
Gasoline Economy Management

G.E.M.

GROUP 8

PEDRO BETANCOURT – CPE

ALEXANDER PATINO – CPE

MOHHAMAD “JAKE” PULLIAM – EE

Overview and Motivation
Many newer cars are being sold with on board fuel efficiency monitoring
systems. We wanted to bring this type of information system to a wider
range of vehicles at a low cost. When drivers receive instant feedback
they’re more likely to adjust their habits.

What is GEM?

GEM stands for Gasoline Economy Management. A system to monitor driver
activity to help drivers develop more fuel efficient driving habits.

Two components:
• A small device that connects to the vehicles on board diagnostic port
• An Android app that wirelessly connects to the device to monitor and

display metrics

Specifications
Low Power Consumption
• Multiple weeks of use without drawing down the vehicle battery

Interface with all vehicles manufactured after 1996 (OBD-II Spec. Mandated)
• SAE J1850 PWM/VPW
• ISO 9141-2
• KWP2000
• CAN

Bluetooth Connection
• BLE compliance

Local Storage
• Minimum 25 MB on-board storage

Portability
• Maximum of 5 vehicle profiles

Block Diagram

Power Conditioning

• Overcurrent and Overvoltage
Protection

• Reverse Voltage Protection
• Noise Filtering

Power Management

• 5V and BAT rail
controlled by STN1110
Power Manager.

• 3.3V Systems manage
their own power.

Voltage Regulation (3.3V & 5V)

• 3.3V and 5V use similar
voltage regulators.

• LMR16006 Series are
high frequency
switchers.

• Provides current limit
and thermal shutdown.

• Approaches 90%
efficiency.

STN1110 OBD-II to Serial Interface

• Detects protocol and
converts to serial data

• Accepts commands via
ASCII

• Operates using the
industry standard ELM327
protocol to simplify
communications

• Has low power sleep
mode

• Voltage sense can wake
device from low power
sleep mode

Signal Voltages

Name Nominal High Voltage Nominal Low Voltage

J1850 PWM +5V 0V

J1850 VPW +7V 0V

ISO 9141-2 & KWP2000 +12V 0V

CAN +3.5V +1.5V

KWP2000 Transceiver
• Based on LM339 quad

comparator
• Open collector output.

When K-line > ½
BAT_SW (12V) the
output is floating (high
impedance)

• KWP2000 typically only
uses K-line, L-line is
used for wakeup when
needed

J1950 PWM/VPW Transceiver

• VPW/PWM use the
same line but not the
same voltage.

• Linear regulator
switches between the
required voltages.

CAN Transceiver

• The MCP2551 is a high
speed CAN transceiver.

• CAN is an industrial data
standard.

• CAN has been adopted as
the standard for vehicle
networks.

Initial Prototype
• First design for the

frontend board.
• Does not integrate MCU

and BLE.
• Small form factor.
• Lots of mistakes that we

found and corrected in
the final board.

Final PCB

• Integrates stacking headers.
• Space saving design.
• Corrects for problems in prototype designs.

MSP430F247

• Ultra-low power 16 bit microcontroller
• 64-pin QFP package
• Entire team familiar with the msp430
• JTAG for on-board programming and debugging
• Provides up to four serial communication

interfaces
• 32KB Flash memory, 4KB RAM
• Unused pins if additional hardware is needed
• Our project did not require the use of an OS

RN4020 Bluetooth Module
• The RN-42 (classic Bluetooth), RN4020 (BLE),

and several stand along antennas were
considered

• Bluetooth 4.1 (BLE/ Bluetooth Smart) best fit
our energy specifications

• UART communication with it’s host controller
• ASCII command API
• Integrated antenna and fully implemented BT

stack with several profiles included
• MLDP private profile which allows any data

received via UART to be transmitted wirelessly
• Saved us from having to implement a complex

BLE stack on our microcontroller

Digital Board First Revision
• Our first board revision isolated all low voltage
(3.3V) hardware from the rest of the power system.
• Included MCU, Bluetooth, SD Card, and JTAG
header
• 2 layer board with a ground and VSS copper pour
on each
• 2.5” x 1.4”
• JTAG 14 pin breakout header for onboard
programming/debugging
• 4 breakout pins for serial communication and
power with the front end(power) board
• Allowed for development of firmware and
debugging, independent of the power system

Initial Firmware Design
Design based on 5 subsystems run by a main subroutine
• Bluetooth
• Vehicle profiles
• Data logging
• OBD-II data pipelining
• Power

First time power-on state configures peripherals and

enables core functionality.

VIN matching for identifying profiles.

Log data when no connection is available.

Continuous OBD-II data stream over Bluetooth while

connected.

Initial Firmware Design – Vehicle Profiles

• Vehicle profile system allowing up
to 5 vehicles

• Allows portability of GEM system

• Enables quicker set-up/connections
if vehicle is recognized

• Save vehicle state upon power off

• Profile matching with unique VIN

Initial Firmware Design – BLE
• Scanning, discovery, and pairing of devices

through the RN4020

• Use profile state to establish quicker
connections with previously paired devices

• Detect packet loss, and trigger the data
logging subroutine

• Enter MLDP state if a stable connection is
established, to prepare device to pipeline
OBD-II data

• Full authentication and connection report
frame used

Initial Firmware Design – Data Transmission
• Triggered by a successful connection status

• System is set-up to pipeline data to a mobile device
through the RN4020 Bluetooth module

• Alternates between a request and pipeline state

• The request state builds up a small frame by
continuously polling the STN1110 for OBD-II vehicle
data

• The pipeline state blasts completed packets to the
RN4020 via UART, and the RN4020 transmits to the
mobile device

• Execution can be interrupted by a system status change

Initial Firmware Design – Power

• The power subsystem handles all device
sleep and idle states

• Can interrupt any other routine’s execution

• Wakes up peripheral devices, or interrupts
subroutines and saves the device state
before a loss of power occurs

• Sends commands to the STN and RN4020
to control power consumption based on
whether or not vehicle ignition is detected

Final Firmware
Several optimizations allowed for a simpler and significantly more efficient final
firmware.

The use of profiles no longer a necessity since retrieving the current vehicle
information from the OBD port only takes milliseconds.

Saving and retrieving states and flags into device memory wastes more time than
it saves.

Sending a PID request from the mobile device wirelessly to the RN4020, passing it
to the MSP430 through UART, interpreting the message, sending it to the STN1110,
receiving a response, and finally transmitting it back it to the mobile device
wirelessly only takes a few hundred milliseconds at most.

Tools used:
• Code Composer Studio
• TI Grace – Graphical Peripheral Configuration Tool
• MSP430 Flash Emulation Tool

Final Firmware
• Initialization sets the RN4020 to

auto-advertise, changes device
name to GEMBT, and enables the
MLDP profile

• It also configures the STN

• Two circular queues used to keep a
buffer of incoming UART messages
from the STN1110 and RN4020

• Any Rx’d character triggers an
interrupt, and that character is
added to the queue

• Messages always processed in the
order they were received

Why Android?

One of the earliest application design decisions was which
platform(s) to develop the app for.

The following factors were taken into consideration:

• Java and C# programming experience.
• Eclipse and Android Studio IDEs are available on any OS.
• The team has multiple Android devices.
• The Android platform is open source.
• iOS OBD-II applications must use Wi-Fi.
• Desired Android development experience

Application Features

The OBD-II device transmits vehicle data to the
GEM application enabling the following vehicle
metrics to be tracked and displayed to the user:

• Vehicle speed (mph)

• Engine revolutions (rpm)

• Fuel consumed (g)

• Tripometer (mi)

• Instant fuel economy (mpg)

• Fuel consumption rate (gph)

• Trip fuel economy (mpg)

Software Development Tools

Android Studio – Android platform IDE.

SublimeText2 – Text and source code editor.

GitHub – Version control system.

Google Drive – Cloud file storage service.

Adobe Photoshop – Graphics editor.

OBD-II Emulator GUI – Vehicle data simulator.

Component Descriptions

CLASS DeviceScanActivity
Launches the application, scans and displays Bluetooth LE devices.

CLASS MainActivity
UI activity that communicates with the Bluetooth LE Service to manage and
display vehicle data received from a Bluetooth LE device.

CLASS BluetoothLeService
Service that handles connections and data communication with a Generic
Attribute (GATT) server hosted on a Bluetooth LE device.

Data Calculation
Up to two bytes of data is received from the GEM device.

Each byte is received as two hexadecimal values.

Example: When an RPM value of 0FA0 (400010) is received, the methods
getByteA and getByteB are called so that Byte A = 0F and Byte B = A0.

The decimal representation of the RPM is calculated by calling getRPM:

(Byte A10 x 256 + Byte B10) / 4 (Vehicle sends 4 times the RPM, divide by 4)

-> (15 x 256 + 160) / 4 = 1000 revolutions per minute

Byte A Byte B

A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0

Test Data
Test
PID Values set on emulator Responses Description Notes

01
1F {5,100,2000,5000,3000}

411F
{0005,0064,07D0,1388,7530}

Run time since engine start (in
seconds) Can record time since engine start up to ~18 hours

01
0C {1000,2000,3000,4000,5000}

410C
{0FA0,1F40,2EE0,3E80,4E20} Engine RPM in 1/4th value

0x2EEE0/4 = 3000 RPM. RPM needs to be divided
by 4

01
0D {10,25,50,100,125} 410D {0A,19,32,64,7D} Speed in km/hr Just convert from hex to decimal

01
04

{5 ,10, 20, 30, 40, 50, 60, 70,
80, 90, 95}

4104
{0C,19,33,4C,66,7F,99,B2,CC,E5

,F2} Engine load %

Take the response, (its in hex), and multiply by
(100/255). All responses are within 3% error. Less
than 10 gives inaccurate readings

01
11 {10,25,50,75,100} 4111 {19,3F,7F,BF,FE} Throttle position, as a %

Take the response, (its in hex), and multiply by
(100/255). < 3 % error

01
10 80 4110 1F40 MAF air flow rate %

1F40 = 8000. (80.00). The emulator reads a
percentage, but It's supposed to be a value in
g/sec with [((A*256)+B) / 100]

01
5E {10,15,20,40,100,150}

415E
{0087,008C,0091,00A5,00E1,0

BB5} Engine fuel rate. L/H
((A*256)+B)*0.05 Where A = the first 2 hex values,
and B=the next 2. Inaccurate for smaller values

Budget Overview
Item Cost Supplier

PCB’s $107.50 Oshpark

Stencils and Jigs $43.07 Oshstencil

Circuit Components $229.55 Mouser

OBD-II Emulator $229.00 Freematics

Total $609.12

• Original funding request: $774.08
• Remaining budget: $164.96

Division of Labor

MCU,
Bluetooth,

and Firmware

Android
Application

Front End
Hardware

Pedro

Alex

Jake

Successes

• Low power draw < 60 mA when operating

• Communicates via BLE

• Small form factor

• OBD responses on the order of milliseconds

Thanks

Thank you to Boeing for providing the funding for this project.

Thank you to our professors that provided insight and feedback on
this project.

Questions

