
University of Central Florida

Senior Design Project

Gasoline Economy Management
G.E.M.

Group 8:
Pedro Betancourt
Alexander Patino
Jacob Pulliam

Supervisor:
Dr. Samual Richie

April 2015

http://www.university.com

Contents

Contents i

List of Figures vi

List of Tables viii

1 Executive Summary 1

2 Project Description 3

2.1 Motivation . 3

2.2 Objectives . 4

2.3 Hardware Requirements and Specifications 5

2.3.1 Power . 5

2.3.2 OBD-II to Serial Interface . 6

2.3.3 On Board Processing . 6

2.3.4 Data Storage and Transmission 6

2.4 Software Requirements and Specifications 7

2.4.1 User Application . 7

2.4.1.1 Bluetooth Connectivity 7

2.4.1.2 Data Storage . 7

2.4.1.3 Interface and Display 8

2.4.2 MCU . 8

3 Research Related to Project Description 9

3.1 Similar Devices . 9

3.2 Fuel Economy . 10

3.3 Hardware Research . 12

3.3.1 OBD-II Interface . 12

3.3.1.1 SAE J1850 PWM/VPW 13

i

Contents ii

3.3.1.2 ISO 9141-2 . 13

3.3.1.3 ISO 14230 (KWP2000) 14

3.3.1.4 ISO 15765 (CAN) 14

3.3.1.5 OBD-II PID’s . 14

3.3.2 Communication . 15

3.3.2.1 I2C . 17

3.3.2.2 SPI . 17

3.3.3 MCU . 18

3.3.3.1 MSP430 Family . 18

3.3.3.2 PIC24F16KA102 Family 19

3.3.3.3 ATmega Family . 19

3.3.3.4 CC2541 . 20

3.3.3.5 MCU Summary . 20

3.3.4 Bluetooth . 21

3.3.4.1 Pairing . 21

3.3.4.2 Profiles . 22

3.3.4.3 Implementation . 22

3.3.5 Antennas . 23

3.3.6 Storage . 23

3.3.7 Power . 24

3.4 Software Research . 25

3.4.1 Android . 25

3.4.1.1 Development Environment 25

3.4.1.2 User Interface . 25

3.4.1.3 Fragments . 29

3.4.1.4 Bluetooth Connectivity 29

3.4.1.5 Bluetooth Low Energy 31

3.4.2 MCU Firmware . 31

3.4.2.1 ECU Data . 31

3.4.2.2 Implementing OBD Requests 32

3.4.2.3 Interfacing an SD Card 33

3.4.2.4 Bluetooth Stack . 33

3.4.2.5 Bluetooth Low Energy Protocol 34

3.4.2.6 BTstack . 34

3.4.2.7 RN4020 . 35

3.4.2.8 RN-42 . 36

4 Design Constraints and Standards 43

Contents iii

4.1 Design Constraints . 43

4.1.1 Economic . 43

4.1.2 Environmental . 44

4.1.3 Social . 44

4.1.4 Political . 44

4.1.5 Ethical . 44

4.1.6 Health and Safety . 44

4.1.7 Manufacturability . 45

4.1.8 Sustainability . 45

4.1.9 Legal . 45

4.2 Related Standards . 45

4.2.1 SAE J 2561-2001 . 46

4.2.2 ANSI/CEA 2040-2011 . 46

4.2.3 RS-232 . 46

4.2.4 IEEE 802.15 . 46

4.2.5 Software Design Standards . 46

4.2.6 Software Documentation Standards 46

4.2.7 Software Coding Standards 47

5 Hardware Design Details 48

5.1 Enclosure . 48

5.2 Power Supply . 48

5.3 OBD-II to Serial Interface . 52

5.3.1 STN1110 . 52

5.3.2 Transceivers . 55

5.4 Microcontroller Hardware Design . 59

5.4.1 Microcontroller Choice . 59

5.4.2 JTAG Interface . 61

5.4.3 RN4020 . 62

5.4.4 MicroSD Card . 63

6 Software Design Details 65

6.1 Introduction . 65

6.2 System Overview . 65

6.2.1 Software Development Tools 66

6.3 Design Considerations . 66

6.3.1 Reusability . 66

6.3.2 Maintainability . 66

Contents iv

6.3.3 Testability . 66

6.3.4 Performance . 67

6.3.5 Portability . 67

6.3.6 Safety . 67

6.3.7 Assumptions and Dependencies 67

6.4 System Architecture . 68

6.4.1 User Interface . 68

6.4.2 Decomposition Description . 71

6.5 Detailed System Design . 75

6.5.1 Component Descriptions . 75

6.6 Fuel Optimization Algorithm . 83

7 Project Prototype Details 85

7.1 BOM . 85

7.2 PCB Vendor and Assembly . 85

7.2.1 Printed Circuit Board . 85

7.2.2 Assembly . 86

7.3 Software . 87

7.3.1 Initial Firmware Design . 87

7.3.1.1 Main System . 87

7.3.1.2 Vehicle Profile Subsystem 88

7.3.1.3 Bluetooth Connection Subsystem 88

7.3.1.4 Onboard Storage Subsystem 88

7.3.1.5 OBD-II Data Subsystem 89

7.3.1.6 Power Control Subsystem 89

7.3.2 Final Firmware Design . 89

8 Project Prototype Testing 99

8.1 Hardware . 99

8.1.1 Test Equipment . 99

8.1.1.1 OBD-II Test Bench 99

8.1.1.2 Bus Pirate . 101

8.1.1.3 MSP430 Flash Emulation Tool 101

8.2 Hardware Testing Procedure . 101

8.2.1 Power Test . 101

8.2.2 STN1110 Verification . 102

8.2.3 Bluetooth Verification . 103

8.2.4 Testing Results . 104

Contents v

8.3 Software . 104

8.3.1 Verification and Validation . 104

8.3.2 Activity Testing . 105

8.3.3 Service Testing . 105

8.3.4 Content Provider Testing . 105

8.3.5 Accessibility Testing . 105

8.3.6 UI Testing . 106

9 Administrative Content 107

9.1 Budget and Finances . 107

9.2 Milestones . 107

A Android Framework 110

A.1 Definitions and Abbreviations . 110

A.2 APIs . 112

B Final Schematics 114

C Copyright Permissions 130

Bibliography 133

List of Figures

3.1 Urban Dynamometer Driving Schedule 10

3.2 Highway Fuel Economy Test Driving Cycle 10

3.3 Gallons per 1,000 miles vs. Miles per Gallon 11

3.4 OBD-II Port Pin Layout Image License CC0 1.0 13

3.5 SPI BUS: Master/Slave Connections 18

3.6 Android Layouts and Views . 27

3.7 Android Activity Lifecycle Source: http://developer.android.com/
guide/components/activities.html#Creating 28

5.1 Sparkfun OBD-II Connector - Image courtesy of SparkFun.com . . . 49

5.2 Breakout Board . 49

5.3 Filter Stage . 50

5.4 3.3 V Supply . 51

5.5 5 V Supply . 51

5.6 Switched Power Supply . 52

5.7 STN1110 Configuration . 53

5.8 Voltage Sense Circuit . 55

5.9 CAN Transceiver . 56

5.10 ISO Transmitter . 57

5.11 ISO Receiver . 58

5.12 SAE J1850 PWM Receiver . 58

5.13 SAE J1850 VPW Receiver . 59

5.14 SAE J1850 BUS+ Transmitter . 60

5.15 SAE J1850 BUS- Transmitter . 61

5.16 JTAG Interface Design . 62

5.17 RN4020 Connections . 63

5.18 MicroSD Connections . 64

6.1 Launching the GEM application . 68

6.2 Landscape orientation . 69

vi

http://developer.android.com/guide/components/activities.html#Creating
http://developer.android.com/guide/components/activities.html#Creating

List of Figures vii

6.3 Application Menu . 70

6.4 Application activity diagram . 71

6.5 DeviceScanActivity class diagram . 72

6.6 MainActivity class diagram . 73

6.7 BluetoothLeService class diagram . 74

7.1 Main Firmware State Machine . 93

7.2 Profile Subsystem . 94

7.3 Bluetooth Connection Subsystem . 95

7.4 MicroSD Storage Subsystem . 96

7.5 Data Pipeline Subsystem . 96

7.6 Power Subsystem . 97

7.7 Final Firmware Design . 98

8.1 Freematics OBD-II Emulator Interface 100

8.2 Bus Pirate UART Connection Guide 102

9.1 Schedule Page 1 . 108

9.2 Schedule Page 2 . 109

C.1 Sparkfun Electronics . 130

C.2 OBD-II Pinout . 130

C.3 Android Attributions . 130

C.4 Creative Commons Attribution License 131

C.5 UDDS and HWFET driving schedules 132

List of Tables

3.1 OBD-II Pinout . 12

3.2 OBD-II Modes . 15

3.3 Mode 01 PID’s . 15

3.4 CAN Transceiver Comparison . 16

3.5 MCU Comparison . 20

3.6 Bluetooth Classes . 21

3.7 Decoding ECU response of FD3FC28B from PID request 00 37

3.8 PIDs to retrieve data from ECU . 38

3.9 Useful AT Commands . 39

3.10 Useful AT Command Set Continued 39

3.11 Additional ST commands . 40

3.12 SD Library Functions . 40

3.13 Set Commands for the RN4020 . 41

3.14 Action Commands for the RN4020 42

3.15 MLDP Commands for the RN4020 42

5.1 STN1110 Pinout . 54

7.1 Final BOM . 91

7.2 PCB Vendor Comparison . 92

8.1 Hardware Testing Results . 104

viii

Chapter 1

Executive Summary

In 2013 the U.S. consumed over 134 billion gallons of gasoline. On that scale even
slight improvements in efficiency can save millions of dollars and prevent tons of CO2

from entering the atmosphere. Automobile manufacturers are constantly striving to
develop more efficient engines in order to meet the needs of consumers as well as
regulatory requirements. Unfortunately purchasing a new vehicle in order to realize
better fuel economy isn’t always viable or practical. In fact purchasing a new vehicle
in order to receive an incremental increase in efficiency is actually a bad idea. It is
rare that the efficiency gains pay for themselves except over an exceptionally long
period of time. Not to mention the large environmental impact and high energy
consumption required to build a single car. In order to make progress in this realm
what we need is a simple, low-cost solution that is available to every driver.

This is why we are proposing ”Gasoline Electronic Management” or GEM. GEM is a
simple system that is designed to be available to nearly any driver who uses a smart
phone. GEM is a small device that plugs into the OBD-II port that is standard on all
vehicles sold in the U.S. after 1996. The OBD-II port is a standardized hardware port
through which vehicle diagnostic codes and other vehicle information can be read. We
can use this information to help develop more fuel efficient driving habits. While it’s
prohibitively expensive to retrofit older vehicles with modern fuel efficient systems
it can be very cheap and very effective to reprogram an individual’s driving habits.
Simple changes such as driving the correct speed and avoiding excessive acceleration
and braking can increase fuel efficiency by up to 5%. For a driver that drives 15,000
miles a year if they can go from 20 miles per gallon to 21 one they save 36 gallons per
year. At three dollars a gallon that’s a yearly savings of $108. Not only will it save
money and resources it’s designed to be easy for anyone to use. When a person gets
a GEM it will be very simple for them to connect the device to their vehicle and pair

1

Chapter 1. Executive Summary 2

it with their phone. All they have to do is connect the GEM to the OBD-II port,
turn on their car and start the phone application. The phone application provides a
simple, hands off user interface that provides feedback to help a driver adjust their
driving habits in order to enjoy greater fuel economy. The device itself is powered
by the vehicle’s battery and when the vehicle is turned off the GEM enters a sleep
mode so that it won’t drain the battery. When active the GEM automatically pairs
with the driver’s phone via Bluetooth LE or, if the driver doesn’t have their phone
available, the GEM will store driving information so that the next time the driver
connects their smart phone fuel economy and other statistics will be transferred to
the application. While the GEM is designed for semi-permanent installation it also
has the ability to store vehicle profiles. If a driver finds themselves behind the wheel
of a different car every day they’ll still be able to take advantage of the provided
feedback.

Chapter 2

Project Description

2.1 Motivation

There is a strong market for for easy to use smart phone connected devices. From
fitness trackers to home automation systems people are becoming accustomed to
making their devices smarter. We are interested in experimenting with technologies
that promote these uses. Through the design and build process for the GEM our
team will develop skills in

• Android application development
• Firmware development
• Automotive electronics
• Power efficient and space saving designs
• Schematic design
• PCB layout

When looking over the options for what kind of project we could work on the most
compelling ideas were those where we had to design a system that could interface
with something in out in the world. Our primary motivation is to work on a project
that poses some serious technical challenges. While solving these challenges we will
be developing strong hardware and software skill set. On the hardware side there
are a variety of subsystems that need to communicate with each other effectively.
There are limitations on the radiated emissions that the device can have. Automo-
tive power poses unique challenges, it’s not always consistent and the charging and
starting system can cause large voltage spikes. Not only must the device withstand

3

Chapter 2. Project Description and Motivation 4

a harsh environment but it must not interfere with the vehicle or other nearby vehi-
cles. Finally of the most challenging hardware aspects of this project is to make sure
that the device can communicate with a wide variety of vehicles that contain many
different implementations of the OBD-II hardware port.

On the software side the challenge is developing two systems in parallel that can
communicate effectively and reliably with one another. The firmware on our device
and the application on the smart phone. In order to be successful the device should
connect seamlessly with minimal interaction from the device operator. This design
requires that our team become very familiar with both low level C code as well as
high level object oriented Java code. An important requirement of our software is
that it must not interfere with the driver. This means that it must be reliable and
when the vehicle is in motion must operate autonomously. If the driver is constantly
having to adjust settings or changes menus on the software the system is dangerous
and will end up doing more harm than good.

2.2 Objectives

We have identified several key objectives for the development of the GEM system:

• A robust, light-weight enclosing
• Vehicle profiles
• Low power
• Instantaneous measurements
• Autonomous fuel monitoring
• Simplistic interface
• Easy to read fuel data
• Applicable driving suggestions

As stated before, GEM includes a small device plugged into a vehicle’s OBD-II port.
Many similar fuel monitoring systems and OBD-II readers are very clunky and in-
convenient to have permanently installed on a vehicle. As such, we wish to provide
a small and robust enclosing which would not disturb the driver during their daily
routines. Even though GEM is ideal for permanent installation, we also want to allow
users the ability to easily transfer the device to other vehicles. For cases when a new
vehicle is purchased or if multiple vehicles are owned. In order to accommodate for
multiple vehicles GEM provides profiles for different vehicles via high-level software.
In addition to these user-driven objectives, other key considerations have been iden-
tified in order for GEM to be feasible and reliable in a vehicle environment. Most

Chapter 2. Project Description and Motivation 5

importantly the device must work for long periods of time, while drawing very low
power. Furthermore, GEM records driving data in real-time, and provide autonomous
fuel monitoring. Evidently, it would be hazardous to require user input, or setting
adjustments, while the user is driving.

All of the information is relayed to the user via an application on their phone. As
such, it is critical that the interface is intuitive and well organized. We expect users
of all technical backgrounds to be able to use GEM. There is plenty of data, which
must be organized and displayed in way that is understandable for users. Finally,
the primary goal of GEM is to provide a solution to users for the question “What
can I do to save gas?” While GEM may be recording an ample amount of data, and
employing various fuel optimization algorithms in the background, actual applicable
driving suggestions must be presented to the user. The ultimate objective of GEM
is that it shall collect and analyze raw vehicle data, and translate it into practical
advice for every day drivers.

2.3 Hardware Requirements and Specifications

The hardware systems for GEM can be broken down into the following subsystems

• Power supply
• OBD-II to serial
• On board processing
• Data storage and transmission

2.3.1 Power

Power is the most challenging aspect of the GEM. The primary requirement is that
the GEM should be plug and play. The user only needs to plug the device into the
OBD-II port on the car and then can leave the device plugged in without drawing
down the battery when the vehicle is not in use. In order to determine that maximum
allowable current draw while inactive a goal of 183 days (half a year) was set.

The energy storage of batteries manufactured in the U.S. is not specified as automotive
batteries are designed for starting the vehicle only. Starting batteries are classified
by cold cranking amps (CCA). Approximations for current capacity were anywhere
from 30 A h to 60 A h. However, in the European Union labeling with amp hour
capacity is a requirement. Varta brand batteries were taken as a typical example of

Chapter 2. Project Description and Motivation 6

an automotive battery. The mid-range Varta ”Black Dynamic” battery has a range
of capacities from 40 A h to 90 A h. There is no way of knowing what battery is
being used so the minimum capacity was chosen as the baseline. The Varta ”Black
Dynamic” type A16 battery has a capacity of 40 A h. The GEM should not draw
down more than half the capacity within six months. In order to achieve this the
power draw when the device is idle must be less than 5 mA.

20 000 mA h

5 mA
= 4000 h ≈ 167 d

2.3.2 OBD-II to Serial Interface

While the port configuration is standardized there are many different communications
protocols available for use. The GEM is designed to be able to communicate using
all legislated protocols. This means that the GEM will be able to interface with any
consumer vehicle sold within the U.S. since 1996. These protocols include but are
not limited to

• SAE J1850 PWM/VPW
• ISO 9141-2
• ISO 14230 (KWP2000)
• ISO 15765 (CAN)

2.3.3 On Board Processing

In order to keep the vehicle hardware simple, low cost, and low power on board data
processing will be minimal. The primary function of the MCU is to interconnect the
various on-board components and prepare the data to be sent to the smart phone for
processing. As such the key features of the MCU are

• µA-range idle power consumption
• serial interface
• simple to program

2.3.4 Data Storage and Transmission

The GEM is designed to operate in conjunction with smart phone software that will
perform the majority of the data analyses. Because the user of the device may not

Chapter 2. Project Description and Motivation 7

always have their smart phone with them there will be some on board storage that
can cache driving data until the GEM can connect to the smart phone device again.

Caching will be to an on board SD card or other low-cost memory solution and the
data will only be cached or transmitted from the cache when the device is operating.
As with the other subsystems the current draw while the device is idle must be as
low as possible.

The data will be streamed to the users smart phone (or other Android device) via
Bluetooth LE. Since the OBD-II specification requires that the port be within 0.61 m
of the driver the range of the GEM does not need to be more than 1 m. This opens
up the possible choice for Bluetooth modules and antennas. In addition since there’s
no need for the device to negotiate a connection when idle the power consumption
when idle should be less than 1 mA.

2.4 Software Requirements and Specifications

2.4.1 User Application

2.4.1.1 Bluetooth Connectivity

To setup a Bluetooth LE connection our Android application searches for devices in
range and also displays previously connected devices. Once the devices have been
discovered they may be paired. It is also possible for a user to terminate a Bluetooth
connection with GEM from within the application. All of these functions are accessi-
ble from the first screen of the application. In the event that a Bluetooth connection
is lost the application handles the error by displaying a notification and attempts
to repair the connection. Once a connection is established it remains connected and
receives broadcasts until GEM is unplugged or the vehicle is turned off..

2.4.1.2 Data Storage

Data sent to the Android device is stored on internal storage by writing to application
files. These data files read by the application enabling the calculation of fuel economy
statistics. To allow for more permanent data to be saved and recalled later the
application manages data across sessions using shared preferences. This allows the
application to track a users fuel economy as long as the data is stored on their device.

Chapter 2. Project Description and Motivation 8

2.4.1.3 Interface and Display

The interface of the application consists of a display view and settings view. Only
one view is displayed on the screen at a time. The ”display” view contains the
information the user wishes to be displayed. The settings menu controls all functions
of the application. Because this application is designed for a mobile device everything
is based upon a touch interface suited for the hdpi resolution and greater screens. The
colors used to display text and graphics allow users that are color blind to effectively
use the application.

2.4.2 MCU

The microcontroller unit in the GEM system will serve primarily as a bridge between
other on-board modules. It will transmit and receive data from an OBD-II transceiver,
communicate with a Bluetooth module, and handle a cache memory in an SD card.
First off, the MCU must be able to request and store the vehicles identification number
(VIN). Based on the VIN, the software must determine the correct OBD-II protocol
and use the appropriate subset of PID’s. While the vehicle is turned on, the MCU
must poll the ECU, through a serial interface, continuously, with a minimum delay
of 1 second and a maximum delay of 2 seconds in between polls.

The MCU shall determine if the Bluetooth module has established a connection to a
device, and provide a continuous data stream if a connection has been established. If
it is determined that no device is in range of the Bluetooth module, the data will not
be flushed. Instead, a frame of data will be cached in an SD card. OBD-II message
lengths range from 12 to 255 bytes, the minimum delay between messages received
is 1 second. We expect GEM to be able to store up to 24 hours of driving data,
in cases when users forget their phones or similar scenarios. Considering the most
conservative scenario, where all messages are the maximum length, and are delayed
by the minimum length of time we have:

255 bytes · 60
polls

minute
· 60

minutes

hour
· 24 hours = 22.032MB

Thus, allowing some leeway, the maximum frame length shall be 25 MB, and the
on-board storage must be a minimum of 25 MB.

Chapter 3

Research Related to Project
Description

3.1 Similar Devices

Conducting research on products similar to our own showed that there is no shortage
of devices that provide motorists with data relevant to their fuel economy. Some newer
cars do come equipped with software that displays fuel economy, but our product is
aimed at consumers that would like to add this functionality to their 1996 and newer
vehicles. As of late 2014, the company that offers the best add-on OBD II Bluetooth
device is Vinli. This Dallas company has just begun shipping their product and has
placed heavy emphasis on the multitude of apps that communicate with the Vinli
Basic/Complete. The apps that are available take full advantage of the On-Board
Diagnostics with features such as: crash detection, GPS monitoring, fuel economy,
and of course vehicle fault codes. Similar to our device, their product plugs directly
into the OBD II port and transmits data using Bluetooth making it available to any
smartphone within close proximity. The exact hardware specifications of their device
are unknown, but it has been confirmed that the device does use an accelerometer.
The starting price of the Vinli Basic is $49.99 and comes equipped with Bluetooth.
The Vinli Complete is $149.99 and has Wifi and GPS capabilities in addition to
Bluetooth.

9

Chapter 3. Research Related to Project Description 10

3.2 Fuel Economy

To determine the fuel economy of a vehicle the Environmental Protection Agency
designed a series of tests to estimate fuel consumption. The fuel economy of a vehicle
based on the tests performed by the EPA is weighted such that the final value is 55%
city and 45% highway. Because the EPA uses a dynamometer which neglects real
world driving conditions, they expect actual fuel economy to be less than calculated.
The Urban Dynamometer Driving Schedule (UDDS) in Figure 3.1 represents the
driving cycle used to estimate city driving. To simulate highway fuel economy the
EPA uses the Highway Fuel Economy Test (HWFET) shown in Figure 3.2.

Figure 3.1: Urban Dynamometer Driving Schedule

Figure 3.2: Highway Fuel Economy Test Driving Cycle

Chapter 3. Research Related to Project Description 11

In 2011 the EPA and National Highway Traffic Safety Administration (NHTSA)
adopted a new fuel economy label that is displayed on new cars. The most no-
table change is the addition of a vehicle’s fuel consumption rate which is the gallons
consumed per 100 miles. Figure 3.3 shows the relationship between miles per gallon
and gallons per 1,000 miles. The takeaway from this chart is that there is a notable
difference in fuel consumption from 10 mpg to 15 mpg (about 33 gallons) and a less
significant improvement from 30 mpg to 35 mpg (about 5 gallons). This new method
of measuring fuel economy is used to allow more accurate comparisons among vehi-
cles. Our device will displays mpg and gallons per hour because our primary goal was
for consumers to increase their fuel economy no matter how they measure it.

Figure 3.3: Gallons per 1,000 miles vs. Miles per Gallon

The EPA encourages people to increase their fuel economy to reduce CO2 emissions,
promote energy alternatives, and save money. The Gasoline Economy Management
device that our team is designing shares these same goals. To increase gas mileage
the U.S. Department of Energy and EPA offers the following tips:

• Drive the speed limit
• Inflate tires to the proper tire pressure
• Remove unnecessary weight from the vehicle
• Keep the engine maintained and use the correct grade of motor oil
• Use cruise control and overdrive gears
• Drive more efficiently

All of these recommendations can help increase gas mileage and lower fuel consump-
tion, but driving more efficiently can have the greatest impact. This is why our

Chapter 3. Research Related to Project Description 12

device provides consumers with the ability to track their fuel economy on a more
regular basis. For vehicles that are not equipped to track fuel efficiency consumers
can only calculate the distance traveled on a tank of gas divided by the amount of
fuel consumed. This formula will provide the miles per gallon (mpg), but does not
offer the level of detail necessary to improve driving efficiency. Tracking fuel economy
in real-time gives feedback as to the optimum travel speed, acceleration, and effects
of cruising for a vehicle.

3.3 Hardware Research

3.3.1 OBD-II Interface

In 1996 the OBD-II port was made standard on all vehicles sold in the U.S.. The
OBD-II port is a 16 pin female SAE J1962 connector. The pinout is shown in Table
3.1. The layout of the pins is shown in Figure 3.4. The connector is required to be
located in the passenger cabin and within 0.69 m of the steering column, except where
requested by exemption.

Table 3.1: OBD-II Pinout

Pin Signal Name Pin Signal Name

1 Manufacturer Discretion 9 Manufacturer Discretion
2 SAE J1850 - Bus Positive 10 SAE J1850 - Bus Negative
3 Manufacturer Discretion 11 Manufacturer Discretion
4 Chassis Ground 12 Manufacturer Discretion
5 Signal Ground 13 Manufacturer Discretion
6 CAN Bus - High 14 CAN Bus - Low
7 ISO 9141-2 & ISO 14230-4 K-Line 15 ISO 9141-2 & ISO 14230-4 L-Line
8 Manufacturer Discretion 16 Battery Voltage

There are five possible signaling protocols used by the OBD-II port. In vehicles 2008
and newer the standard is the CAN Bus (ISO 15765) and is required as one of the
protocols.

Chapter 3. Research Related to Project Description 13

Figure 3.4: OBD-II Port Pin Layout
Image License CC0 1.0

3.3.1.1 SAE J1850 PWM/VPW

SAE J1850 can be broken down into two sub classes. The first is variable pulse width
(VPW). VPW is a single wire bus protocol that utilizes only pin 2 of the connector.
It operates at either 10.4 Kbps or 41.6 Kbps. High signal voltage is a nominal 7 V
with a minimum and maximum of 6.25 V and 8 V respectively. Low signal voltage is
a nominal 0 V with a minimum and maximum of 0 V and 1.20 V respectively. Start
of frame is issued by a 200 µs high signal. A 1 bit is issued by a 128 µs low signal or
a 64 µs high signal. A 0 bit is issued by a 64 µs low signal or a 128 µs high signal.
Messages may be up to 12 bytes.

The second class of SAE J1850 is pulse width modulation (PWM). PWM is a two
wire protocol that utilizes both pin 2 and pin 10 of the connector. PWM supports
a speed of 41.6 Kbps. High signal voltage is a nominal 5 V with a minimum and
maximum of 3.80 V and 5.25 V respectively. Low signal voltage is a nominal 0 V with
a minimum and maximum of 0 V and 1.20 V respectively. The active bus state occurs
when pin 2 (BUS+) is pulled high and pin 10 (BUS-) is pulled low. Start of frame
is issued by an active bus state for 48 µs. A 1 bit is issued by a 8 µs bus active state
within a 24 µs period. A 0 bit is issued by a 16 µs bus active state within a 24 µs
period. Messages may be up to 12 bytes.

3.3.1.2 ISO 9141-2

The ISO 9141-2 standard is a two wire serial communication protocol. It operates at
10.4 Kbps. This protocol utilizes pins 7 and 15 on the connector. Pin 7 is referred
to as the K-line. Pin 15 is referred to as the L-line and is optional. The K-line is the
communication line and is bidirectional. The L-line is used to send a signal to the
ECU on older cars as a wake-up so that communication could start on the K-line.
In newer cars the L-line is not used and all signaling occurs on the K-line. A high
voltage signal is a nominal 12 V with a minimum and maximum of 9.60 V and 13.5 V

Chapter 3. Research Related to Project Description 14

respectively. Signaling is similar to RS-232 (Though with the obvious difference in
voltage level). The serial settings are 10.4K baud, 8 data bits, no parity, 1 stop bit.
Messages may be up to 12 bytes.

3.3.1.3 ISO 14230 (KWP2000)

The KWP2000 protocol is the same as the ISO 9141-2 protocol in all respects except
that the data rate is variable from 1.2K baud to 10.4K baud. Messages may also be
up to 255 bytes in length.

3.3.1.4 ISO 15765 (CAN)

The CAN protocol is modern standard for vehicle messaging. It is required in all
vehicles sold in the United States since 2008. CAN utilizes pin 6 and pin 14 on the
connector. Pin 6 is CAN high. Pin 14 is CAN low. The CAN high signal voltage is a
nominal 3.5 V with a minimum and maximum of 2.75 V and 4.5 V respectively. CAN
low signal voltage is a nominal 1.5 V with a minimum and maximum of 0.5 V and
2.25 V respectively. CAN is in the recessive state when neither pin is being driven.
In this state both lines sit at around 2.5 V. CAN is in the dominant state when both
lines are being driven and there is a difference of 2 V between the lines.

3.3.1.5 OBD-II PID’s

Once the messaging protocol has been determined and the GEM can communicate
with the vehicle messages will be sent and received using the OBD communication
protocol. Most of the data that is available via OBD-II is related to emissions as
the OBD-II protocol was mandated for use in emissions inspections. The GEM will
be able to request data related to vehicle speed, engine RPM, fuel level, and other
information useful to calculate the current efficiency of the vehicle. In order to retrieve
the data from the vehicle ECU a message needs to be sent to the data bus. This
message takes the form of a ”Parameter ID” or PID. The PID takes the form of four
bytes. The first two bytes identify the mode of the query as shown in Table 3.2 and
the second two bytes indicate the actual query if applicable. For example, to request
the current diagnostic trouble code (DTC) a value of 0300 is sent to the data bus.
The ECU responsible for that code will respond with the currently stored DTC.

Since not all vehicles support all modes the GEM is limited to a specific subset. The
only two modes that will be used by the smart phone software will be modes 01 and

Chapter 3. Research Related to Project Description 15

Table 3.2: OBD-II Modes

Mode Description Mode Description

01 Show Current Data 06 Test Results
02 Show Freeze Frame Data 07 Show Pending DTC
03 Show Stored DTC’s 08 Special Control Mode
04 Clear DTC’s 09 Request Vehicle Information
05 Test Results 10 Permanent DTC’s

09. Mode 1 is used to retrieve specific data related to fuel efficiency as shown in Table
3.3 and mode 9 is used to retrieve the VIN (Vehicle Identification Number) to verify
that the GEM has not been moved to another vehicle.

Table 3.3: Mode 01 PID’s

PID Description

00 Supported PID’s (1-20)
04 Engine Load %
0C Engine RPM
0D Vehicle Speed
20 Supported PID’s (21-40)
2F Fuel Remaining %
40 Supported PID’s (41-60)
5E Engine Fuel Rate

3.3.2 Communication

In order to send and receive signals the GEM must be able to receive a signal using any
one of the five protocols. This means that there needs to be four different transceivers
that can take the voltages and signals and convert them to something that can be
read by the digital input on a microcontroller. The microcontroller must then be
able to take the signal, determine what protocol is being used and then receive and
transmit data using that protocol. For the SAE J1850, ISO 9141-2, and ISO 14230
buses a simple comparator can be used to compare the line voltages and then output
a 3.3 V signal to the OBD-II to serial interpreter.

The remaining challenge is the CAN bus. Because the CAN bus allows for speeds
of up to 1 Mbps timing and control is critical. In order to transmit and receive

Chapter 3. Research Related to Project Description 16

messages on the CAN bus a commercial transceiver is necessary. There are a wide
variety of CAN receivers due to the fact that CAN is used in both automotive and
industrial applications. Since there are so many options and many special features
are unneeded the simplest and easiest to use in this case is the optimal solution. Two
different products stand out as being inexpensive and easy to use. The first is the
Microchip MCP2551 and the second is the TI SN65HVD230. Table 3.4 offers a quick
comparison of the two devices.

Table 3.4: CAN Transceiver Comparison

MCP2551 SN65HVD

Voltage 5 V 3.3 V
Signaling Rate 1 Mbps 1 Mbps
Standby Current 365 µA 370 µA
Operating Current (Dominant) 75 mA 10 mA
Operating Current (Recessive) 10 mA 10 mA
Price $1.12 $2.30

This table demonstrates just a few key points to show how similar the two products
are, further comparison of their data sheets show many more common features. Given
that the two chips are so similar in their general operating parameters and both have
excellent reference designs the primary deciding factor goes to price. In this case
the MCP2551 is half the cost of the alternative and so it was selected for the final
prototype.

Once the signal has been received from whatever bus the vehicle is using it must then
be converted into a usable format. There are two different ways of handling the data.
The first is to use the microcontroller to handle all of the data processing. The second
option is to use a data interface chip to convert the incoming data to serial and then
pass is off to the microcontroller. Each option has benefits and drawbacks.

In the case of using the microcontroller to handle the data from the transceivers the
benefits are a simplified hardware design and lower hardware cost. This comes at
the cost of a far more complex software design and an increased cost of software. If
the MCU handles all of the data there is one less microcontroller that needs to be
integrated into the design. Plus these specialized automotive data microcontrollers
are typically in the ten to twenty dollar range. The drawback is that a complex
software system that can detect which protocol is being used and then communicate
using that protocol must be developed. It’s not clear at this time how complex this
part of the project would be and how much time it would take.

Chapter 3. Research Related to Project Description 17

The benefits of using the preconfigured automotive OBD-II to serial interface are
a simplified software ecosystem at the cost of hardware complexity and additional
device cost. There are already industry standard chipsets on the market that handle
incoming data from an OBD-II port. The most common is the classic ELM327 based
on the 8-bit PIC18F2580. This device has pins for each of the individual bus lines
coming in from the transceivers and a UART to connect to a host microcontroller.
It accepts a standardized AT command set for serial communication and it handles
protocol negotiation automatically. This last feature is a critical feature for this
design. There are also clones of this chip that use faster PIC MCU’s and have
more features. Examples include the STN1110 and STN1170 from OBD Solutions.
Ultimately, realizing that we had a very short windows in which to design an dbuild
the GEM we opted to use the STN1110.

3.3.2.1 I2C

Various devices on the GEM must be able to communicate with each other. There
are some standardized ways that these components can communicate. The first of
which is I2C. I2C is a low speed serial protocol that is used in embedded systems.

This protocol is a two wire protocol. One line is for data, abbreviated SDL and the
2nd line is for clock information, abbreviated SCL. The standard data transmission
speed is 100 kbit s though in later revisions higher speeds are supported. Because of
its low speed and simplicity I2C is useful for applications where cost is a concern but
speed is not.

3.3.2.2 SPI

The other popular bus for communication between devices is SPI or Serial Peripheral
Interface. SPI is a four wire bus. SCLK is the serial clock. MOSI is master out-
put, slave input. MISO is master input, slave output. and SS is slave select. The
connections between master and slave are shown in Figure 3.5.

SPI is a full duplex communication system. On each clock cycle the master can send
a bit on the MOSI line where the slave will receive it and the slave can send a bit on
the MISO line where the master will receive it. In addition there is no upper limit on
the clock speed which allows for higher throughput that I2C. In the GEM this will be
important for communication with the SD card. Given the two options, rather than
having multiple protocols on the device we will use SPI for communication between
components.

Chapter 3. Research Related to Project Description 18

Figure 3.5: SPI BUS: Master/Slave Connections

3.3.3 MCU

In the GEM the MCU primarily acts as glue between the different subsystems. There
is very little data processing occuring on the device. The processing and analysis is
left to the smart phone application. Because of this the main features of the MCU
are size, cost, power consumption and ease of use.

Because of the use of Bluetooth for communication there are different options for
the MCU. There are a wide variety of Bluetooth modules that have built in 8051
microcontrollers. There is also the option to use an independent microcontroller and
then use a standalone Bluetooth module or chip. The advantage of using a single
chip solution that includes the microcontroller and Bluetooth SOC is that the board
layout is simplified as there is one less chip that needs to be set up. This comes
at the cost of a more expensive or complicated design ecosystem because some of
the common tools used for programming the 8051 are extremely expensive even with
educational discounts. For a standalone microcontroller the minimum requirement
is that it have two available UART’s, one for communicating with the OBD-II to
serial interface and one for communicating with the Bluetooth module. For writing
to storage it must also have SPI.

3.3.3.1 MSP430 Family

The MSP430 family of processors from Texas Instruments is easily the microcontroller
that the senior design team is most familiar with. It has the advantage of having been
used by all three team members. There are hundreds of variations available ranging
from super simple devices with only 4 GPIO pins all the way up to controllers with 90
GPIO pins and multiple ADC’s. The primary search parameters used to determine
which MSP430 would be used for comparison were the UART and SPI requirements
and secondarily price. Given those parameters the MSP430F23/24 family was chosen.

Chapter 3. Research Related to Project Description 19

This series has four universal serial communication interfaces (USCI’s), operates with
ultra low power consumption, and has an ultra fast (¡1 µs) wake up time. In low
quantities it runs about $6.00 per chip. The drawback is that there are far more
GPIO and accessories than are necessary for the design. Unfortunately there is not a
version of the chip that meets both the communication requirements and has a low pin
count. This makes sense as there are not as many applications for a microcontroller
that has a lot of communications options but little in the way of IO or ADC’s and
timers. An alternative to requiring so many built in communications systems would
be to use a chip with only two UART’s available and then bit bang the SPI in order
to write to the SD card.

3.3.3.2 PIC24F16KA102 Family

PIC microcontrollers are one of the most widely used microcontrollers in the world.
Again, the basic requirements were used in a parametric search to find a family of
microcontrollers that would meet the needs of the project. The primary advantage
we found with the PIC microcontrollers was that there were a wide variety of low pin
count controllers available. Many of these were twenty to thirty pins. This would
keep the board layout somewhat more simple. The specific family we chose for this
comparison is the PIC24F16KA102.

The PIC24F16KA102 family has features that would be very useful to the design of
the GEM. It has very low power consumption, simple design, and low pin count. The
drawback is that the SPI interface shares pins with one of the UART’s. In and of
itself this isn’t a serious problem because in any situation the system will only be
using SPI to write to the SD card or the UART to communicate with the Bluetooth
module. If this system were to be used though there would be more complicated
hardware in order to switch between the modes as well as additional software.

3.3.3.3 ATmega Family

The ATmega and AT32 family of microcontrollers is perhaps the most familiar to
hobbyists and home developers as it is the family found in Arduino boards. However
the stock chip from Atmel does not include the Arduino bootloader and software.
Being one of the most popular microcontrollers there is a large support community
and thousands of pages of documentation on using and developing using Atmel mi-
crocontrollers.

Chapter 3. Research Related to Project Description 20

3.3.3.4 CC2541

The Texas Instruments CC2541 is the outlier among the choices for the microcon-
troller. The CC2541 is a Bluetooth LE module with a built in 8051 microcontroller.
The advantage here is obvious. Using the CC2541 allows us to reduce the overall
complexity of the design by consolidating the MCU and the Bluetooth chip. After
reviewing the other microcontrollers this seemed like the obvious choice but there is
one major drawback developing using this chip. While the hardware is cheaper and
simpler than the other option the software used to develop and debug is prohibitively
expensive. In order to develop for and debug the CC2541 a license for IAR Embed-
ded Workbench is required. Even for an educational license this software is many
thousands of dollars. The only alternative would be to use a code size limited version
or a time limited version both of which are free. For the code size limited version we
would not be able to compile the Bluetooth stack if necessary as it exceeds the size
limitation. For the time limited version the license is only good for 30 days. This
is a dangerous limitation because even if we were able to complete the embedded
software within the time limit if a bug arose at a later time or we needed additional
functionality there would be no way to add to the code base.

3.3.3.5 MCU Summary

A brief comparison of the microcontrollers under consideration is shown in Table 3.5.

Table 3.5: MCU Comparison

MSP430 PIC ATmega CC2541

Voltage 3.3 V 3.3 V 5 V 3.3 V
Current-Active 270 µA 8 µA 8 mA 18.2 mA
Current-Standby 0.3 µA 2 µA 0.8 µA 1 µA
Package QFP/QFN DIP/SOIC/QFN DIP/QFN QFN
I/O 4 USCI 2 USART 2 USART 2 USART+BLE
RAM 4 kB 1.5 kB 4 kB 8 kB
Flash 56 kB 16 kB 64 kB 256 kB
Price $5.92/ea $2.88/ea $8.65/ea $6.25/ea

The price and the voltage/current requirement are enough to knock the ATmega out
of the running. If the proper software was available the ideal choice would be CC2541
however without IAR Embedded Workbench we also have to ignore that as an option.
This leaves the PIC or the MSP430. If it were only over price we would go with the

Chapter 3. Research Related to Project Description 21

PIC but since our team has familiarity with the MSP430 and it also has the four
USART’s it is ideal for our project. If we were to be designing this for production
the choice would be more difficult and we would likely lean towards

3.3.4 Bluetooth

In order to get data from our device to the smart phone application we chose to
use Bluetooth. Bluetooth is a short range wireless standard originally intended for
wireless RS-232 serial data. It operates in the 2.4Ghz range. There are three power
classes for Bluetooth as shown in Table 3.6.

Table 3.6: Bluetooth Classes

Class Maximum Power Range

1 100 mW 100 m
2 2.5 mW 10 m
3 1 mW 1 m

3.3.4.1 Pairing

Bluetooth devices operate as a master and a slave. Typically in a Bluetooth use case
a user wants the two devices in communication to communicate securely but at the
same time avoid having to manually connect the devices whenever they are in range.
The two devices should automatically connect and start sharing data when in range.
In order to achieve this devices go through a pairing operation which is usually started
by a specific request from the user. Once the devices have gone through the pairing
operation they are securely bonded and can connect to each other whenever they’re
in range without further interaction from the user.

There are different ways to pair Bluetooth devices depending on the version of Blue-
tooth being used. Up to Bluetooth V2.0 the pairing mechanism was to have each
device provide a 4 digit pin code and if both codes matched the devices would bond.
The limitation is that the device without an input, say a headset or an OBD-II mod-
ule will rely on a preset PIN code stored in memory. This opens up security concerns
and the possibility of man in the middle attacks. However it is easy to set up and
maintain. In Bluetooth V2.1 and greater the pairing mechanism is known as Secure
Simple Pairing (SSP). SSP offers multiple levels of pairing from ”Just Works” where
two devices can discover each other and pair without any user input to ”Passkey

Chapter 3. Research Related to Project Description 22

Entry” where a user must enter a specific code on at least one of the devices in order
to pair them.

In our use case, since the device connects directly to the data bus on the vehicle and
the vehicle data bus is notorious for its lack of security, we are opting for the passkey
entry. The device can store a code that the user will have to enter on their smart
phone the first time the device is paired.

3.3.4.2 Profiles

Bluetooth devices use the concept of ”profiles.” Profiles define the possible appli-
cations and behaviors that two devices may use to communicate with each other.
According to the Bluetooth Developer Portal the minimum information required by
a Bluetooth protocol is

• The dependency on other profiles
• User interface formats
• What parts of the Bluetooth protocol stack are used by the profile

There are a wide range of profiles from printing profiles to video imaging. In our
case the data being transmitted is all text based and very basic so we will likely be
implementing the SPP or Service Port Profile that defines how to act as a virtual
serial port connection between two Bluetooth devices.

3.3.4.3 Implementation

Since Bluetooth is such a common standard there are many ways that we can imple-
ment it on our device. Initially we had planned on using Bluetooth Low Energy but
the number of smart phones that can use BLE is still limited. Instead we will be using
Bluetooth Classic. This opens up the number of devices we will be compatible with.
This leaves us with two options. Should we integrate a prebuilt Bluetooth module or
should we develop a module based upon an existing Bluetooth chip? Texas Instru-
ments makes the CC2564 Bluetooth controller chip that is ideal for our application.
The difficulty is that it requires advanced PCB layout and soldering techniques. The
chip package is a QFN package which is a no lead package. In order to solder the chip
to the board we would need to use either hot air or a reflow oven which our team has
limited experience with. In addition we also would need to move to a four layer board
so that we can easily create controlled impedance traces for the antenna. This is a

Chapter 3. Research Related to Project Description 23

daunting proposition. The alternative is to buy a module that already contains the
CC2564 as well as the antenna and then just connect to it using the UART interface.
This costs about four times as much, the modules are approximately $20.00 while the
CC2564 is roughly $5.00. The benefit to designing an implementing the Bluetooth
solution is that it’s a more cost effective design and the team members gain experience
in areas that may otherwise be lacking.

Given that our schedule plans on a prototype PCB being complete by February 2015,
if relatively bug free an attempt can be made to develop a Bluetooth solution based
on the CC2564.

One of the modules that could be used in this case is the Panasonic ENW-89842A2KF.
This device incorporates the CC25xx series Bluetooth module so that swapping the
module for our own system would not require extensive redesign or reprogramming.

3.3.5 Antennas

The CC2564 requires an external antenna. The antenna recommended by Texas
Instruments is an ”inverted F” type antenna for which they provide exact dimensions
and board layout in their design guide. This design requires the ground plane and
all others layers to be clear underneath the antenna. In addition it requires a 50 Ω
impedance trace to connect to the CC2564. The advantage of this antenna is that
it is omni-directional so we don’t need to be concerned with the orientation of the
GEM when it is connected to the vehicle.

The alternative to having the antenna drawn out on the PCB is to use an external
chip type antenna. The Fractus Compact Reach Xtend Chip antenna is a small form
factor chip antenna design for the 2.4Ghz range. It utilizes space-filling fractal shapes
to shrink the size of the antenna while maintaining good output properties. Compared
with the F Antenna it is 57% less efficient but it takes a fraction of the board space.

3.3.6 Storage

The GEM needs to be able to store data when the user does not have their smart
phone available. On board storage in the MCU memory is not sufficient because
should the device become unplugged or otherwise disconnected from the battery the
memory will be lost. A simple solution is a cheap, easily available, easy to use, non-
volatile memory. SD cards meet all of these requirements. In order to interface with

Chapter 3. Research Related to Project Description 24

the SD card the MSP430 can utilize the SPI bus. Texas Instruments provides a SD
card library which can be used to write data to the card.

3.3.7 Power

The power requirements for this design are somewhat complicated. The system re-
quires a vehicle battery voltage, nominally 12 V, a 7 V supply for the comparators for
the SAE J1850 VPW system, a 5 V supply for the comparators for the SAE J1850
PWM system, a 3.3 V supply for the microcontrollers, and finally a 1.8 V supply for
the CC2564. Since the two SAE J1850 protocols use the same input and output and
only differ in their voltages it is required that the power supply on those inputs is
switchable between 5 V and 7 V

In addition because of the nature of the power supply on a vehicle we also need to
have filtering and transient voltage suppression. Filtering can be done by capacitors
on the input to the power stage. Transient voltage suppression can be done with the
addition of TVS diode pairs on the input stage to shunt current when the voltage
rises beyond a set point.

In order to meet the power requirements multiple voltage regulators will need to be
used. For these stages we need high efficiency as we have ultra low power requirements
when the vehicle is powered off and we have limited heat dissipation when the vehicle
is on and the device is powered.

Given the typical operating current for the various on board devices we arrive at
a current consumption of 223 mA, add a 50% safety margin and we have 334 mA
consumed while the device is fully active. If we were to drop the battery voltage to
3.3 V via a linear regulator we would have to dissipate 2.9 W.

The optimal solution in this case it to regulate the voltage in different ways in different
sub-systems. For the microcontrollers and comparators a switching regulator can be
used to bring the batter voltage down to 5 V and then a linear regulator to bring it
down to 3.3 V and 1.8 V. A separate system can be used to to generate and switch
between the 7 V and 5 V signaling voltages required by the SAE J1850 protocols.
These systems will be examined further in the power design section of this document.

Chapter 3. Research Related to Project Description 25

3.4 Software Research

All research conducted related to software, whether it is high level mobile application
software, or low level MCU firmware is contained in this section.

3.4.1 Android

The following sections describe development within the Android mobile operating
system.

3.4.1.1 Development Environment

The entire front-end system for GEM will be in an Android mobile phone applica-
tion. Android is an open source framework for a multitude of mobile devices whose
development is led by Google. An SDK, API libraries, and several developer tools
are provided by Google, free of charge. Apps are developed in Java using XML lay-
outs for visual elements. There are two primary development environments to choose
from. The more traditionally used is the Eclipse IDE with the Android Developer
Tools (ADT) bundle. This provides all the basic tools needed to develop an Android
app, bundled into a very popular IDE in Eclipse. The build has been around for
several years, is heavily tested and stable. The other environment is the more re-
cently released Android Studio. It is built on the IntelliJ platform and provides more
features, a better feel, and more tools, but it is currently in beta testing and may
have some bugs developers will have to work around. We have opted for the increased
functionality and ease of use of Android Studio to develop the mobile application for
the GEM system.

3.4.1.2 User Interface

The Android library provides a set of built in components to build graphical user
interfaces, including UI objects and layouts, as well as a flow framework to guide
development. The framework is based on a hierarchy of ‘ViewGroup’ objects, which
contain ‘View’ objects. A ‘View’ is essentially a visible rectangular element on the
screen, while a ‘ViewGroup’ is an invisible container composed of Views or other
ViewGroups.

Chapter 3. Research Related to Project Description 26

Using XML, the look, feel, and alignment of all visual elements can be controlled by
the developer. XML layouts control the default appearance of application elements,
and can be dynamically modified programmatically. The Android XML vocabulary
allows developers to use a variety of layouts, Views, and Widgets. Documents must
contain one root View or ViewGroup which define the positioning of all child content.
Some of the most used layouts include linear layout, relative layout, table layout, list
view, and grid view, shown in Figure 3.6.

Each layout provides its own set of parameters, and attributes which can be used
to control positioning, visibility, size, margin, padding, and several other character-
istics. Linear layouts, relative layouts, and table layouts are primarily used for pre-
determined non-dynamic layouts. Using a ListView or GridView allows for dynamic
population of elements at runtime. In order to do so an Adapter class must be used.
An Adapter serves as a bridge between external data sources and an AdapterView.
ListView and GridView both provide an AdapterView implementation. Adapater-
View has methods that facilitate interaction, such as click listeners and other event
handlers.

All of these UI elements are bound together by an ‘Activity.’ Activities are the driving
principle of Android development. An activity is just one screen which a user can
view or interact with. Activities are visibly populated by the UI elements previously
described, but may also perform background computations and tasks not visible to
the user. Activities are governed by a unique lifecycle, in which each state is accessible
using a different method. When an activity is first launched it looks to its onCreate
method, this is where the UI is constructed and any essential objects or values are
initialized. Activities may be displaced to a background stack when another activity
is initiated. Before the other activity initiates, the onPause method is called in the
activity that is about to shift to the background. This state is usually used to quickly
save any important data the activity modified. When an activity returns to execution
from a paused state the onResume method is called. When an activity signals another
activity to terminate, the onDestroy method of the activity to be destroyed is called.
There are several other lifecycle states that are executed with a unique method, which
are all displayed in Figure 3.7.

Activities can’t implicitly communicate with other activities, even if they stem from
the same application. As such, any piece of data that is needed by more than one ac-
tivity must be explicitly passed via Intents. An Intent is an Android specific abstract
structure which can carry an action to be performed and data. Activities can start
other activities through an Intent. Primitive data types can also be passed through
an Intent, and so can objects as long as they are serializable.

Chapter 3. Research Related to Project Description 27

Figure 3.6: Android Layouts and Views

Portions of this page are reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution License.

Chapter 3. Research Related to Project Description 28

Figure 3.7: Android Activity Lifecycle
Source: http://developer.android.com/guide/components/activities.

html#Creating

http://developer.android.com/guide/components/activities.html#Creating
http://developer.android.com/guide/components/activities.html#Creating

Chapter 3. Research Related to Project Description 29

3.4.1.3 Fragments

While some data can be passed from activity to activity through an Intent, and each
activity can contain its own UI layouts, GEM aims for a simple and sleek design
with modularity across all activities. The use of ‘Fragments’ may greatly facilitate
these design goals. A fragment is an Android object, which can be viewed as a piece
of an activity. It can be a certain computation, or a UI portion. Activities can
be built from a collection of fragments, and fragments can be re-used in different
activities. Fragments have their own independent lifecycle and layout, but still abide
to the state of the activity they reside in. As such, fragments are particularly useful
for duplicating a component in all activities in an application (such as a menu) and
providing a consistent look and feel throughout an application, which GEM hopes to
achieve. Fragments are also useful for performing background computation, separate
from a UI thread. This can also be employed in GEM while fuel calculations are
made, saving some time by making calculations while fetching data.

3.4.1.4 Bluetooth Connectivity

Android provides Bluetooth network stack support through a native API. This in-
cludes Classic Bluetooth and, starting from Android 4.3, Bluetooth Low Energy
(BLE). BLE is of interest in the development of GEM because it offers much lower
power consumption than Classic Bluetooth. The downside, however, is that only
about 24% of Android phones are running version 4.3 or higher. This can alienate
many potential users due to not having a phone which can support BLE. On the other
hand 99% of all Android phones have Classic Bluetooth support. Thus, the tradeoff
is consumer outreach for power efficiency.

All API tools to establish, configure, and manage a Bluetooth connection are available
in the package ‘android.bluetooth.’ The classes and interfaces of significance are as
listed below.

• BluetoothAdapter
• BluetoothDevice
• BluetoothSocket
• BluetoothServerSocket
• BluetoothClass
• BluetoothProfile
• ServiceListener

Chapter 3. Research Related to Project Description 30

BluetoothAdapter is the object used to represent the phones local adapter. To re-
trieve an instance of it the methods getDefaultAdapter or getSystemService are used
(depending on the API version). Once there is access to a BluetoothAdapter object, it
can be used to discover devices, retrieve all currently paired devices, and interact with
already paired devices. To retrieve the list of connected device the getBondedDevices
method is used. The startDiscovery method is used to start searching for devices.
All of these methods require special permissions in order to be used in an Android
device. The BLUETOOTH and BLUETOOTHADMIN permissions must be speci-
fied in the application manifest file. The application should also check if Bluetooth is
enabled on the device by calling the isEnabled method, and use an Intent to request
for Bluetooth to be turned on and enable discovery if it isn’t. Once startDiscovery
is called, all Bluetooth enabled devices in the area will be queried for a device name
and a unique MAC address. This information can be used to establish a connection.
After the devices are paired for the first time, all information is saved within the
Bluetooth API and future connections can be performed without discovery.

Once devices are paired, a list of objects called BluetoothDevice can be retrieved with
the method getBondedDevices. The BluetoothDevice class essentially just holds all
the physical information of a device including its MAC address and name. Just hav-
ing devices paired doesn’t mean that a connection for communication is established.
A client-server mechanism has to be established also. One device has to have an open
server socket while the other device connects to it. This is done through the Blue-
toothSocket and BluetoothServerSocket interfaces. These interfaces establish a Serial
Port Profile (SPP) between devices that allow streaming of data through Bluetooth.
One device should create a listening BluetoothServerSocket and the other device will
create a BluetoothSocket to connect to available servers.

With a connection established the read and write methods can be used to write
bytes to an input stream and output stream. This data can be accessed using the
getInputStream and getOutputStream methods. The BluetoothClass class is useful
in managing connected devices. The method getBluetoothClass is used to attain
the class for a device, and the class provides information about the device type,
services, and capabilities. Additionally, the Bluetooth API has support for what is
known as Bluetooth profiles, which are interface specifications for Bluetooth-based
communication between devices. The BluetoothProfile and ServiceListener interfaces
are used to support a Bluetooth profile on an Android device.

Chapter 3. Research Related to Project Description 31

3.4.1.5 Bluetooth Low Energy

BLE is able to transmit small packets of data, called attributes, under a generic
attribute profile (GATT). The GATT sits on the Attribute Protocol layer (ATT) of
the Bluetooth stack. These attributes are identified by a Universally Unique Identifier
(UUID). Data from the UUID is transported between paired devices as characteristics
and services. Similar to the client-server mechanism in Classic Bluetooth, BLE devices
have a central-peripheral system. The Android API only allows for mobile devices
to be configured as the central role. Peripherals advertise themselves and a central
device looks for advertisement. This applies to the BLE connection at the physical
layer. Once the physical connection has been established, BLE devices communicate
using GATT servers and clients.

Using the Android API to establish a BLE connection requires a similar initial setup
to Classic Bluetooth. The BluetoothAdapter object is still used and the same permis-
sions have to be set in the Android manifest file, with the addition of the BluetoothLE
permission. From there on out, a different set of methods specific to BLE are available
in the API. Also a new class (API level 18), BluetoothManager, is used to retrieve the
BluetoothAdapter. To scan for BLE devices the method used is startLeScan rather
than startDiscovery in Classic Bluetooth. In order to interact with discovered devices,
the connectGatt method must be used, which returns a BluetoothGatt object used
to relay attributes between devices. Once communication is established activity is
monitored via the broadcastUpdate method, and attributes can be read and written.
Additionally, the app can be notified when a characteristic on the GATT server is
changed using the setCharacteristicNotifaction method.

3.4.2 MCU Firmware

The subsequent sections include all information relevant to the construction of firmware
for the GEM system.

3.4.2.1 ECU Data

As previously discussed, vehicle data from the engine control unit (ECU) is accessible
via PID requests sent through the OBD-II data bus. In the GEM system PID requests
and message retrieval will be handled with microcontroller software. As such, ECU
message encoding and decoding is of paramount importance. Since vehicles provide
support for different modes and PIDs, the MCU must determine which of them are

Chapter 3. Research Related to Project Description 32

supported for the vehicle GEM is currently connected to. This information can be
retrieved with PIDs 00, 20, 40, 60, and 80 in mode 01. These PIDs each return four
bytes of data representing which of the next 32 PIDs are supported, with the MSB
representing PID number 1 and the LSB representing PID number 20 (for the PID
00 request). An example of decoding PID request 00 is shown in Table 3.7

GEM is only equipped to handle OBD-II data, but not all vehicles comply with
OBD-II standards. The PID request 1C (mode 01) returns a single byte describing
which OBD standards the vehicle’s ECU complies with. Return values of 1, 3, 7, 9,
11, and 13 all represent OBD-II compliance. There are also a plentiful amount of
PIDs relevant to fuel efficiency. PID 04 (mode 01) returns a calculated engine load
value in one byte, given as a percentage up to 100. PID 02 (mode 01) returns the
engine RPM in a two byte value. PID 0D (mode 01) returns the vehicle speed in
two bytes measured in kilometers per hour. PID 10 (mode 01) returns the MAF air
flow rate in two bytes in units of grams per second. PID 11 (mode 01) returns the
vehicles throttle position as a percentage in a one byte value. PID 1F (mode 01)
returns the run time since engine start, measured in seconds, in a two byte value.
PID 2F (mode 01) returns the fuel level, as a percentage, in a one byte value. PID
5F (mode 01) returns the engine fuel rate in a two byte value measured in units
of liters per hour. Additionally, PID 02 in mode 09 is used to obtain the vehicle
identification number (VIN). The VIN is returned in 17-20 ASCII-encoded bytes,
with null characters padding if necessary. Mode 09 also has a PID 00 which returns
supported PIDs of the ECU (just like mode 01’s 00 PID). Also, PID 01 (mode 09)
provides the VIN message count for PID 02. A summary of all PIDs is shown in
Table 3.8.

3.4.2.2 Implementing OBD Requests

The MCU will be performing OBD requests via an OBD to UART interpreter chip.
Most interpreter chips provide a set of similar commands which can be issued through
software. One candidate OBD interpreter chip for the GEM system is the STN1100
which provides an additional command set from a host MCU. The MCU can commu-
nicate with the interpreter chip via ASCII commands. Once a connection is estab-
lished the interpreter chip prompts for an input by transmitting the ‘>’ character.
The MCU can then respond with a set of AT commands by outputting the ASCII
characters ‘AT’ through a UART. A set of useful AT commands are shown in Tables
3.9 and 3.10. For the STN1100 specifically there’s an additional ST command set,
shown in Table 3.11. Any data sent to the interpreter chip which does not begin
with ‘AT’ or ‘ST’ is assumed to be an OBD commands. Possible OBD commands are
shown in Table 3.8. The MCU only needs to send 2 bytes of data to the interpreter

Chapter 3. Research Related to Project Description 33

chip to perform an OBD request, the first byte is the mode, and the second is the
PID.

3.4.2.3 Interfacing an SD Card

Most SD Cards sold are shipped partitioned with a FAT file system. A file system
provides an architecture for writing and deleting files on a storage device. SD cards
need a file system so that an operating system can read its data. This is standard for
applications such as viewing pictures taken from a camera on a personal computer.
However, in an embedded environment, a file system results in a significant amount
of memory overhead. Apart from taking up space on the SD card itself, the microcon-
troller software would need to import additional libraries for opening and closing files.
This can be detrimental to small scale designs where there is no operating system,
such as GEM. Alternatively, the SD card can be formatted and raw data may be
written to it in SPI mode via software. Only the host MCU will have access to this
raw data, which is all that is needed for an embedded storage application. Raw data
is usually written to the SD card in 512 byte blocks. An SD card can be controlled by
a host MCU through a synchronous 1-bit command line. Commands are defined by
the SD standard as 48 bits in length. The SD protocol works as command-response
system, where all commands are initiated by the master. Commands take the form of
“CMDXX,” “XX” being the unique command number. In SPI mode a 6 byte frame
is sent through the data in port. The frame is always initialized with a 0 bit, and
ends with a 1. Most commands, such as a card write, will return a 1-byte token
providing status information. Texas Instruments provides a library for interfacing a
microcontroller with an SD card via the SPI interface. A set of functions is available
to make initialization, card reads and writes, and commands easy to implement. All
that needs to be adjusted are the pin settings specific to the microcontroller in use.
The most useful of these functions are highlighted in Table 3.12.

3.4.2.4 Bluetooth Stack

Bluetooth connections require a standard protocol which must be followed in order
to achieve connectivity between devices. This protocol is an onion-like set of layers
(stack) implemented in software. As defined by the standard, a Bluetooth stack needs
to provide a minimum of four layers.

• A physical transport layer for transferring data bits
• An HCI layer for the management of physical conditions to and from devices
• An L2CAP layer for managing logical channels of established connections

Chapter 3. Research Related to Project Description 34

• Any additional Bluetooth services on top of L2CAP layer that adds functional-
ity, usually the Service Discovery Protocol (SDP)

The Bluetooth protocol stack is prevalent in laptops and smart phone devices, and
fairly easy to implement on higher level applications. However, implementing a Blue-
tooth stack in an embedded environment with limited recourses leads to some dif-
ficulties. There are however, open source libraries designed for limited memory ap-
plications. One such API is called BTstack. BTstack can be used in conjunction
with a CC2564 chipset, or a PAN1323 module to provide Bluetooth connectivity for
an embedded system. There is also the option of using a Bluetooth module which
has a dedicated chip which implements the Bluetooth stack, this avoids the issue of
implementing a Bluetooth stack with limited recourses, but accrues higher hardware
costs and adds an additional chip that takes board space and has to be interfaced
with. Two such modules are the RN4020 low energy, and the RN-42 class 2 Bluetooth
modules.

3.4.2.5 Bluetooth Low Energy Protocol

Bluetooth Low Energy (BLE) is an extension of the Bluetooth stack protocol start-
ing from the Bluetooth 4.0 standard. BLE provides far less power consumptions than
Classic Bluetooth at the expense of throughput. BLE provides easier initialization,
discovery and connection. BLE is a connectionless client/service architecture as op-
posed to Classic Bluetooth, and uses a Generic Attribute Profile to simplify software.
Interfacing is also meant to be simpler with BLE. In the BLE protocol the L2CAP
protocol serves as a backend for simpler services to be bound to. One of these is the
Low Energy Attribute Protocol (ATT), which provides a similar feature to the SDP
but is simplified and specially adapted for Low Energy Bluetooth applications. The
generic access profile (GAP) also sits on the L2CAP layer. GAP is used to manage,
scan, and establish connections between devices. Most BLE implementations also
rely on the generic attribute profile (GATT), which provides a framework for com-
munications between paired devices. All additional services are built on top of the
GATT, and their characteristics are defined by the GATT.

3.4.2.6 BTstack

BTstack is an open source portable Bluetooth stack available on Google Code. It
was designed to be implemented on recourse limited devices. It works well in 16
bit embedded environments and is highly configurable. The entire stack footprint

Chapter 3. Research Related to Project Description 35

only needs 32 kB of flash memory and 4 kB of RAM. While this is exponentially
smaller than a typical Bluetooth stack, it most likely still needs a microcontroller
dedicated to it only. BTstack supports Classic Bluetooth as well as Bluetooth 4.0
Low Energy specifications and works as a peripheral or in a central role. BTstack
is a collection of interacting state machines, which can be single threaded or multi-
threaded. Protocols and services can be initiated through library functions provided
by BTstack.To initialize and allocate memory for services, active connections, and
remote devices the function btstack memory init is called. A run loop is then initiated
(in single thread mode) by the function run loop init. Bluetooth hardware control
is done through a provided struct bt control t. Handling of the HCI Trasnport layer
is done through the hci transport t struct. To change the BAUD rate and for other
UART controls the hci uart config t struct is modified. Remote device connection
information is stored in remote device db t. For each additional layer needed, its
own specific initiation function is provided by BTstack. Packets are handled by the
L2CAP layer via the l2cap register packet handler function. For a remote device to
become discoverable the application calls hci discoverable control passing in an input
parameter 1. The hci write local name command is used to set a device name. In
order to scan for remote devices the hci inquiry command is triggered. Finally, devices
can be paired depending on which profiles and layers the user wants to implement.
For a minimum requirement connection, a device provides an L2CAP service, and
BTstack initiates communication with the service by using the l2cap init function,
followed by creating an outgoing channel using l2cap create channel internal.

3.4.2.7 RN4020

The RN4020 is a complete Bluetooth module with an onboard Bluetooth Low Energy
4.1 stack. Using the RN4020 or the RN-42 would reduce Bluetooth related MCU
software to the task of interfacing with the module. The RN4020 has a command
API, which are issued by the host microcontroller as ASCII characters. Commands
are sent from the host MCU through a UART control interface. The RN4020 divides
all commands into 8 types, of which 3 may prove useful for the development of the
GEM system:

• Set/Get Commands
• Action Commands
• Microchip MLDP Commands

Set/Get commands start with the ASCII character ‘S’ followed by an identifier and
an input parameter, separated by a comma. They are used to configure specific

Chapter 3. Research Related to Project Description 36

module functions. All set commands have a corresponding Get command to output
the set configurations. Get commands have the same format as its corresponding Set
command excluding the input parameter. A module reboot is required to guarantee
new settings are in effect. A set of useful Set commands are shown in Table 3.13.
Action commands are each unique but are mainly used to display information or
initiate functionality, a set of action commands are displayed in Table 3.14. A private
Microchip Low-Energy Data Profile (MLDP) is embedded into the RN4020 and used
to send UART data bytes wirelessly to connected devices. A couple of commands are
also available for this profile, shown in Table 3.15.

3.4.2.8 RN-42

The RN-42 is another all-in-one Bluetooth module. This module supports only Classic
Bluetooth (standard 2.1). In contrast to the RN4020, the RN-42 provides more
built in profiles and flexibility. The RN-42 includes the commonly used GAP, SDP
and SPP profiles instead of a private MLDP profile. A Get/Set command syntax,
comparable to the RN4020’s, is used by this module. However instead of MLDP
commands the RN-42 operates in two basic modes, command mode or data mode.
When in command mode, similar commands to the RN4020 can be given. When in
data mode, the module simply operates transparently as a data path between the
MCU and a connected device, constantly sending out Bluetooth packets. A simpler
command set and initialization is provided by the RN-42, but is considerably more
expensive and doesn’t support BLE.

Chapter 3. Research Related to Project Description 37

Hex Binary PID # Supported?

F

1 1 Yes
1 2 Yes
1 3 Yes
1 4 Yes

D

1 5 Yes
1 6 Yes
0 7 No
1 8 Yes

3

0 9 No
0 0A No
1 0B Yes
1 0C Yes

F

1 0D Yes
1 0E Yes
1 0F Yes
1 10 Yes

C

1 11 Yes
1 12 Yes
0 13 No
0 14 No

2

0 15 No
0 16 No
1 17 Yes
0 18 No

8

1 19 Yes
0 1A No
0 1B No
0 1C No

B

1 1D Yes
0 1E No
1 1F Yes
1 20 Yes

Table 3.7: Decoding ECU response of FD3FC28B from PID request 00

Chapter 3. Research Related to Project Description 38

Mode PID Description Decoding

01

00 20
40 60
80

Returns which PIDs are sup-
ported by the vehicle’s ECU

4 bytes for the next 32 PIDs.
See Table 3.7

1C Describes which OBD stan-
dards the vehicle’s ECU com-
plies with

Returns a 1 byte value. Values
1, 3, 7, 9, 11, 13 indicate OBD-
II compliance

04 Provides an engine load per-
centage

1 byte value

02 Engine RPM 2 byte value
0D Vehicle speed in km/h 2 byte value
10 MAF air flow rate in gm/s 2 byte value
11 Vehicle throttle position as a

percentage
1 byte value

1F Run time since engine start in
seconds

2 byte value

2F Fuel level input percentage 1 byte value
5F Engine fuel rate in L/h 2 byte value

09
00 Same use as mode 01 See Table 3.7
02 Returns VIN 17-20 bytes. ASCII- encoded.

Null character padding when
necessary

01 VIN message count for PID 02 1 byte value

Table 3.8: PIDs to retrieve data from ECU

Chapter 3. Research Related to Project Description 39

AT Command Functionality
Carriage Return
(0x0D)

Repeat the last performed command. Provides the fastest rate
for obtaining consecutive values, such as consistently polling
for the engine’s RPM.

AL Allow long messages. The default number of data bytes in a
message is 7. However some OBD messages such as the VIN
request are longer. AL lifts the 7 bytes limitation. Default is
AL off.

NL Normal length messages. Limits all sent and received data to
seven bytes.

D Sets all settings to default factory settings. Last stored pro-
tocol is retrieved.

DP Describe current protocol. Returns the vehicle’s OBD proto-
col name, automatically determined by the IC.

DPN Describe the current protocol by number. Same as DP but
uses a number to represent the protocol instead.

Table 3.9: Useful AT Commands

AT Command Functionality
E0, E1 Echo off or on. Controls whether characters transmitted to

the interpreter should be retransmitted back to the host. De-
fault is echo on (E1).

H0, H1 Headers off or on. Controls whether to display the OBD mes-
sage header information bytes. H1 turns headers on.

I Identify. The chip provides its name to the host. Can be used
by the MCU to initially determine which IC is communicating
with it.

L0, L1 Linefeeds off or on. L1 turns linefeeds on which will generate
a linefeed after every carriage return is transmitted.

LP Low power mode. Enable low power mode, where only essen-
tial functionality is allowed.

S0, S1 Printing of spaces off or on. When on (S1), ECU responses,
which are a serious of hex characters, are separated by a space
to provide increased readability. Default setting is S1. Mes-
sages can be transferred faster if spaces are off.

Z Reset all. Causes a complete reset including power. All set-
tings and values are returned to default.

Table 3.10: Useful AT Command Set Continued

Chapter 3. Research Related to Project Description 40

ST Command Functionality
BR value Switches the UART baud rate to the given value. Returns a

‘?’ character if the specified value cannot be achieved within
a 3% accuracy.

S@1 string Sets the device description from an ASCII encoded string.
Max length of 47 characters.

SATI string Set device ID string. Can provide an ASCII encoded string
to be the device ID. One time programmable.

DVI Print the device ID string.

Table 3.11: Additional ST commands

Function Description
mmcInit Used to initialize the SD card in SPI mode. Has no parameters

and returns an error/success code character.
mmcping Checks if a card is present. Has no parameters and returns

an error/success code character.
mmcSendCmd Sends a command to the SD card. Takes 3 parameters: a com-

mand, data for that command, and a checksum. No return
value.

mmcGoIdle Puts the SD card in an idle low power mode. Has no param-
eters and returns an error/success code character.

mmcReadBlock Read a block from the SD card. Takes 3 parameters: the
start address of the data to read, number of bytes to read,
and a pointer to read buffer. Returns an error/success code
character.

mmcWriteBlock Writes a 512 byte block to the SD card. Takes 3 parame-
ters: Start address of data to write on the card, number of
bytes to be written, and a pointer to write buffer. Returns an
error/success code character.

mmcReadCardSize Reads the size of the SD card from an internal register. Has
no parameters and returns the detected card size as a long
integer.

Table 3.12: SD Library Functions

Chapter 3. Research Related to Project Description 41

Command Description
S-, <string> Sets the name of the device as a serialized Bluetooth friendly

string. Supports a length of up to 15 characters (ASCII al-
phanumeric), and appends 2 bytes from the MAC address to
ensure unique numbering.

SB,<n> Sets the baud rate based on a given number (0-7) to a value
between 2400 and 921K. 0 represents 2400 and 7 represents
921k.

SF,<n> Resets to factory settings on next device reboot. Can take a
number, either 1 or 2, as a parameter. 2 is a hard reset, while
1 resets a majority of the settings excluding device name and
information.

SR, <v> Sets the supported features of the RN4020 module. Takes in
a 32-bit value.

Table 3.13: Set Commands for the RN4020

Chapter 3. Research Related to Project Description 42

Command Description
+ Toggles echo on and off. Default state is off.
|O, <v>|I, <v> Used to set the output of the digital I/O pins (O) or get their

inputs.
A, <v>, <v> Commands the device to begin advertisement when it is in a

peripheral role. Two values are passed in as parameters, the
first is the advertisement interval, and the second is the total
advertisement time (both in milliseconds).

B Used to bond two connected devices. Once bonded, reconnec-
tion between devices doesn’t require authentication.

D Dumps information about the device over the UART. Trans-
mits the device MAC address, name, connection role, con-
nected devices, bonded devices, and server services.

E, <0>,<v> Establishes a connection with a discovered peripheral device.
Takes the 6- byte MAC address of the peripheral device as a
parameter.

K Kills the active BLE link.
N,<v> Places the RN4020 in a peripheral role, the A command can

then be used to broadcast. Takes in an “advertising content”
as a parameter, which is a hexadecimal value up to 25 bytes
in length.

R, 1 Forces a complete reboot. All setting changes take effect upon
startup.

Table 3.14: Action Commands for the RN4020

Command Description
I Places the RN4020 in MLDP simulation mode. All UART

data received will be transmitted wirelessly to the connected
device. The only way to exit is to assert CMD/MLDP low.

SE,<n> Sets the security mode for MLDP communications. Three
possible parameters: no security required (0), data is en-
crypted (1), and data is authenticated (2).

Table 3.15: MLDP Commands for the RN4020

Chapter 4

Design Constraints and Standards

4.1 Design Constraints

In this section we will analyze and discuss constraints as they apply to the GEM
device. All engineering projects must deal with constraints in their design and im-
plementation.

4.1.1 Economic

The GEM device is designed as an efficiency increasing and cost saving device. As
such it’s important that the device remain relatively low cost or else the initial cost
of the device will outweigh and savings that it may be able to provide. In order to
bring a device like the GEM to market we would require that the device be able to
pay for itself within one year. Overall our device used only one specialized component
(The STN1110) which is something that could be done away with in another revision
by having a more robust firmware. Our initial prototypes while expensive still ended
up coming in under budget. With further refinement a sub fifty dollar unit would
certainly be feasible.

In addition we had a budgetary constraint as our budget was provided by The Boeing
Corporation. We opted to stay within that budget and successfully designed and built
the GEM for less than $700.00.

43

Chapter 4. Design Constraints and Standards 44

4.1.2 Environmental

The primary design constraint for this project as well as all modern electronic projects
deal with the manufacturing process. Components should be soldered using lead free
solder and components that contain lead or other heavy metals should be limited or
eliminated from the design completely.

4.1.3 Social

Constraints involving social issues could not be identified in relation to the GEM.

4.1.4 Political

As the GEM is designed to be an automotive device there are many rules and regula-
tions regarding it’s operation. It must not interfere with the operation of the vehicle
and as with any device that intentionally radiates energy it must comply with FCC
regulations.

4.1.5 Ethical

The GEM is a device that can potentially record personal information that an indi-
vidual may not want revealed. Since GEM is designed to continually log data about
a person’s driving habits there is always the possibility that that information could
be search by law enforcement or other government officials. Because of this it should
be a requirement that the data recorded by the GEM is always available for the user
and can be easily deleted if the user requests or requires it.

4.1.6 Health and Safety

The GEM is an automotive accessory. As such it must be designed in such a way
that it is not distracting to the driver while fulfilling it’s main design requirements.
We accomplished this by creating an ultra simple Android application for the user
interface and requiring no user interaction with the device hardware.

Chapter 4. Design Constraints and Standards 45

4.1.7 Manufacturability

The GEM prototype was not designed with manufacturability in mind. However there
are no features which would cause problems in manufacture other than excessive part
count. In order to optimize for manufacture the GEM would need to have a simplified
bill of materials. For example rather than using an 866 ohm resistor, we would try
to see if a 1 kilo-ohm resistor would work in it’s place to reduce the overall number
of different components.

4.1.8 Sustainability

Sustainability would require further analysis of our chosen parts as well as the manu-
facturing process. In order to make sure that our product is robust enough to survive
the rigors of automotive use we would require specialized testing. To optimize for
long term production we would need to verify with manufacturers that there is a
guaranteed lifetime for the parts as well as find out what the process the manufac-
turer goes through when parts reach the end of the manufacturing lifetime. Given
this information we could plan redesigns around a parts end of life.

4.1.9 Legal

Since the GEM is similar to a number of other products on the market it would be
important to verify that the device is not in violation of any patents. As noted in the
political constraints sections we would also need to verify that the device is operating
within all government standards in order to bring it to market.

4.2 Related Standards

In this section all relevant and relatable industry standards pertaining to the GEM
system are listed and briefly described.

Chapter 4. Design Constraints and Standards 46

4.2.1 SAE J 2561-2001

A Bluetooth wireless protocol for automotive applications by the Society of Automo-
tive Engineers. The report defines the functionality of Bluetooth applications used
by electronic devices within vehicles.

4.2.2 ANSI/CEA 2040-2011

The SD Card Common Interface Standard by the Consumer Electronics Association.
Describes the interface between a microSD card and a terminal device, including
hardware, signaling, and application interface.

4.2.3 RS-232

Standard for serial data transmission. Defines electric characteristics, timing, and
meaning of signals. As well as the physical size and pinout of connectors.

4.2.4 IEEE 802.15

The Institute of Electrical and Electronics Engineers’ standards regarding wireless
personal area networks including Bluetooth.

4.2.5 Software Design Standards

The GEM Android application was developed based on the best practices suggested
by the Android Development Team at https://developer.android.com/training/
index.html.

4.2.6 Software Documentation Standards

Code documentation was generated using Javadoc because of its availability in An-
droid Studio and our team’s familiarity with this documentation generator. All docu-
mentation followed the conventions provided by Oracle at http://www.oracle.com/
technetwork/articles/java/index-137868.html.

https://developer.android.com/training/index.html
https://developer.android.com/training/index.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html

Chapter 4. Design Constraints and Standards 47

4.2.7 Software Coding Standards

The GEM Android application adhered to the code style guidelines distributed by the
Android Development Team at https://source.android.com/source/code-style.
html.

https://source.android.com/source/code-style.html
https://source.android.com/source/code-style.html

Chapter 5

Hardware Design Details

5.1 Enclosure

The GEM is intended to be left connected to the vehicle semi-permanently. Because
of this it needs to be small enough that it won’t get in the way of the driver. Similar
devices are roughly two inches wide and from from 1.5 to 2.5 inches deep. Our design
is in line with these devices. The connecting portion of the housing is an OBD-II
connector from Sparkfun Electronics. The connector is shown in 5.1.

The outer dimensions of the rectangular portion are 37.5 mm by 17.5 mm. The stan-
dard connector has two rows of pins separated by 9 mm and each row has a 4 mm pin
pitch. Because of how the pins are separated there is not an direct way to attach the
port to our main board. In order to get around this a smaller daughter board that
will breakout the eight pins we will be using. These will come off the daughter board
using right angle pin headers. The breakout board is shown in 5.2. The main board
will then be attached to the breakout board via the pin headers. The main board
attached to the breakout board can then be placed in a standard enclosure with a
cutout provided for the OBD-II plug. The selected enclosure is the Bud Industries
563-PB-1575 available from Mouser.

5.2 Power Supply

There are multiple voltages that the GEM requires, 12 V, 5 V, 3.3 V and for the SAE
J1850 bus switchable 5 V / 7 V. 12 V can be supplied by the battery but due to noise

48

Chapter 5. Hardware Design Details 49

Figure 5.1: Sparkfun OBD-II Connector -
Image courtesy of SparkFun.com

Figure 5.2: Breakout Board

on the bus as well as the possibility of inductive voltage spikes the battery voltage
must be filtered before it is usable. The filter and TVS stage of the power supply is
shown in figure 5.3. This design is based off the reference design from OBD Solutions.

RAW BAT is the direct connection to the battery via the OBD-II port. For system
protection two devices are used. F1 is a ”positive temperature coefficient device”
or resettable polyfuse. D10 is a transient voltage suppression diode. The polyfuse
provides over current protection, should the device draw too much current (>0.7 A).
In order to reset the fuse the GEM must be removed from power. The TVS diode
protects the system from over voltage. The TVS diode allows a typical operating
voltage but if the voltage spikes the TVS diode goes into breakdown and current flows
to ground. Diode D11 is used for reverse voltage protection, should someone hook up

Chapter 5. Hardware Design Details 50

Figure 5.3: Filter Stage

their battery backwards while the GEM is connected to the OBD-II port. Finally,
C9 and C10 are used to filter high frequency noise. These values are recommended
by the manufacturer of the STN1110.

From this stage the filtered and protected battery supply is passed to two different
voltage regulators. One for the the 5 V supply and one for the 3.3 V supply. These
two supplies are based off of designs created using the Texas Instruments WEBENCH
power designer. Both circuits use the LMR16006 buck regulator. The schematics for
the 3.3 V and 5 V regulator circuits are shown in figures 5.4 and 5.5 respectively.
Other than component values the designs are essentially the same.

In both cases the resistor divider sets the output voltage by:

Vout = Vfb × (1 + R4

R5
)

where Vfb = 0.765 V, R4 is the top resistor and R5 is the bottom resistor. All com-
ponent values were selected based on recommended values from the TI WEBENCH
power designer.

The final portion of the power supply is the switched power management circuit. This
part turns on and off the BAT and 5V supply to the GEM based on the status of the
STN1110. This allows for a lower power consumption as the active components that
use these supplies will draw no quiescent current. The switched power management
circuit is shown in figure 5.6.

Chapter 5. Hardware Design Details 51

Figure 5.4: 3.3 V Supply

Figure 5.5: 5 V Supply

In this circuit when PWR SAVE is low, Q7 is off which drives the gate voltage on
the two MOSFETs low. When PWR SAVE is high, Q7 is on which drives the gate
voltage on the two MOSFETs low. When the gate voltage is high the MOSFET is
off and when the voltage is low the MOSFET is on.

Chapter 5. Hardware Design Details 52

Figure 5.6: Switched Power Supply

5.3 OBD-II to Serial Interface

5.3.1 STN1110

The OBD-II to serial interface is based on STN1110. The STN1110 takes the incoming
data from the vehicle, converts it to a serial stream and then forwards the serial data
to the MSP430 for further processing. The connections are shown in figure 5.7.
The pinout for the STN1110 is given in table 5.1 The connections are based on the
reference design supplied by OBD Solutions.

RESET is not used in this design and so it is tied high. ANALOG IN is connected
to the voltage sense circuit shown in figure 5.8. If there is any change in voltage such
as when the engine is started or stopped the GEM can detect the voltage change and
react by entering the appropriate power state. PWM/VPW connects to the J1850
bus transmitter circuit, figure 5.14 in the transceivers section. Because the J1850 bus
operates using either 5 V or 7 V there needs to be a way to select the voltage level.
This pin is used to select between the two voltages depending on whether VPW or
PWM is being used. J1850 BUS+ TX & J1850 BUS- TX are connected to their
appropriate transceivers. When VPW is in use only the J1850 BUS+ TX is used.
When PWM is in use both lines are used. VSS is connected to ground.

Chapter 5. Hardware Design Details 53

Figure 5.7: STN1110 Configuration

OSC1 and OSC2 are connected to the crystal oscillator. For the board layout the
crystal oscillator needs to be placed within 12 mm of pins 9 and 10. The capacitors
need to be placed right next to the crystal. All components should be on the same
side of the board. The crystal and capacitors should be surrounded by a grounded
copper pour and no signal or power traces should run inside the pour. No signal or
power traces should be routed underneath the crystal oscillator circuit.

ISO RX connects to the ISO K line transceiver. SLEEP is tied high. If needed it is
available to be used by the MSP430 to put the STN1110 into low power mode.

VDD is connected to 3.3 V and can support a voltage range of 3.0 V to 3.6 V. CAN RX
receives input from the CAN transceiver(figure 5.9) using 5 V logic. CAN TX is an
open drain output and requires a pull-up to 5 V. The value of the pull-up resistor
depends on the CAN baud rate and trace length. The manufacturer recommends
a 1 kΩ pull-up resistor. UART RX is connected to the UART TX of the MSP430.
UART TX is connected to the UART RX of the MSP430. UART TX is an open
drain output and requires a pull-up to VDD. PWR CTRL is used to power down
devices connected to BAT SW and 5V SW. PWR CTRL is an open drain output
and requires a pull-up to VDD. The pull-up resistor is shown in the switched power
management circuit, figure 5.6. VSS is connected directly to ground. VCAP must be
connected to ground via a low ESR ceramic capacitor, typically 10 µF.

Chapter 5. Hardware Design Details 54

Table 5.1: STN1110 Pinout

Pin Number Pin Name Pin Description

1 RESET Reset Input
2 ANALOG IN Analog Voltage Measurement
3 PWM/VPW SAE J1850 Voltage Select
4 VPW RX VPW Receive Input
5 PWM RX PWM Receive Input
6 J1850 BUS+ TX SAE J1850 Bus+ Transmit
7 J1850 BUS- TX SAE J1850 Bus- Transmit
8 VSS Ground Reference
9 OSC1 16.000 MHz Oscillator Input
10 OSC2 16.000 MHz Oscillator Output
11 ISO RX ISO K-Line Input
12 SLEEP External Sleep Control
13 VDD Positive Voltage Supply
14 CAN RX CAN Receive Input
15 CAN TX CAN Transmit Output
16 UART RX UART Receive Input
17 UART TX UART Transmit Output
18 PWR CTRL External Power Control Output
19 VSS Ground Reference
20 VCAP CPU Logic Filter Cap
21 OBD TX LED/RST NVM Activity LED and Reset to Defaults
22 OBD RX LED/INT Activity LED and Interrupt Output
23 UART TX LED Activity LED
24 UART RX LED Activity LED
25 ISO K TX K-Line Output
26 ISO L TX L-Line Output
27 AVSS Analog Ground Reference
28 AVDD Analog Positive Supply

Pin 21, OBD TX LED/RST NVM, is a double duty pin. When JP1 is connected this
pin is grounded which resets the non-volatile memory. When JP1 is not connected
this pin controls the OBD transmit activity LED. pin 22, OBD RX LED/INT, also
has two uses, it either controls the OBD receive activity LED or acts as an interrupt
output. UART TX LED and UART RX LED control the UART TX and UART RX
activity LED’s.

Chapter 5. Hardware Design Details 55

Figure 5.8: Voltage Sense Circuit

ISO K TX is an active low pin connected to the K-Line transceiver. ISO L TX is
an active low pin connected to the L-Line transceiver. AVSS is connected directly to
ground and AVDD is connected through a 10 Ω resistor. The resistor is recommended
by the manufacturer to decouple AVDD from VDD.

5.3.2 Transceivers

The OBD-II to serial interface relies on three different transceivers, one for the CAN
bus, one for the J1850 VPW and PWM bus and one for the ISO bus.

The CAN transceiver used for the GEM is the Microchip MCP2551. The MCP2551
takes input from the CAN bus in the form of a differential voltage and outputs a high
or low signal via the RXD pin. The schematic design is shown in figure 5.9.

Chapter 5. Hardware Design Details 56

Figure 5.9: CAN Transceiver

The ISO transceiver has two sub-circuits. The transmitter for the K-line and the
L-line is shown in 5.10. In both cases the high voltage is equal to the battery voltage,
far too high for the STN1110 to handle on it’s own. In these circuits the output from
the STN1110 turns on and off the transistor which in turn sets the voltage on the
line to either BAT which is nominally 12 V or to ground.

The receiver uses an LM339 comparator to compare the voltage on the K-line to the
battery voltage. As the signal voltage on the K-line is either 12 V or 0 V a voltage
divider is used on the battery voltage to reduce the voltage by half. With this the
comparison is between 12 V and 6 V or 0 V and 6 V. When the K-line is low the open
collector output of the comparator is pulled to 3.3 V. When the K-line is high the
output of the comparator is pulled to ground. This output is then fed to the ISO RX
pin of the STN1110. The receiver circuit is shown in figure 5.11.

The SAE J1850 transceiver must deal with two different protocols and so is the most
complex of the three transceivers. Both receivers use the LM339 comparator. The
PWM receiver takes an input of the J1850 BUS+ to the positive input and BUS-
to the negative input. When BUS+ is pulled high and BUS- is pulled low the open
collector output of the comparator is pulled to 3.3 V. Otherwise the output is pulled
to ground. The schematic for the PWM receiver is shown in figure 5.12

Chapter 5. Hardware Design Details 57

Figure 5.10: ISO Transmitter

For the VPW receiver only the BUS+ line is used. The positive input of the LM339 is
connected to 5 V through a voltage divider that reduces it to 4 V as the decision point
between high and low for VPW is set at 3.5 V. BUS+ is connected to the negative
input of the comparator. When BUS+ is less than 4 V the open collector output of
the LM339 is pulled to 3.3 V and when the BUS+ is greater than 4 V the output is
pulled to ground. The schematic for the VPW receiver is shown in figure 5.13.

For the transmitter portion of the SAE J1850 bus the BUS+ line has to be able to
operate at two different voltages. The voltage is selected by the STN1110. When
PWM is high transistor Q3 is on which bypasses the 374 Ω resistor. This sets the
output of the LM317 voltage regulator to 5.75 V. When PWM is low Q3 is off and the
output of the LM317 is 7.6 V. When the J1850 BUS+ TX pin is high, Q4 is turned on
which pulls the base of Q6 to ground turning it on and the output to BUS+ is roughly
7 V after the base emitter drop and the diode drop at D8. When the BUS+ TX pin
is low Q4 turns off which causes the base voltage at Q6 to rise and turn off Q6. This
leaves the BUS+ output at ground. This schematic for this circuit is shown in figure
5.14.

The BUS- transmitter is far simpler as it is only used for PWM and so is only ever left
high when not transmitting or pulled low when transmitting. When the BUS- TX
pin is low transistor Q5 is off and the voltage at BUS- is roughly 5 V. When the pin

Chapter 5. Hardware Design Details 58

Figure 5.11: ISO Receiver

Figure 5.12: SAE J1850 PWM Receiver

Chapter 5. Hardware Design Details 59

Figure 5.13: SAE J1850 VPW Receiver

goes high the transistor is turned on and the voltage on BUS- is pulled to ground.
The schematic for this circuit is shown in figure 5.14.

5.4 Microcontroller Hardware Design

The design of the microntroller subsystem, including it’s peripherals and any hardware
considerations is portrayed in the following subsections.

5.4.1 Microcontroller Choice

The MSP430F247 was the final MCU design choice for the GEM system. A variety
of system requirements and personal preferences led to this choice. For our design we
needed an ultra-low power 16 bit microcontroller. We narrowed down our choices to
an MSP430 chip, based on team members’ experience, and comfort, with the device
family. We determined an operating system was not necessary for GEM, since the

Chapter 5. Hardware Design Details 60

Figure 5.14: SAE J1850 BUS+ Transmitter

MCU is only required to interface with several other chips and modules. Using an op-
erating system would also drive up the power usage of the device, and one of GEM’s
primary goals was to keep the design as power efficient as possible. The MSP430
has the task of interfacing with the STN1110 OBD-II interpreter chip, an onboard
microSD card, and a Bluetooth module. Thus, a device with at least 3 serial com-
munication interfaces was needed for our design. The MSP430F247 provides 4 serial
communication interfaces, meeting our system requirement. Also, the MSP430F247
doesn’t have a DMA, which would have gone to waste in our design. The 247 was
specifically chosen among its family processors for the available flash memory and
RAM. The MSP430F2XX family includes 6 different processors each providing a
variable amount of memory. The 247 device hosts 32 KB of flash memory and 4
KB of RAM. This is the median amount amongst this family of devices. Choosing
an MCU with above average on chip memory was important for supporting all our
firmware and writing data to the SD card, which must be done in 512 byte blocks.
The device is also cheap and samples are provided by Texas Instrument. However,
some of the downfalls included an unused on chip ADC, and a large percentage of
pins (device has 64 total pins) that where not needed. Although I/O pins where left

Chapter 5. Hardware Design Details 61

Figure 5.15: SAE J1850 BUS- Transmitter

unconnected in case future additions would be necessary. Overall, the MSP430F247
was a good, cheap, power efficient, choice that met all of our design requirements and
our team members were all comfortable using.

5.4.2 JTAG Interface

In our design, several pins were broken out from the MSP430 in order to make use of
the JTAG interface. The JTAG interface is used for on system debugging and flash
programming. Without the JTAG interface we would have to resort to very expensive
flashers to program the MCU. Our system was designed for a Spy Bi-Wire (2 Wire
JTAG) connection shown in Figure 5.16. Our design is based off the reference design
from TI’s wiki page. A 14-pin header is used, but 8 of the pins are unused for 2
Wire JTAG connections with an MSP430. The JTAG header has two power inputs
which are set via a jumper. J1 on the figure is the onboard 3.3 V power supply, J2 is
used when programming the device and power is given by the programming device (a
computer). Pin 9 is grounded, and pin 7 outputs a test clock to a dedicated JTAG pin

Chapter 5. Hardware Design Details 62

on the MSP430F247. Pin 8 is the device protection fuse, tied to a TDI/TCLK input
on the MCU. And finally, pin 1 is the bidirectional TDO/TDI (test data in/out) used
for programming the MSP device.

Figure 5.16: JTAG Interface Design

5.4.3 RN4020

Since low power and low cost drove all our previous design decisions. We wanted to
maintain consistency when deciding how to implement Bluetooth on the GEM system.
Ultimately, we decided to use BLE for its power efficiency, and avoided having to
implement a memory intensive Bluetooth stack on our MCU. Thus, the RN4020 BLE
module with an onboard Bluetooth 4.1 stack made the most sense for our design needs.
The pin interface between the RN4020 and the MSP430F247 is displayed in Figure
5.17. The module has 24 total pins, 4 of which must be grounded and 3 which must
remain unconnected as specified by the manufacturer’s data sheet. 3.3 V are supplied
to pin 23 from GEM’s power supply. The UART TX BT and UART RX BT lines are
connected to one of the MSP430’s UART transmit and receive lines (respectively).
Pins 2-4 are analog inputs to the RN4020, but are unused in our design, and as such,
are grounded. CMD is connected to a standard digital I/O port on the MSP430, and
is used to toggle the RN4020 between command mode and MLDP mode. WAKE SW
and WAKE HW are also connected to standard I/O ports, and are used to control
resets and power states in combination with software. SPI/PIO sets the modes of
pins 10-13, asserted high for SPI mode. Finally, two status LED’s are connected to

Chapter 5. Hardware Design Details 63

the device for debugging purposes. BT CNT LED signals when a device is connected,
while BT ACT LED signals when an activity is performed (data transfer).

Figure 5.17: RN4020 Connections

5.4.4 MicroSD Card

GEM was required to have an on board storage device in order to store data when a
Bluetooth connection is not established. Any storage media would have sufficed for
this application. A microSD card was chosen mainly for its low power consumption
and pinout as well providing a small form factor. For storing and receiving raw data
in an SD card an SPI bus connection must be established with the host MCU. A
microSD card is an 8 pin device. The connections for this device are shown in Figure
5.18. Two of the pins are required to be left unconnected, there is 1 grounded pin,
and a 3.3 volt power input. Thus, the remaining 4 pins provide the interface to the
host controller. Three of the connections are the standard SPI connections: slave in,
master out (SIMO); slave out master in (SOMI), and an SPI clock provided by the
master. The final connection, chip select (CS), is controlled by a standard digital I/O
port on the MSP430. Chip select is used in conjunction with software to reset the
SD card and select the operating mode.

Chapter 5. Hardware Design Details 64

Figure 5.18: MicroSD Connections

Chapter 6

Software Design Details

6.1 Introduction

This chapter describes the architecture and software system design of the GEM An-
droid application. It was our intention to create a reference for ourselves and others
that outlined the procedures necessary to develop the system.

6.2 System Overview

Our goal was to produce software that meets the expectations of mobile application
users with performance and presentation similar to other fuel economy applications.
The Android application displays vehicle metrics received from the GEM device in
real-time. Some of which are:

• Vehicle speed
• RPM
• Instant fuel economy
• Tripometer

This software is able to display these values for the user within range of the GEM
device.

65

Chapter 6. Software Design Details 66

6.2.1 Software Development Tools

In addition to the Android development environment described in subsubsection 3.4.1.1
the following tools were used:

• SublimeText2 - A cross-platform text and source code editor.
http://www.sublimetext.com/2

• GitHub - An online version control system.
https://github.com

• Adobe Illustrator - A vector graphics editor.
http://www.adobe.com/products/illustrator.html

6.3 Design Considerations

6.3.1 Reusability

The reusability of the system was a top priority from the beginning. The system is
designed to take information from the GEM device and provide the application with
the data necessary to produce meaningful statistics to the user. The design architec-
ture is flexible enough to allow any subsystem or feature to be modified/improved in
future releases.

6.3.2 Maintainability

Maintainability is crucial to any system that may be modified or examined in the
future, and proper programming practices must be employed throughout the appli-
cation development lifecycle. The Agile software development model was deemed the
most effective as design challenges may have forced us to change directions quickly,
but proper documentation throughout the build was absolutely necessary.

6.3.3 Testability

Testing the system on mobile devices required access to several different Android de-
vices with varying hardware. The Android Virtual Device (AVD) emulator increased

http://www.sublimetext.com/2
https://github.com
http://www.adobe.com/products/illustrator.html

Chapter 6. Software Design Details 67

productivity, but did not allow Bluetooth emulation. Our chosen IDE, Android Stu-
dio, is built specifically for the creation or Android apps and offered much of the same
testing frameworks as Eclipse.

6.3.4 Performance

Our system was designed to be relatively light and requiring Android 4.3 guaranteed
that a given mobile device’s hardware could handle our application. No performance
issues arose during the development process.

6.3.5 Portability

Developing the system for mobile devices introduced many variables (i.e. screen
size, processor, RAM), but the languages and APIs used to program our system
are standardized and subsume previous releases which made portability a relatively
simple feat to achieve.

6.3.6 Safety

The information stored and transmitted by our device is not considered sensitive
information. The range of the Bluetooth transmission is short enough that it was
unlikely that unintended users would have access to the information transmitted. In
the event that data was intercepted, there was no danger that a users vehicle could
be altered or harmed in any way. The biggest concern for safety that our team had
was that users would not be distracted by the application while operating their motor
vehicle. Careful consideration was put into the design of the application so as not to
require input from a user while driving.

6.3.7 Assumptions and Dependencies

It was assumed that the user would use a device with the Android operating system
and Bluetooth LE capabilities. The Android application targeted as many devices as
possible running API level 18 or greater, but no guarantees are made on the stability
or functionality therein. Overall, it is expected that the user will use the software for
its intended purposes.

Chapter 6. Software Design Details 68

6.4 System Architecture

6.4.1 User Interface

A main goal of the application was ease of use and its ability to effectively convey
information to the user without distractions. This is why the application launches
from the icon directly to the Bluetooth LE devices screen shown in figure 6.1.

Figure 6.1: Launching the GEM application

The color scheme of the application was chosen for its contrast, paired with the auto-
matic brightness feature of the mobile device makes it ideal for day and night driving.
Vehicle speed is displayed significantly larger than the rest of the metrics because a
digital readout is convenient since the majority of vehicles do not come equipped with
digital speedometers. Also shown on the Home screen is Revolutions (RPM) which is

Chapter 6. Software Design Details 69

an important value to monitor for increased fuel economy. Next to Revolutions is the
Instant Econ representing the MPG at that instant. Fuel Used displays the amount
of fuel consumed during a trip and Fuel Rate shows the fuel consumed in gallons per
hour (GPH) as an additional method of tracking fuel economy. The Trip Distance
tracks the distance traveled and can be reset by the user. The Trip Avg Econ allows
users to measure their average MPG over the course of a trip (Trip Distance).

For maximum flexibility the application is able to operate in a landscape orientation
as shown in 6.2. This allows users to mount the device in their vehicle as they see fit.

Figure 6.2: Landscape orientation

The menu button on a users mobile device displays the application Menu shown in
6.3. Selecting Start begins communication and data transmission with the GEM
device. The Exit function disconnects the mobile device from the GEM device and
closes the application.

Chapter 6. Software Design Details 70

Figure 6.3: Application Menu

Chapter 6. Software Design Details 71

6.4.2 Decomposition Description

The activity diagram in 6.4 shows the flow of the GEM application.

Figure 6.4: Application activity diagram

Chapter 6. Software Design Details 72

DeviceScanActivity is responsible for launching the application, scanning and display-
ing Bluetooth LE devices. Once connected to a Bluetooth LE device the application
control is given to MainActivity.

Figure 6.5: DeviceScanActivity class diagram

Chapter 6. Software Design Details 73

MainActivity is called upon when a user establishes a connection to a Bluetooth LE
device from the DeviceScanActivity. This UI activity communicates with Bluetooth-
LeService to manage and display vehicle data received from a Bluetooth LE device.

Figure 6.6: MainActivity class diagram

Chapter 6. Software Design Details 74

Once the GEM device is connected a Service that handles data transmission with
a Generic Attribute (GATT) server hosted on a Bluetooth LE device is started.
BluetoothLeService broadcasts data to the UI (MainActivity) where the values for
vehicle speed, RPM, MPG, and other relevant information are calculated.

Figure 6.7: BluetoothLeService class diagram

Chapter 6. Software Design Details 75

6.5 Detailed System Design

6.5.1 Component Descriptions

Class DeviceScanActivity

Responsible for launching the application and then scanning for new or paired Blue-
tooth LE devices.

Declaration

public class DeviceScanActivity extends ListActivity

Fields

• private LeDeviceListAdapter mLeDeviceListAdapter

– List adapter to hold the list of Bluetooth LE devices found from a scan.

• private BluetoothAdapter mBluetoothAdapter

– Represents a local Bluetooth adapter.

• private boolean mScanning

– Tracks whether there is a scan in progress.

• private Handler mHandler

– Handler to stop scanning after a time delay.

• private static final int REQUEST ENABLE BT = 1

– Identifies a response from Activity that enables Bluetooth.

• private static final long SCAN PERIOD = 3000

– Length of time in milliseconds to scan for Bluetooth LE devices.

• private LeScanCallback mLeScanCallback

– A discovered device during a scan.

Chapter 6. Software Design Details 76

Methods

• onCreate
public void onCreate(Bundle savedInstanceState)

– Usage
Initializes the Bluetooth LE device activity.

• onCreateOptionsMenu
public boolean onCreateOptionsMenu(Menu menu)

– Usage
Initializes the menu activity.

• onOptionsItemSelected
public boolean onOptionsItemSelected(MenuItem item)

– Usage
Called when an item in the menu is selected.

• onPause
protected void onPause()

– Usage
Called to pause an activity.

• onResume
protected void onResume()

– Usage
Called to resume a previous activity.

• onActivityResult
protected void onActivityResult(int request, int result, Intent data)

– Usage
Test response from request to enable Bluetooth.

• onListItemClick
protected void onListItemClick(ListView l, View v, int position, long id)

– Usage
Device selected in list adapter.

Chapter 6. Software Design Details 77

• scanLeDevice
private void scanLeDevice(final boolean enable)

– Usage
Scan for Bluetooth LE devices.

Class MainActivity

Responsible for displaying the Home screen and its metrics, handling exceptions, in-
terfacing with the other components, and exiting the application.

Declaration

public class MainActivity extends ActionBarActivity

Fields

• private String mDeviceAddress

– Bluetooth device MAC address.

• private String mDeviceName

– Bluetooth device name.

• public double tripEconCount

– Number of times the trip economy has been updated.

• public double tripEconSum

– Sum of the trip economy.

• protected double galCons

– Total number of gallons of gasoline consumed.

• protected long lastTime

– Time since the vehicle metrics were updated.

• protected long lastTimeCons

– Time since the number of gallons consumed were updated.

Chapter 6. Software Design Details 78

• protected double tripDist

– Total number of miles traveled during this application session.

• protected String [][] dataArray

– Array of OBD commands to send to the GEM device.

• String inData

– Data received from the GEM device.

• protected boolean isAppLaunched

– Tracks if the GEM application has been started.

Methods

• sendData
protected void sendData()

– Usage
Sends OBD commands to the GEM device.

• readData
protected void readData(String data)

– Usage
Reads the data received from the GEM device.

• getByteA
private int getByteA(String str)

– Usage
Reads first byte of data from the received data.

• getByteB
private int getByteB(String str)

– Usage
Reads second byte of data from the received data.

• getMAF
protected double getMAF()

– Usage
Gets the MAF value from the data array.

Chapter 6. Software Design Details 79

• getMPH
protected int getMPH()

– Usage
Gets the vehicle speed value from the data array.

• getRPM
protected int getRPM()

– Usage
Gets the RPM value from the data array.

• getInstantEcon
protected double getInstantEcon()

– Usage
Calculates the instant fuel economy in mpg.

• getGalsCons
protected double getGalsCons()

– Usage
Calculates the number of gallons consumed during the application session.

• getGPH
protected double getGPH()

– Usage
Calculates the number of gallons consumed per hour.

• getTripDist
protected double getTripDist()

– Usage
Calculates the total distance traveled in miles during the application ses-
sion.

• getTripEcon
protected double getTripEcon()

– Usage
Calculates the average fuel economy in mpg over the total distance traveled
during the application session.

Chapter 6. Software Design Details 80

• initializeDisplay
public void initializeDisplay()

– Usage
Sets all values displayed in the UI to zero.

• setContinuousDisplay
public void setContinousDisplay()

– Usage
Updates the values displayed in the UI during the application session.

Class BluetoothLeService

Responsible for creating a GATT server and broadcasting data received from the
GEM device.

Declaration

public class BluetoothLeService extends Service

Fields

• public final static String ACTION GATT CONNECTED

– Represents an action to broadcast to MainActivity that the GATT server
is connected.

• public final static String ACTION GATT DISCONNECTED

– Represents an action to broadcast to MainActivity that the GATT server
is disconnected.

• public final static String ACTION GATT SERVICES DISCOVERED

– Represents an action to broadcast to MainActivity that GATT services
have been discovered.

• public final static String ACTION DATA AVAILABLE

– Represents an action to broadcast to MainActivity that data from the
GEM device is available.

Chapter 6. Software Design Details 81

• public final static String ACTION DATA WRITTEN

– Represents an action to broadcast to MainActivity that data has been sent
to the GEM device.

• public final static String EXTRA DATA

– Represents an action to broadcast to MainActivity that more data from
the GEM device is available.

• public final static UUID MLDP DATA

– Represents MCU data UUID.

• public final static UUID MLDP CONFIG

– Represents MCU configuration UUID.

• private BluetoothAdapter mBluetoothAdapter

– Represents a local Bluetooth adapter.

• private String mBluetoothDeviceAddress

– Connected Bluetooth device MAC address.

• private BluetoothGatt mBluetoothGatt

– Controls the Bluetooth communication link.

• private BluetoothManager mBluetoothManager

– Used to get the Bluetooth adapter.

• private final IBinder mBinder

– Binds the BluetoothLeService to MainActivity.

• private final BluetoothGattCallback mBluetoothGattCallback

– Tracks GATT callback events.

Methods

• onBind
public IBinder onBind()

– Usage
Binds the BluetoothLeService to MainActivity.

Chapter 6. Software Design Details 82

• onUnbind
public boolean onUnbind(Intent intent)

– Usage
Closes Bluetooth GATT server connection.

• broadcastUpdate
private void broadcastUpdate(final String action)

– Usage
Broadcasts an intent to MainActivity.

• broadcastUpdate
private void broadcastUpdate(final String action, final BluetoothGattChar-
acteristic c)

– Usage
Broadcasts an intent and data to MainActivity.

• initialize
public boolean initialize()

– Usage
Gets BluetoothManager and BluetoothAdapter.

• connect
public boolean connect(final String address)

– Usage
Opens a Bluetooth GATT connection to a Bluetooth LE device.

• disconnect
public void disconnect()

– Usage
Ends an existing Bluetooth GATT connection to a Bluetooth LE device.

• getSupportedGattServices
public List¡BluetoothGattService¿ getSupportedGattServices()

– Usage
Retrieves the list of supported GATT services on the connected Bluetooth
LE device.

Chapter 6. Software Design Details 83

• readCharacteristic
public void readCharacteristic(BluetoothGattCharacteristic c)

– Usage
Reads a given characteristic from the connected Bluetooth LE device.

• writeCharacteristic
public void writeCharacteristic(BluetoothGattCharacteristic c)

– Usage
Writes to a given characteristic of the connected Bluetooth LE device.

• setCharacteristicNotification
public void setCharacteristicNotification(BluetoothGattCharacteristic c, boolean
enabled)

– Usage
Enables notification when a given characteristic changes.

6.6 Fuel Optimization Algorithm

The firmware on the GEM system deals with polling the vehicle for as much fuel data
as possible on every trip a user makes. This raw data is then transmitted to a user’s
mobile device with some basic organization. An analysis of the data is left to the
mobile application with the use of high level programing. It is our intent to design a
high level fuel optimization algorithm to efficiently process the data and achieve our
team goal of providing practical fuel advice to users. While some vehicles provide
unique PID’s to measure specific fuel injection, others don’t, therefore we can’t rely on
this data when designing fuel algorithms. We instead will opt to use widely available
ECU data to meet the GEM system’s requirements. The useful messages for this task
are engine RPM, speed, air flow rate, throttle position, and fuel rate.

By synchronizing instantaneous data with fixed-interval time polls, average rates can
be efficiently calculated. For instance, instantaneous air flow rate and fuel rate can
be used to calculate an instantaneous miles per gallons (MPG) measurement. Syn-
chronizing several measurements over equally divided time segments would provide
an average MPG measurement. This technique can be generalized for acceleration
and de-acceleration data as well. Thus, the first stage of the algorithm deals with
synchronizing instantaneous data and time. The data is then normalized to lower
error percentages and placed in a histogram-like data structure. The device will then
compare this to, static, “optimal rates” pre-stored in the application software. These

Chapter 6. Software Design Details 84

optimal rates will be derived from readily available fuel research. A point-by-point
distance formula will be used to generate a correlation coefficient between the gath-
ered average rates and optimal driving rates. A set of thresholds will then be used to
trigger fuel advice based on several correlation coefficients for each driving parameter
measured by the GEM system.

Chapter 7

Project Prototype Details

7.1 BOM

The bill of material for the GEM is shown in Table 7.1. It includes prices, part
numbers, and quantities as well as reference designators that match the schematics
in Appendix B.

7.2 PCB Vendor and Assembly

For the final design and build of the GEM we chose OSHPark for the PCB run and
we purchased a hot air reflow station for the soldering. The following sections detail
why those choices were made.

7.2.1 Printed Circuit Board

Thanks to the hobbyist market there are many printed circuit board (PCB) vendors
to choose from. The primary requirements for this project as it is on a very limited
time frame are cost and turnaround time. Table 7.2 gives an overview of some of the
more popular PCB prototyping services. Due to impedance matching requirements
for the Bluetooth system a four layer design will be be used unless we can optimize for
a two layer board. Our initial budgeting considered a four layer board. The expected
board size is roughly 2.5 cm by 7.5 cm. In the final design we chose a two layer board

85

Chapter 7. Project Prototype Details 86

that was stacked using standard pin headers. This simplified the design process as
well as helped us to reduce overall cost.

Companies like 4PCB and OURPCB give flat rates for boards up to a certain size.
The PCB for the GEM will be very small so paying by the inch is a better solution.
OSHPark charges $10.00 per square inch for a four layer board with free shipping.
The only disadvantage is the long lead time. However if we stick to a schedule and
plan ahead the long lead time won’t effect the project. If it turns out that we need
a quicker turn around one of the other companies will be selected on a case by case
basis.

7.2.2 Assembly

The GEM utilizes many surface mount passive components and some of the remaining
parts are only available in the QFN package. QFN stands for quad flat pack no lead.
This means that there are connection points on the bottom of the chip but no lead for
us to hand solder. Due to the nature of the parts and the packages that are available
assembly of the prototype will require the use of reflow soldering. Reflow soldering
involves attaching the parts to the PCB using a solder paste and then heating the
assembly to melt the paste to provide a secure mechanical and electrical connection.

Ideally a PCB assembly house would be used in order to machine assemble or profes-
sionally hand assemble the board. However the cost of assembly in our case would be
prohibitively expensive. On the order of $300 to $600. This would consume almost
the entire sponsorship budget.

There are many different techniques that can be used for reflow soldering. The ideal
process is to use a specially designed reflow oven that can be set to use a predefined
temperature profile to bake the assembly at the manufacturers guideline temperatures
for the proper times. In lieu of an oven designed for reflow it is possible to use a
household toaster oven though in that case control over the temperature profile is
lost and consistent heating is not guaranteed. The third technique is to use a hot
air rework station and heat each of the parts or areas of the PCB individually. This
technique is the most readily available so will be used unless reflow ovens are found
to be available.

Because of the budgetary concerns attempts will be made at having the team members
perform the soldering. However if there are unexpected problems or assembly is too
difficult additional resources will be found to have the board professionally assembled.

Chapter 7. Project Prototype Details 87

7.3 Software

All software implemented in the prototype of the GEM system is described in this
section.

7.3.1 Initial Firmware Design

The following sections describe the initial firmware design used in the first revision
of the GEM system.

7.3.1.1 Main System

The MCU firmware was designed with modularity, portability, and reusability in
mind. The design revolves around five interacting subsystems, gelled together by
a main subroutine. A finite state machine best describes the design of the main
routine which is shown in Figure 7.1. The subsystems are implemented as modular
subroutines and each handle an independent task as follows:

• Bluetooth Connection
• Vehicle Profiles
• Onboard Storage
• OBD-II Data Pipelining
• Power Control

Upon powering on the device for the first time, an initial setup state is entered
by the MCU firmware. During this initialization stage, the MSP430 establishes a
connection, and configures the STN1110, RN4020, and microSD chips to enable the
core functionality of GEM. An “initial state” flag is cleared to ensure that these
operations don’t have to be repeated. Upon all subsequent device powering’s a default
operation state is executed instead. In this default state the VIN is always retrieved
and passed on to the Profiles subroutine. The Profiles subroutine passes profile data to
the Bluetooth subroutine. The main subroutine decides whether to proceed to either
the Storage or Data subroutines based on connection status parameters provided by
the Bluetooth subroutine. If a connection is not available or if there are previously
unsent packets in the microSD card, the Storage subroutine is initiated. The Data
subroutine is only initiated if a connection is available and there isn’t any unsent data.
Finally, the Power subroutine interrupts any executing routine when the Vehicle is
turned in order to cache important data and power off the device.

Chapter 7. Project Prototype Details 88

7.3.1.2 Vehicle Profile Subsystem

There is a small footprint profile system onboard that serves two primary functions.
The first is to permit GEM to be a portable system. The second is to enable quicker
start up times when the vehicle is already known. The system software operates
in either a Fetch state or a Create state. Up to 5 vehicle profiles may be stored,
identified by the VIN and some other parameters. The system software compares the
VIN to existing profiles. If there is a match, the corresponding profiles cached data
is provided to the main subroutine. If the VIN doesn’t match an existing profile, a
new profile is created, or an older one is replaced if 5 unique profiles already exist.A
system diagram is shown in Figure 7.2.

7.3.1.3 Bluetooth Connection Subsystem

The Bluetooth subroutine is triggered based on the Profile system’s parameters, or
status flags for non-transmitted packets provided by the Data system. When the sys-
tem software in its default state it scans for connectable devices, if none are discovered
a flag is set and execution is passed to the Storage system. If a device is found, the
system proceeds to a Paring state which determines if a previously connected device
is available. If an unknown device is paired with the GEM system, an authentica-
tion step is required, which is handled in a Connection state. Once authentication is
achieved or if a recognized device is connected, the MLDP state is triggered. In this
state the device prepares the RN4020 to blast OBD data to the mobile device. Once
this is complete, a connection report frame is used to initiate the Data subroutine. A
system diagram is shown in Figure 7.3.

7.3.1.4 Onboard Storage Subsystem

The Storage subroutine is triggered after the Bluetooth subroutine finishes execution.
This subroutine operates in either a Write or Read state, based on flags set by other
routines. When a connection is not available the system is placed in a write state,
storing all OBD data in microSD blocks. The read state is entered when there are
blocks in the microSD card that have not been transmitted yet. When a connection
is available, and there aren’t any non-transmitted blocks the system cedes execution.
A system diagram is shown in Figure 7.4.

Chapter 7. Project Prototype Details 89

7.3.1.5 OBD-II Data Subsystem

When several conditions have been met the main routine transfers execution to the
Data subroutine. These conditions are passed in through several status flags. The
system software alternates between two states, a Request state and a Pipeline state. In
the Request state the ECU is constantly polled through the STN1110 and a small local
frame is built. Once the frame is ready, it is sent to the Pipeline stage, which deals
with transmitting to the RN4020 in MLDP mode via UART. Both states monitor
for any status flags changes, such as loosing Bluetooth connection, and terminate
the subroutine if there are any changes, passing control back to the main routine. A
system diagram is shown in Figure 7.5.

7.3.1.6 Power Control Subsystem

The Power subroutines main task is to handle the power states of all peripherals. Any
of the other subroutines execution can be interrupted by the Power subroutine, when
it is determined that the vehicle has been turned off. Coming from an interrupted
routine the Power system initiates in the Interrupt state. In this state, important
data (status flags) necessary for the next startup is cached, peripheral devices power
states are altered, and any other tasks are interrupted. Then, an Idle no power state
assumed. Once the device is powered on again, the Idle state wakes up peripheral
devices and returns execution to the main routine.A system diagram is shown in
Figure 7.6.

7.3.2 Final Firmware Design

Following the completion of the first revision of GEM, several optimizations were
necessary to meet initial design specifications. A new firmware design was fully con-
structed to be implemented on the final GEM system. The complexity of the design
was trimmed down to a main routine with two receive buffers rather than the ineffi-
cient five sub-routines of the initial design. A diagram of the final firmware is shown
in Figure 7.7. The key modifications which allowed an exponential speedup in GEM’s
communication including cutting out the profile and data logging subsystems. The
vehicle profile system was intended to speed-up device power on by matching the VIN
with an existing profile and loading flags and device states from memory. However,
it was discovered that with the implementation of the new firmware, fetching and
storing this information from memory was actually a bottleneck in speed for device
initialization. Rather than store profiles, all the vehicle data and device setup can be

Chapter 7. Project Prototype Details 90

re-retrieved from the ECU on every power on, much faster than it can be retrieved
from MCU or SD card memory.

Additionally, SPI communication with an SD card with two UART communications
was causing unwarranted synchronization and slowdown issues. This added with the
difficulty of dealing with raw read and writes, in a low memory environment, and
the fact that data-logging is not an essential feature of the GEM device lead to the
removal of the data logging system as well. Thus, as seen in the state diagram the
final firmware design of the GEM system relies on two buffers, implemented as circular
queues. One buffer is for incoming RN4020 UART messages, the other for STN1110
messages. The queues forces the MCU to handle messages in the order that they were
received, resolving any synchronization issues. Based on the received messages the
MCU transitions between three states: Interpreting Bluetooth responses, interpreting
STN messages, and Bluetooth transmission.

Chapter 7. Project Prototype Details 91

Table 7.1: Final BOM

Designator Quantity Part Number / Value Part Number Link Price Each Total
C1,C2 2 30pF C0805C300J1GACTU 0.27 0.54
C3,C4,C5 3 1uF 77-VJ0805Y105KXQTBC 0.05 0.15
C6,C7 2 560pF 77-VJ0805A561KXXCBC 0.06 0.12
C8,C17,C20 3 0.1uF 581-08055C104J4T4A 0.15 0.45
C9 1 10nF C0805C103K5RACAUTO 0.12 0.12
C10 1 47uF 963-JMK212BJ476MG-T 0.77 0.77
C11, C12 2 4.7uF 81-GRM426X475K10L 0.33 0.66
C13,C14 2 100nF 80-C0805C104K5R 0.1 0.2
C15 1 22uF 581-08056D226M 0.1 0.1
C16 1 4.7uF 581-08056D475K 0.1 0.1
C18 1 2.2n VJ0805Y222JXJPW1BC 0.06 0.06
C19 1 10U VJ0805G106KXQTW1BC 0.09 0.09
D1, D2, D3, D4,D5,D6 6 LED APT2012ZGCK 0.47 2.82
D7, D8, D9, D14, D15 5 BAT46 78-BAT46W-HE3-08 0.15 0.75
D10 1 SMAJ16CA SMAJ16CA 0.5 0.5
D11 1 S2A 512-S2A 0.47 0.47
D12,D13 2 MBR0530T1G 863-MBR0530T1G 0.36 0.72
F1 1 1206L075/13.2 1206L075/13.2WR 0.49 0.49
L1 1 SDR0604-470KL SDR0604-470KL 0.43 0.43
L2 1 SRN3015-330M SRN3015-330M 0.36 0.36
Q1,Q2,Q5 3 MMBT2222 863-MMBT2222ALT1G 0.12 0.36
Q3 1 BSS138 863-BSS138LT1G 0.26 0.26
Q4 1 MMBT3646 MMBT3646 0.21 0.21
Q6 1 MMBT3640 512-MMBT3640 0.61 0.61
Q7 1 N-Channel Mosfet SQ2310ES-T1-GE3 0.68 0.68
Q8,Q9 2 ZXMP6A13F ZXMP6A13FTA 0.58 1.16
R1, R6, R41, R42, R49, R50 6 100K 71-CRCW0805J-100K-E3 0.08 0.48
R2, R17, R18, R21, R24, R25, R30,
R31, R33, R36, R37, R38, R39, R40, R48

15 10K 71-CRCW0805J-10K-E3 0.08 1.2

R3, R7, R19, R20, R27 5 1K 71-CRCW0805J-1K-E3 0.08 0.4
R4 1 47k CRCW080547K0JNEA 0.08 0.08
R5 1 10 71-CRCW080510R0JNEA 0.08 0.08
R8 1 4.7K 71-CRCW0805J-4.7K-E3 0.08 0.08
R9,R10 2 100 71-CRCW0805100RJNEA 0.08 0.16
R11, R12, R13, R14, R15, R16 6 330 CRCW0805330RFKEA 0.08 0.48
R22, R23 2 510 / 0.5W 667-ERJ-P06J511V 0.24 0.48
R26 1 374 CRCW0805374RFKEA 0.08 0.08
R28 1 866 CRCW0805866RFKEA 0.08 0.08
R29 1 2.2K 71-CRCW08052K20JNEB 0.08 0.08
R32 1 240 71-CRCW0805240RJNEA 0.08 0.08
R34 1 2K 71-CRCW08052K00JNEA 0.08 0.08
R35 1 8K (8.2K) CRCW08058K06FKEA 0.08 0.08
R43 1 28K 71-CRCW0805-28K-E3 0.08 0.08
R44 1 8.45K 71-CRCW0805-8.45K-E3 0.08 0.08
R45 1 36K 71-CRCW080536K0JNEA 0.08 0.08
R46 1 6.49K 71-CRCW0805-6.49K-E3 0.08 0.08
R47 1 62K 71-CRCW080562K0FKEA 0.08 0.08
U2 1 10u ESR<5 TPSR106K006R1500 0.83 0.83
U3 1 MCP2551 579-MCP2551-I/SN 1.12 1.12
U4 1 LM339 926-LM339AMX/NOPB 0.92 0.92
U5 1 LM317AEMP 926-LM317AEMP 1.12 1.12
U1 1 STN1110 STN1110 9.99 9.99
U11 1 MSP430F247 MSP430F247TPMR 6.93 6.93
U12 1 RN4020 RN4020-V/RM 10.61 10.61
U13 1 microSD DM3CS-SF 1.5 1.5
U14 1 JTAG HEADER 2514-6002UB 2.7 2.7
U6 1 LMR16006XDDCT LMR16006XDDCT 3.86 3.86
U7 1 LMR16006YDDC LMR16006YDDCT 3.86 3.86
X1 1 16Mhz 403C11E16M00000 1.1 1.1
P1 1 CONN 01X06 MALE 68000-406HLF 0.24 0.24
P3 1 CONN 01X06 FEMALE 929870-01-06-RA 0.97 0.97

P2 1 CONN 01X08 MALE
AMP
825433-8

0.84 0.84

P4 1 CONN 01X08 MALE 90 68016-208HLF 0.53 0.53
P5 P6 2 CONN 01X08 FEMALE 929870-01-08-RA 1.22 2.44
JP2 1 JUMPER3 FCI 69190-403 0.14 0.14
TOTAL ITEMS 116 TOTAL PRICE 56.77 64.62

Chapter 7. Project Prototype Details 92

Table 7.2: PCB Vendor Comparison

Company PCB Cost Shipping Cost Turnaround

4PCB $66.00 $20.00 (avg.) 5 Business + Shipping
OURPCB $236.00 International Rates 2 Days + Shipping (China)
Sunstone $52.00 Free 5 Days + Shipping
Seedstudio $49.90 Air Mail 7 Days + Shipping
OSHPark $30.00 USPS (Free) 21 Days
ITeadStudio $88.00 Ground Not Listed

Chapter 7. Project Prototype Details 93

Figure 7.1: Main Firmware State Machine

Chapter 7. Project Prototype Details 94

Figure 7.2: Profile Subsystem

Chapter 7. Project Prototype Details 95

Figure 7.3: Bluetooth Connection Subsystem

Chapter 7. Project Prototype Details 96

Figure 7.4: MicroSD Storage Subsystem

Figure 7.5: Data Pipeline Subsystem

Chapter 7. Project Prototype Details 97

Figure 7.6: Power Subsystem

Chapter 7. Project Prototype Details 98

Figure 7.7: Final Firmware Design

Chapter 8

Project Prototype Testing

8.1 Hardware

Due to the complexity of the project specialized test equipment will be required in
order to test the device in the laboratory. Fortunately the most expensive equipment
is available in the senior design lab. However there are some pieces of test equipment
that will be required that is not available in the lab. First and foremost is an OBD-II
test bench so that testing can be done on the GEM without having to hook it up to
an actual vehicle to verify operations. This is a requirement not only for convenience
but also to allow other pieces of test equipment such as an oscilloscope or a logic
analyzer to be connected to the device while it is operating. The senior design lab at
UCF has a variety of equipment available such as oscilloscopes, power supplies, and
digital multimeters. However some of the specialized equipment we will require for
debugging and design is not available and will need to be acquired.

8.1.1 Test Equipment

8.1.1.1 OBD-II Test Bench

Professional OBD-II test benches can cost many thousands of dollars which puts
them out of reach our analysis. Though it has it’s limitations the OBD-II Emulator
MK2 from Freematics is sufficient to test the basic functionality of the device. This

99

Chapter 8. Project Prototype Testing 100

emulator simulates CAN, KWP2000, and ISO9141-2 though it lacks SAE J1850.
Other functions that are provided include:

• Can respond to OBD-II PID poll
• Can respond to VIN requests
• Provides power to device under test
• Emulates diagnostic trouble codes
• Supports changing VIN’s
• USB control via Windows software package

This test bench will be used as the final lab testing environment. It provides many
options for adjusting what is sent to the GEM as shown in figure 8.1. Once the device
is confirmed to work on the test bench the device will then be tested in an automobile.

Figure 8.1: Freematics OBD-II Emulator Interface

Chapter 8. Project Prototype Testing 101

8.1.1.2 Bus Pirate

There are two primary means of communication between the devices on the the
GEM. Devices communicate either using their UART or in the case of the SD card
SPI. In order to debug each subsystem it will be necessary to communicate with each
subsystem individually. In order to faciliate this a simple device from Dangerous
Prototypes called the Bus Pirate will be used. The Bus Pirate can be connected in
circuit and then used as a USB to UART bridge. This will allow reading from and
transmitting data to each of the subsystems. For example the Bus Pirate could be
connected to the UART on the STN1110 to verify that it is receiving data properly
and that it is in the correct mode of operation.

8.1.1.3 MSP430 Flash Emulation Tool

An MSP-FET flash emulation tool is required in order to program the MSP430 device.
The MSP-FET connects to the MSP430 via JTAG or Spy-Bi-Wire (2-wire JTAG).
The GEM is designed to use the Spy-Bi-Wire interface. This tool not only will allow
the programming of the MSP430 device but also debugging while the device is in
operation. By having the GEM connected to the host PC via the JTAG port Code
Composer Studio can set debug points in the firmware. The firmware can then be
stepped through line by line to verify that it is functioning as expected.

8.2 Hardware Testing Procedure

In order to verify that the GEM is operating as expected and performing the expected
functions a variety of test procedures will be used.

8.2.1 Power Test

For the power test the following lab equipment will be used:

• Agilent E3630A Triple Output DC Power Supply
• Tektronix DMM 4050 Multimeter

This first test is designed to verify that the GEM is being powered properly. This test
should be performed before all other tests and as a first step whenever troubleshooting

Chapter 8. Project Prototype Testing 102

the device. Since the GEM uses multiple voltages and two different voltage regulators
there is a lot of room for error here. To verify the correct operation of the on board
regulators the power supply will be connected to the the power and ground pins on
the main OBD-II connector of the GEM. The DMM will be connected to ground and
the 5 V test pin. The voltage from the power supply will be slowly increased from
0 V to 12 V. At 12 V the measured output voltage should be 5 V. This procedure is
then repeated for the 3.3 V system.

8.2.2 STN1110 Verification

For this verification test the following equipment will be used:

• Freematics OBD-II Emulator
• Dangerous Prototypes Bus Pirate

To verify the correct operation of the OBD-II to serial interface chip (STN1110) the
GEM is connected to the OBD-II emulator and the OBD UART TX and RX jumpers
are disconnected. The Bus Pirate is the connected as shown in figure 8.2. The Bus

Figure 8.2: Bus Pirate UART Connection Guide

Pirate needs to be connected to the host PC. The tester then connects to the Bus
Pirate using a terminal program such as PuTTY. If there is no prompt press enter
once. when the ”HiZ>” prompt is displayed enter the following sequence:

• m – change mode
• 3 – UART mode
• 7 – 38400 Baud
• 1 – 8 data bits, no parity
• 1 – 1 stop bit
• 1 – Idle 1 receive polarity
• 1 – Open drain output

Chapter 8. Project Prototype Testing 103

at the ”UART>” prompt press ’0’ for the macro menu then ’3’ for ”Bridge mode.”
This completes the process for configuring the Bus Pirate. At this point the PC
terminal program is connected to the STN1110 via the Bus Pirate and ready to test.

Once power is applied to the GEM the terminal should display:

ELM327 v1.3a

>

At this prompt the user should enter ’SN’ to have the STN1110 display the fac-
tory programmed serial number. This number is a unique 12 digit identifier. If the
STN1110 returns an acceptable value the user should then enter ’DP’ to have the
STN1110 display the current communication protocol being used. This should match
the protocol set by OBD-II emulator.

8.2.3 Bluetooth Verification

For the Bluetooth test the following lab equipment will be used:

• Android device
• Freematics OBD-II Emulator
• Dangerous Prototypes Bus Pirate

For this test the GEM is connected to the OBD-II Emulator and the Bus Pirate is
connected to the GEM by disconnecting the BT UART TX and RX jumpers and
connecting as shown previously in figure 8.2.

The Bus Pirate needs to be connected to the host PC. The tester then connects to
the Bus Pirate using a terminal program such as PuTTY. If there is no prompt press
enter once. when the ”HiZ>” prompt is displayed enter the following sequence:

• m – change mode
• 3 – UART mode
• 9 – 115200 Baud
• 1 – 8 data bits, no parity
• 1 – 1 stop bit
• 1 – Idle 1 receive polarity
• 2 – Normal output

Chapter 8. Project Prototype Testing 104

at the ”UART>” prompt press ’0’ for the macro menu then ’3’ for ”Bridge mode.”
This completes the process for configuring the Bus Pirate. At this point the PC
terminal program is connected to the RN4020 Bluetooth module via the Bus Pirate
and ready to test.

The Android device needs to be running a Bluetooth serial terminal, for example
SENA Bterm. The Android device should attempt a connection with the RN4020.
If it connects the connect status LED should light. Once a connection is confirmed
the user should send a sting of characters from the serial terminal on the PC. This
string of characters should be shown in the Bluetooth serial terminal on the Android
device.

8.2.4 Testing Results

The results of the testing procedures for the PID’s is shown in Table 8.1. This is the
final test after all other basic tests have passed. It shows that the GEM responds to
commands, submits them to the ECU and can send the proper response.

Table 8.1: Hardware Testing Results

Test PID Values set on emulator Responses Description
01 1F {5,100,2000,5000,3000} 411F{ 0005,0064,07D0,1388,7530} Run time since engine start (in seconds)
01 0C {1000,2000,3000,4000,5000} 410C {0FA0,1F40,2EE0,3E80,4E20} Engine RPM in 1/4th value
01 0D {10,25,50,100,125} 410D {0A,19,32,64,7D} Speed in km/hr
01 04 {5 ,10, 20, 30, 40, 50, 60, 70, 80, 90, 95} 4104 {0C,19,33,4C,66,7F,99,B2,CC,E5,F2} Engine load %
01 11 {10,25,50,75,100} 4111 {19,3F,7F,BF,FE} Throttle position, as a %
01 10 80 4110 1F40 MAF air flow rate %
01 5E {10,15,20,40,100,150} 415E {0087,008C,0091,00A5,00E1,0BB5} Engine fuel rate. L/H

8.3 Software

8.3.1 Verification and Validation

The Android application designed for the GEM device was subjected to a multitude of
tests throughout development and they all fell into one of two categories: verification
and validation. Because our team designed and tested the device we could evaluate the
correctness of our methods every step of the way. To verify that our application was
built using the accepted methods and practices of Android application development
our team relied on the Android Development Team’s guides and references. Outlined
therein were instructions for using dynamic software testing tools provided in the
Android framework.

Chapter 8. Project Prototype Testing 105

The testing procedures implemented over the lifecycle of the GEM Android appli-
cation included but were not limited to: unit, integration, system, and acceptance
testing. The focus of this section is to outline the Android application specific tests
that were performed.

8.3.2 Activity Testing

Testing every screen or view that a user can interact with falls under the category of
activity testing. The activity testing frameworks were used to test:

• Input validation
• Lifecycle events
• Intents
• Runtime configuration changes
• Screen sizes and resolutions

8.3.3 Service Testing

The goal of service testing was to check that services handle calls properly in every
state. Service testing is done most reliably in isolation and is best done using a mock
application. Ensuring that data transmitted to the Android device is properly written
to internal storage and can be accessed in the future requires services.

8.3.4 Content Provider Testing

The GEM application had no need for content providers, but considering the eventual
need for a content provider was reasonable. This testing consisted of designing the
classes and activities with the expressed notion that content providers could be used
in later versions of the application.

8.3.5 Accessibility Testing

Accessibility testing was conducted in an effort to provide this application to users
who may or may not actually drive a vehicle. As noted in the ”Software Requirements
and Specifications” the application was designed in a manner that allows color blind
users to use it.

Chapter 8. Project Prototype Testing 106

8.3.6 UI Testing

The automation of user interface testing greatly reduced the amount of time that
team members spent testing each combination of user actions. The majority of man-
ual UI testing was performed on an actual Android device and included users other
than a design team member. This divide and conquer method greatly increased our
chances of finding and fixing any bugs in the application and granted us feedback
from potential users.

Portions of this page are reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution License.

Chapter 9

Administrative Content

9.1 Budget and Finances

Due to a sponsorship by The Boeing Company the baseline budget for the GEM is
$774.08. We were able to design and build the prototype within the constraints of
this budget with just over one hundred dollars remaining.

9.2 Milestones

Our original goal was to have the project design and review complete by the end of
Senior Design I and to order parts and PCB’s in order to have them ready by the
beginning of Senior Design II. As this was a complicated system testing was crucial
to make sure that we stay on track. In order to facilitate testing we had quick builds
with long testing periods in between. We were close to maintaining the schedule and
thanks to that the prototype was complete and the demo successful. The original
schedule is shown in figures 9.1 and 9.2

107

Chapter 9. Administrative Content 108

ID Task Name Duration Start Finish

1 Senior Design I 61 days Mon 9/8/14 Mon 12/1/14

2 Research 20 days Mon 9/8/14 Fri 10/3/14

3 Bluetooth System 20 days Mon 9/8/14 Fri 10/3/14

4 Storage System 20 days Mon 9/8/14 Fri 10/3/14

5 MCU 20 days Mon 9/8/14 Fri 10/3/14

6 Accelerometer 20 days Mon 9/8/14 Fri 10/3/14

7 ODBII to Serial Interface 20 days Mon 9/8/14 Fri 10/3/14

8 Transceivers 20 days Mon 9/8/14 Fri 10/3/14

9 Power System 20 days Mon 9/8/14 Fri 10/3/14

10 Android BLE 20 days Mon 9/8/14 Fri 10/3/14

11 Android UI 20 days Mon 9/8/14 Fri 10/3/14

12 Research Complete 0 days Fri 10/3/14 Fri 10/3/14

13 20 Pages Written (Each) 0 days Fri 10/3/14 Fri 10/3/14

14 Design 35 days Mon 10/6/14 Fri 11/21/14

15 Bluetooth System 35 days Mon 10/6/14 Fri 11/21/14

16 Storage System 35 days Mon 10/6/14 Fri 11/21/14

17 MCU 35 days Mon 10/6/14 Fri 11/21/14

18 Accelerometer 35 days Mon 10/6/14 Fri 11/21/14

19 ODBII to Serial Interface 35 days Mon 10/6/14 Fri 11/21/14

20 Transceivers 35 days Mon 10/6/14 Fri 11/21/14

21 Power System 35 days Mon 10/6/14 Fri 11/21/14

22 Android BLE 35 days Mon 10/6/14 Fri 11/21/14

23 Android UI 35 days Mon 10/6/14 Fri 11/21/14

24 Design Complete 6 days Fri 11/21/14 Mon 12/1/14

25 30 Pages Written (Each) 0 days Fri 11/21/14 Fri 11/21/14

26 Pre Holiday Document Review 3 days Mon 11/24/14 Wed 11/26/14

27 Documention Complete 0 days Wed 11/26/14 Wed 11/26/14

28 Turn In Senior Design I Documentation0 days Mon 12/1/14 Mon 12/1/14

29 Order Parts/PCB's 0 days Mon 12/1/14 Mon 12/1/14

30 Spring Semester Begins 0 days Mon 1/12/15 Mon 1/12/15

31 Senior Design II 76 days Mon 1/12/15 Mon 4/27/15

32 Review Hardware 2 days Mon 1/12/15 Tue 1/13/15

33 Review Documentation 2 days Mon 1/12/15 Tue 1/13/15

34 Firmware Rev. 1 14 days Wed 1/14/15 Mon 2/2/15

35 Hardware Rev. 1 23 days Wed 1/14/15 Fri 2/13/15

36 Build 7 days Wed 1/14/15 Thu 1/22/15

37 Test 14 days Fri 1/23/15 Wed 2/11/15

38 Respin Board if Needed 16 days Fri 1/23/15 Fri 2/13/15

39 Firmware Rev. 2 14 days Mon 1/12/15 Thu 1/29/15

40 Hardware Rev. 2 23 days Mon 2/16/15 Wed 3/18/15

41 Build 7 days Mon 2/16/15 Tue 2/24/15

42 Test 14 days Wed 2/25/15 Mon 3/16/15

43 Respin Board if Needed 16 days Wed 2/25/15 Wed 3/18/15

44 Firmware Final 14 days Mon 1/12/15 Thu 1/29/15

45 Hardware Final 20 days Thu 3/19/15 Wed 4/15/15

46 Build 5 days Thu 3/19/15 Wed 3/25/15

47 Test 15 days Thu 3/26/15 Wed 4/15/15

Schedule

Page 1

Figure 9.1: Schedule Page 1

Chapter 9. Administrative Content 109

ID Task Name Duration Start Finish

48 Phone Software Alpha 21 days Wed 1/14/15 Wed 2/11/15

49 Alpha Integration Testing 3 days Thu 2/12/15 Mon 2/16/15

50 Phone Software Beta 21 days Tue 2/17/15 Tue 3/17/15

51 Beta Integration Testing 3 days Wed 3/18/15 Fri 3/20/15

52 Phone Software Final 21 days Thu 3/19/15 Thu 4/16/15

53 Final Integration Testing 3 days Fri 4/17/15 Tue 4/21/15

54 Rev 1 Complete 0 days Mon 2/16/15 Mon 2/16/15

55 Rev 2 Complete 0 days Fri 3/20/15 Fri 3/20/15

56 Final Complete 0 days Tue 4/21/15 Tue 4/21/15

57 Final Documention 7 days Fri 4/17/15 Mon 4/27/15

58 Final Presentation 5 days Fri 4/17/15 Thu 4/23/15

59 Print Documentation 0 days Mon 4/27/15 Mon 4/27/15

Schedule

Page 2

Figure 9.2: Schedule Page 2

Appendix A

Android Framework

A.1 Definitions and Abbreviations

• Activity - An application component that provides a screen with which users
can interact in order to do something. Often presented to the user as full-screen
windows, they can also be used in other ways: as floating windows or embedded
inside of another activity.
• API - Application programming interface. APIs often come in the form of a

library that includes specifications for routines, data structures, object classes,
and variables.[1]
• APK - Android application package. The package file format used to distribute

and install application software onto Google’s Android operating system.[2]
• App - Application software.
• Broadcast receiver - A component that responds to system-wide broadcast an-

nouncements.
• Bundle - A mapping from String values to various Parcelable types.
• Dialog - A small window that prompts the user to make a decision or enter

additional information.
• Fragment - Represents a behavior or a portion of user interface in an Activity.
• IDE - Integrated development environment.

Portions of this page are reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution License.

110

Appendix A. Android Framework 111

• Input controls - The interactive components in an app’s user interface. An-
droid provides a wide variety of controls such as buttons, text fields, seek bars,
checkboxes, zoom buttons, toggle buttons, and many more.
• Intent - A messaging object you can use to request an action from another app

component.
• Handler - Sends and processes Message and Runnable objects associated with

a thread’s MessageQueue.
• Layout - Defines the visual structure for a user interface, such as the UI for an

activity or app widget.
• Manifest - The manifest file presents essential information about your app to

the Android system, information the system must have before it can run any of
the app’s code.
• Notification - A message that can be displayed to the user outside of the ap-

plication’s normal UI. When the system issues a notification, it first appears as
an icon in the notification area.
• OBD - On-board diagnostics.
• Package - Contains information about a Java package.
• Permission - A security permission that can be used to limit access to specific

components or features of this or other applications.
• Preference - Preference UI building block to be displayed in the activity.
• Process - When an application component starts and the application does not

have any other components running, the Android system starts a new Linux
process for the application with a single thread of execution. By default, all
components of the same application run in the same process and thread (called
the ”main” thread).
• Provider - Supplies structured access to data managed by the application.
• RPM - Revolutions per minute.
• Service - An application component that can perform long-running operations

in the background and does not provide a user interface.
• Style - A collection of properties that specify the look and format for a View or

window.
• Theme - A style applied to an entire Activity or application, rather than an

individual View.
• Thread - A concurrent unit of execution.
• Toast - Provides simple feedback about an operation in a small popup.
• UI - User interface. Everything that the user can see and interact with.
• UUID - Universally unique identifier. An identifier standard in software con-

struction which allows for generating identifiers which do not overlap or conflict

Portions of this page are reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution License.

Appendix A. Android Framework 112

with other identifiers which were previously created even without knowledge of
the other identifiers.[3]
• View - Occupies a rectangular area on the screen and is responsible for drawing

and event handling.
• VM - Virtual machine.
• XML - Extensible markup language.

A.2 APIs

android - Contains resource classes used by applications included in the platform
and defines application permissions for system features.

android.app - Contains high-level classes encapsulating the overall Android appli-
cation model. An Android application is defined using one or more of Android’s four
core application components. Two such application components are defined in this
package: Activity and Service.

android.backup - Contains the backup and restore functionality available to appli-
cations. If a user wipes the data on their device or upgrades to a new Android-powered
device, all applications that have enabled backup can restore the user’s previous data
when the application is reinstalled.

android.bluetooth - Provides classes that manage Bluetooth functionality, such as
scanning for devices, connecting with devices, and managing data transfer between
devices. The Bluetooth API supports both ”Classic Bluetooth” and Bluetooth Low
Energy.

android.content - Contains classes for accessing and publishing data on a device.
It includes three main categories of APIs:

• Content sharing (android.content) - For sharing content between application
components.

• Package management (android.content.pm) - For accessing information about
an Android package (an .apk), including information about its activities, per-
missions, services, signatures, and providers.

Portions of this page are reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution License.

Appendix A. Android Framework 113

• Resource management (android.content.res) - For retrieving resource data as-
sociated with an application, such as strings, drawables, media, and device
configuration details.

android.gesture - Provides classes to create, recognize, load and save gestures.

android.graphics - Provides low level graphics tools such as canvases, color filters,
points, and rectangles that let you handle drawing to the screen directly.

android.hardware - Provides support for hardware features, such as the camera
and other sensors.

android.media - Provides classes that manage various media interfaces in audio and
video. The Media APIs are used to play and, in some cases, record media files. This
includes audio (e.g., play MP3s or other music files, ringtones, game sound effects,
or DTMF tones) and video (e.g., play a video streamed over the web or from local
storage).

android.os - Provides basic operating system services, message passing, and inter-
process communication on the device.

android.preference - Provides classes that manage application preferences and im-
plement the preferences UI. Using these ensures that all the preferences within each
application are maintained in the same manner and the user experience is consistent
with that of the system and other applications.

android.test - A framework for writing Android test cases and suites.

android.util - Provides common utility methods such as date/time manipulation,
base64 encoders and decoders, string and number conversion methods, and XML
utilities.

android.view - Provides classes that expose basic user interface classes that handle
screen layout and interaction with the user.

Portions of this page are reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution License.

Appendix B

Final Schematics

The following drawings are the final schematics as well as the PCB layout for the
GEM. Open source digital versions of these files may be found at the UCF Senior
Design website, http://www.eecs.ucf.edu/seniordesign/fa2014sp2015/g08/

114

Appendix C

Copyright Permissions

Figure C.1: Sparkfun Electronics

Figure C.2: OBD-II Pinout

http://commons.wikimedia.org/wiki/File:OBD_connector_shape.svg

Figure C.3: Android Attributions

130

http://commons.wikimedia.org/wiki/File:OBD_connector_shape.svg

Appendix C. Copyright Permissions 131

Figure C.4: Creative Commons Attribution License

Appendix C. Copyright Permissions 132

Figure C.5: UDDS and HWFET driving schedules

http://www.epa.gov/oms/emisslab/methods/uddsdds.gif and
http://www.epa.gov/oms/emisslab/methods/hwfetdds.gif

http://www.epa.gov/oms/emisslab/methods/uddsdds.gif
http://www.epa.gov/oms/emisslab/methods/hwfetdds.gif

Bibliography

[1] Wikipedia contributors. “Application programming interface,” Wikipedia, The
Free Encyclopedia. Internet: http://en.wikipedia.org/w/index.php?title=

Application_programming_interface&oldid=633502752, Nov. 12, 2014, [Nov.
29, 2014].

[2] Wikipedia contributors. “Android application package,” Wikipedia, The Free En-
cyclopedia. Internet: http://en.wikipedia.org/w/index.php?title=Android_
application_package&oldid=629618095, Oct. 14, 2014, [Nov. 29, 2014].

[3] Wikipedia contributors. “Universally unique identifier,” Wikipedia, The
Free Encyclopedia. Internet: http://en.wikipedia.org/w/index.php?title=

Universally_unique_identifier&oldid=634823457, Nov. 21, 2014, [Nov. 29,
2014].

[4] Paulo Pires. “android-obd-reader (Version 2.0-BETA2),” GitHub. Computer Pro-
gram: https://github.com/pires/android-obd-reader, Nov. 14, 2014, [Nov.
20, 2014].

133

 http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=633502752
 http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=633502752
http://en.wikipedia.org/w/index.php?title=Android_application_package&oldid=629618095
http://en.wikipedia.org/w/index.php?title=Android_application_package&oldid=629618095
http://en.wikipedia.org/w/index.php?title=Universally_unique_identifier&oldid=634823457
http://en.wikipedia.org/w/index.php?title=Universally_unique_identifier&oldid=634823457
https://github.com/pires/android-obd-reader

	Contents
	List of Figures
	List of Tables
	1 Executive Summary
	2 Project Description
	2.1 Motivation
	2.2 Objectives
	2.3 Hardware Requirements and Specifications
	2.3.1 Power
	2.3.2 OBD-II to Serial Interface
	2.3.3 On Board Processing
	2.3.4 Data Storage and Transmission

	2.4 Software Requirements and Specifications
	2.4.1 User Application
	2.4.1.1 Bluetooth Connectivity
	2.4.1.2 Data Storage
	2.4.1.3 Interface and Display

	2.4.2 MCU

	3 Research Related to Project Description
	3.1 Similar Devices
	3.2 Fuel Economy
	3.3 Hardware Research
	3.3.1 OBD-II Interface
	3.3.1.1 SAE J1850 PWM/VPW
	3.3.1.2 ISO 9141-2
	3.3.1.3 ISO 14230 (KWP2000)
	3.3.1.4 ISO 15765 (CAN)
	3.3.1.5 OBD-II PID's

	3.3.2 Communication
	3.3.2.1 I2C
	3.3.2.2 SPI

	3.3.3 MCU
	3.3.3.1 MSP430 Family
	3.3.3.2 PIC24F16KA102 Family
	3.3.3.3 ATmega Family
	3.3.3.4 CC2541
	3.3.3.5 MCU Summary

	3.3.4 Bluetooth
	3.3.4.1 Pairing
	3.3.4.2 Profiles
	3.3.4.3 Implementation

	3.3.5 Antennas
	3.3.6 Storage
	3.3.7 Power

	3.4 Software Research
	3.4.1 Android
	3.4.1.1 Development Environment
	3.4.1.2 User Interface
	3.4.1.3 Fragments
	3.4.1.4 Bluetooth Connectivity
	3.4.1.5 Bluetooth Low Energy

	3.4.2 MCU Firmware
	3.4.2.1 ECU Data
	3.4.2.2 Implementing OBD Requests
	3.4.2.3 Interfacing an SD Card
	3.4.2.4 Bluetooth Stack
	3.4.2.5 Bluetooth Low Energy Protocol
	3.4.2.6 BTstack
	3.4.2.7 RN4020
	3.4.2.8 RN-42

	4 Design Constraints and Standards
	4.1 Design Constraints
	4.1.1 Economic
	4.1.2 Environmental
	4.1.3 Social
	4.1.4 Political
	4.1.5 Ethical
	4.1.6 Health and Safety
	4.1.7 Manufacturability
	4.1.8 Sustainability
	4.1.9 Legal

	4.2 Related Standards
	4.2.1 SAE J 2561-2001
	4.2.2 ANSI/CEA 2040-2011
	4.2.3 RS-232
	4.2.4 IEEE 802.15
	4.2.5 Software Design Standards
	4.2.6 Software Documentation Standards
	4.2.7 Software Coding Standards

	5 Hardware Design Details
	5.1 Enclosure
	5.2 Power Supply
	5.3 OBD-II to Serial Interface
	5.3.1 STN1110
	5.3.2 Transceivers

	5.4 Microcontroller Hardware Design
	5.4.1 Microcontroller Choice
	5.4.2 JTAG Interface
	5.4.3 RN4020
	5.4.4 MicroSD Card

	6 Software Design Details
	6.1 Introduction
	6.2 System Overview
	6.2.1 Software Development Tools

	6.3 Design Considerations
	6.3.1 Reusability
	6.3.2 Maintainability
	6.3.3 Testability
	6.3.4 Performance
	6.3.5 Portability
	6.3.6 Safety
	6.3.7 Assumptions and Dependencies

	6.4 System Architecture
	6.4.1 User Interface
	6.4.2 Decomposition Description

	6.5 Detailed System Design
	6.5.1 Component Descriptions

	6.6 Fuel Optimization Algorithm

	7 Project Prototype Details
	7.1 BOM
	7.2 PCB Vendor and Assembly
	7.2.1 Printed Circuit Board
	7.2.2 Assembly

	7.3 Software
	7.3.1 Initial Firmware Design
	7.3.1.1 Main System
	7.3.1.2 Vehicle Profile Subsystem
	7.3.1.3 Bluetooth Connection Subsystem
	7.3.1.4 Onboard Storage Subsystem
	7.3.1.5 OBD-II Data Subsystem
	7.3.1.6 Power Control Subsystem

	7.3.2 Final Firmware Design

	8 Project Prototype Testing
	8.1 Hardware
	8.1.1 Test Equipment
	8.1.1.1 OBD-II Test Bench
	8.1.1.2 Bus Pirate
	8.1.1.3 MSP430 Flash Emulation Tool

	8.2 Hardware Testing Procedure
	8.2.1 Power Test
	8.2.2 STN1110 Verification
	8.2.3 Bluetooth Verification
	8.2.4 Testing Results

	8.3 Software
	8.3.1 Verification and Validation
	8.3.2 Activity Testing
	8.3.3 Service Testing
	8.3.4 Content Provider Testing
	8.3.5 Accessibility Testing
	8.3.6 UI Testing

	9 Administrative Content
	9.1 Budget and Finances
	9.2 Milestones

	A Android Framework
	A.1 Definitions and Abbreviations
	A.2 APIs

	B Final Schematics
	C Copyright Permissions
	Bibliography

