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Abstract — This paper presents the design 

methodology utilized to create an automated home brewing 
system, that should significantly reduce the amount of labor 
associated with making beer.  The subsystems implemented 
in this design are as follows: (1) I2C Communications;      
(2) Process Control; (3) Power Distribution; (4) User 
Interface; (5) Process Monitoring and Notification. 
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I. INTRODUCTION  
 
Home brewing beer can be an enjoyable hobby, 

however, it can also be very time consuming.  The 
typical brewing time can range from 6 – 10 hours 
depending on the recipe and brewing equipment used 
during the process. Most of the time is spent setting up 
the equipment and transferring liquids. There are 5 
basic steps in this process. 

 
1. Mash: During this step grain is soaked in hot 

water with the goal of leaching the starches 
out of the grain. 

 
2. Sparge: During this step the grain is rinsed of 

the starchy liquid (now called wort). 
 
3. Boil: During this step the wort is heated to 

break down the starches into simple sugars. 
 

4. Cooling:  During this step the wort is cooled 
as quickly as possible to facilitate coagulation 
of proteins contributed from the grain in the 
mash step. 

 
5. Fermentation: During this process yeast is 

added to the wort, and now the solution is 
called beer. 

 
The expectations of the senior design team were to 

research, and design a system that would drastically 
reduce the time needed to produce home brewed beer. 
The senior design team required that the system must 

meet the following requirements: (1) Complete the 
brewing process without intervention from the user; (2) 
Provide real time data to the user; (3) Operate within 
defined safety limitations; (4) Keep the user updated 
with the process status; (5) Provide remote monitoring 
of the system. 

  
II. SYSTEM OVERVIEW 
 
The following consist of the overall major subsystems 

for the auto brew.  Figure 1 depicts hardware flow for the 
integration of the subsystems. 

 
A. Graphical User Interface 
 
The automated process being created has to be 

driven by an initialization phase done by an actual 
human. This is where the group decided to establish a 
graphical user interface, and in this case it will be 
written in Python 2.7. 

 
B. Communication  
 
Communication between the two microcontrollers 

and the single board computer will be handled using 
the I2C protocol. The single board computer is the 
master while the microcontrollers are the slaves with a 
3.3V to 5V level converter between the two.  
Communication between the companion Android 
application and the single board will be handled via 
Bluetooth.  

 
C. Data acquisition 
 
The system will constantly be taking this will be 

handled via the several analog sensors through the 
system sending information to the microcontroller.  
The data collected will also be the signals used to 
control the overall system. Thermistor and weight 
sensors contribute the most of the control conditions 
the MCU uses for the process. Once data is collected 
by the MCU it is then sent to the single board 
computer, the Raspberry Pi B+, stored for access via 
the GUI and sent to the companion app for the auto 
brew via Bluetooth.   

 
D.  Power Distribution 
 
Varying voltages, both AC and DC, were used 

throughout the system, starting with 115 VAC mains 
for some of the higher power components, 24 VDC for 
solenoids and relays, 5 VDC for microcontrollers and 
analog sensors, and finally 3.3 VDC for I2C 
communication. While simple linear regulating IC’s 
were able to be used for the lower voltage levels, a 24 



VDC supply was designed to accommodate the 
maximum possible load from the 24V components. 

 
E. High Power Switching 
 
Due to the low-power nature of microcontrollers, 

it was necessary to incorporate a method of high power 
switching within the system. The system utilizes 
solenoid valves, a solenoid actuator, a heating element, 
and fluid transfer pumps which run on either 24VDC 
or 115VAC mains voltage and range in power 
consumption from 500mW to 1500 watts, 
microcontrollers are unable to supply this kind of 
power. Also, the fact that the components being 
switched are at a substantially higher potential, some 
form of isolation would be ideal in order to protect the 
microcontrollers from possible damage. For these 
reasons, a circuit that has the ability to switch on high 
power devices using a low voltage low current signal 
was designed 

 

 
Fig. 1: Overall System Integration  
 
 

III. USER INTERFACE  
 
The graphical user interface designed for the Auto 

Brew system was coded using Python 2.7. The user 
interacts with the interface via a single board computer 
connected to a monitor and wireless keyboard. For the 
purpose of this project the Raspberry Pi B+ model was 
chosen as this single board computer. It runs a Linux 
based operating system called Raspbian. Comes with 
512MB of RAM and utilizes an external 8GB SD card 
to boot the Raspbian operating system at startup. 

Since one of the main objectives was to take out as 
much of the human interaction as possible for brewing 
beer at home, giving the user the sense they are still in 
control of some manual parts of the process was 
beneficial. The group did not want to create an 
automated system that was rugged, looked unappealing 
or unaesthetically pleasing to the home brewer’s eyes. 
Having the interface embrace a sense of flow using 
eye-catching colors, along with giving the user that 
initial responsibility of initializing the system, makes 
for a very functional user interface as shown in the 
figure below. 

 
 

 
Fig 2:  Main graphical user interface 

 
 This interface allows the user(s) to efficiently 

input all of their recipe variables into the system, 
which will drive all of the decisions made by the 
microcontrollers.  All of the data input by the user will 
be packaged and sent all together to the control system 
once the user clicks on the green start button.  
 

It is at this time that a second graphical user 
interface pops-up and sends a start command signal to 
the microcontroller to begin step 1 of the process. This 
second window allows the user to monitor the overall 
process, from the status of each valve/pump to 
temperature and level readings. A companion app 
running on an Android device allows the user to 
continue to keep tabs on the system while being away 
from the monitor. This interface communicates with 
the user’s Android application through Bluetooth 
communication which is initialized once again through 
a Python script embedded into each of the function 
calls to update the individual system variables. This 
second window functions as a supervisor to the system 
as its running. It tells the microcontrollers when to start 
each step, feeds system data to the android application 
and the interface being displayed on the monitor. It is 
with this interface that the microcontrollers 
communicate back and forth with the most. This script 
will run until the last step of the process is complete, in 



which case it will send a notification to the user and 
display a warning message on the monitor to bring 
attention to them.  

 
IV. COMMUNICATIONS 

 
A. I2C Configuration 

 
The senior design team chose to use I2C 

communication to connect all of the subsystems.  The 
communication system is structured to have one master 
and two slaves. Figure 2 shows the I2C configuration 
used for the system. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2: I2C Communication Bus 
 
 
Since the operating voltage of the I2C slaves was 

chosen to be 5V DC, it was necessary for the senior 
design team to implement a logic level converter.  This 
allowed the team to interface the 5V DC I2C bus with 
the 3.3V DC I2C bus of the single board computer. 
Figure 3 shows the schematic of the logic level 
converter implemented by the senior design team. 

 
 
 
 
 
 
  
    
 
 
 
 
 
 
 
 
Fig. 3: Logic Level Converter 
 
 
 
 
 

The logic level converter utilizes two 2N7000 N-
Channel MOSFETs to isolate the different voltage 
levels.  The senior design team chose the pull up 
resistors used for the serial data, and serial clock lines, 
based the on bus capacitance calculations given by the 
data sheets for the microcontrollers.  For a serial clock 
frequency of less than 100 kHz, the minimum and 
maximum values of the pull up resistors were given 
by: 

 

    
 
Table 1 shows the approximated range of possible 

resistor values, given the calculated bus capacitance. 
 

Bus 
Capacitance 

(pF) 

Minimum 
Resistor Value 

(kΩ) 

Maximum 
Resistor Value 

(kΩ) 

22.1 1.5 45 

Table 1: Calculated Range for Pull Up Resistors 
 
Through testing different transmission rates, the 

senior design team determined that 4.7 kΩ seemed to 
be the optimal resistor value for minimal transmission 
error. 

 
B. I2C Implementation 

 
Once the user has input all of the recipe data in to 

the GUI, the senior design team needed a way to 
package the data and send it out from the single board 
computer to the microcontrollers.  It was determined 
that in order to properly organize the data on both the 
sending, and receiving ends, the data would need to be 
packaged into two byte packets.  Table 2 shows the 
structure for each packet sent from the I2C master to 
each of the I2C slave microcontrollers. 

 
 

First Byte Second Byte 
Address Call + R/W bit Variable Data 

Table 2: Two Byte Packet Structure 
 
As shown in Table 2, the first byte of each packet 

contains the address of the destination with the least 
significant bit being a read or write bit.  The second 
byte contains the actual information the I2C master 
wants to deliver.  Once the I2C master has sent out the 
packet, the senior design team needed to organize how 
each of the I2C slaves processed the incoming data. In 
order to organize all of the data on the slave side, the 
senior design team declared two classes of data.  Table 
3 shows each class of data with a brief description. 



 
 
Class Description 
Command Data Start/Stop commands, 

On/Off commands, return 
specific data, etc... 

Variable Data Temperatures, times, 
liquid levels, etc... 

Table 3: Data Classes 
 
Each of the I2C slaves processes the data in four 

byte increments. The senior design team implemented 
this structure to allow for the retrieval of any data 
desired, as well as the ability to fully manipulate the 
hardware in the system.  This means that in order to 
store a variable, or execute some action, two of the 
aforementioned packets are sent to a slave, each time a 
command is issued.  A command could tell one of the 
slaves to return a process variable, or it could tell one 
of the slaves to turn something on or off. Table 4 
shows how command data is processed by the I2C 
slaves and table 5 shows how variable data is 
processed by the I2C slaves. 
 

 
Byte Number Hex Value Action Taken 

1 0x10 Address call 
received, read 
next byte. 

2 0xA0 Turn on Valve 
Command 
Received 

3 0x10 Address call 
received, read 
next byte 

4 0x00 Null (Turn on 
Valve) 

Table 4: Processing of Command Data 
 

Byte Number Hex Value Action Taken 
1 0x10 Address call 

received, read 
next byte. 

2 0xC0 Prepare to send 
back process 
variable 

3 0x10 Address call 
received, read 
next byte 

4 0xE0 Send back 
temperature of 
boil kettle 

Table 5: Processing of Variable Data 
 
 
 
 
 

C. Bluetooth Connectivity 
 
The Bluetooth portion of the system is used to 

send the data collected by the system to the companion 
app on an Android device for the Auto brew.  The 
reason Bluetooth was implemented instead of just 
using an internet connection was to ensure that any 
user could use the app even without internet 
connectivity.  

 
The Bluetooth communication is one way between 

the app and GUI once the system has started.  The 
android app was designed to act as a Bluetooth server 
while the raspberry pi was implemented as a Bluetooth 
client.  The team implemented it this way because it 
was determined that the app would work only as a way 
to observe the system while away from it. When the 
app starts it will start the Bluetooth server on the 
device while the raspberry pi searches for the device’s 
MAC address and connects to it.  Once the connection 
is established the app applies the data for its own 
functionality.  

 
The way the app will receive the data is through 

text files telling it the progress of the system.  All the 
temperature data, fluid levels, and the valve status will 
be displayed on the app. It will also terminate the 
connection once the brew is complete.  Figure 4 will 
display the communications flow with the companion 
app. 

 
Fig. 4: Bluetooth Communication Flow 
 

 



D. Push Notification 
 
 The push notification method was the best way to 

alert the user of major step completions. This allows 
for the user to know the progress of the current brew 
while away from the system.  In order to have this 
functionality it is assumed there is an available internet 
connection to the Raspberry Pi. As long as the system 
has internet connection it will send an email or text 
notification to the user after the completion of each 
step. This is done by running a python script to connect 
to a Gmail server on a specified port and open the 
connection for the message to get through. The senior 
design team really took advantage of these Google 
services and also gave the Auto Brew its own email 
account to manage the necessary connections. This was 
necessary since the Python script logs into the email 
account and verifies a reliable connection to an 
existing account. This script is implemented each time 
the graphical user interface is given an update of a 
process step being completed from the 
microcontrollers.  The SMS notification sent to the 
user’s phone work in a similar fashion.  The only prior 
knowledge needed for this script to function properly is 
the user’s phone carrier and/or email address in order 
to send the appropriate text message and/or email 
notification.    

 
V. DATA ACQUISITION 

  
The team focused on using analog temperature and 

analog load reading to control the process.  These 
readings are also important for the brewer to keep track 
of and improve recipes.  The sensors are powered by 
5VDC and amplified for the MCU to read.   

 
The temperature reading are sent through a non-

inverting amplifier.  The readings are nonlinear 
voltages and need to be converted for the user to know 
what the temperatures are.  This is done on the MCU 
and sent over to the microcomputer for the GUI.  Once 
the microcomputer has the data it is sent to the 
companion app for display and storage of data.  Figure 
5 illustrates the circuit used for the readings. 

 

 
Fig. 5: Thermistor Circuit  

 
 
The load readings also need to be amplified.  The 

readings are acquired by using two strain gauges in a 
Whetstone bridge circuit.  The signal is sent through a 
difference amplifier to get a clearer reading of the load 
on the boil kettle.  This was better than just using a 
non-inverting amplifier because the resistance change 
is only a few ohms.  Once the signal gets to the MCU it 
is then sent to the sent to the companion app like the 
temperature readings.  Figure 6 is the strain gauge 
circuit used to measure the fluid level in the boil kettle. 
 

 
Fig. 5: Load Circuit for Fluid Levels  
 
The single board computer will make request for 

data from the MCUs controlling the system. When a 
request is made, previously sampled data is sent back 
to the single board computer and a new sample routine 
is initiated.  The new sample routine reads the 
specified ADC and increments a sample counter.  It 
aggregates the sample in a single variable, and once the 
sample counter reaches ten, it takes an average of the 
aggregate and stores the data for the next request.  
Figure 6 demonstrates the routine in a flowchart. 

 
Fig. 6: New Sample Routine 
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VI. PROCESS CONTROL 
 

A. Control System Configuration 
 

In order to fully automate the beer brewing 
process, the senior design team needed to implement a 
control system that would be able to monitor all of the 
temperatures, times, and liquid levels within the 
system, as well as control the transfer of liquids to the 
appropriate locations.  The same single board 
computer, being used for the user interface, was chosen 
to be the main controller as well.  The single board 
computer is responsible for timing and process flow.  
Along with the single board computer, the senior 
design team used two microcontrollers to help share 
the work load throughout the entire process.  Table 6 
shows the responsibilities of each device in the control 
system. 

 
The single board computer sends hexadecimal 

commands to the microcontroller board throughout the 
entire process.  These hexadecimal commands are used 
to request data back from the microcontrollers, as well 
as turn on and turn off devices according to which step 
of the process the system is executing. Figure 7 shows 
the flow of liquids throughout the system. The number 
next to each line indicates the order in which the 
transfer takes place. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 7: Fluid Flow Through System  
 
 
 

Device Responsibility 
Raspberry Pi Timing, Process Flow, 

Information Display, Send 
Notifications to User 

Microcontroller 1  Pump Control, Heating 
Element Control, Acquire 
Temperature Readings, 
Control Status Indicator 

Microcontroller 2 Valve Control, Acquire 
Liquid Level Readings, 
Acquire Cooling Line 
Temperature 

 
Table 6: Device Responsibilities 
 
B. Timing Control Implementation 
 
The senior design team needed a reliable and 

accurate real time clock to provide precise control of 
the recipe times input by the user. In order to achieve 
this goal, the senior design team took advantage of the 
real time clock already on the single board computer.  
Whenever a timed step is initiated 

 
VII. POWER DISTRUBUTION  

 
Within the system there is a variety of AC and DC 

voltages used to power different components. The table 
below shows the different voltages used within the 
system and the respective component associated with 
it.  

 
Voltage Use 

115 VAC Mains system input, resistive heating 
element, solenoids 

24 VDC Solenoid valves 

5 VDC 
Microcontroller power, analog 
reference voltage, sensor amplifier 
power 

3.3 VDC I2C communication, raspberry pi 
 
Table 7: List of Required Power Supply Outputs 

 
The supplies for power at each voltage level are 

cascaded from the highest voltage to the lowest in 
series, this can be seen in figure 8. Within this 
distribution system, the 24VDC power supply had to 
be designed rather than using a voltage regulator IC 
due to the potential for a high current draw. The lower 
voltage levels utilized basic low-dropout linear 
regulators as the components beneath them did not 
draw much power. 

 



 
Fig. 8: Power Distribution Diagram 

 
The 24VDC power supply design begins with a 

power transformer that drops mains voltage down to 
24VAC. The lowered voltage power signal is then fed 
into a bridge rectifier to eliminate the negative portion 
of the cycle. A large filter capacitor then smoothes the 
peaks of the unregulated signal. The smoothed 
unregulated signal is then regulated down to the proper 
voltage with a zener diode and a darlington pair to 
amplify the current of the regulated signal to a level 
that is useful for powering the system components. The 
circuit for the 24V power supply is shown in figure 9. 
The transistor is attached to a heat sink to dissipate 
excess heat energy. The power supply utilizes three 
rails that check and balance each other in order to 
provide the most consistent power possible, as well as 
help distribute the heat load more evenly on the heat 
sink. 

 
Fig. 9: 24V Power Supply Schematic  

 
VI. HIGH POWER SWITCHING 

 
Microcontroller I/O interface power output is 

typically limited to the supply voltage and around 
30mA. The ATMEGA 328P-PU specifically is limited 
to 25mA sinking or sourcing on an I/O pin and the 
supply voltage used for the chips in this project is 5V. 
This is far from the voltage and current necessary to 
switch the solenoids, pumps, and heating elements on 
and a high power switching circuit needed to be 

designed. Table 8 below shows each high power 
component in the system along with its respective 
operating voltage, current consumption, and 
subsequent power consumption. 

 
Component Operating 

Voltage 
Current 
Consumed Power 

Actuator 24 VDC 708 mA 17 W 

Type 1 
Valve 24 VDC 300 mA 7.2 W 

Type 2 
Valve 24 VDC 250 mA 6 W 

Type 3 
Valve 115 VAC 130 mA 15 W 

Wort Pump 115 VAC 1.391 A 160 W 

Cooling 
Pump 24 VDC 1.458 A 35 W 

Heating 
Element 115 VAC 13.04 A 1500 W 

 
Table 8: Components and Power Parameters 
 
It was also considered that when the 

microcontroller is switching a device that is operating 
at a much higher voltage than the microcontroller, so 
some form of isolation would be ideal to separate the 
different potential levels utilized. In the figure 10 the 
circuit used is shown. The microcontroller output is 
used to bias the base of a bipolar junction transistor 
putting the transistor into saturation mode. Once the 
transistor is in saturation, the cathode of optocoupler is 
grounded and current is allowed to flow through the 
LED in the optocoupler. This then grounds the coil of a 
high power relay which switches on the high power 
components. The optocoupler provides isolation 
between the microcontroller and the 24VDC while the 
high power relay isolates the microcontroller and the 
24 VDC traces from the 115 VAC mains voltage. 
Since relays function from magnetism in a coil, energy 
stored within the coil could cause problems, therfore a 
diode was added in parallel with the relay coils to 
prevent surge current into the optocoupler output 
side.

 
 
 
Fig. 10: High Power Switching Schematic  



VIII. CONCLUSION 

This project is mainly to demonstrate a proof of 
concept. The automated home brewing system, the 
Auto Brew as it is to be known, remains to be 
comprised of a portable stable aluminum frame, along 
with the various sensors and circuits that are needed 
for the internal system, a central unit for data gathering 
and processing, two microcontrollers to ease the 
workload of programming communications and 
control, and finally a Bluetooth server available for the 
user along with a very simple Android application for 
on-the-go monitoring.  
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