
Intelligent Programmable

Prosthetic Arm (IPPA)

Matthew Bald, Ivette Carreras, and Andrew

Mendez

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The objective of this project is to provide a low
cost prosthetic arm with advanced functionality and features
that compare to commercial prosthetics. This is accomplished

by utilizing 3D printing technology and off the shelf electronic
devices that incorporate multiple features such as automatic
grasping, pointing and other natural gestures that are

standard in expensive prosthetics. The IPPA includes a mobile
application that allows the amputee to change the features in
the arm from an available list or create their own and unique

arm movement or hold patterns.

Index Terms — Prosthetic arm, microcontroller
intercommunication, electromyography sensor, infrared
emitter, pressure sensor, Bluetooth, mobile application.

I. INTRODUCTION

One considerable obstacle for people to acquire a major

or minor upper limb prosthetic is their expensive cost. An

industry quality upper limb prosthetic costs tens of

thousands of dollars as they require many sessions for

adjustments, and use expensive materials. Even then, there

are not that many commercial prosthetic hands in the

market that take full advantage of the technologies

available today [1]. The latest and most advanced

prosthetics are: iLimb by Touch Bionic, Bebionic by RSL

Steeper, and Michelangelo by Otto Bock. The cost of these

ranges from $25,000 to $100,000 depending on durability

and functionality, as well as the options the amputee

decides to include in the prosthetic. This drastically reduces

the availability of prosthetic technology for children and

adults all over the world.

3D printed arms are part of a current trend to provide

solutions at a more affordable price. However, most of

those limbs are very limited in their functionality. We

propose a 3D printed prosthetic arm with off the shelf

electronic devices that incorporates multiple features such

as grasping, pointing and other natural gestures that are

standard in expensive prosthetics. This project utilizes the

advantages of 3D printing to reduce the cost of the

prosthetic to less than $1,000. The Intelligent

Programmable Prosthetic Arm (IPPA) contains multiple

sensors that allow it to perform automatic grasping of

objects, gentle handshakes, and other one-motion-gestures.

One of the problems that drives the cost of prosthetics up,

is the complexity of a human hand and the wide variety of

applications that this tool can be used for. It is difficult to

design and program a single prosthetic that will satisfy each

individual. In order to solve this problem, the Intelligent

Programmable Prosthetic Arm also includes a mobile

application that allows the amputee to change the features

in the arm from an available list or create their own and

unique arm movement or hold patterns. This project is

targeted towards people who are missing a hand, wrist, and

part of their forearm; not a full arm.

II. SUBSYSTEMS

The IPPA system is best presented in terms of

subsystems; that is, the five modules—whether purchased

or designed—that are interfaced to create the final product.

This section describes the software and hardware design

overviews of the Servo Subsystem, Sensor Subsystem,

Main System Controller, Communication Module, and the

Power Subsystem.

A. Servo Subsystem

The design for the servo controller includes the software

programmed on the controller and the hardware

components used. The software is responsible for

processing communications from the system controller and

sending PWM signals through the control lines of the

servos to set their positions. The hardware for the servo

controller mostly consists of the microcontroller itself, the

servo motors, and the fishing lines which act like tendons

for finger control.

The microcontroller we used as the servo controller was

an ATmega328P. The reason for choosing this

microcontroller is because it requires little power, yet still

boasts the speed and features needed to control the servos.

Each finger is controlled by Pololu 1501MG series servos.

The strength of the servos is adequate (16 kg*cm), since

according to a NASA study, the average adult male hand is

capable of producing about 8 kg*cm of torque [4]. These

servos are reasonably priced, their arms can be positioned

from 0 to almost 180 degrees giving the range of motion

needed, and the servos do not consume more power than

the system is capable of supplying.

As far as controlling the servos, the control lines of each

servo are connected to a unique output pin on the ATmega.

They are also wired in parallel, so that they all receive the

same voltage, but may receive more or less current

depending on their current motion. Figure 1 below shows

the ATmega with the required power supply, ground, and

reset pin wired.

Fig. 1. A schematic of how to wire five servos to the
ATmega328P.

B. Sensor Subsystem

This subsystem is composed of three different sensors:

EMG, pressure, and distance. The electromyography

(EMG) sensor allows the prosthetic to interface with the

electrical impulses generated by the user. Multiple force

sensing resistors were implanted into the palm and fingers

to determine the amount of pressure the hand is generating

on an object and to sense when a strong grip has been

established. And a passive infrared sensor (PIR), to detect

when an object is near the hand. The hardware components

used for these sensors are listed in Table I.

TABLE I

SENSOR COMPONENTS

The sensor processing microcontroller is responsible for

interpreting the inputs from all of the above mentioned

sensors. In addition to processing these incoming signals,

the microcontroller also communicates to the system

controller the results of these computations. The team

decided to use an ATmega328P as the sensor processing

microcontroller. It has a variety of GPIOs for use when

listening to incoming sensor data. Figure 2 shows the flow

of the servo microcontroller software.

Fig. 2. Flowchart showing the algorithm in the servo controller.

Each sensor is crucial for the objective of project to

incorporate autonomous behavior of the prosthetic. The

EMG sensor gives full control to the person using the

prosthetic by allowing them to use their muscle impulses to

open and close the hand. It features an adjustable gain knob,

a wide range of supply voltages, comes with electrodes, and

showed promising results in the research prototype. What

makes this sensor slightly difficult to use is that it requires

a positive and negative power supply.

To connect the EMG sensor to the microcontroller, the

SIGNAL output pin was attached from the EMG sensor to

an available pin on the multiplexer. In the sensor controller

an output pin is set high to indicate an action. A threshold

on the change in value approach is used to determine when

to set the pin. Since a spike-like behavior was observed

when a muscle is contracted and relaxed, the PIN state only

changes on the increasing side of the spike. This supports

the possibility of the user not having to hold the flexion of

their muscle.

The force sensing resistors have been added to assist the

person with the grasp/gesture being performed. Measuring

the pressure exerted at different points in the hand provides

some feedback about the object in the hand.

The resistors sensing pad is circular, with an area of 0.3

square inches. A voltage dividing circuit is required to

determine the resistance of the sensor, which will change

when force is applied to the sensor. Since multiple force

sensitive resistors were used, each one required a voltage

Type Part Quantity

EMG
Advancer Technologies Muscle Sensor

v3
1

PIR

Constructed: 470Ω resistor, a 47nF

capacitor, an infrared emitter, and an

infrared sensor

1

C FSR400 by Interlink Electronics 3

division circuit and an available input pin on the

multiplexer. The ATmega uses a GPIO to measure the

voltage on the resistor, then applies equation (1) to

determine the resistance, which is then converted to grams

using equation (2).

Vout=
RM*V+

RM+ RFSR
 (1)

𝑅𝐹𝑆𝑅 = (
𝑅𝑀∗𝑉+

𝑉𝑅𝐹𝑆𝑅

) − 𝑅𝑀 (2)

While there are many passive infrared motion sensors

available commercially, the team opted to construct one.

The reason for this is because they are simple to construct

and have a smaller footprint than the commercial versions.

Size is important to fit in the hand without obstructing the

hands ability to perform tasks such as grasping and lifting.

The PIR was constructed from a 470Ω resistor, a 47nF

capacitor, an infrared emitter, and an infrared sensor. The

design was taken from [2], Figure 3 shows the schematic to

construct the PIR sensor.

Fig. 3. A schematic of the PIR sensor circuit.

This sensor is used to decide if an object of interest is

very close to the hand. This sensor provides another feature

to the autonomous mode of the IPPA. The goal is to

facilitate the triggering of grasping motions. Since the

natural motion of humans is to position the hand near an

object and then grab it, the IPPA has this distance sensor in

the middle of the palm. Once the distance between the palm

and the object is less than ~1 cm, the output pin that

corresponds to the distance sensor is set high for the main

controller to trigger the grasp. To connect the distance

sensor to the microcontroller, a wire was attached from the

top of the Vout resistor, to an available input pin on the

multiplexer.

C. Main Controller

System Main controller’s purpose is to control the

coordination between the sensor control unit, the servo

control unit, and the communication unit. The main

controller receives input from the sensor microcontroller

unit and decides how to proceed with the current grasp and

gesture being performed. From the sensor information, the

main controller directs which grasp to complete and send

that information to the servo controller. The Main

controller contains information about the set of gestures the

hand is capable of completing. In order to complete a

gesture, the Main Controller unit listens to any messages

received from the communications unit for voice triggers

for the main controller to trigger a certain gesture to

complete. The main controller also listens on the

communication module to update and manage the set of

gestures the prosthetic hand can complete. The main

controller has two different running modes: autonomous

and teaching mode. Figure 4 shows the overview of the

flow between these two modes.

Fig. 4. Flowchart showing the general algorithm in the main
controller.

The main controller initializes by initializing the UART

communication between the servo controller and Bluetooth

communication subsystem. Also, the GPIO pins that

interface the sensor controller are initialized. Once the main

controller is initialized and the Bluetooth communication

subsystem is initialized, the main controller starts in

autonomous mode.

D. Communication

The communication with the IPPA system from the

mobile application is accomplished through a Bluetooth

connection. The team decided on Bluetooth because it is a

simpler solution, with less power consumption and it

satisfies the distance and safety requirements of the project.

Different package types have been designed to reduce the

amount of information that needs to be transmitted and to

facilitate the understanding between devices. There is a

total of 10 packages, which are listed in Table II.

The communication subsystem is composed of the main

controller the Bluetooth HC-06 module, and the external

mobile application. The Bluetooth module transmits and

receives information from the main controller via hardware

UART.

TABLE II

BLUETOOTH INTERFACING PACKAGES

 E. Power Subsystem

There are over a dozen separate components that require

power. Some have almost negligible power consumption

rates, such as the force sensitive resistors,

electromyography sensor, and even the servo and sensor

microcontrollers only draw a small amount of power.

However, since all of these components needed to be

integrated together and draw power from the same power

source, it required calculating the maximum expected

power consumed by all the devices when they are running.

The important factors to be kept in check are battery life,

battery output, and, as a requirement of the entire project,

weight. The total current drawn by the system sums up to a

minimum of about 650 mA and a maximum of about 3000

mA. The current draw may increase to around 6000 mA if

the user is lifting an object of moderate weight. The worst

case scenario is if the user attempts to lift an object beyond

the capabilities of the servos, which would cause the system

to shut down due to a lack of power. The battery we have

chosen to use contains 7800 mA hours of charge. It can

discharge about 7 amps maximum. Assuming the servos

will not be continuously moving, the lifespan of this battery

should exceed 1 hour. Table III lists the power requirements

for each component used.

The intelligent programmable prosthetic arm utilizes two

different power sources in order to power the various

subsystems. A pair of 9 volt batteries will be responsible for

TABLE III

COMPONENTS POWER REQUIREMENTS

powering the EMG sensor, to create the positive and

negative voltage references. A larger, rechargeable, 7.4V

battery is used to supply power to the rest of the system.

Voltage regulators are placed between the battery and the

electrical devices that require power. These regulators

convert the 7.4 volts provided by the rechargeable battery

into the various voltages required by the project’s

components. There were five voltage levels required to

power all of the remaining devices. A 3.3 volt regulator was

used to power the Bluetooth module and the system

controller microcontroller. An adjustable LM317 voltage

regulator met the required specifications. It was adjusted to

supply 3.3V as its output voltage, while providing as much

as 800 mA of output current.

A 5 volt regulator was used to supply power to two of the

sensors and the ATmega microcontrollers. The force

sensitive resistors use a 5V supply to create the voltage

divider circuits. The passive infrared sensor requires a 5V

power supply as well. These two sensors draw very little

current, about 10 mA. The MIC5205 satisfied the project’s

needs. It provides 5 volts of output voltage, and can supply

up to 1.5 amps of current. It can accept up to 18 volts as its

input voltage. The EMG sensor will be powered separately

by two 9V batteries which will create a +9V and -9V for

the sensors V+ and V- terminals. Five LM317 voltage

regulators, adjusted to 6V, are responsible for powering

their own servo. Each servo having its own regulator

reduces the heat generated in each regulator.

III. MAIN MICROCONTROLLER

This section will describe how the System Controller

operates. The System Controller is composed of the Main

Controller and Communication modules for the sensor

Type Description Data

A Trigger a gesture Gesture identifier

B
Update the position of each

finger

Position of all five

fingers

C Add a new gesture to the arm Full gesture

D Delete an existing gesture Gesture identifier

E
Temp gesture storage and

trigger
Full gesture

F
Request command strings

stored in the arm
N/A

G Switch IPPA mode N/A

H Send voice command in arm Variable # of strings

I All gestures stored in the arm
Variable # of

gestures

Component Voltage Current Power

EMG [7, 8] ± 5V 1.8mA 8.8mW

FSRs (Rm = 27

kOhm)
5 V 0.2 mA 1.0 mW

PIR [5] 5 V 6 µA 0.03 mW

Servo MCU [9] 5 V 16 mA 80 mW

Sensor MCU [9] 5 V 16 mA 80 mW

Main MCU [6] 3.3 V 80 – 320 mA 0.3 – 1.2 W

Servo (idle) [6] 6 V 5 mA 30 mW

Servo (no load) [6] 6 V 0.1 – 0.5 A 0.6 – 3 W

Servo (stalled) [6] 6 V 2.5 A 165 mW

Bluetooth [5] 3.3 V 50 mA 165 mW

controller, servo controller, and the bluetooth. As

mentioned before, it operates in two modes: autonomous or

teaching mode.

A. Autonomous Mode

The main controller is in a long lasting execution loop. In

this loop, the main controller waits for input from the

Bluetooth communication subsystem and the sensor control

unit. Whenever a Bluetooth message is received an

interrupt is generated to handle the Bluetooth message.

When a GPIO pin is set to HIGH an interrupt to handle the

information sent from the sensor controller is generated and

starts the action of triggering a grasp. From the interrupt

that was triggered to handle the information sent from the

sensor controller or external app, a temporary loop is started

in the Execute/Grasp phase to execute a grasp. During this

main loop, the main controller sends the servo positions

desired to the servo controller to tell the servo controller

where to move the servos to in order to complete the

gesture.

There is a possibility that when the main controller is

executing a grasp/gesture in the Execute/Grasp phase, the

hand may reach high levels of pressure which would hurt

the functionality of the hand completing the grasp/gesture.

The main controller is monitoring the sensor controller to

identify if high levels of pressure are occurring. If a high-

level amount of pressure does occur, the autonomous mode

moves to a Pause State. During this phase, the main

controller stops the servo controller from incrementing any

more to the desired gesture/grasp. Then the main controller

moves back to the Run Loop, enabling the user to complete

another gesture/ grasp.

If a gesture/grasp is triggered in the Run Loop and the

main controller is completing a gesture/grasp in the

Execute/Grasp phase, if no high levels of pressure occur,

then the main controller transitions to a complete

grasp/gesture phase. If the main controller is completing a

grasp or the gesture, the servos all reached its desired

position and hold. This is when the user can lift objects up.

For both a grasp and a gesture, the position of the servos is

held until the EMG sensor is triggered to reset the servo

positions back to open or a new gesture is triggered. All of

these state changes are shown in Figure 5.

During the autonomous mode the expected Bluetooth

packages are of type A, F, G, and the type H package is sent

from the main controller to the mobile application as a

response to the package type F. When a package type F is

received the main controller, gathers the voice command

strings associated with each gesture currently stored in the

arm, and sends it to the mobile app. This action happens

every time the IPPA is connected to the mobile application.

Fig. 5. Flowchart showing the Autonomous Mode in the main
controller.

B. Teaching Mode

In order for the IPPA to switch to Teaching Mode the

external application must send a message to switch modes,

which is received in the Run Loop that tells the main

controller to go into teaching mode. In this case the main

loop in the Autonomous Mode is discontinued and the non-

ending Input Loop is started.

The first phase in Teaching Mode is the Input Loop. The

input loop is an interrupt-waiting loop that is waiting to for

input. In the Input Loop, the main controller waits for the

user input through the application. It could be to add/delete

a gesture already defined in the android application;

temporarily store and trigger a gesture once; or the user is

designing a new gesture. In this later case, the IPPA allows

the user to have real time feedback regarding the position

of the fingers. The mobile application communicates the

user intent during this execution mode with the Bluetooth

packages types B, C, D, E, and G.

When a Bluetooth message of type C is received, the

main controller decodes the transmitted information for the

gesture to be stored in the arm and transitions to the Store

New Gesture phase. This temporary structure replaces one

of the 5 gestures that are permanently stored in the main

controller’s memory. For the message type B, the main

controller transitions into the Finger Movement state,

where it transmits the new desired servo positions to the

servo controller. The decoding of the message is very fast

since it is short, and the communication to the servo

controller and execution of such servo positions is done

quickly. In the case of a type E message, the gesture is only

stored temporarily, and executed immediately after.

After any of the above Bluetooth messages have been

handled, the execution of the program returns to wait in the

Input Loop. If a message of type G is received, then the

main controller moves back to the Run Loop, and starts to

run the Autonomous Mode. All of these states are shown in

Figure 6.

Fig. 6. Flowchart showing the Teaching Mode in the main
controller.

IV. SYSTEM GRAPHICAL INTERFACE

The mobile application was designed to provide the user

with an easy but capable interface to the IPPA. This section

discusses all the design details regarding graphical user

interface (GUI), algorithm used to create gestures from user

input, communication with the IPPA system, and voice

commands. As part of the IPPA system a mobile

application was developed: IPPA Mobile Support. This

mobile application provides the user with the following

features:

 Create new hand gestures

 Add new gestures to the arm

 Specify voice command to trigger gesture

 Edit previously created gestures

 Delete gestures from the arm

 Save gestures in the phone itself

The Android platform was selected as the platform of

choice for the development of this application. This

decision was based on the team’s engineer’s familiarity

with it, the vast online support for development, as well as

the low cost of developments and mobile devices that use

this platform.

The application has been designed to be simple and have

all the necessary components to provide the expected

functionality and quality. The major colors for the

application are different tones of green, pink and yellow.

Figure 7 shows the main page for the mobile application.

There are a total of four activities for this application: Main

activity, Help activity, TeachingMode activity and

DeviceDiscovery activity. The application has been divided

in two packages: the Bluetooth functionality and the

application itself. The objective of this is to provide a robust

enough structure for future work.

Fig. 7. Mobile Application Main page.

A major requirement for the application is for the phone

to be connected to the IPPA system through Bluetooth. In

order for the user to do voice commands or proceed to the

Teaching Mode page, a check of connection and status of

the connection is done and the buttons are enabled or

disabled. If the check passed then application will proceed

to the selected page.

This application needs to store multiple files in the phone.

There is a file to store all the gestures in the phone and arm.

As a global state of the application the connection threads

are kept in this custom application object in order to

maintain the connection, and have access to the

transmitting streams from anywhere in the application. This

will guarantee only one Bluetooth service instance, that

cannot be directly modified.

A. Voice Commands

The speech recognition will be done using the Android’s

built-in Speech Recognizer activity. When the user clicks

on the button to input a command, a speech recognition

activity will be started (Google API). The

onActivityResult() method is used to handle the result

obtained from the launched activity. Multiple translated

texts is obtained and compared to the available gestures.

Once the audio input has been translated to text, a package

of type A is created and sent to the IPPA to trigger the

gesture. If the given input does not match the strings for the

current gestures in the IPPA system, then no package is sent

to the arm.

B. Teaching Mode

The Teaching Mode will be represented in two major

views. These views are the “Create Gesture” and “Demo

Gesture” fragments. These two sections appear as tabs at

the top of the screen. The action bar is enabled, and allows

the user to go back to the main page or to go to the help

page. The user is be able to click on the tab or swap to

switch between fragments.

The create gesture fragment provides the user with the

functionality to create new and custom gestures. It contains

the following components: titles for each subsection, text

input for gesture name, checkbox to allow the user to

change the start position of the arm, five sliders to set start

position of each finger appear in this case, five sliders to set

the end position of each finger, radial buttons to select

pressure allowed, an edit text for the user to input the voice

command for the gesture, two buttons to clear or save the

gesture.

The demo gesture fragment supports the test of

previously saved gestures or gestures in the arm itself. It

contains the following components: two text views with the

title for the following lists, list of gestures stored in the

phone, list of gestures stored in the arm. Depending on the

location of the gesture the user is presented with different

options. If the user selects an item in the list stored in the

arm a dialog appears with the options: to delete the gesture,

to demo it, or to transfer it to the phone. If the user selects

an item in the list stored in the phone a dialog appears with

the options: to delete the gesture, to save the gesture into

the arm, to edit it, or to demo it.

V. 3D HAND DESIGN

This section describes the 3D arm design selected for the

final product. The main focus of this project is not the

mechanical aspects of a hand design. Therefore, a hand

design from an open source project has been used. After

investigating multiple open source hand designs, the team

decided to use the InMoov arm because of its completeness

and capabilities. There is also a vast documentation

available from this project on how to assemble it. The right

hand has been chosen for the final product; however, this

project could be easily adapted for the left hand. All of the

3D parts needed are provided in the InMoov’s project

website [3].

The InMoov hand design provides three joints for each

finger [2], which is the same number of joints in prosthetics

that cost $10,000. This gives each finger a wide range of

motion, and the possibility of closing on relatively small

objects. There is a hand base where the index and the

middle fingers attach to. The other three fingers have an

additional joint in the hand that contributes to a better grip

of different shapes, such as a ball. There are wires running

within the hand, for the sensors and the opening/closing

functionality. On the top left the additional joints are

placed, one for the pinky finger and another one for the ring

finger.

Since this project added pressure and distance sensors to

the hand, the design for the main base as well as the fingers

must be slightly altered. Space for 3 pressure sensors will

be needed. These were not be added to each finger but to

three: the tip of the thumb, the tip of the middle dinger, and

the center of the palm. The location for the distance sensor

is toward the top left of the palm. In order to connect the

sensors to the sensor controller, wires were ran through the

needed fingers and palm. Silicon pads were placed on top

of each sensor to supply a wider area of contact, and to

reinforce the grip strength of the hand.

The InMoov forearm has been designed to be hollow,

with sufficient space for the five servos which control the

hand movement. It was also designed to contain batteries

and an Arduino board, which is very beneficial to this

project since there must be space for the Power Subsystem,

the Printed Circuit Board (PCB), and the Bluetooth

Module. Since the IPPA has an EMG sensor, three wires

run outside of the forearm and are implanted on the user’s

arm. The user is responsible with placing the sensors on the

indicated muscles. Two buttons are placed on the surface of

the forearm. These are located in the inside of the forearm

1/3 of the way from the wrist. The forearm has the area

needed carved-in in a circular shape. This will avoid the

user pressing the buttons by mistake, such as placing the

arm on a hard surface.

VI. HARDWARE DETAILS

For the IPPA to be a practical device, a printed circuit

board was design to house the majority of the electronic

components used to control the arm. To save space, surface

mount components are utilized, which are a fraction of the

size of DIP components. The designed PCB is shown in

Figure 8.

The printed circuit board IDE used is EAGLE 7.1.0.

EAGLE offers an easy to use interface and produces

schematics which are highly compatible with most PCB

printing services. With EAGLE, the team produced not

only the printed circuit board layout, but also the supporting

schematics that were used in prototyping and debugging.

EAGLE is free for students, and allowed the team to create

a two-layer design, which provided more than enough

Fig. 8. Board layout of the IPPA PCB.

options for the relatively basic design. Creating designs

greater than two layers would have been out of the budget

The most important feature of the board in order to fit in

the forearm and within the budget was its size. To save

money, the team minimized the size of the board.

VII. CONCLUSION

We can conclude that the IPPA is a step towards the

development and advancement of affordable prosthetics

that utilize technology. The IPPA provides a low-cost

solution for adult amputees, with advanced features. This

project is open source, and has been made available to

developers and/or users through GitHub at

https://github.com/icarreras/IPPA_application.git. The

team hopes that this project is taken by other engineers and

continue to expand on the possible features.

Ideas for future work: addition of a sync button for

multiple mobile device support; design arm to fit children;

or incorporation of consecutive gesture execution to

support complex hand motion.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of the members of the Texas Instruments

Innovation Lab at the University of Central Florida.

AUTHORS BIOGRAPHY

Ivette Carreras is a Computer

Engineering student at the

University of Central Florida. She

will be graduating with a Bachelor

of Science Degree in May 2015.

During her time at UCF, she

interned at both Texas Instruments

and Microsoft as a Software Engineer. She will be joining

the Operating System Group at Microsoft as a full time

Software Engineer after graduation. Her interests are in low

level software development.

Andrew Mendez is an

undergraduate student at the

University of Central Florida. He

will be receiving his Bachelor’s

degree in Computer Engineering in

May of 2015. During his time at

UCF, he has participated in the

MIT Summer Research Program,

where he researched the areas of tangible user interfaces

and augmented reality at the MIT Media Lab. His interests

are designing intelligent interfaces for intuitive learning

and interaction with information from our physical

environment.

 Matthew Bald is an

undergraduate student at the

University of Central Florida. He

will be receiving his Bachelor’s

degree in Computer Engineering in

May of 2015. During his time at

UCF, he interned at OUC and

created SalesForce applications to

assist the customer resolution team. His interests are in

designing electronics and music.

REFERENCES

[1] Belter JT, Segil JL, Dollar AM, Weir RF. Mechanical

design and performance specifications of

anthropomorphic prosthetic hands: A review. J Rehabil

Res Dev. 2013; 50(5):599–618.

http://dx.doi.org/10.1682/JRRD.2011.10.0188

[2] Elecrom.wordpress.com. Omkar. How to make simple

Infrared Sensor Modules.

http://elecrom.wordpress.com/2008/02/19/how-to-

make-simple-infrared-sensor-modules/

[3] InMoov. Hand and Forarm. http://www.inmoov.fr/hand-

and-forarm/
[4] NASA. Human Performance Capabilities.

http://msis.jsc.nasa.gov/sections/section04.htm
[5] Pial. Using the HC-05 Bluetooth RS232 Serial Module.

http://www.pial.net/using-the-hc-05-bluetooth-rs232-
serial-module-for-cheap-wireless-communication-
with-your-ucontroller/

[6] Pololu. 1501MG Datasheet.
http://www.pololu.com/file/0J729/HD-1501MG.pdf

[7] Sparkfun. Force Sensitive Resistor Tutorial.
https://www.sparkfun.com/tutorials/269

[8] Texas Instruments. CC3200.
http://www.ti.com/product/cc3200 ,

[9] Texas Instruments. MSP430G2x53 Datasheet.
http://www.ti.com/lit/ds/symlink/msp430g2553.pdf

https://github.com/icarreras/IPPA_application.git
http://elecrom.wordpress.com/2008/02/19/how-to-make-simple-infrared-sensor-modules/
http://elecrom.wordpress.com/2008/02/19/how-to-make-simple-infrared-sensor-modules/

