
G.E.M.
GROUP 8

PEDRO BETANCOURT - CPE

ALEXANDER PATINO - CPE

MOHHAMAD PULLIAM - EE

Overview and Motivation
Many newer cars are being sold with on board fuel efficiency monitoring systems. We wanted to
bring this type of information system to a wider range of vehicles at a low cost. When drivers
receive instant feedback they’re more likely to adjust their habits.

What is GEM?

GEM stands for Gasoline Economy Management. A system to monitor driver activity to help
drivers develop more fuel efficient driving habits.

Two components:
◦ A small device that connects to the vehicles on board diagnostic port

◦ An Android app that wirelessly connects to the device to monitor and display metrics

Specifications
Low Power Consumption

◦ Idle power draw < 5mA

Interface with all vehicles manufactured after 1996 (OBD-II Spec. Mandated)

◦ SAE J1850 PWM/VPW

◦ ISO 9141-2

◦ KWP2000

◦ CAN

Bluetooth Connection

◦ BLE compliance

Local Storage

◦ Minimum 25 MB on-board storage

Portability

◦ Maximum of 5 vehicle profiles

Power Conditioning

• Overcurrent and overvoltage protection
• Reverse voltage protection
• Filtering

Power Management

Power saving feature. All
+5V and BAT subsystems are
completely turned off.

+3.3V systems (MCU, Serial
Interface, and BT) manage
their own power.

Voltage Regulation

• +3.3V and +5V
circuit very similar

• 28 uA standby
current

• High frequency
switcher

• Protection
including current
limit and thermal
shutdown

• Approaches 90%
efficiency

Signal Voltages

Name Nominal High Nominal Low

J1850 PWM +5V 0V

J1850 VPW +7V 0V

ISO 9141-2 & KWP2000 +12V 0V

CAN +3.5V +1.5V

KWP2000 Transceiver

• Uses LM339 Quad
Comparator

• Open collector
output, when non-
inverting > inverting
the output is floating
(High impedance to
ground)

• L-line use is not
widespread used only
for wakeup

KWP2000 Protocol
Pin 7: K-line used for signaling

Pin 15: L-Line, optional line used for ECU wakeup

Idle is signal level high

Signals are active pull-down

High signal +12V

J1850 PWM/VPW

• VPW/PWM use the same line
but not the same voltage

• Linear regulator uses two
different resistor dividers to
set voltages, controlled by
OBD-II to serial interface

J1850 PWM

Pin 2: BUS+

Pin 10: BUS-

Active bus when BUS+ pulled high and BUS- pulled low

High signal +5V, low signal 0V

1 Bit on bus active for 8uS out of 24uS

0 Bit on bus active for 16uS out of 24uS

J1850 VPW

Single wire protocol

Pin 2: BUS+

Idle bus when low

High signal +7V, low signal 0V

1 Bit on bus low for 128uS or high for 64uS

0 Bit on bus low for 64uS or high for 128uS

CAN Transceiver

• The MCP2551 is a high speed CAN
transceiver

• Supports speeds up to 1 Mbps
• CAN is the modern standard for vehicle

data networks
• Each node on the CAN network has a

similar controller that handles turning
digital input into differential output
and vice-versa

• Also provides protection to the CAN
bus

CAN Protocol

Most modern protocol, used on most vehicles since 2007

Pin 6: CAN High (CANH)

Pin 14: CAN Low (CANL)

Dominant bus state when CANH driven high and CANL driven low (Logic 0)

Recessive bus state when CANH and CANL not driven (Logic 1)

High voltage: 3.5V

Low voltage: 1.5V

STN1110 OBD-II to Serial Interface

• Detects protocol and
converts to serial data

• Accepts commands via ASCII
• Operates using the industry

standard ELM327 protocol to
simplify communications

• Has low power sleep mode
• Voltage sense can wake

device from low power sleep
mode

Front End Board Layout
• Current Front End
• Does not have MCU,

Bluetooth or SD Card
• 2” x 3” (Quarter for

scale)
• Board layout is being

optimized

MSP430F247

• Ultra-low power 16 bit
microcontroller

• 64-pin QFP package
• Team familiarity
• JTAG on-board

programming

• Provides 4 serial
communication
interfaces (3 are used)

• 32KB flash memory, 4
KB RAM

• Many unused pins

RN4020 Bluetooth Module
• Bluetooth 4.1 (BLE

ready)
• UART communication
• ASCII command API
• Integrated antenna

and BT stack
• MLDP private profile
• Avoid bit-banging

On-Board Storage
• MicroSD
• Low power
• High capacity
• Portable, removable from board
• 8 Pin, SPI communication mode
• 3.3 V
• File systems have large overhead, raw

data read/writes are required

Digital Board Layout

• MCU, Bluetooth, and SD Card
• 2 layer board
• 2.5” x 1.4”
• JTAG 14 pin breakout header

for onboard
programming/debugging

• 4 breakout pins for serial
communication and power
with the front end board

• To be integrated with front
end board in a future
revision

Firmware Design
• Design based on 5 subsystems gelled together by a main

subroutine
• Bluetooth
• Vehicle profiles
• Data logging
• OBD-II Data pipelining
• Power

• First time power-on state which configures peripherals
and enables core functionality

• VIN matching for identifying profiles
• Log data when no connection is available
• Continuous OBD-II data stream over Bluetooth

Firmware Design- Vehicle Profiles
• Vehicle profile system allowing up to 5 vehicles
• Allows portability of GEM system
• Enables quicker set-up/connections if vehicle is

recognized
• Save vehicle state upon power off
• Profile matching with unique VIN

Firmware Design- Bluetooth Connection
• Scanning, discovery, and pairing of devices through

the RN4020
• Use profile state to establish quicker connections

with previously paired devices
• Detect packet loss, and trigger the data logging

subroutine
• Enter MLDP state if a stable connection is

established, to prepare device to pipeline OBD-II
data

• Full authentication and connection report frame
used

Firmware Design- Data Logging

• Data logging routine triggered when no
Bluetooth connection can be established

• Data is, instead, transmitted to the onboard
SD card

• Works with a read/write state, a frame is
built up before being written to the SD card

• Establishing a connection can interrupt this
subroutine

• Data is written to the SD card along with a
flag indicating there is OBD-II data that has
yet to be transmitted to an Android device

Firmware Design- Data Pipelining

• Triggered by a successful connection status
• System is set-up to pipeline data to a mobile

device through the RN4020 Bluetooth
module

• Alternates between a request and pipeline
state

• The request state builds up a small frame by
continuously polling the STN1110 for OBD-II
vehicle data

• The pipeline state blasts completed packets
to the RN4020 via UART, and the RN4020
transmits to the mobile device

• Execution can be interrupted by a system
status change

Firmware Design- Power

• The power subsystem handles all device
sleep and idle states

• Can interrupt any other routine’s execution
• Wakes up peripheral devices, or interrupts

subroutines and saves the device state
before a loss of power occurs

Why Android?
One of the earliest application design decisions was which platform(s) to
develop the app for.

The following factors were taken into consideration:
◦ The team can program in Java

◦ The app could be built using Eclipse or Android Studio on any OS

◦ The lead programmer has an Android device at his disposal

◦ The Android platform is open source

◦ The team wanted to gain experience with Android

Application Features
The OBD-II device provides data to the GEM application
enabling the following vehicle metrics to be tracked and
displayed to the user.
◦ Vehicle speed (mph)

◦ Engine revolutions (rpm)

◦ Instant fuel economy (mpg)

◦ Fuel consumed (g)

◦ Fuel consumption rate (gph)

◦ Tripometer (mi)

◦ Trip fuel economy (mpg)

Software Development Tools
In addition to Android Studio the team will use:

◦ SublimeText2 – A cross-platform text and source code editor.

◦ GitHub - An online version control system.

◦ Adobe Photoshop – A raster graphics editor.

◦ OBD-II Emulator GUI – Vehicle data simulator.

Activity Diagram

Class Diagram

Component Descriptions
CLASS MainActivity

◦ Responsible for launching the application, displaying the Home screen and its metrics,
handling exceptions, interfacing with the other components, and exiting the application.

CLASS DeviceListActivity

◦ Responsible for scanning for new or paired Bluetooth devices.

CLASS OBD2Service

◦ Responsible for calculating vehicle speed, RPM, MPG, and other relevant information from
the received data. Uses three nested classes (AcceptThread, ConnectThread, and
ConnectedThread) to handle Bluetooth connection, input/output stream, and vehicle
protocols.

Budget to Date
Item Quantity Price Supplier

PCB’s 2 x 3 $47.85 Oshpark

Stencils and Jig 2 $26.58 Oshstenil

Circuit Components (R,L,C, IC’s) 2 Sets $103.45 Mouser

OBD-II Emulator 1 $229.00 Freematics

TOTAL $406.88

• Original funding request: $774.08
• Remaining budget: $367.20
• Remaining items include MSP430 debugging interface and the serial

debugging interface.
• We should complete the project very close to the original estimated budget.

Progress

50

0

25

80

80

95

0 10 20 30 40 50 60 70 80 90 100

OVERALL

HARDWARE TESTING

SOFTWARE TESTING

HARDWARE DESIGN

SOFTWARE DESIGN

RESEARCH

Progress %

Progress %

Division of Labor

MCU, Bluetooth,
and Firmware

Android Software

Front End Hardware

Team

Pedro

Alex

Jake

Remaining Tasks
Build and test front end hardware – 2/8

Build and test wireless/MCU hardware – 2/16

Integration testing for front end and wireless – 2/20

Integration testing for hardware and software – 2/20

If time allows or if serious problems with initial design arise – redesign and rebuild PCB’s

Issues
PCB Layout, right now the ground plane is Swiss cheese. Design can be optimized.

Size. First we want to make sure everything works. The size of the device needs to be small
enough that it can be left plugged in.

Power consumption. This is likely to be the most difficult thing to bring within spec. We need to
make sure that we can enter sleep mode and then exit sleep mode when required and bring the
whole system back up.

Writing raw data to an SD card. Data is written in 512 byte blocks, a file system provides too
much overhead.

