
Gasoline Economy

Management

Pedro Betancourt, Alexander Patino, and

Mohhamad Pulliam

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The purpose of this project is to develop a small
consumer electronic device to assist the consumer in making

better decisions in order to improve their fuel economy. This
device is called the GEM. The GEM is intended to connect to
the engine control unit (ECU) of a vehicle via the standard

OBD-II interface found in all vehicles sold in the United States
after 1996. The device is designed to safely provide feedback
to a driver in a non-intrusive way so as not to be a distraction

or nuisance. To provide feedback to the driver the GEM
connects to a custom Android OS application. All data
processing and display is taken care of by the driver’s Android

device. The GEM has a small footprint, consumes very little
power when in standby mode and is user friendly. It’s
designed to be plugged into the OBD-II port permanently and

require no further user intervention.

Index Terms — Automotive, fuel economy, engine control
unity (ECU).

I. INTRODUCTION

In 2013 the U.S. consumed over 134 billion gallons of

gasoline. On that scale even slight improvements in

efficiency can save millions of dollars and prevent tons of

carbon dioxide from entering the atmosphere. Automobile

manufacturers are constantly striving to develop more

efficient engines in order to meet the needs of consumers as

well as regulatory requirements. Unfortunately purchasing

a new vehicle in order to realize better fuel economy isn't

always viable or practical. In fact purchasing a new vehicle

in order to receive an incremental increase in efficiency is

actually a bad idea. It is rare that the efficiency gains pay

for themselves except over an exceptionally long period of

time. Not to mention the large environmental impact and

high energy consumption required to build a single car. In

order to make progress in this realm what we need is a

simple, low-cost solution that is available to every driver.

This is why we design the "Gasoline Economy

Management" tool or GEM. GEM is a simple system that

is designed to be available to nearly any driver who uses a

smart phone. GEM is a small device that plugs into the

OBD-II port that is standard on all vehicles sold in the U.S.

after 1996. The OBD-II port is a standardized hardware port

through which vehicle diagnostic codes and other vehicle

information can be read. We can use this information to

help develop more fuel efficient driving habits. While it's

prohibitively expensive to retrofit older vehicles with

modern fuel efficient systems it can be very cheap and very

effective to reprogram an individual's driving habits.

Simple changes such as driving the correct speed and

avoiding excessive acceleration and braking can increase

fuel efficiency by up to 5%. For a driver that drives 15,000

miles a year if they can go from 20 miles per gallon to 21

they save 36 gallons per year. At three dollars a gallon that's

a yearly savings of $108. Not only will it save money and

resources it's designed to be easy for anyone to use. When

a person gets a GEM it will be very simple for them to

connect the device to their vehicle and pair it with their

phone. All they have to do is connect the GEM to the OBD-

II port, turn on their car and start the phone application. The

phone application provides a simple, hands off user

interface that provides feedback to help a driver adjust their

driving habits in order to enjoy greater fuel economy. The

device itself is powered by the vehicle's battery and when

the vehicle is turned off the GEM enters a sleep mode so

that it won't drain the battery. When active the GEM

automatically pairs with the driver's phone via Bluetooth

LE or, if the driver doesn't have their phone available, the

GEM will store driving information so that the next time

the driver connects their smart phone fuel economy and

other statistics will be transferred to the application. While

the GEM is designed for semi-permanent installation it also

has the ability to store vehicle profiles. If a driver finds

themselves behind the wheel of a different car every day

they'll still be able to take advantage of the provided

feedback.

II. PROJECT DESCRIPTION

Several key objectives were identified when developing

this product. It needs to be low power, with a small

footprint, and a simple and safe interface to be used when

driving.

The hardware systems for GEM can be broken down into

the following subsystems

1. Power supply

2. OBD-II to serial interface

3. Onboard processing

4. Data storage

5. Data transmission

Each of these subsystems was analyzed based on our key

objectives and specifications were developed.

A. Power

Power is a challenging aspect of the GEM. The primary

requirement is that the GEM should be plug and play. The

user should be able to plug the device into the OBD-II port

on the car then leave the device plugged in without drawing

down the battery when the vehicle is not in use. A goal was

set to be able to leave the GEM connected to a vehicle for

183 days (half a year) without drawing down the battery so

far as to cause the vehicle to be unable to start.

We reviewed different batteries to find out what the

average storage capacity in amp hours is in order to find out

what the maximum current draw we could have while the

device is in low power mode. The energy storage of

batteries manufactured in the U.S. is not specified as

automotive batteries are designed for starting the vehicle

only. Starting batteries are specified by cold cranking amps

(CCA). Because approximations for current capacity for

U.S. batteries range anywhere from 30 to 60 Ah, we relied

on European Union labeling standards for which amp hour

capacity is a requirement. Varta brand batteries were taken

as a typical example of an automotive battery. The

midrange Varta "Black Dynamic" battery has a range of

capacities from 40 to 90 Ah. There is no way of knowing

what battery is being used so the minimum capacity was

chosen as the baseline. The Varta "Black Dynamic" type

A16 battery has a capacity of 40 Ah. The GEM should not

draw down more than half the capacity within six months.

In order to achieve this the power draw when the device is

idle must be less than 5 mA as shown in (1).

 20,000 𝑚𝐴ℎ

5 𝑚𝐴
= 4000 ℎ ≈ 167 𝑑𝑎𝑦𝑠 (1)

B. OBD-II to Serial Interface

While the OBD-II physical port configuration is

standardized there are many different communications

protocols available for use. The GEM must be able to

communicate using all legislated protocols. This means that

the GEM will be able to interface with any consumer

vehicle sold within the U.S. since 1996. The required

protocols are

1. SAE J1850 PWM

2. SAE J1850 VPW

3. ISO 9141-2

4. ISO 14230 (KWP2000)

5. ISO 15765 (CAN)

Each of these protocols will be discussed in detail in

Section IV.

C. Onboard Processing

In order to keep the vehicle hardware simple, low cost,

and low power on board data processing will be minimal.

The primary function of the MCU is to interconnect the

various on-board components and prepare the data to be

sent to the smart phone for processing. The key features of

the microcontroller are very low current draw, multiple

serial interfaces, and simple to program.

The microcontroller unit in the GEM system serves

primarily as a bridge between other onboard modules. It

transmits and receives data from an OBD-II transceiver,

communicates with a Bluetooth module, and handles a

cache memory in an SD card. First off, the MCU must be

able to request and store the vehicles identification number

(VIN). Based on the VIN, the software must determine the

correct OBD-II protocol and use the appropriate subset of

PID’s. While the vehicle is turned on, the MCU must poll

the ECU, through a serial interface, continuously, with a

minimum delay of 1 second and a maximum delay of 2

seconds in between polls.

The MCU will determine if the Bluetooth module has

established a connection to a device, and provide a

continuous data stream if a connection has been established.

If it is determined that no device is in range of the Bluetooth

module, the data will not be flushed. Instead, a frame of

data will be cached in an SD card.

D. Data Storage

Data sent to the Android device will be stored on internal

storage by writing to application files. These data files can

be read from by the application enabling the calculation of

fuel economy statistics. To allow for more permanent data

to be saved and recalled later the application will manage

data across sessions using shared preferences. This will

allow the application to track a user’s fuel economy as long

as the data is stored on their device. A user must be able to

recall and clear the "history" of data from device storage

from within the application. To accommodate users with

multiple vehicles the application will allow data to be stored

accordingly for up to five user defined profiles. OBD-II

message lengths range from 12 to 255 bytes, the minimum

delay between messages received is 1 second. We expect

GEM to be able to store up to 24 hours of driving data, in

cases when users forget their phones or similar scenarios.

Considering the most conservative scenario, where all

messages are the maximum length, and are delayed by the

minimum length of time we calculate the maximum frame

length in (2).

255 𝐵 ∙ 60

𝑝𝑜𝑙𝑙𝑠

𝑚
∙ 60

𝑚

ℎ
∙ 24 ℎ = 22.03 𝑀𝐵 (2)

Thus, allowing some leeway, the maximum frame length

shall be 25 MB, and the on-board storage must be a

minimum of 25 MB.

E. Data Transmission

In order to get data from our device to the smart phone

application we chose to use Bluetooth. Bluetooth is a short

range wireless standard originally intended for wireless RS-

232 serial data. It operates in the 2.4 GHz range. Bluetooth

devices operate as a master and a slave. Typically in a

Bluetooth use case a user wants the two devices in

communication to communicate securely but at the same

time avoid having to manually connect the devices

whenever they are in range. The two devices should

automatically connect and start sharing data when in range.

In order to achieve this devices go through a pairing

operation which is usually started by a specific request from

the user. Once the devices have gone through the pairing

operation they are securely bonded and can connect to each

other whenever they're in range without further interaction

from the user.

To setup a Bluetooth connection our Android application

must search for devices in range and also display previously

connected devices. Once the devices have been discovered

they may be paired by using "Passkey Entry." It is also

important that a user may terminate a Bluetooth connection

with GEM from within the application. All of these

functions must be accessible from the first screen of the

application. In the event that a Bluetooth connection is lost

the application must handle the error by displaying a

notification and attempt to repair the connection. Once a

connection is established it will remain connected and

receive broadcasts until GEM is unplugged or the vehicle is

turned off.

III. FUEL ECONOMY

To determine the fuel economy of a vehicle the

Environmental Protection Agency has designed a series of

tests to estimate fuel consumption. The fuel economy of a

vehicle based on the tests performed by the EPA is

weighted such that the final value is 55% city and 45%

highway. Because the EPA uses a dynamometer or "dyno"

which neglects real world driving conditions, they expect

actual fuel economy to be less than calculated. The Urban

Dynamometer Driving Schedule (UDDS) shown in Figure

1 represents the driving cycle used to estimate city driving.

To simulate highway fuel economy the EPA uses the

Highway Fuel Economy Driving Cycle (HWFET).

In 2011 the EPA and National Highway Traffic Safety

Administration (NHTSA) adopted a new fuel economy

label that is displayed on new cars. The most notable

change is the addition of a vehicle's fuel consumption rate

which is the gallons consumed per 100 miles. Figure 2

shows the relationship between miles per gallon and gallons

per 1,000 miles. The takeaway from this chart is that there

is a notable difference in fuel consumption from 10 mpg to

15 mpg (about 33 gallons) and a less significant

improvement from 30 mpg to 35 mpg (about 5 gallons).

This new method of measuring fuel economy is used to

allow more accurate comparisons among vehicles. Our

device will ultimately display mpg and gallons per 100

miles because our primary goal is for consumer to increase

their fuel economy no matter how they measure it.

Figure 2: MPG & Gallons per thousand miles

IV. DEVICE INTERFACE

In 1996 the OBD-II port was made standard on all

vehicles sold in the U.S. The OBD-II port is a 16 pin female

SAE J1962 connector. The connector is required to be

located in the passenger cabin and within 0.69m of the

steering column, except where requested by exemption.

There are five possible signaling protocols used by the

OBD-II port. In vehicles 2008 and newer the standard is the

CAN Bus (ISO 15765) and is required by law as one of the

protocols.

Figure 1: Urban Dynamometer Driving Schedule [1]

A. SAE J1850 PWM/VPW

SAE J1850 can be broken down into two sub classes. The

first is variable pulse width (VPW). VPW is a single wire

bus protocol that utilizes only pin 2 of the connector. It

operates at either 10.4 Kbps or 41.6 Kbps. High signal

voltage is a nominal 7V with a minimum and maximum of

6.25V and 8V respectively. Low signal voltage is a nominal

0V with a minimum and maximum of 0V and 1.2V

respectively. Start of frame is issued by a 200𝜇S high

signal. A 1 bit is issued by a 128μS low signal or a 64μS

high signal. A 0 bit is issued by a 64μS low signal or a

128μS high signal. Messages may be up to 12 bytes.

The second class of SAE J1850 is pulse width

modulation (PWM). PWM is a two wire protocol that

utilizes both pin 2 and pin 10 of the connector. PWM

supports a speed of 41.6 Kbps. High signal voltage is a

nominal 5V with a minimum and maximum of 3.80V and

5.25V respectively. Low signal voltage is a nominal 0V

with a minimum and maximum of 0V and 1.20V

respectively. The active bus state occurs when pin 2

(BUS+) is pulled high and pin 10 (BUS-) is pulled low.

Start of frame is issued by an active bus state for 48μS. A 1

bit is issued by an 8μS bus active state within a 24μS period.

A 0 bit is issued by a 16μS bus active state within a 24μS

period. Messages may be up to 12 bytes.

B. ISO 9141-2

The ISO 9141-2 standard is a two wire serial

communication protocol. It operates at 10.4 Kbps. This

protocol utilizes pins 7 and 15 on the connector. Pin 7 is

referred to as the K-line. Pin 15 is referred to as the L-line

and is optional. The K-line is the communication line and

is bidirectional. The L-line is used to send a signal to the

ECU on older cars as a wake-up so that communication

could start on the K-line. In newer cars the L-line is not used

and all signaling occurs on the K-line. A high voltage signal

is a nominal 12V with a minimum and maximum of 9.60V

and 13.5V respectively. Signaling is similar to RS-232

(Though with the obvious difference in voltage level). The

serial settings are 10.4K baud, 8 data bits, no parity, and 1

stop bit. Messages may be up to 12 bytes.

C. ISO 14230 (KWP2000)

The KWP2000 protocol is the same as the ISO 9141-2

protocol in all respects except that the data rate is variable

from 1.2K baud to 10.4K baud. Messages may also be up

to 255 bytes in length.

D. ISO 15765 (CAN)

The CAN protocol is modern standard for vehicle

messaging. It is required in all vehicles sold in the United

States since 2008. CAN utilizes pin 6 and pin 14 on the

connector. Pin 6 is CAN high. Pin 14 is CAN low. The

CAN high signal voltage is a nominal 3.5V with a minimum

and maximum of 2.75V and 4.5V respectively. CAN low

signal voltage is a nominal 1.5V with a minimum and

maximum of 0.5V and 2.25V respectively. CAN is in the

recessive state when neither pin is being driven. In this state

both lines sit at around 2.5V. CAN is in the dominant state

when both lines are being driven and there is a difference

of 2V between the lines.

E. OBD-II PID’s

Once the messaging protocol has been determined and

the GEM can communicate with the vehicle messages will

be sent and received using the OBD communication

protocol. Most of the data that is available via OBD-II is

related to emissions as the OBD-II protocol was mandated

for use in emissions inspections. The GEM will be able to

request data related to vehicle speed, engine RPM, fuel

level, and other information useful to calculate the current

efficiency of the vehicle. In order to retrieve the data from

the vehicle ECU a message needs to be sent to the data bus.

This message takes the form of a "Parameter ID" or PID.

The PID takes the form of four bytes. The first two bytes

identify the mode of the query as shown in Table 1 and the

second two bytes indicate the actual query if applicable. For

example, to request the current diagnostic trouble code

(DTC) a value of 0300 is sent to the data bus. The ECU

responsible for that code will respond with the currently

stored DTC.

Table 1: OBD-II Modes

Mode Description Mode Description

01 Show Current Data 06 Test Results

02
Show Freeze

Frame Data
07 Show Pending DTC

03
Show Stored

DTC’s
08

Special Control

Mode

04 Clear DTC 09
Request Vehicle

Information

05 Test Results 10 Permanent DTC’s

Since not all vehicles support all modes the GEM is

limited to a specific subset. The only two modes that will

be used by the smart phone software will be modes 01 and

09. Mode 1 is used to retrieve specific data related to fuel

efficiency as shown in Table 2 and mode 9 is used to

retrieve the VIN (Vehicle Identification Number) to verify

that the GEM has not been moved to another vehicle.

Table 2: Mode 01 PID's

PID Description

00 Supported PID’s (1-20)

04 Engine Load %

0C Engine RPM

0D Vehicle Speed

20 Supported PID’s (21-40)

2F Fuel Remaining %

40 Supported PID’s (41-60)

5E Engine Fuel Rate

V. DEVICE DESIGN

A. Serial Interface

In order to send and receive signals the GEM must be

able to receive a signal using any one of the five protocols.

This means that there needs to be four different transceivers

that can take the voltages and signals and convert them to

something that can be read by the digital input on a

microcontroller. The microcontroller must then be able to

take the signal, determine what protocol is being used and

then receive and transmit data using that protocol. For the

SAE J1850, ISO 9141-2, and ISO 14230 buses a simple

comparator can be used to compare the line voltages and

then output a 3.3V signal to the OBD-II to serial interpreter.

An example of the typical transceiver is shown in Figure 3.

Figure 3: VPW Transceiver

The remaining challenge is the CAN bus. Because the

CAN bus allows for speeds of up to 1 Mbps timing and

control is critical. In order to transmit and receive messages

on the CAN bus a commercial transceiver is necessary.

There are a wide variety of CAN receivers due to the fact

that CAN is used in both automotive and industrial

applications. For our design we have opted for the

MCP2551 as it meets our stringent power requirements and

is one of the least expensive options.

Once the ECU signal voltages have converted to 3.3V

they are then passed to a serial interface processor. This

processor automatically negotiates the protocol and then

converts serial input and output to match that protocol. The

benefits of using the preconfigured automotive OBD-II to

serial interface are a simplified software ecosystem at the

cost of hardware complexity and additional device cost. We

found this tradeoff to be acceptable as adding this

component while more expensive allowed us to save

countless hours developing the interface code ourselves.

B. Power System

The power requirements for this design are somewhat

complicated. The system requires a vehicle battery voltage,

nominally 12V, a 7V supply for the comparators for the

SAE J1850 VPW system, a 5V supply for the comparators

for the SAE J1850 PWM system, and a 3.3V supply for the

microcontrollers and Bluetooth module. Since the two SAE

J1850 protocols use the same input and output and only

differ in their voltages it is required that the power supply

on those inputs is switchable between 5V and 7V

In addition because of the nature of the power supply on

a vehicle we also need to have filtering and transient

voltage suppression. Filtering can be done by capacitors on

the input to the power stage. Transient voltage suppression

can be done with the addition of TVS diode pairs on the

input stage to shunt current when the voltage rises beyond

a set point. An example of the filtering circuit used is shown

in Figure 4.

Figure 4: Power Filter Stage

To meet the power requirements multiple voltage

regulators will need to be used. For these stages we need

high efficiency as we have ultra-low power requirements

when the vehicle is powered off and we have limited heat

dissipation when the vehicle is on and the device is

powered.

Given the typical operating current for the various on

board devices we arrive at a current consumption of

223mA, add a 50% safety margin and we have 334mA

consumed while the device is fully active. If we were to

drop the battery voltage to 3.3V via a linear regulator we

would have to dissipate 2.9W.

We opted to go with a set of switching regulators to

provide the 5V and 3.3V rails. In addition, to support the

SAE J1850 bus we use a linear regulator to achieve the

nominal 7V required. Using a transistor as a switch we

change the resistor network attached the linear regulator so

that it can also provide the nominal 5V. This allows us to

keep the device relatively simple.

C. Bluetooth

Since Bluetooth is such a common standard there are

many ways that we can implement it on our device. We had

to make the choice between Bluetooth and Bluetooth Low

Energy (BLE) we found BLE to be ideal for our system as

it is low power and is active over short ranges. We then had

two options. We could either integrate a prebuilt Bluetooth

module or we could develop a module based upon an

existing Bluetooth chip. Due to the complexities of antenna

design and the fact that wireless communication is a core

feature of our device we decided to reduce the risk of a

failure by using a prebuilt module. We selected the

Microchip RN4020. Using this module allows us to

prototype and iterate our design quickly and easily. The

RN4020 is a complete Bluetooth module with an onboard

Bluetooth Low Energy 4.1 stack. Using the RN4020

reduces Bluetooth related MCU software to the task of

interfacing with the module. The RN4020 has a command

API, which are issued by the host microcontroller as ASCII

characters. Commands are sent from the host MCU through

a UART control interface.

D. Storage

The GEM needs to be able to store data when the user

does not have their smart phone available. On board storage

in the MCU memory is not sufficient because should the

device become unplugged or otherwise disconnected from

the battery the memory will be lost. A simple solution is a

cheap, easily available, easy to use, non-volatile memory.

SD cards meet all of these requirements. In order to

interface with the SD card the MSP430 can utilize the SPI

bus. Texas Instruments provides a SD card library which

can be used to write data to the card.

1 https://developer.android.com/training/index.html
2http://www.oracle.com/technetwork/articles/java/index

-137868.html

VI. SOFTWARE DESIGN

A. Overview and Considerations

Our goal is to produce software that meets the

expectations of mobile application users with performance

and presentation similar to other fuel economy applications.

The Android application displays vehicle metrics received

from the GEM device in real-time. Some of which are:

1. Vehicle speed

2. RPM

3. Instant fuel economy

4. Trip meter

This software is able to display these values for the user

within range of the GEM device. Users may customize

which information is displayed by the application and its

location on screen.

The GEM Android application was developed based on

the best practices suggested by the Android Development

Team1

Code documentation is generated using Javadoc because

of its availability in Android Studio and our team's

familiarity with this documentation generator. All

documentation will follow the conventions provided by

Oracle.2

The GEM Android application will try to adhere to the

code style guidelines distributed by the Android

Development Team3

Many design considerations shaped the development of

the GEM Android application. We will discuss some of

these considerations here.

The reusability of the system was a top priority from the

beginning. The system is designed to take information

from the GEM device and provide the application with the

data necessary to produce meaningful statistics to the user.

The design architecture must be flexible enough to allow

any subsystem or feature to be modified/improved in future

releases.

Maintainability is crucial to any system that may be

modified or examined in the future, and proper

programming practices must be employed throughout the

application development lifecycle. The Agile software

development model will be the most effective as design

challenges may force us to change directions quickly, but

proper documentation through the build is absolutely

necessary.

3 https://source.android.com/source/code-style.html

Testing the system on mobile devices will be require

access to several different Android devices with varying

hardware. The Android Virtual Device (AVD) emulator

increases productivity, but cannot guarantee that the real

device will work as shown. Our chosen IDE, Android

Studio, is built specifically for the creation or Android apps

and offers much of the same testing frameworks as Eclipse.

Our system is designed to be relatively light and

requiring Android 4.3 will guarantee that hardware used by

the mobile device can handle our application. Any

performance issues that arise will be dealt with on a case by

case basis.

Developing the system for mobile devices introduces

many variables (i.e. screen size, processor, RAM), but the

languages and APIs used to program our system are

standardized and subsume previous releases which makes

portability a relatively simple feat to achieve.

The information stored and transmitted by our device is

not considered sensitive information. The range of the

Bluetooth transmission is short enough that it is unlikely

that unintended users will have access to the information

transmitted. In the event that data is intercepted, there is no

danger that a user’s vehicle can be altered or harmed in any

way. The biggest concern for safety that our team has is

that users will not be distracted by the application while

operating their motor vehicle. Careful consideration must

be put into the design of the application so as not to require

input from a user while driving.

B. Fuel Optimization Algorithm

The firmware on the GEM system deals with polling the

vehicle for as much fuel data as possible on every trip a user

makes. This raw data is then transmitted to a user’s mobile

device with some basic organization. An analysis of the

data is left to the mobile application with the use of high

level programing. It is our intent to design a high level fuel

optimization algorithm to efficiently process the data and

achieve our team goal of providing practical fuel advice to

users. While some vehicles provide unique PID’s to

measure specific fuel injection, others don’t, therefore we

can’t rely on this data when designing fuel algorithms. We

instead will opt to use widely available ECU data to meet

the GEM system’s requirements. The useful messages for

this task are engine RPM, speed, air flow rate, throttle

position, and fuel rate.

By synchronizing instantaneous data with fixed-interval

time polls, average rates can be efficiently calculated. For

instance, instantaneous air flow rate and fuel rate can be

used to calculate an instantaneous miles per gallons (MPG)

measurement. Synchronizing several measurements over

equally divided time segments would provide an average

MPG measurement. This technique can be generalized for

acceleration and de-acceleration data as well. Thus, the first

stage of the algorithm deals with synchronizing

instantaneous data and time. The data is then normalized to

lower error percentages and placed in a histogram-like data

structure. The device will then compare this to, static,

“optimal rates” pre-stored in the application software.

These optimal rates will be derived from readily available

fuel research. A point-by-point distance formula will be

used to generate a correlation coefficient between the

gathered average rates and optimal driving rates. A set of

thresholds will then be used to trigger fuel advice based on

several correlation coefficients for each driving parameter

measured by the GEM system.

C. Firmware Design

The MCU firmware was designed with modularity,

portability, and reusability in mind. The design revolves

around five interacting subsystems, gelled together by a

main subroutine. A finite state machine best describes the

design of the main routine. The subsystems are

implemented as modular subroutines and each handle an

independent task as follows:

1. Bluetooth Connection

2. Vehicle Profiles

3. Onboard Storage

4. OBD-II Data Pipelining

5. Power Control

Upon powering on the device for the first time, an initial

setup state is entered by the MCU firmware. During this

initialization stage, the MSP430 establishes a connection,

and configures the STN1110, RN4020, and microSD chips

to enable the core functionality of GEM. An “initial state”

flag is cleared to ensure that these operations don’t have to

be repeated. Upon all subsequent device powering’s a

default operation state is executed instead. In this default

state the VIN is always retrieved and passed on to the

Profiles subroutine. The Profiles subroutine passes profile

data to the Bluetooth subroutine. The main subroutine

decides whether to proceed to either the Storage or Data

subroutines based on connection status parameters

provided by the Bluetooth subroutine. If a connection is not

available or if there are previously unsent packets in the

microSD card, the Storage subroutine is initiated. The Data

subroutine is only initiated if a connection is available and

there isn’t any unsent data. Finally, the Power subroutine

interrupts any executing routine when the Vehicle is turned

in order to cache important data and power off the device.

There is a small footprint profile system onboard that

serves two primary functions. The first is to permit GEM to

be a portable system. The second is to enable quicker start

up times when the vehicle is already known. The system

software operates in either a Fetch state or a Create state.

Up to 5 vehicle profiles may be stored, identified by the

VIN and some other parameters. The system software

compares the VIN to existing profiles. If there is a match,

the corresponding profiles cached data is provided to the

main subroutine. If the VIN doesn’t match an existing

profile, a new profile is created, or an older one is replaced

if 5 unique profiles already exist.

The Bluetooth subroutine is triggered based on the

Profile system’s parameters, or status flags for non-

transmitted packets provided by the Data system. When the

system software in its default state it scans for connectable

devices, if none are discovered a flag is set and execution is

passed to the Storage system. If a device is found, the

system proceeds to a Paring state which determines if a

previously connected device is available. If an unknown

device is paired with the GEM system, an authentication

step is required, which is handled in a Connection state.

Once authentication is achieved or if a recognized device is

connected, the MLDP state is triggered. In this state the

device prepares the RN4020 to blast OBD data to the

mobile device. Once this is complete, a connection report

frame is used to initiate the Data subroutine.

The Storage subroutine is triggered after the Bluetooth

subroutine finishes execution. This subroutine operates in

either a Write or Read state, based on flags set by other

routines. When a connection is not available the system is

placed in a write state, storing all OBD data in microSD

blocks. The read state is entered when there are blocks in

the microSD card that have not been transmitted yet. When

a connection is available, and there aren’t any non-

transmitted blocks the system cedes execution.

When several conditions have been met the main routine

transfers execution to the Data subroutine. These conditions

are passed in through several status flags. The system

software alternates between two states, a Request state and

a Pipeline state. In the Request state the ECU is constantly

polled through the STN1110 and a small local frame is

built. Once the frame is ready, it is sent to the Pipeline stage,

which deals with transmitting to the RN4020 in MLDP

mode via UART. Both states monitor for any status flags

changes, such as loosing Bluetooth connection, and

terminate the subroutine if there are any changes, passing

control back to the main routine.

The Power subroutines main task is to handle the power

states of all peripherals. Any of the other subroutines

execution can be interrupted by the Power subroutine, when

it is determined that the vehicle has been turned off.

Coming from an interrupted routine the Power system

initiates in the Interrupt state. In this state, important data

(status flags) necessary for the next startup is cached,

peripheral devices power states are altered, and any other

tasks are interrupted. Then, an Idle no power state assumed.

Once the device is powered on again, the idle state wakes

up peripheral devices and returns execution to the main

routine.

ACKNOWLEDGEMENT

The authors wish to acknowledge Boeing for generously

providing funding to design and develop the GEM.

BIOGRAPHY

Pedro Betancourt is graduating

from the University of Central

Florida in May of 2015 with a

Bachelor of Science in Computer

Engineering. Pedro will be

working for Capital One, as a

Technology Development

Associate, following graduation.

Alexander Patino will receive

his Bachelors of Science in

Computer Engineering from the

University of Central Florida in

May of 2015. He enjoys

developing Android applications

because the applications are endless. From guitar tuners and

fitness tracking to social media and games, mobile

technology is the future and he intends to be a part of it.

Mohhamad “Jake” Pulliam will

be graduating with honors and

receive his BSEE from the

University of Central Florida. He is

currently working to develop web

and mobile applications that help

connect students and employers at

career fairs. His interests lie in

hardware development, especially in the areas of filtering

and signal processing. He has accepted a position with

Texas Instruments as a field application engineer and will

join them following graduation.

REFERENCES

[1] United States Environmental Protection Agency

<http://www.epa.gov/nvfel/testing/dynamometer.

htm>

