridge rectifier to eliminate the negative portion
of the cycle. A large filter capacitor then smoothes the
peaks of the unregulated signal. The smoothed
unregulated signal is then regulated down to the proper
voltage with a zener diode and a darlington pair to
amplify the current of the regulated signal to a level
that is useful for powering the system components. The
circuit for the 24V power supply is shown in figure 9.
The transistor is attached to a heat sink to dissipate
excess heat energy. The power supply utilizes three
rails that check and balance each other in order to
provide the most consistent power possible, as well as
help distribute the heat load more evenly on the heat
sink.

Fig. 9: 24V Power Supply Schematic

VI. HIGH POWER SWITCHING

Microcontroller I/O interface power output is

typically limited to the supply voltage and around
30mA. The ATMEGA 328P-PU specifically is limited
to 25mA sinking or sourcing on an I/O pin and the
supply voltage used for the chips in this project is 5V.
This is far from the voltage and current necessary to
switch the solenoids, pumps, and heating elements on
and a high power switching circuit needed to be

designed. Table 8 below shows each high power
component in the system along with its respective
operating voltage, current consumption, and
subsequent power consumption.

Component Operating

Voltage
Current
Consumed Power

Actuator 24 VDC 708 mA 17 W

Type 1
Valve 24 VDC 300 mA 7.2 W

Type 2
Valve 24 VDC 250 mA 6 W

Type 3
Valve 115 VAC 130 mA 15 W

Wort Pump 115 VAC 1.391 A 160 W

Cooling
Pump 24 VDC 1.458 A 35 W

Heating
Element 115 VAC 13.04 A 1500 W

Table 8: Components and Power Parameters

It was also considered that when the

microcontroller is switching a device that is operating
at a much higher voltage than the microcontroller, so
some form of isolation would be ideal to separate the
different potential levels utilized. In the figure 10 the
circuit used is shown. The microcontroller output is
used to bias the base of a bipolar junction transistor
putting the transistor into saturation mode. Once the
transistor is in saturation, the cathode of optocoupler is
grounded and current is allowed to flow through the
LED in the optocoupler. This then grounds the coil of a
high power relay which switches on the high power
components. The optocoupler provides isolation
between the microcontroller and the 24VDC while the
high power relay isolates the microcontroller and the
24 VDC traces from the 115 VAC mains voltage.
Since relays function from magnetism in a coil, energy
stored within the coil could cause problems, therfore a
diode was added in parallel with the relay coils to
prevent surge current into the optocoupler output
side.

Fig. 10: High Power Switching Schematic

VIII. CONCLUSION

This project is mainly to demonstrate a proof of
concept. The automated home brewing system, the
Auto Brew as it is to be known, remains to be
comprised of a portable stable aluminum frame, along
with the various sensors and circuits that are needed
for the internal system, a central unit for data gathering
and processing, two microcontrollers to ease the
workload of programming communications and
control, and finally a Bluetooth server available for the
user along with a very simple Android application for
on-the-go monitoring.

 The Auto Brew

Robert Bower will
graduate with a
Bachelor of Science
in Electrical
Engineering. He is
currently working as
a Gas Turbine
Controls Engineer
for Mitsubishi

Hitachi Power Systems and will continue his position
full time upon graduation.

Alonzo Ubilla, a senior

at the University of Central
Florida, plans to graduate
from the College of
Engineering and Computer
Science with two bachelor’s
degrees, one in Electrical
Engineering and the other in
Mechanical Engineering. He
is currently employed by
Chemical Injection

Technologies and plans to get hired as a full time
engineer upon graduation.

Kleber Valencia will

graduate with a Bachelor’s of
Science in Electrical
Engineering from the
University of Central Florida.
He plans on working for the
United States Patent Office.
His longer term goals are
going to law school to
practice intellectual property.

David Rodriguez, a senior student of the computer

engineering department at
the University of Central
Florida. He will join the
workforce as a full time
software engineer in
Chicago upon graduation.
He looks to get his
Master’s in Business
Administration within the
next two years while
continuing to work full
time.

