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Abstract  —  The purpose of this project is to develop a small 
consumer electronic device to assist the consumer in making 

better decisions in order to improve their fuel economy. This 
device is called the GEM. The GEM is intended to connect to 
the engine control unit (ECU) of a vehicle via the standard 

OBD-II interface found in all vehicles sold in the United States 
after 1996. The device is designed to safely provide feedback 
to a driver in a non-intrusive way so as not to be a distraction 

or nuisance. To provide feedback to the driver the GEM 
connects to a custom Android OS application. All data 
processing and display is taken care of by the driver’s Android 

device. The GEM has a small footprint, consumes very little 
power when in standby mode and is user friendly. It’s 
designed to be plugged into the OBD-II port permanently and 

require no further user intervention.  

Index Terms  —  Automotive, fuel economy, engine control 
unity (ECU). 

I. INTRODUCTION 

In 2013 the U.S. consumed over 134 billion gallons of 

gasoline. On that scale even slight improvements in 

efficiency can save millions of dollars and prevent tons of 

carbon dioxide from entering the atmosphere. Automobile 

manufacturers are constantly striving to develop more 

efficient engines in order to meet the needs of consumers as 

well as regulatory requirements. Unfortunately purchasing 

a new vehicle in order to realize better fuel economy isn't 

always viable or practical. In fact purchasing a new vehicle 

in order to receive an incremental increase in efficiency is 

actually a bad idea. It is rare that the efficiency gains pay 

for themselves except over an exceptionally long period of 

time. Not to mention the large environmental impact and 

high energy consumption required to build a single car. In 

order to make progress in this realm what we need is a 

simple, low-cost solution that is available to every driver. 

This is why we design the "Gasoline Economy 

Management" tool or GEM. GEM is a simple system that 

is designed to be available to nearly any driver who uses a 

smart phone. GEM is a small device that plugs into the 

OBD-II port that is standard on all vehicles sold in the U.S. 

after 1996. The OBD-II port is a standardized hardware port 

through which vehicle diagnostic codes and other vehicle 

information can be read. We can use this information to 

help develop more fuel efficient driving habits. While it's 

prohibitively expensive to retrofit older vehicles with 

modern fuel efficient systems it can be very cheap and very 

effective to reprogram an individual's driving habits. 

Simple changes such as driving the correct speed and 

avoiding excessive acceleration and braking can increase 

fuel efficiency by up to 5%. For a driver that drives 15,000 

miles a year if they can go from 20 miles per gallon to 21 

they save 36 gallons per year. At three dollars a gallon that's 

a yearly savings of $108. Not only will it save money and 

resources it's designed to be easy for anyone to use. When 

a person gets a GEM it will be very simple for them to 

connect the device to their vehicle and pair it with their 

phone. All they have to do is connect the GEM to the OBD-

II port, turn on their car and start the phone application. The 

phone application provides a simple, hands off user 

interface that provides feedback to help a driver adjust their 

driving habits in order to enjoy greater fuel economy. The 

device itself is powered by the vehicle's battery and when 

the vehicle is turned off the GEM enters a sleep mode so 

that it won't drain the battery. When active the GEM 

automatically pairs with the driver's phone via Bluetooth 

LE or, if the driver doesn't have their phone available, the 

GEM will store driving information so that the next time 

the driver connects their smart phone fuel economy and 

other statistics will be transferred to the application. While 

the GEM is designed for semi-permanent installation it also 

has the ability to store vehicle profiles. If a driver finds 

themselves behind the wheel of a different car every day 

they'll still be able to take advantage of the provided 

feedback. 

II. PROJECT DESCRIPTION 

Several key objectives were identified when developing 

this product. It needs to be low power, with a small 

footprint, and a simple and safe interface to be used when 

driving.  

The hardware systems for GEM can be broken down into 

the following subsystems 

 

1. Power supply 

2. OBD-II to serial interface 

3. Onboard processing 

4. Data storage  

5. Data transmission 

 

Each of these subsystems was analyzed based on our key 

objectives and specifications were developed.  



A. Power 

Power is a challenging aspect of the GEM. The primary 

requirement is that the GEM should be plug and play. The 

user should be able to plug the device into the OBD-II port 

on the car then leave the device plugged in without drawing 

down the battery when the vehicle is not in use. A goal was 

set to be able to leave the GEM connected to a vehicle for 

183 days (half a year) without drawing down the battery so 

far as to cause the vehicle to be unable to start. 

We reviewed different batteries to find out what the 

average storage capacity in amp hours is in order to find out 

what the maximum current draw we could have while the 

device is in low power mode. The energy storage of 

batteries manufactured in the U.S. is not specified as 

automotive batteries are designed for starting the vehicle 

only. Starting batteries are specified by cold cranking amps 

(CCA). Because approximations for current capacity for 

U.S. batteries range anywhere from 30 to 60 Ah, we relied 

on European Union labeling standards for which amp hour 

capacity is a requirement. Varta brand batteries were taken 

as a typical example of an automotive battery. The 

midrange Varta "Black Dynamic" battery has a range of 

capacities from 40 to 90 Ah. There is no way of knowing 

what battery is being used so the minimum capacity was 

chosen as the baseline. The Varta "Black Dynamic" type 

A16 battery has a capacity of 40 Ah. The GEM should not 

draw down more than half the capacity within six months. 

In order to achieve this the power draw when the device is 

idle must be less than 5 mA as shown in (1). 

 

 20,000 𝑚𝐴ℎ

5 𝑚𝐴
= 4000 ℎ ≈ 167 𝑑𝑎𝑦𝑠 (1) 

 

B. OBD-II to Serial Interface 

While the OBD-II physical port configuration is 

standardized there are many different communications 

protocols available for use. The GEM must be able to 

communicate using all legislated protocols. This means that 

the GEM will be able to interface with any consumer 

vehicle sold within the U.S. since 1996. The required 

protocols are 

 

1. SAE J1850 PWM 

2. SAE J1850 VPW 

3. ISO 9141-2 

4. ISO 14230 (KWP2000) 

5. ISO 15765 (CAN) 

 

Each of these protocols will be discussed in detail in 

Section IV. 

C. Onboard Processing 

In order to keep the vehicle hardware simple, low cost, 

and low power on board data processing will be minimal. 

The primary function of the MCU is to interconnect the 

various on-board components and prepare the data to be 

sent to the smart phone for processing. The key features of 

the microcontroller are very low current draw, multiple 

serial interfaces, and simple to program. 

The microcontroller unit in the GEM system serves 

primarily as a bridge between other onboard modules. It 

transmits and receives data from an OBD-II transceiver, 

communicates with a Bluetooth module, and handles a 

cache memory in an SD card. First off, the MCU must be 

able to request and store the vehicles identification number 

(VIN). Based on the VIN, the software must determine the 

correct OBD-II protocol and use the appropriate subset of 

PID’s. While the vehicle is turned on, the MCU must poll 

the ECU, through a serial interface, continuously, with a 

minimum delay of 1 second and a maximum delay of 2 

seconds in between polls.  

The MCU will determine if the Bluetooth module has 

established a connection to a device, and provide a 

continuous data stream if a connection has been established. 

If it is determined that no device is in range of the Bluetooth 

module, the data will not be flushed. Instead, a frame of 

data will be cached in an SD card.  

D. Data Storage 

Data sent to the Android device will be stored on internal 

storage by writing to application files.  These data files can 

be read from by the application enabling the calculation of 

fuel economy statistics.  To allow for more permanent data 

to be saved and recalled later the application will manage 

data across sessions using shared preferences.  This will 

allow the application to track a user’s fuel economy as long 

as the data is stored on their device.  A user must be able to 

recall and clear the "history" of data from device storage 

from within the application.  To accommodate users with 

multiple vehicles the application will allow data to be stored 

accordingly for up to five user defined profiles. OBD-II 

message lengths range from 12 to 255 bytes, the minimum 

delay between messages received is 1 second. We expect 

GEM to be able to store up to 24 hours of driving data, in 

cases when users forget their phones or similar scenarios. 

Considering the most conservative scenario, where all 

messages are the maximum length, and are delayed by the 

minimum length of time we calculate the maximum frame 

length in (2). 

 

 
255 𝐵 ∙ 60

𝑝𝑜𝑙𝑙𝑠

𝑚
∙ 60

𝑚

ℎ
∙ 24 ℎ = 22.03 𝑀𝐵 (2) 

 



 

Thus, allowing some leeway, the maximum frame length 

shall be 25 MB, and the on-board storage must be a 

minimum of 25 MB. 

E. Data Transmission 

In order to get data from our device to the smart phone 

application we chose to use Bluetooth. Bluetooth is a short 

range wireless standard originally intended for wireless RS-

232 serial data. It operates in the 2.4 GHz range. Bluetooth 

devices operate as a master and a slave. Typically in a 

Bluetooth use case a user wants the two devices in 

communication to communicate securely but at the same 

time avoid having to manually connect the devices 

whenever they are in range. The two devices should 

automatically connect and start sharing data when in range. 

In order to achieve this devices go through a pairing 

operation which is usually started by a specific request from 

the user. Once the devices have gone through the pairing 

operation they are securely bonded and can connect to each 

other whenever they're in range without further interaction 

from the user. 

To setup a Bluetooth connection our Android application 

must search for devices in range and also display previously 

connected devices.  Once the devices have been discovered 

they may be paired by using "Passkey Entry."  It is also 

important that a user may terminate a Bluetooth connection 

with GEM from within the application.  All of these 

functions must be accessible from the first screen of the 

application.  In the event that a Bluetooth connection is lost 

the application must handle the error by displaying a 

notification and attempt to repair the connection.  Once a 

connection is established it will remain connected and 

receive broadcasts until GEM is unplugged or the vehicle is 

turned off. 

III. FUEL ECONOMY 

To determine the fuel economy of a vehicle the 

Environmental Protection Agency has designed a series of 

tests to estimate fuel consumption.  The fuel economy of a 

vehicle based on the tests performed by the EPA is 

weighted such that the final value is 55% city and 45% 

highway.  Because the EPA uses a dynamometer or "dyno" 

which neglects real world driving conditions, they expect 

actual fuel economy to be less than calculated.  The Urban 

Dynamometer Driving Schedule (UDDS) shown in Figure 

1 represents the driving cycle used to estimate city driving.  

To simulate highway fuel economy the EPA uses the 

Highway Fuel Economy Driving Cycle (HWFET). 

In 2011 the EPA and National Highway Traffic Safety 

Administration (NHTSA) adopted a new fuel economy 

label that is displayed on new cars.  The most notable 

change is the addition of a vehicle's fuel consumption rate 

which is the gallons consumed per 100 miles. Figure 2 

shows the relationship between miles per gallon and gallons 

per 1,000 miles.  The takeaway from this chart is that there 

is a notable difference in fuel consumption from 10 mpg to 

15 mpg (about 33 gallons) and a less significant 

improvement from 30 mpg to 35 mpg (about 5 gallons).  

This new method of measuring fuel economy is used to 

allow more accurate comparisons among vehicles.  Our 

device will ultimately display mpg and gallons per 100 

miles because our primary goal is for consumer to increase 

their fuel economy no matter how they measure it. 

 

 
Figure 2: MPG & Gallons per thousand miles 

IV. DEVICE INTERFACE 

In 1996 the OBD-II port was made standard on all 

vehicles sold in the U.S. The OBD-II port is a 16 pin female 

SAE J1962 connector. The connector is required to be 

located in the passenger cabin and within 0.69m of the 

steering column, except where requested by exemption. 

There are five possible signaling protocols used by the 

OBD-II port. In vehicles 2008 and newer the standard is the 

CAN Bus (ISO 15765) and is required by law as one of the 

protocols. 

Figure 1: Urban Dynamometer Driving Schedule [1] 



A. SAE J1850 PWM/VPW 

SAE J1850 can be broken down into two sub classes. The 

first is variable pulse width (VPW). VPW is a single wire 

bus protocol that utilizes only pin 2 of the connector. It 

operates at either 10.4 Kbps or 41.6 Kbps. High signal 

voltage is a nominal 7V with a minimum and maximum of 

6.25V and 8V respectively. Low signal voltage is a nominal 

0V with a minimum and maximum of 0V and 1.2V 

respectively. Start of frame is issued by a 200𝜇S high 

signal. A 1 bit is issued by a 128μS low signal or a 64μS 

high signal. A 0 bit is issued by a 64μS low signal or a 

128μS high signal. Messages may be up to 12 bytes. 

The second class of SAE J1850 is pulse width 

modulation (PWM). PWM is a two wire protocol that 

utilizes both pin 2 and pin 10 of the connector. PWM 

supports a speed of 41.6 Kbps. High signal voltage is a 

nominal 5V with a minimum and maximum of 3.80V and 

5.25V respectively. Low signal voltage is a nominal 0V 

with a minimum and maximum of 0V and 1.20V 

respectively. The active bus state occurs when pin 2 

(BUS+) is pulled high and pin 10 (BUS-) is pulled low. 

Start of frame is issued by an active bus state for 48μS. A 1 

bit is issued by an 8μS bus active state within a 24μS period. 

A 0 bit is issued by a 16μS bus active state within a 24μS 

period. Messages may be up to 12 bytes. 

B. ISO 9141-2 

The ISO 9141-2 standard is a two wire serial 

communication protocol. It operates at 10.4 Kbps. This 

protocol utilizes pins 7 and 15 on the connector. Pin 7 is 

referred to as the K-line. Pin 15 is referred to as the L-line 

and is optional. The K-line is the communication line and 

is bidirectional. The L-line is used to send a signal to the 

ECU on older cars as a wake-up so that communication 

could start on the K-line. In newer cars the L-line is not used 

and all signaling occurs on the K-line. A high voltage signal 

is a nominal 12V with a minimum and maximum of 9.60V 

and 13.5V respectively. Signaling is similar to RS-232 

(Though with the obvious difference in voltage level). The 

serial settings are 10.4K baud, 8 data bits, no parity, and 1 

stop bit. Messages may be up to 12 bytes. 

C. ISO 14230 (KWP2000) 

The KWP2000 protocol is the same as the ISO 9141-2 

protocol in all respects except that the data rate is variable 

from 1.2K baud to 10.4K baud. Messages may also be up 

to 255 bytes in length. 

D. ISO 15765 (CAN) 

The CAN protocol is modern standard for vehicle 

messaging. It is required in all vehicles sold in the United 

States since 2008. CAN utilizes pin 6 and pin 14 on the 

connector. Pin 6 is CAN high. Pin 14 is CAN low. The 

CAN high signal voltage is a nominal 3.5V with a minimum 

and maximum of 2.75V and 4.5V respectively. CAN low 

signal voltage is a nominal 1.5V with a minimum and 

maximum of 0.5V and 2.25V respectively. CAN is in the 

recessive state when neither pin is being driven. In this state 

both lines sit at around 2.5V. CAN is in the dominant state 

when both lines are being driven and there is a difference 

of 2V between the lines. 

E. OBD-II PID’s 

Once the messaging protocol has been determined and 

the GEM can communicate with the vehicle messages will 

be sent and received using the OBD communication 

protocol. Most of the data that is available via OBD-II is 

related to emissions as the OBD-II protocol was mandated 

for use in emissions inspections. The GEM will be able to 

request data related to vehicle speed, engine RPM, fuel 

level, and other information useful to calculate the current 

efficiency of the vehicle. In order to retrieve the data from 

the vehicle ECU a message needs to be sent to the data bus. 

This message takes the form of a "Parameter ID" or PID. 

The PID takes the form of four bytes. The first two bytes 

identify the mode of the query as shown in Table 1 and the 

second two bytes indicate the actual query if applicable. For 

example, to request the current diagnostic trouble code 

(DTC) a value of 0300 is sent to the data bus. The ECU 

responsible for that code will respond with the currently 

stored DTC. 

 
Table 1: OBD-II Modes 

Mode Description Mode Description 

01 Show Current Data 06 Test Results 

02 
Show Freeze 

Frame Data 
07 Show Pending DTC 

03 
Show Stored 

DTC’s 
08 

Special Control 

Mode 

04 Clear DTC 09 
Request Vehicle 

Information 

05 Test Results 10 Permanent DTC’s 

 

Since not all vehicles support all modes the GEM is 

limited to a specific subset. The only two modes that will 

be used by the smart phone software will be modes 01 and 

09. Mode 1 is used to retrieve specific data related to fuel 

efficiency as shown in Table 2 and mode 9 is used to 

retrieve the VIN (Vehicle Identification Number) to verify 

that the GEM has not been moved to another vehicle. 

 

 



Table 2: Mode 01 PID's 

PID Description 

00 Supported PID’s (1-20) 

04 Engine Load % 

0C Engine RPM 

0D Vehicle Speed 

20 Supported PID’s (21-40) 

2F Fuel Remaining % 

40 Supported PID’s (41-60) 

5E Engine Fuel Rate 

V. DEVICE DESIGN 

A. Serial Interface 

In order to send and receive signals the GEM must be 

able to receive a signal using any one of the five protocols. 

This means that there needs to be four different transceivers 

that can take the voltages and signals and convert them to 

something that can be read by the digital input on a 

microcontroller. The microcontroller must then be able to 

take the signal, determine what protocol is being used and 

then receive and transmit data using that protocol. For the 

SAE J1850, ISO 9141-2, and ISO 14230 buses a simple 

comparator can be used to compare the line voltages and 

then output a 3.3V signal to the OBD-II to serial interpreter. 

An example of the typical transceiver is shown in Figure 3.  

 
Figure 3: VPW Transceiver 

The remaining challenge is the CAN bus. Because the 

CAN bus allows for speeds of up to 1 Mbps timing and 

control is critical. In order to transmit and receive messages 

on the CAN bus a commercial transceiver is necessary. 

There are a wide variety of CAN receivers due to the fact 

that CAN is used in both automotive and industrial 

applications. For our design we have opted for the 

MCP2551 as it meets our stringent power requirements and 

is one of the least expensive options. 

Once the ECU signal voltages have converted to 3.3V 

they are then passed to a serial interface processor. This 

processor automatically negotiates the protocol and then 

converts serial input and output to match that protocol. The 

benefits of using the preconfigured automotive OBD-II to 

serial interface are a simplified software ecosystem at the 

cost of hardware complexity and additional device cost. We 

found this tradeoff to be acceptable as adding this 

component while more expensive allowed us to save 

countless hours developing the interface code ourselves. 

B. Power System 

The power requirements for this design are somewhat 

complicated. The system requires a vehicle battery voltage, 

nominally 12V, a 7V supply for the comparators for the 

SAE J1850 VPW system, a 5V supply for the comparators 

for the SAE J1850 PWM system, and a 3.3V supply for the 

microcontrollers and Bluetooth module. Since the two SAE 

J1850 protocols use the same input and output and only 

differ in their voltages it is required that the power supply 

on those inputs is switchable between 5V and 7V 

In addition because of the nature of the power supply on 

a vehicle we also need to have filtering and transient 

voltage suppression. Filtering can be done by capacitors on 

the input to the power stage. Transient voltage suppression 

can be done with the addition of TVS diode pairs on the 

input stage to shunt current when the voltage rises beyond 

a set point. An example of the filtering circuit used is shown 

in Figure 4. 

 
Figure 4: Power Filter Stage 

To meet the power requirements multiple voltage 

regulators will need to be used. For these stages we need 

high efficiency as we have ultra-low power requirements 

when the vehicle is powered off and we have limited heat 

dissipation when the vehicle is on and the device is 

powered. 

Given the typical operating current for the various on 

board devices we arrive at a current consumption of 

223mA, add a 50% safety margin and we have 334mA 



consumed while the device is fully active. If we were to 

drop the battery voltage to 3.3V via a linear regulator we 

would have to dissipate 2.9W. 

We opted to go with a set of switching regulators to 

provide the 5V and 3.3V rails. In addition, to support the 

SAE J1850 bus we use a linear regulator to achieve the 

nominal 7V required. Using a transistor as a switch we 

change the resistor network attached the linear regulator so 

that it can also provide the nominal 5V. This allows us to 

keep the device relatively simple. 

C. Bluetooth 

Since Bluetooth is such a common standard there are 

many ways that we can implement it on our device. We had 

to make the choice between Bluetooth and Bluetooth Low 

Energy (BLE) we found BLE to be ideal for our system as 

it is low power and is active over short ranges. We then had 

two options. We could either integrate a prebuilt Bluetooth 

module or we could develop a module based upon an 

existing Bluetooth chip. Due to the complexities of antenna 

design and the fact that wireless communication is a core 

feature of our device we decided to reduce the risk of a 

failure by using a prebuilt module. We selected the 

Microchip RN4020. Using this module allows us to 

prototype and iterate our design quickly and easily. The 

RN4020 is a complete Bluetooth module with an onboard 

Bluetooth Low Energy 4.1 stack. Using the RN4020 

reduces Bluetooth related MCU software to the task of 

interfacing with the module. The RN4020 has a command 

API, which are issued by the host microcontroller as ASCII 

characters. Commands are sent from the host MCU through 

a UART control interface. 

D. Storage 

The GEM needs to be able to store data when the user 

does not have their smart phone available. On board storage 

in the MCU memory is not sufficient because should the 

device become unplugged or otherwise disconnected from 

the battery the memory will be lost. A simple solution is a 

cheap, easily available, easy to use, non-volatile memory. 

SD cards meet all of these requirements. In order to 

interface with the SD card the MSP430 can utilize the SPI 

bus. Texas Instruments provides a SD card library which 

can be used to write data to the card. 

                                                           
1 https://developer.android.com/training/index.html 
2http://www.oracle.com/technetwork/articles/java/index

-137868.html 

VI. SOFTWARE DESIGN 

A. Overview and Considerations 

Our goal is to produce software that meets the 

expectations of mobile application users with performance 

and presentation similar to other fuel economy applications. 

The Android application displays vehicle metrics received 

from the GEM device in real-time. Some of which are: 

 

1. Vehicle speed 

2. RPM 

3. Instant fuel economy 

4. Trip meter 

 

This software is able to display these values for the user 

within range of the GEM device. Users may customize 

which information is displayed by the application and its 

location on screen. 

The GEM Android application was developed based on 

the best practices suggested by the Android Development 

Team1 

Code documentation is generated using Javadoc because 

of its availability in Android Studio and our team's 

familiarity with this documentation generator. All 

documentation will follow the conventions provided by 

Oracle.2 

The GEM Android application will try to adhere to the 

code style guidelines distributed by the Android 

Development Team3 

Many design considerations shaped the development of 

the GEM Android application. We will discuss some of 

these considerations here. 

The reusability of the system was a top priority from the 

beginning.  The system is designed to take information 

from the GEM device and provide the application with the 

data necessary to produce meaningful statistics to the user.  

The design architecture must be flexible enough to allow 

any subsystem or feature to be modified/improved in future 

releases. 

Maintainability is crucial to any system that may be 

modified or examined in the future, and proper 

programming practices must be employed throughout the 

application development lifecycle.  The Agile software 

development model will be the most effective as design 

challenges may force us to change directions quickly, but 

proper documentation through the build is absolutely 

necessary. 

3 https://source.android.com/source/code-style.html 



Testing the system on mobile devices will be require 

access to several different Android devices with varying 

hardware.  The Android Virtual Device (AVD) emulator 

increases productivity, but cannot guarantee that the real 

device will work as shown.  Our chosen IDE, Android 

Studio, is built specifically for the creation or Android apps 

and offers much of the same testing frameworks as Eclipse. 

Our system is designed to be relatively light and 

requiring Android 4.3 will guarantee that hardware used by 

the mobile device can handle our application.  Any 

performance issues that arise will be dealt with on a case by 

case basis. 

Developing the system for mobile devices introduces 

many variables (i.e. screen size, processor, RAM), but the 

languages and APIs used to program our system are 

standardized and subsume previous releases which makes 

portability a relatively simple feat to achieve. 

The information stored and transmitted by our device is 

not considered sensitive information.  The range of the 

Bluetooth transmission is short enough that it is unlikely 

that unintended users will have access to the information 

transmitted.  In the event that data is intercepted, there is no 

danger that a user’s vehicle can be altered or harmed in any 

way.  The biggest concern for safety that our team has is 

that users will not be distracted by the application while 

operating their motor vehicle.  Careful consideration must 

be put into the design of the application so as not to require 

input from a user while driving. 

B. Fuel Optimization Algorithm 

The firmware on the GEM system deals with polling the 

vehicle for as much fuel data as possible on every trip a user 

makes. This raw data is then transmitted to a user’s mobile 

device with some basic organization. An analysis of the 

data is left to the mobile application with the use of high 

level programing. It is our intent to design a high level fuel 

optimization algorithm to efficiently process the data and 

achieve our team goal of providing practical fuel advice to 

users. While some vehicles provide unique PID’s to 

measure specific fuel injection, others don’t, therefore we 

can’t rely on this data when designing fuel algorithms. We 

instead will opt to use widely available ECU data to meet 

the GEM system’s requirements. The useful messages for 

this task are engine RPM, speed, air flow rate, throttle 

position, and fuel rate.  

By synchronizing instantaneous data with fixed-interval 

time polls, average rates can be efficiently calculated. For 

instance, instantaneous air flow rate and fuel rate can be 

used to calculate an instantaneous miles per gallons (MPG) 

measurement. Synchronizing several measurements over 

equally divided time segments would provide an average 

MPG measurement. This technique can be generalized for 

acceleration and de-acceleration data as well. Thus, the first 

stage of the algorithm deals with synchronizing 

instantaneous data and time. The data is then normalized to 

lower error percentages and placed in a histogram-like data 

structure. The device will then compare this to, static, 

“optimal rates” pre-stored in the application software. 

These optimal rates will be derived from readily available 

fuel research. A point-by-point distance formula will be 

used to generate a correlation coefficient between the 

gathered average rates and optimal driving rates. A set of 

thresholds will then be used to trigger fuel advice based on 

several correlation coefficients for each driving parameter 

measured by the GEM system. 

C. Firmware Design 

The MCU firmware was designed with modularity, 

portability, and reusability in mind. The design revolves 

around five interacting subsystems, gelled together by a 

main subroutine. A finite state machine best describes the 

design of the main routine. The subsystems are 

implemented as modular subroutines and each handle an 

independent task as follows: 

 

1. Bluetooth Connection 

2. Vehicle Profiles 

3. Onboard Storage 

4. OBD-II Data Pipelining 

5. Power Control 

 

Upon powering on the device for the first time, an initial 

setup state is entered by the MCU firmware. During this 

initialization stage, the MSP430 establishes a connection, 

and configures the STN1110, RN4020, and microSD chips 

to enable the core functionality of GEM. An “initial state” 

flag is cleared to ensure that these operations don’t have to 

be repeated. Upon all subsequent device powering’s a 

default operation state is executed instead. In this default 

state the VIN is always retrieved and passed on to the 

Profiles subroutine. The Profiles subroutine passes profile 

data to the Bluetooth subroutine. The main subroutine 

decides whether to proceed to either the Storage or Data 

subroutines based on connection status parameters 

provided by the Bluetooth subroutine. If a connection is not 

available or if there are previously unsent packets in the 

microSD card, the Storage subroutine is initiated. The Data 

subroutine is only initiated if a connection is available and 

there isn’t any unsent data. Finally, the Power subroutine 

interrupts any executing routine when the Vehicle is turned 

in order to cache important data and power off the device. 

There is a small footprint profile system onboard that 

serves two primary functions. The first is to permit GEM to 

be a portable system. The second is to enable quicker start 



up times when the vehicle is already known. The system 

software operates in either a Fetch state or a Create state. 

Up to 5 vehicle profiles may be stored, identified by the 

VIN and some other parameters. The system software 

compares the VIN to existing profiles. If there is a match, 

the corresponding profiles cached data is provided to the 

main subroutine. If the VIN doesn’t match an existing 

profile, a new profile is created, or an older one is replaced 

if 5 unique profiles already exist. 

The Bluetooth subroutine is triggered based on the 

Profile system’s parameters, or status flags for non-

transmitted packets provided by the Data system. When the 

system software in its default state it scans for connectable 

devices, if none are discovered a flag is set and execution is 

passed to the Storage system. If a device is found, the 

system proceeds to a Paring state which determines if a 

previously connected device is available. If an unknown 

device is paired with the GEM system, an authentication 

step is required, which is handled in a Connection state. 

Once authentication is achieved or if a recognized device is 

connected, the MLDP state is triggered. In this state the 

device prepares the RN4020 to blast OBD data to the 

mobile device. Once this is complete, a connection report 

frame is used to initiate the Data subroutine. 

The Storage subroutine is triggered after the Bluetooth 

subroutine finishes execution. This subroutine operates in 

either a Write or Read state, based on flags set by other 

routines. When a connection is not available the system is 

placed in a write state, storing all OBD data in microSD 

blocks. The read state is entered when there are blocks in 

the microSD card that have not been transmitted yet. When 

a connection is available, and there aren’t any non-

transmitted blocks the system cedes execution. 

When several conditions have been met the main routine 

transfers execution to the Data subroutine. These conditions 

are passed in through several status flags. The system 

software alternates between two states, a Request state and 

a Pipeline state. In the Request state the ECU is constantly 

polled through the STN1110 and a small local frame is 

built. Once the frame is ready, it is sent to the Pipeline stage, 

which deals with transmitting to the RN4020 in MLDP 

mode via UART. Both states monitor for any status flags 

changes, such as loosing Bluetooth connection, and 

terminate the subroutine if there are any changes, passing 

control back to the main routine. 

The Power subroutines main task is to handle the power 

states of all peripherals. Any of the other subroutines 

execution can be interrupted by the Power subroutine, when 

it is determined that the vehicle has been turned off. 

Coming from an interrupted routine the Power system 

initiates in the Interrupt state. In this state, important data 

(status flags) necessary for the next startup is cached, 

peripheral devices power states are altered, and any other 

tasks are interrupted. Then, an Idle no power state assumed. 

Once the device is powered on again, the idle state wakes 

up peripheral devices and returns execution to the main 

routine. 
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