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1 Executive Summary 
 

The decision to build a Search and Retrieval System (cleverly abbreviated as SARS) was made 

after a significant amount of brainstorming on the part of Group 4, also referred to in this 

document as the SARS Group. All group members wanted to take on a challenging project that 

would provide valuable experience and catch the attention of potential employers. Almost all of 

the ideas that were thrown around during these initial brainstorming sessions had to do at least in 

part with self-guided vehicles or artificial intelligence. The fact that SoarTech offered a 

sponsorship to groups with projects displaying principles of artificial intelligence was a major 

incentive to implement a system that involved smart robots. The team chose to build SARS 

because it offered the opportunity to program communications between two autonomous 

vehicles: a quadcopter in the air and a rover on the ground. 

 

A basic explanation of the system is that it will involve the interfacing of three separate 

subsystems. The first of the subsystems is a quadcopter, or SARS Copter, which will hover in the 

air and use a camera to scan the ground for a target object to be retrieved. The second is a rover, 

or SARS Rover, which will receive the GPS coordinates of the target object from the SARS 

Copter once it has located the object. The SARS Rover will then travel to the coordinates to 

retrieve the target object. The third subsystem is an Android application which shall be used to 

initiate the functioning of SARS and to display diagnostic information on both the SARS Rover 

and the SARS Copter. The application shall also display a video feed from the camera used to 

scan the ground. 

 

Early in the research phase of the project development, the SARS Group identified the main 

concerns in implementing this system and distributed the tasks involved in each among the group 

members. These challenges are as follows: 

 

 Image processing to identify the target object from the air 

 Interrupting the SARS Copter software to alter its route once the object has been found 

 Wireless communications 

 Automated GPS navigation for the SARS Rover 

 Object avoidance and retrieval for the SARS Rover 

 Power distribution in both the SARS Copter and the SARS Rover 

 Android development 

 

At the current point in project development, the SARS Group has made significant progress in 

the design of all major subsystem. The only aspect of the system that is still unready for the build 

stage of development is the object retrieval mechanism. The team came up with the concept for 

SARS with scalability in mind. Depending on the relative ease of implementing the other SARS 

subsystems, a more versatile and challenging retrieval method may be built; otherwise, a simple 

method shall be implemented as a proof of concept. There is no doubt that unforeseen difficulties 

shall be encountered during the upcoming build, testing, and implementation, but the team is 

optimistic and confident that the work done thus far has placed it in good standing to complete 

the project. 
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2 Project Narrative Description 
 

Group 4’s senior design project, SARS, is a multi-faceted aerial and ground object detection and 

retrieval system composed of three primary components: a quadcopter, a ground rover, and an 

android application. All three aspects of the system work simultaneously to autonomously locate 

an object, retrieve it, and provide real-time diagnostics and a live video stream of the mission to 

the user. 

 

The first part of our project, the quadcopter, is responsible for locating the object we will be 

searching for. Mounted with a high quality camera, the quadcopter will be fed a series of 

waypoints from the android application, dictating the area of which it will need to search for the 

object. The copter will then scan the area using object detection, fly directly above that object’s 

locations and relay the GPS coordinates of the target to the rover on the ground via Bluetooth 

communication. The quadcopter is composed of six primary components: the copter itself (which 

we will purchase prefabricated), an Internal Measurement Unit that will analyze real-time 

telemetry that allows the quadcopter to stay in flight, a camera to provide live video streaming 

and that will be used to detect the target object, a Bluetooth device to communicate with the 

rover and android interface, a GPS chip that relays the quadcopter’s location to the user via the 

android application, and finally a microcontroller. 

 

The ground rover is the aspect of the project which will physically retrieve the object from its 

location. Once the object’s GPS coordinates have been transmitted from the quadcopter, the 

rover will move to that object location and pick it up using an attached arm, similar to that of a 

golf ball retriever pole. After retrieving the item, the rover will return to its original location. 

Throughout the entire mission, the rover will constantly be relaying information about its 

position and speed to the user via the android application. The main components of the rover are 

the rover itself (which we’ll also order prefabricated), the retrieval arm, the microcontroller, and 

the Bluetooth device. 

 

The final piece of our project is the android application. This will display real-time diagnostics to 

the user about the two vehicles, as well as provide a live aerial video stream from the quadcopter. 

The only user inputs necessary are the initial waypoints for the quadcopter to search, but after 

that the system acts completely autonomously. 

 

Although an ambitious project, we believe that this allows us to gain experience in many 

different arenas, from android development to wireless communication to object detection to 

hardware development, system integration and artificial intelligence. Our four team members are 

up to the challenge, and with the help of Boeing, we know we can accomplish our goals. 
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3 Project Goals and Specifications 
 

3.1 Project Goals and Objectives 
 

After careful consideration and much discussion, Group 4 decided upon the following goals and 

objectives for the SARS project. The main consideration in coming up with these goals was the 

setting in which the project is being developed. As SARS is being implemented in a classroom 

setting rather than a market setting, its main objective shall be to meet all specifications and 

perform in a manner that will secure each member of Group 4 a grade of A in Senior Design. 

 

 To pass Senior Design with a grade of A. 

 To attract potential employers. 

 To implement an effective, professional quality search and retrieval system with multiple real 

life applications at an affordable price. 

 To use computer vision as a means of locating objects. 

 To program effective communications between SARS subsystems. 

 

3.2 Project Specifications 
 

SARS consists of three main subsystems: a quadcopter, a land rover, and an Android interface. 

Successful communications between these three subsystems will be vital to the project 

implementation. 
 

3.2.1 Quadcopter 
 

Group 4 decided upon the following specifications for the SARS Copter subsystem. These 

specifications are intended to allow the SARS Copter to complete the tasks of identifying an 

object on the ground and relaying its GPS location to the SARS Rover subsystem. 

 

 Capable of interfacing wirelessly with a rover on the ground and with an Android device. 

 Capable of taking high quality videos/photos. 

 Has camera stabilization to facilitate image processing. 

 Capable of identifying and locating an object on the ground and calculating its GPS 

coordinates accurate to within 5 ft.  

 Capable of hovering at a constant height between 10 ft and 50 ft with a variation in height no 

greater than 3 in. 

 Has battery life up to 10 minutes. 

 Basic weatherproofing 
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3.2.2 Ground Rover 
 

Group 4 decided upon the following specifications for the SARS Rover subsystem. These 

specifications are intended to allow the SARS Rover to complete the tasks of receiving GPS 

coordinates from the SARS Copter subsystem, traveling to those coordinates while avoiding 

obstacles, and retrieving a target object located at the received coordinates. 

 

 Capable of interfacing wirelessly with a quadcopter in the air and with an Android device. 

 Capable of travelling up to 1000ft. on a single battery charge. 

 Has a retrieval subsystem for picking up the target object off the ground. 

 Has a subsystem that uses a sensor to find the target object once it has reached the GPS 

coordinates. 

 Able to return to within 5ft. of its starting location with the retrieved target object. 

 Able to carry a load of 5lbs. 

 Basic Weatherproofing 

 

3.2.3 Android Application 
 

Group 4 decided upon the following specifications for the SARS Android application. These 

specifications are intended to allow a user to interface with the SARS subsystems. The 

application should provide a live video stream from the SARS Copter and display diagnostic 

information for the SARS Rover and the SARS Copter. Finally, it should allow the user to 

initiate and abort the functioning of SARS. 

 

 Provide stop and start commands to rover and quadcopter 

 View live video stream from quadcopter camera 

 View GPS and other sensor data from quadcopter and rover 

 

3.3 System Overview 
 

SARS consists of 3 major systems. The quadcopter, the rover, and the Android application. Each 

system is diagrammed below, with a color coded legend indicating which member of the SARS 

team will be responsible for a given subsystem. A primary and secondary engineer is designated 

for each subsystem. The primary engineer is responsible for subsystem development, and may 

choose to delegate some tasks relating to that subsystem to the secondary engineer. 
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Figure 3-1: Legend below displays the color codes associated with each member of Group 4. In 

the subsequent figures, these colors will be used to indicate which group members are primarily 

and secondarily responsible for the development of each SARS subsystem. 

 

 
Figure 3-1: Legend 

 

Figure 3-2: System below displays the block diagram for the entirety of SARS. Responsibilities 

are not yet specified for the quadcopter, Android interface, and rover subsystems; however, Erick 

Makris will be primarily responsible for the development of all inter-subsystem wireless 

communications, and he will have support from Matt Bahr. 

 

 
Figure 3-2: System 

 

Figure 3-3: Quadcopter below displays the block diagram for the SARS Copter subsystems. As 

displayed in the figure, Brendan Hall shall be primarily responsible for the SARS Copter device 

control, and he shall have support from Matt Bahr. Matt Bahr shall be primarily responsible for 

the geolocation, image processing, and camera subsystems, and he shall have support from 

Brendan Hall on the camera subsystem and from Brian Crabtree on the image processing and 

geolocation subsystems. Furthermore, Erick Makris shall be primarily responsible for the 

communications with the SARS Rover and with the Android application, and he shall have 

support from Brendan Hall. 
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Figure 3-3: Quadcopter 

 

Figure 3-4: Rover below displays the block diagram for the SARS Rover subsystems. As 

displayed in the diagram, Brian Crabtree shall be primarily responsible for the device control 

unit, motor controller, wheel motors, item retriever, and GPS unit, and he shall have support 

from Erick Makris on the device control unit, from Brendan Hall on the motor controller, the 

wheel motors, and the item retriever, and from Matt Bahr on the GPS unit. Brendan Hall shall be 

primarily responsible for the target object detector and obstacle sensor, and he shall have support 

from Brian Crabtree. Finally, Erick Makris shall be primarily responsible for the wireless 

communication interface, and he shall have support from Brendan Hall. 

 

 
Figure 3-4: Rover 
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Figure 3-5: Android Application below displays the block diagram for the SARS Android 

application. As displayed in the figure, Erick Makris shall be primarily responsible for the 

Graphical User Interface, the Quadcopter Communication/Diagnostics System, and the Rover 

Commnication/Diagnostics System, and he shall have support from Brendan Hall. Brendan Hall 

shall be primarily responsible for the Quadcopter Video Stream System, and he shall have 

support from Erick Makris. 

 

 
Figure 3-5: Android Application 

 

4 Research 
 

4.1 Quadcopter 
 

4.1.1 Quadcopter Overview 
 

A quadcopter is an unarmed aerial vehicle (UAV) whose lift is generated by four rotors, spaced 

equally at the corners of a square body. The copter is able to fly by having two pairs of rotors 

that rotate in opposite directions: one pair turns clockwise and the other counter-clockwise 

(Figure 4-1). By adjusting the amount of torque and thrust produced by each rotor, the copter is 

able to move freely in a three dimensional space with six degrees of freedom, three of which are 

translational (up/down, forward/back, left/right) and three which are rotational (pitch, yaw, and 

roll). 
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Figure 4-1: Rotational direction of quadcopter blades. Permission from Gabriel Hoffma. See Appendix B for details 

 

Starting out, the biggest decision on the front end of our project is deciding the level of 

prefabrication. Quadcopter kits can arrive Ready To Fly, All-Inclusive, or Almost Ready To Fly. 

They can also arrive as a Frame Kit or they can be Scratch Built.  Components of the Flight 

controller can be purchases individually (such as the accelerometer or microcontroller), or they 

can arrive already connected and ready to plug in. When deciding on how much of the copter we 

want to come already assembled and ready to be integrated, the primary factors that will be 

considered are cost, customization, and the amount of time it will take to get the copter off the 

ground. 

 

4.1.2 Camera 
 

SARS will use a camera mounted below a quadcopter to identify the target object on the ground. 

The camera will be angled so that the field of vision is directed straight down at the ground. The 

camera must be capable of interfacing with a microcontroller so that image processing 

algorithms may be run on the individual frames from the video feed. The camera must produce 

high enough quality images that a reasonably large, brightly colored object may be clearly 

identified from an approximate height of 10 ft. The camera must have stabilization software or a 

stabilized mount so that the video feed is clear. SARS may include video streaming from the 

camera to an Android application. The final decision as to whether or not this functionality will 

be included will be based upon the relative ease of interfacing the camera with the Android 

device as well as upon the extra power consumed by the video stream. 

 

The three cameras that will be the most suitable for SARS are the GoPro Hero3 White, the 

Raspberry Pi camera module, and the HTC RE Camera. 
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4.1.2.1 GoPro Hero3 White Edition 
 

The GoPro Hero3 White Edition is the first camera considered by Group 4 for the SARS image 

processing subsystem.  Listed below are the pros and cons of using this camera. The decision of 

whether or not to use the GoPro to implement SARS will be based upon but not limited to these 

factors. 

 

 Pros: 

 Wi-Fi Communications; may interface with a BeagleBone 

 Weatherproof 

 5MP still photos with wide field of view and 2592x1944 screen resolution 

 See Table 4-1: GoPro Hero3 White Video Modes below for specs on video 

resolution 

 Rechargeable lithium-ion battery; see Table 4-2: GoPro Hero3 Battery Life below 

for battery life information 

 Many prefabricated quadcopters have mounts compatible with GoPro cameras 

 

Cons: 

 Weight (4.8 oz) 

 Costs $199.99 

 

Table 4-1 below displays the video modes of the GoPro Hero3 White Edition. More than likely, 

if the Hero3 is selected as the camera for the SARS image processing subsystem, the 960p video 

resolution will be used because of its ultra wide field of view. Having a wide field of view will 

facilitate the detection of the target object. The determination of the number of frames per second 

will be made based on speed testing of the OpenCV object detection application. 

 

Video Resolution 1080p 960p 720p WVGA 

Frames per 

Second (fps) 

NTSC/PAL 

30 

25 

30 

25 

60 

50 

30 

25 

60 

50 

Field of View 

(FOV) 

Medium Ultra Wide Ultra Wide Ultra Wide 

Screen 

Resolution 

1920x1080 1280x960 1280x720 848x480 

Table 4-1: GoPro Hero3 White Video Modes 
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Table 4-2 below indicates the approximate continuous recording time (hr:min) expected when 

shooting in various video modes using a fully-charged battery based on GoPro engineering 

testing. 

 

 With Wi-Fi Off With Wi-Fi On + 

Using Wi-Fi Remote 

With Wi-Fi Off + 

Using LCD Touch 

BacPac
TM 

Video Mode Estimated Time Estimated Time Estimated Time 

1080p 30 fps 2:15 2:00 1:30 

960p 30 fps 2:45 2:30 1:45 

720 60 fps 2:15 2:00 1:30 

720p 60 fps  3:00 2:30 1:45 
Table 4-2: GoPro Hero3 Battery Life 

 

The open source project, GoProController, written in Python will allow SARS to interface 

between the GoPro camera and a BeagleBone via Wi-Fi communications. This project can open 

the camera’s live stream and save a single frame using OpenCV. Item detection algorithms can 

then be run on the images saved to the BeagleBone, enabling SARS to identify the target object.  

 

4.1.2.2 Raspberry Pi Camera Module 
 

The Raspberry Pi Camera Module is the second camera considered by Group 4 for the SARS 

image processing subsystem. Listed below are the pros and cons of using this camera. The 

decision of whether or not to use the Raspberry Pi to implement SARS will be based upon but 

not limited to the following factors. 

 

Pros: 

 5MP still photos 

 1080p30, 720p60, and VGA90 video modes 

 Connects directly to the Raspberry Pi
1
 via the CSI port 

 Existing API’s (MMAL and V4L) for accessing the camera 

 Lightweight and small 

 Costs $24.99 

 

Cons: 

 No prefabricated quadcopter mounts for this camera 

 A Raspberry Pi might be a more versatile processor than is necessary for SARS 

 

The MMAL API framework provides an interface to multimedia components such as the 

Raspberry Pi camera module. By defining components, ports, and buffer headers, the API 

enables the transfer of data from a component to a client. When a component is created, the input 

and output ports are exposed, enabling the streaming of data through buffer headers. A buffer 

                                                 
1
 Raspberry Pi is a trademark of the Raspberry Pi Foundation. 
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header points to the memory location where the transferred data is stored. This API framework 

allows for the transfer of data from the Raspberry Pi camera module to the Raspberry Pi itself. 

The V4L (Video for Linux) API also provides for the transfer of video and audio from a 

component to a client. If the Raspberry Pi and the Raspberry Pi camera module are selected as 

the final board and camera for SARS, more research will have to be done to determine which 

API will best serve the purpose of accessing still photos or individual frames from a video stream 

to be processed for item detection. 
 

While no prefabricated quadcopters include mounts for a Raspberry Pi camera module, building 

an inexpensive, stabilized mount is still a possibility. According to the article, “‘Vibration Free’ 

Camera Mount” on Flite Test, such a mount can be built using only the  

following materials: 

 

 3mm plywood 

 1.5mm fiberglass sheet 

 6mm silicone fuel tubing 

 M3 thread 25mm long 

 30 minute slow cure epoxy 

 Strong self-adhesive Velcro 

 Foam rubber material 

 

While having to assemble this mount or a variation of this mount would not be ideal, if the 

GoPro Hero3 does not end up as the final selection for SARS, the lack of prefabricated mounts 

should not prevent the use of the Raspberry Pi camera module. Considering this obstacle, 

however, the Raspberry Pi camera module does not seem to be the ideal candidate.  

 

4.1.2.3 HTC RE Camera 
 

The HTC RE Camera is the third camera under consideration for the SARS image processing 

subsystem. Listed below are the pros and cons of using this camera. The decision of whether or 

not to use the RE Camera to implement SARS will be based upon but not limited to the 

following factors. 

 

 Pros: 

 1080p, 30fps FHD video 

 146 degree super wide angle lens with f2.8 aperture for low light usability 

 820mAh rechargeable battery 

 1hr 50mins of continuous FHD video recording 

 Wi-Fi capability 

 

Cons: 

 Weight (2.35 ounces) 

 Costs $199 

 New product; may include bugs 

 No prefabricated quadcopter mounts 
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The HTC RE Camera is a newly released product; therefore, it is quite possible it may contain 

some significant faults. While it does support Wi-Fi communications, having to write the code 

from scratch to hack the video feed and extract frames would be an incredibly challenging task. 

The fact that open source software exists to do exactly this with a GoPro makes the GoPro a 

more favorable choice. Furthermore, no prefabricated quadcopter mounts exist for this camera, 

and because of its circular shape, building a homemade mount would be far more challenging for 

this camera than it would be for the Raspberry Pi Camera module. In light of these facts, the 

HTC RE Camera was not seriously considered for use in SARS; however, the team felt that it 

merited at least some research. 

 

4.1.2.4 Final Camera Decision 
 

After some discussion, the SARS Group has decided to use the GoPro Hero 3 White Edition. The 

availability of quadcopters with prefabricated GoPro mounts was the most compelling factor in 

the decision of which camera to use. The team is confident that this setup will yield high quality 

images for object detection. The compatibility of the GoPro with the BeagleBone Black is also a 

major convenience as the BeagleBone can handle all of the necessary image processing. 

 

4.1.3 Image Processing 
 

SARS will use OpenCV to detect the object once the BeagleBone has access to the GoPro 

images. OpenCV is an open source framework with C++, C, Python and Java interfaces. It 

supports Linux; therefore, it is compatible with the BeagleBone, which is our top choice for our 

quadcopter microcontroller. The code for the image processing will be written in Python to keep 

it consistent with the open source code found which will allow the BeagleBone to access the 

GoPro via Wi-Fi; however, because no one on the team has significant experience with Python, 

if learning the language proves problematic, the SARS Group will revert to Java, with which all 

group members have experience. Matt Bahr will be primarily responsible for this SARS 

subsystem, and Brian Crabtree will assist him in its implementation. 

 

OpenCV allows for two different methods of object detection: Cascade Classification and Latent 

SVM. The team has decided to use the Cascade Classification method as Latent SVM only 

supports C/C++ interfaces whereas Cascade Classification can be performed in Python and Java 

as well as in C or C++. The Cascade Classification method involves training a classifier or list of 

classifiers to detect a specific object and then using the classifiers to determine if any region 

within the image is likely to contain the specified object. If an image region passes all of the 

classifiers, the object has essentially been detected. For each classifier, there are two types of 

error, false positives, when an image region passes as containing the object when it actually does 

not, and false negatives, when an image region containing the object fails a classifier. Each 

classifier is trained to pass as close to 100% of the true positives as possible, minimizing false 

negatives. They are not as adept, though, at preventing the false positives. Minimizing the false 

positives is the point of cascading the classifiers. For any classifier by itself, because the number 

of objects in an image is typically so small, the total number of passing image regions is roughly 

equivalent to the number of false positives. The goal is that a future classifier has been trained to 
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catch the false positives admitted by one of the initial classifiers. Figure 4-2: Cascade Classifier, 

reprinted pending permission from Paul Viola and Michael Jones, illustrates this process. 

The technique for training a classifier was derived from the famous AdaBoost algorithm. It 

involves initially selecting a classifier which identifies the highest number of positive image 

regions (regions actually containing the object). The next classifier is selected based on its 

performance with the false positives which passed the first classifier as well as on its 

performance with the true positives. In this way, all subsequent classifiers are trained to weed out 

the false positives of previous classifiers while still passing the true positives. 

 
Figure 4-2: Cascade Classifier 

 

Each classifier is composed of multiple features. Features are varying patterns made up of white 

and black rectangles (see Figure 4-3: Classifier Features – reprinted pending permission from 

Paul Viola and Michael Jones). The features must be smaller than the sample image being 

processed. They are dragged across the sample image, and the weighted sum of the region 

covered by the white rectangle is subtracted from the weighted sum of the region covered by the 

black rectangle. Based on this difference, the feature passes the sample image region as 

containing the object or fails it as not containing the object. The cutoff difference is selected 

based on the desired false positive rate and detection rate.   

 

 
Figure 4-3: Classifier Features 
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The process of finding the weighted sums is sped along by computing the integral image for the 

sample image. Each pixel value in the integral image is equal to the corresponding pixel value in 

the original image plus all of the pixel values to the left and above the corresponding pixel value. 

This relationship is described by the Equation 1: Integral Image Equations, reprinted pending 

permission from Paul Viola and Michael Jones, below. 

 

𝑖𝑖(𝑥, 𝑦) =  ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤𝑥,𝑦′≤𝑦

 

 

𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + 𝑖(𝑥, 𝑦) 
 

𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦) 

 
Equation 1: Integral Image Equations 

In these equations, s(x, y) is the cumulative row sum, ii(x, y) is the integral image value at 

coordinates (x, y), and i(x, y) is the original image value at coordinates (x, y). With the integral 

image computed, any rectangular sum can be computed with only four array references, 

drastically expediting the process of calculating the weighted sums.  

 

The process for training the classifiers and selecting the optimal combination for detecting an 

object involves testing each classifier across two test image databases, one containing the object 

and one not containing the object. The classifiers are selected based on their performance as 

described above in relation to a user selected target false positive rate and target detection rate. 

Once the classifier cascade has been trained, it can then be used on new images to determine 

with certainty dependent on the established target rates whether or not the images contain the 

object. OpenCV includes an application called opencv_traincascade which provides the 

framework for training the classifiers. Once the cascade has been created, the object detection 

code can be run. 

 

4.1.4 GPS Module 
 

A GPS module must be mounted on both the quadcopter and on the ground rover. The 

quadcopter must be capable of relaying its GPS coordinates to the rover once it finds the target 

object, and the rover must be capable of travelling to those coordinates. The two subsystems 

have slightly different requirements of their respective GPS modules. The quadcopter module 

must be small and lightweight, and it must consume little power. It only needs to retrieve GPS 

data once it is hovering directly over top of the target object, and it must be capable of 

interfacing either with a BeagleBone Black or with a Pixhawk. Because the quadcopter module 

only needs to run when the object has been found, it does not need to start until the GPS 

coordinate needs to be sent. This will prevent wasted power; however, it requires that the unit 

have a low startup time. The rover module does not have the size or power limitations as the 

quadcopter module. The main concern with the GPS for the rover subsystem is that it be capable 

of tracking an object in motion; however, as the rover will not be required to move at high 

speeds, this should not be an issue. Adafruit and Sparkfun both produce GPS units which meet 
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these requirements. The other option being considered for SARS is the Ublox LEA-6H module, 

which comes included with the ArduCopter microcontroller. 

 

The Adafruit Ultimate GPS Breakout is a small, lightweight GPS module with a built-in 

microcontroller. It has a weight of 0.3 oz. and a size of 25.5mmx35mmx6.5mm. The Ultimate 

Breakout supports UART communications and is RTC battery-compatible, which means that it 

will not require a heavy power source. The module’s start time is 34 seconds; it has 66 channels 

for searching for satellites. Having so many channels speeds up the process of locating the 

satellites. The Ultimate Breakout also has an update frequency of 1 to 10 Hz, which will be more 

than sufficient to track the movements of the land rover. Finally, the built-in microcontroller 

supports datalogging; it stores GPS information in its FLASH memory. This functionality will be 

useful for debugging purposes. The Ultimate GPS Breakout costs $39.95 for orders of fewer than 

9. 

 

The Copernicus II is a GPS module produced by Sparkfun. This module is also small and 

lightweight, having dimensions of 19mmx19mmx2.54mm. It supports UART communications 

and has a start time of 38 seconds. The Copernicus II only has 12 channels where the Ultimate 

Breakout has 66. It does not have a built-in microcontroller for datalogging. The official 

Sparkfun website does not have information on the update frequency of the Copernicus II; 

however, because the rover is not required to move at high speeds, the capabilities of this module 

should easily meet the requirements for both the quadcopter and land rover subsystems. The 

Copernicus II costs $44.95 for orders of fewer than 9. 

 

The Ublox LEA-6H is a module designed by 3D Robotics Inc. It has a 5 Hz update rate. It has a 

weight of approximately 0.6 oz. and a total size of 38mmx38mmx8.5mm, and it also comes with 

a protective case, which is a major plus because the quadcopter will be running out in the 

elements. The main advantage to this GPS unit is that it comes included with one of the 

quadcopter kits being considered for SARS. It has an APM compatible 6-pin DF13 connector 

which will allow it to interface with the Pixhawk microcontroller. The LEA-6H also includes an 

LNA and SAW filter to reduce the noise in the received signal. If this microcontroller is selected 

for SARS, then more than likely the Ublox LEA-6H will be the chosen GPS unit.  

 

Considering the decision to use the Pixhawk microcontroller, the Ublox LEA-6H module will be 

the GPS unit used by the SARS Copter. This unit has all of the functionality necessary for the 

geolocation of the target object to be retrieved. While it lacks some of the extra functionalities of 

the other two modules that were considered, these capabilities, independent FLASH memory and 

data logging, are unnecessary for the basic task being performed. The facts that it comes with the 

Pixhawk used to run ArduCopter was the critical factor in the decision to use this module. 

  

The Adafruit Ultimate GPS Breakout shall be used for the GPS navigation in the SARS Rover. 

This device was chosen over the other two because it is slightly cheaper than the Copernicus II 

and because it offers several functionalities that that the Copernicus II does not, such as the 

FLASH memory datalogging. Furthermore, it was difficult finding pricing information for 

purchasing a Ublox LEA-6H module separately from a quadcopter kit. The Ultimate GPS 

Breakout should be more than sufficient for the SARS Rover’s navigation to its target retrieval 

object. 
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4.1.5 Internal Measurement Unit 
 

The internal measurement unit (IMU) is a device that measures data related to the quadcopter’s 

velocity, orientation, and gravitational forces. The IMU is composed of at least an accelerometer 

and a gyroscope, but can also contain a compass to measure its relative geographic position as 

well as a magnetometer. The IMU registers all of this data and adjusts the rotation of the 

quadcopter’s rotors to stabilize it and ensure that it flies correctly. 

 

The accelerometer determines the acceleration of the copter in either meters-per-second-squared 

(m/s
2
) or in G-force (g) which is approximately 9.8 m/s

2
. One of the primary purposes of the 

accelerometer is tilt-sensing, or determining the objects orientation with respect to the earth’s 

surface. The accelerometer is also used to sense motion. The gyroscope measures angular 

velocity, or how fast the quadcopter is spinning around an access. The gyroscopes measurements 

are made independent of gravity, so it is able to accurately calculate the copter’s rotation in 

rotations-per-minute (RPMs) or in degrees-per-second (deg/s). These calculations are used to 

help adjust and correct the pitch, yaw, and roll of our device. A magnetometer is used to orient 

the copter accurately along its Z-axis with respect to the earth and counteract the copter’s drift. A 

global positioning system (GPS) device can also be used in lieu of a magnetometer. The IMU 

can also include a barometer to provide more accurate altitude stability and positioning. 

 

For the quadcopter, there are several efficient and easy-to-integrate IMUs that could be 

implemented in the system. When deciding on an IMU, the first option to consider is whether to 

buy each of the components separately or buy a senor unit that already integrates each individual 

sensor. Because our project has so many different parts that need to be interfaced, reducing the 

more tedious communications within subsystems is a high priority, so we will be buying an all-

in-one sensor unit.  

 

In addition, there are several other factors to consider, such as: power consumption, interface 

(analog, digital, or pulse-width modulation (PWM)), range, axes of reference, and other bonus 

features such as GPS integration. We centered on three primary options for the IMU: the 9DOF 

Razor IMU, the DIYDrones ArduIMU V3+, and TI’s SensorTag. Each has features that give it a 

potential advantage over the other. The Razor IMU is Arduino compatible and the outputs of the 

sensors are processed by an on-board Atmega328 and output over a serial interface. The 

ArduIMU has a GPS port as well as the on-board microprocessor. Below is a table summary of 

the various IMU’s considered during research. 

 

Gyroscope 
ITG-3200 - triple-axis 

digital-output gyroscope 
Tri-Axis angular rate 

sensor IMU-3000 

Accelerometer 

ADXL345 - 13-bit 
resolution, ±16g, triple-axis 

accelerometer 
Tri-Axis 

accelerometer KXTJ9 

Magentometer 
HMC5883L - triple-axis, 
digital magnetometer 

HMC5883L - triple-
axis, digital 

magnetometer MAG3110 

Voltage Level 3.3-16 VDC 3.3 VDC 3.3 VDC 
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Dimensions 1.1"" x 1.6" 1.5" x 1.0" 71.2 mm x36 mmx 

Serial Interface I2C SPI I2C 
 

Table 4-3: IMU comparison table 

4.1.6 Flight Controller 
 

For the purposes of our project, we will purchase our flight controller pre-fabricated to minimize 

the time spent building the quadcopter so we can focus on interfacing the copter with the other 

components of our project, as well as implementing the image processing from the camera. 

There are three primary open-source flight controllers available: AeroQuad, ArduCopter, and 

AutoQuad. Each one has extensive documentation to provide support for building our UAV, as 

well as nicely packaging the primary microcontroller as well as the IMU and, in some cases, a 

GPS unit.  Below in Figure 4-4 is a comparative table displaying the different functional 

capabilities of the different flight controllers. 

 

  AeroQuad 32 Arducopter AutoQuad v6.6 

Open Source Yes Yes Yes 

Gyro Stabilization Yes Yes Yes 

Self-Leveling Yes Yes Yes 

Care Free N/A Yes Yes 

Altitude Hold Yes Yes Yes 

Position Hold Add-on Yes Yes 

Return Home Add-on Yes Yes 

Waypoint 
Navigation Add-on Yes Yes 

 
Figure 4-4: Flight Controller Comparison 

AeroQuad provides multiple levels of packaging that can simplify the design process depending 

on the level of customization we are seeking. There is the option to purchase the flight control 

board on its own, to purchase a kit which includes a shield to allow easy connection to the 9DOF 

IMU, or a full kit that comes with a pre-determined quadcopter frame, motors, speed controllers, 

and propellers. Obviously the more that is provided in the kit the more expensive it is, so we will 

determine what level of customization is necessary to keep our project on track. As far as price, 

the AeroQaud network is incredibly reasonably priced, with the controller kit coming in at 

$199.95 and the controller itself at $149.95.  

 

The AeroQuad 32 is run by a 32-bit ARM processor at 168 MHz and has both Serial Peripheral 

Interface (SPI) and Inter-Integrated Circuit (I
2
C) compatibility. If connected to the MPU6000, 

the SPI mode has fast sensor sampling and flight stability. It has 8 PWM receiver inputs and 

outputs, both 3.3V and 5V outputs, serial wire debug, and 3 USARTs.  Overall, it is an 

incredibly flexible flight controller that would allow a multitude of options for connecting to the 

IMU as well as our GPS device and wireless communication module. 
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ArduCopter, much like AeroQuad, has a vast array of information that will make building our 

copter seamless and painless. Arducopter is powered through the APM 2.6 flight controller 

which includes a built-in barometer, external I
2
C port, and GPS and USB ports. The board is 

powered at 2.25 A at 5.37 V and can convert power from the main flight battery up to 18 V. Also 

like the Aeroquad, it comes with a built-in IMU composed of an MPU6050 6-axis gyro, the 

HMC5883L 3-axis digital magnetometer and a MS5611-01BA01 Barometric pressure sensor for 

better altitude control. At $180 ArduCopter’s APM is another viable option, though it is less 

flexible than AeroQuad. 

 

The third primary FCB is produced by AutoQuad. The AutoQuad 6 contains a Ublox LEA-6T 

precision timing GPS module, 9DOF analog IMU and 1 pressure sensor. It has 14 PWM 

controllers/receivers, built-in bi-directional telemetry radio compatible with Bluetooth and XBee, 

and a STM32F407 32bit Cortex M4 microcontroller @ 168Mhz. However, it has an operating 

input voltage of around 9V, which compared to the other boards is extremely high, and would 

not be sufficient from a power consumption perspective. 

 

  AeroQuad Arducopter AutoQuad 

Processor 32-bit ARM APM 2.6 32-bit Cortex M4 

Processor 
Speed 168 MHz 168 MHz 168 MHz 

Flash Memory 32 KB 2 MB 3MB 

Serial Interfaces SPI, I2C I2C I2C 

UARTs/USARTs 3 USARTs 4 UART ports 1 UART port 

Voltage Level 3.3V or 5V 5 V 9V 

Price $199.95  $180.00  $467.00  
 

Table 4-4: Flight controller specifications table 

 

In addition to a flight controller that includes an IMU, we could also choose to buy a MCU on its 

own and connect a separate IMU ourselves. With this route, there are two popular MCUs that 

have a tremendous amount of resources and information already documented and available 

online: the BeagleBone Black and the Arduino Mega 2560. 

 

The ATMega 2560 has 54 digital I/O pins, 16 analog inputs, 4 UARTs, a USB connector and I
2
C 

as well as SPI serial communication capabilities. It has an operating voltage of 5V, as well as 

256 KB of flash memory and a clock speed of 16 MHz. Arduino’s integrated development 

environment (IDE) runs in C/C++. The biggest advantage of this MCU is that there is more 

information and more resources about how to build a quadcopter with this as the primary flight 

controller than any other board on the market, which would help limit the time spent getting the 

copter to fly so we can spend more time interfacing all of the different components. 

 

The BeagleBone Black is the second large flight controller MCU used in quadcopters, and 

though there is some information available it is significantly less than the Arduino board. One of 

the advantages, though, is that is has native Python support which will make it easier to code, 
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and is compatible with Ubuntu. The BeagleBone Black has 512 MB RAM, UART pins as well 

as I
2
C and SPI compatibility. 
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4.1.7 Frame 
 

Overall, a there are several incredibly important factors to consider when deciding on a frame. 

First, the level of prefabrication: because of the scale of our project, we are trying to spend only a 

small amount of time getting the quadcopter to fly because there are so many other components 

that need to communicate correctly for the project to run. Second, the weight of the frame needs 

to be able to support the flight controller as well as the BeagleBone and GoPro without being so 

heavy that it significantly reduces the flight time. Third, the copter needs to have a mount for the 

GoPro that allows the camera to survey the terrain perpendicular to the ground. 

 

Each of the quadcopter systems has a wide range of possible frames, each with different prices 

and compatibility specifications that provides a wide range of options. The Aeroquad Cyclone is 

a relatively cheap frame coming in at $124.95, containing a FCB mount plate that easily supports 

all AeroQuad boards (as well as standard 45mm output holes). The biggest bonus feature of this 

frame though is a built-in goPro camera mount, making it simple to attach the camera we will be 

using for the image processing. Although the frame does not come pre-assembled, AreoQuad’s 

website does have a detailed walkthrough of how to assemble the frame, as well as connect the 

flight controller and PCB. 

 

An incredibly cheap option is the Spider Quadcopter frame. At only $40.00, this frame provides 

most of what we would need (GoPro stabilization mount, space to mount 1-4 45mm control 

boards, as well as a power distribution board as well as an Electronic Speed Control (ESC) unit). 

In addition, the frame is very light at 486 g, and it will be important to minimize the weight of 

the copter in order to maximize flight time. Below is a comparison of the two frames. 

 

  Cyclone Frame Spider Frame 

Weight 650 g 486 g 

Camera Mount? Yes Yes 

Frame Material Aluminum Glass Fiber 

Motors BP 2217 35-series 

Average Flight 
Time 10 minutes 8 minutes 

Price $124.95  $40.00  

 
Figure 4-5: Frame Comparison 

 

ArduCopter has several frames that come pre-assembled and with many of the boards already 

assembled. However, most of the frames lack flexibility and although much of the software is 

open-sourced, copters that are already that put-together will provide less engineering experience. 
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4.1.8 Processing Microcontroller 
 

Initially, our group planned to run the flight controller, image processing, and wireless 

communication through a single MCU. However, after realizing the sensitivity of the flight 

controller and how any interference with its processing can cause the copter to crash very easily, 

it was decided to attach a second MCU to the copter that would handle the image processing and 

wireless communication separately while communicating with the flight controller via a serial 

interface. 

 

Much like the research for the flight controller, the two biggest candidates for the additional 

MCU were the BeagleBone black and the ATMega 2560. The biggest task that the second MCU 

would have is image processing, and during our research we were able to find some open source 

GoPro controller Python code, and because of the BeagleBone’s native Python support it was 

decided that this would be the best environment to handle the image processing. In addition, we 

were able to receive a free BeagleBone Black from the TI Innovation lab, making our project 

more cost efficient. Below (Figure 4-6) is a comparison of the two microprocessors. 

 

  BeagleBone Black Arduino ATMega2560 

Operating System 
Android, Linux, Windows 

CE, RISC OS N/A 

Development 
Environment Cloud9 and Node.JS Android IDE, Eclipse 

Programming 
Language 

C, C++, Java, Python, Perl, 
Ruby Wiring Based (~C++) 

Architecture 32-bit 8-bit 

Processor 
TI Sitara AM3359 ARM 

Cortex A8 ATMega2560 

Speed 1 GHz 16 MHz 

RAM 512 MB 8 KB 

I/O Protocols 22 14 

ADC Internally Used 6 

USB 1x2.0 N/A 

Cost $55.00  $30.00  

 

 

 

The BeagleBone (Figure 4-7) has an AM335x 1GHz ARM® Cortex-A8 processor, 512MB of 

DDR3 RAM, as well as USB clients for power and communications. It also has 2x46 pin out 

locations. 

 

Figure 4-6: Microcontroller comparison 

http://www.ti.com/product/am3358
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Figure 4-7: BeagleBone Black. Permission from jkridne. See Appendix B for details. 

 

4.1.9 Communication Interface 
 

One of the big questions about the FCB is how all of the different devices will communicate. For 

quadcopters, there are typically three primary methods of communication: SPI, I
2
C, and 

UART/USART. All three are serial interfaces, meaning they are time division multiplexed so the 

data is sent over a certain period of time. Each has certain advantages and disadvantages that can 

be applied to transferring information between the IMU, the flight controller, and the wireless 

communication module. 

 

SPI (Figure 4-8) is a protocol dictated by a master sending a clock signal to one or two slaves. At 

each clock signal, the master shifts one bit out to the slaves and receives one bit in, known as 

MOSI for Master Out Slave In and MISO for Master In Slave Out. The master is able to control 

which slave to send and receive data to via a Slave Select (SS). This can also be achieved by 

daisy chaining the slaves together though this makes the software extremely difficult. 
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Figure 4-8: Example of Typical SPI Bus. Permission from en:User:CBurnett. See Appendix B for details  

 

I
2
C (Figure 4-9), like SPI, is also a synchronous protocol. More advanced than the SPI, this 

communication interface is comprised of two wires: one that sends a clock signal (SDL) and 

another which transfers the data (SDL). Unlike SPI which uses SS, the first byte of the data 

transfer contains a 7-bit address followed by one bit dictating whether the next block of 

information will be read/write, so the interface is able to communicate with up to 127 different 

devices. If the master is sending data, it sends out the data bit-by bit with each clock pulse; if it is 

receiving data, it simply provides the clock pulses and reads in the data off of the data bus. 

 

 
Figure 4-9: I2C communication protocol. Permission from www.engineersgarage.com. See Appendix B for details. 

 

Finally, UART/USART is the third possible serial protocol used to transfer data.8-bit data is 

transferred typically using a start bit, the single byte of data, and a stop bit. The start bit is a low-
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level bit and the stop bit is high-level, meaning that there is no specific voltage level needed so it 

can be run at 3.3V or 5V, whichever the microcontroller runs at. However, the devices 

communicating via UART have to agree on transmission speed and bit-rate since it is an 

asynchronous communication protocol. 

 

4.1.10 Power Distribution 
 

4.1.11 Quadcopter Kits 
 

While it is possible to purchase different parts of the copter separately, there are several cost-

efficient kits that include a large level of prefabrication either Ready-To-Fly (RTF) or Almost 

Ready-To-Fly (ARTF). Ready-To-Fly kits require no assembly and arrive with most of the 

underlying components shielded from the user to reduce complexity. However, because an 

additional microcontroller will be connected to modify the flight path, a RTF copter does not 

provide the level of flexibility or customization necessary to integrate the other subsystems of 

our project. Thus, the most amount of pre-fabrication we can consider is an ARTF kit. 

 

There are two ARTF kits on the market that have an extensive library of available information 

and support online. The first is the DIYDrones Quad Kit (Figure 4-10). A do-it-yourself kit, it 

includes all of the parts needed to assemble a quadcopter with a Pixhawk autopilot system, 

including motors, propellers, electronic speed controllers (ESCs), a power module and GPS. This 

kit already comes with all of the part needed to build the copter and get it in the air quickly, with 

added space to install other parts such as our image processing microcontroller and additional 

power systems. The kit comes in at a very reasonable $550, which covers the frame and flight 

controller. The kit is also compatible with ArduCopter, providing access to the largest online 

open-source multi-copter UAV control platform that will allow us to easily control the copter 

and send commands to accomplish the goals we need. Below are all of the components of the kit: 
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Figure 4-10: Quad kit components 

 

4.2 Rover 
 

4.2.1 Rover Travel Speed 
 

In the selection of motors to power the wheels of the rover, travel speed is in an important 

consideration. Motors with too much power will lead to the rover being difficult to control, 

especially with varying terrains. A rover that moves too slowly will make object retrieval take 

too long and will lead to issues with battery life of both the rover and the quadcopter. Most DC 

motors are rated in RPM both under load and with no load. In order to determine the linear speed 

a rover will travel based on the RPM of the motors, some calculations must be made. The only 

variable other than the RPM of the motor is the radius of the wheels. This is the equation for 

linear velocity in meters/second based on RPM and wheel radius: 

 

𝑣𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑅𝑃𝑀 ∗
1

2𝜋
∗ 𝑅𝑤ℎ𝑒𝑒𝑙 

 

Based on that equation, we can make a comparison of motor speeds by RPM based on a wheel 

with a radius of 42mm. Table 4-5 shows a comparison of these different RPMs to their 

corresponding linear speed. 

 



26 

 

RPM M/S 

Time to 

Travel 100 

M (Seconds) 

50 0.334225 299.1993003 

75 0.501338 199.4662002 

100 0.668451 149.5996502 

125 0.835563 119.6797201 

150 1.002676 99.73310011 

175 1.169789 85.48551438 

200 1.336902 74.79982509 

225 1.504014 66.48873341 

250 1.671127 59.83986007 

275 1.83824 54.39987279 

300 2.005352 49.86655006 

400 2.673803 37.39991254 

500 3.342254 29.91993003 

600 4.010705 24.93327503 

700 4.679155 21.3713786 

800 5.347606 18.69995627 

900 6.016057 16.62218335 

1000 6.684508 14.95996502 

Table 4-5: RPM to M/S comparison chart 

 

It was decided that it should not take more than 100 seconds to travel 100m for object retrieval, 

which eliminates any motors operating below 150 RPM. The upper limit for motor speed is more 

difficult to determine. It would be beneficial to select a motor with a slightly higher top speed 

than the speed we need because its speed can be scaled back using the motor controller. 

Experimentation will allow us to determine the proper travel speed of the rover. It might also be 

beneficial to use on board motion sensing on the rover to determine proper speed on the fly and 

lower speed if necessary to prevent the rover from possibly flipping over due to moving too 

quickly over volatile terrain. 

 

4.2.2 Terrain Traversal Capabilities 
 

The rover should be able to travel over most grassy surfaces, concrete, and possibly some dirt. 

The main point of decision is between wheels and tank style treads. There are advantages and 

disadvantages to both tank treads and wheels. 

 

Tank style treads are very advantageous on rough terrain. Their overall design was intended to 

make them extremely versatile in terrain covering capabilities. They are very capable of covering 

dirt, wet surfaces, and inclines. The other key advantage to treads is that they have a very high 

total weight capacity, allowing for the rover as well as the object retrieval capacity to be large. 
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Unfortunately, treads also have down sides. Steering is significantly more difficult with treads 

than compared to wheels. Also, treads have a much lower speed capability than wheels. The final 

downside is that if the treads break, repair can be very difficult. 

 

Wheels also have their own set of advantages and disadvantages of their own. Wheels are very 

cheap. They also can be used for significantly faster speeds than treads. Along with faster speeds, 

wheels also are much more maneuverable than treads. Finally, any repair issues with wheels can 

be easily handled by swapping out the wheels. On the downside, wheels have a very difficult 

time on uneven or slippery terrain. Also, wheels are more susceptible to issues with excessive 

weight than treads are. 

 

After some consideration, it was determined that wheels will be more beneficial for the SARS 

project. Speed, maneuverability, and reparability will be more beneficial to SARS than the 

weight and terrain abilities of the treads.  

 

4.2.3 Motor Controllers 
 

The motor controller is an integral part of the rover system. The first and most important part of 

motor controller selection is the choice between a 2 wheel drive controller and a 4 wheel drive 

controller. The first step in that decision is the debate between a 2 wheel drive and a 4 wheel 

drive rover. A 4 wheel drive system gives the rover the ability to navigate more effectively as 

well as in place navigation. On the other hand, a 2 wheel drive system will be slightly cheaper 

and uses less battery power. For the SARS rover, a 4 wheel drive system will be more beneficial 

due to its ability to navigate various terrains as well as the finer turning abilities. 

 

After the selection of a 4 wheel drive system, motor controllers can be investigated. After 

looking into available motor controllers, it has become apparent that single board to control 4 

motors is a rare product. The more popular configuration is to use two 2 channel motor 

controllers instead of a single 4 channel motor controller. There are some other important 

features of various motor controllers that must also be considered in the selection process. One 

feature important to this project is that the controller has stepping capability. This feature allows 

for the motors to be directly accelerated rather than using pulsing to accelerate. This will allow 

for more controlled movement as well as smoother motion. Using a pulse style acceleration 

method will lead to much jerkier acceleration as well as more difficulty decelerating. If the motor 

controller selected is stepping capable, smooth acceleration and deceleration will be possible and 

motion will be much smother. This will also be beneficial for fine movements and prevent 

unnecessary input to any sensors on the rover. Another key motor control feature is maximum 

current and voltage throughput. Voltage control is the key to DC motors and therefore the motor 

controller must allow for at least 10V to achieve maximum performance from the connected 

motors. Current handling is also important for the motor controller to ensure that the circuitry is 

not damaged by possible excessive current from the motors. DC motors have no internal current 

regulation, and therefore have a chance of damaging the circuitry. Ideally, the controller will 

have a current regulation method, such as a fuse, for protection.  
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4.2.4 Weight Capacity 
 

For this system, weight capacity is not very high up on the design priority list. The rover is not 

intended to carry a large amount of weight. In the design specifications it is mentioned that the 

rover should be able to carry at least 5lbs, which should not have much impact on the overall 

design. Assuming the rover can handle its own weight, an additional 5lbs will not be difficult to 

achieve. The only impact the required weight capacity will have on the rover is that it influences 

the design towards using a metal frame, as opposed to a plastic frame, to maintain structural 

stability. The metal frame should have no issues withstanding carrying a small amount of weight. 

The other aspect of weight limitation is that the motors may have difficulty maintaining high 

RPMs with excessive weight. As mentioned briefly when discussing the overall travel speed of 

the rover, under load DC motors will have a significantly lower maximum RPM. Therefore, 

when selecting appropriate motors, the load RPM should be the main deciding factor to ensure 

effective performance while the rover is carrying weight. There is one important aspect of the 

weight capacity when determining the design for the rover, which is the amount of torque the 

rover can handle without tipping over. In order to retrieve the desired object, an arm must be 

extended from the rover to reach out and grab the object and return it to the rover. This will 

create a significant amount of torque on the rover and may cause the rover to tip over. In order to 

counter this issue, counterweight may have to be added to the rover to prevent this, adding to the 

overall weight of the rover.  

 

4.2.5 Microcontrollers 
 

The microcontroller is perhaps one of the most important aspects of the rover. The 

microcontroller must be able to interact with the motor controller, object detection sensors, the 

wireless communication module, and the GPS module. At first glance, it is obvious that the 

selected microcontroller must have lots of options for communications protocols. It should be 

compatible with various protocols such as GPIO, UART, SPI, or I
2
C. Additionally, the 

microcontroller selected should operate quickly enough to handle all of the necessary tasks 

without noticeable performance lag. This controller will be responsible for retrieving current 

location from the GPS, detecting obstacles with a sensor, determining any changes to the path or 

speed of the rover (to be communicated to the motor controller), control the object retrieval 

apparatus, listen for information from other modules (Android app or quadcopter), and transmit 

data to the Android app.  

 

Upon initial research, it was an easy decision to select a microcontroller from Texas Instruments 

(TI). TI controllers have the widest set of supported standards as well as the largest capability for 

I/O expansion. TI also offers a large enough product base to meet any of the potential needs of 

the rover system. The strongest argument for TI controllers is that all of the products are open 

source, meaning that the schematics are readily available for easy implementation on a printed 

circuit board. TI offers a range of products from which to choose the most appropriate 

microcontroller. There are six major product lines from which to select the appropriate 

microcontroller. For low power and low frequency applications, there are three major divisions 

of the MSP430 microcontroller. The next product line is the C2000 microcontroller which has 

the highest frequency and is intended for real time control. The next series for automation and 

control is based on the ARM Cortex M4 controller and has middle frequency operation. The final 
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product line, the Hercules line, is designed for security applications. At a quick glance, the 

MSP430 and Hercules product lines can be eliminated from contention. The MSP430 lines do 

not have the necessary processing power to control the rover and the Hercules line has 

unnecessary features whose resources can be better focused elsewhere. The next product to be 

removed from the running is the C2000 series. The C2000 series is focused on minimal input 

systems, which is not what the rover is based around. This leaves the automation and control 

series which has two subseries, the Tiva C and the Concerto. There are a few major differences 

between these two series, and the most important details to this project have been outlined in 

Table 4-6. 

 

 Tiva C Concerto 

Processing Core(s) ARM Cortex M4 ARM Cortex M3, TI C28X 

(FPU) 

Operating Frequency 120MHz 100MHz 

Flash Memory 1024KB 512KB 

RAM 256KB 64KB 

UART 8 5 

SSI/SPI 4 (Bi, Quad, Advanced) 4 

I
2
C 10 2 

GPIO 140 64 

Average Chip Cost ~$20 ~$35 
Table 4-6: Tiva C vs. Concerto microcontroller comparison 

This comparison makes the controller selection for the SARS Rover simple. The Tiva C series 

controllers have significantly more I/O capability as well as more storage and a higher operating 

frequency. The key feature of the Concerto chips is the dedicated floating point unit, which will 

not be necessary for SARS. The Tiva C series chips are also less expensive, which is always 

beneficial. 

 

4.2.6 Target Object Retrieval 
 

The SARS Rover’s most daunting task is the actual retrieval of the target object once it has 

reached the object. There are many different approaches to picking up objects with a robotic 

grasping apparatus. The most common options include a two or three pronged clamp or a design 

that attempts to mimic the human hand. Clamps can be very effective for regularly shaped 

objects with well-defined edges that can withstand some amount of pressure. As the target object 

varies in shape and rigidness, however, the clamp approach becomes increasingly ineffective. 

The other common approach is attempting to mimic the human hand. The human hand is perhaps 

one of the most versatile object grabbing tools in the world, but it is very difficult to mimic 

robotically. The human hand has so many degrees of motion that most attempts to copy it do not 

produce effective results, or they require significant amounts of expensive hardware.  

 

At first glance, a clamp of some sort is the best choice for the SARS system, but after some brief 

research, a unique concept in robot grasping was discovered. A gripping system developed by 

the University of Chicago and Cornell University involves using the jamming property of some 

granular substances. Generally, granular substances act nearly as fluids in a normal environment. 
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When the environment is changed to a vacuum, the particles stiffen in place. This in turn makes 

for an extremely effective robotic gripper. This gripper can pick up almost anything as long as 

the vacuum is being created, and once the vacuum is released, the object will be released as well.  

 

This will be the most beneficial design for the SARS system. This will allow for any desired 

object, regardless of shape, to be retrieved. Implementation of this design should also have 

minimal effects on the rover. Most of the required hardware can be stored directly on the chassis. 

The heaviest component of the system is the vacuum pump which will be housed on the chassis. 

The actual retrieval apparatus will consist of an arm with a balloon filled with coffee grounds 

(the granular substance) and a tube running along the arm from the vacuum pump to the balloon 

to create the vacuum and grab the object. The arm will need servos to control its motion as well. 

The arm must have roughly 90 degrees of up and down motion where it connects to the rover and 

at the end of the arm where the gripper is, the hand, must have close to 270 degrees of rotation to 

adjust for object pickup and then also to allow rotation to drop off the object in the storage bin in 

on the rover. This will be further discussed in the rover design.  

 

Another key factor of the universal gripper is the range of objects which it is able to pick up. 

Research by John R. Amend, Jr. et al., shows that the gripper can successfully pick up objects 

100% of the time that are up to slightly over 75% of the gripper’s size. This is illustrated in 

Figure 4-11. For example, to successfully pick up a tennis ball (official maximum diameter of 

6.86cm), the gripper would have to have a diameter of roughly 9.15cm. 

 

Another option, should the Universal Gripper prove too difficult to implement, would be to use 

an electromagnet to lift some metal object. This magnet could be mounted on the end of a robotic 

arm and lowered overtop of the target object. If this ends up being the final retrieval method 

implemented for SARS, the target object would need to be modified since a tennis ball cannot be 

lifted with a magnet. In this case, a large, brightly colored sheet would be placed on the ground 

so as to facilitate aerial detection. On top of this sheet a small, three-dimensional metal object 

would be placed. This is the object for which the rover will be searching. Upon detection, the 

Figure 4-11: Grabber gripping success 
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arm would lower, the electromagnet would be turned on, and the object would be lifted off the 

ground. 

 

One pivotal concern when designing a robotic arm is the degrees of freedom required. 

Essentially, each degree of freedom is an arm joint containing a servo motor and an encoder. It is 

important to try to use as few degrees of freedom as possible because the extra hardware can be 

very costly. High resolution encoders can cost upwards of $50. Encoders are necessary to 

implement a PID feedback control system for each arm joint. Using optical sensors to measure 

servo rotation, the encoder sends electrical pulses to the microcontroller whenever the servo 

rotates some arbitrary number of degrees. The frequency of these pulses can be used to calculate 

displacement, velocity, and acceleration, among other variables. The SARS Group has not yet 

decided specifically what 12-V servo motor shall be used for each degree of freedom. This 

decision shall be made once Group 4 has a better idea which object retrieval prototype shall be 

implemented for SARS. 

 

More than likely, if a magnet is selected as the final retrieval method for SARS, this system 

would require fewer degrees of freedom than would the Universal Gripper. A moderately 

powerful electromagnet would not require as much accuracy in its placement overtop of the 

target object; however, depending on the size of the magnet, its weight could potentially be too 

much for the arm to lift. Also, a powerful magnet might damage a metal arm if the degrees of 

freedom of the arm joints are not carefully monitored.  

 

Weight and moment calculations, among other kinematic measurements, will need to be 

performed for each degree of freedom of the robotic arm. If the team decides to use an object 

retrieval method that requires a robotic arm, these calculations shall be included in the design 

segment of this document. 

 

Since the robotic arm will only be performing one function, it does not need extra sensors for 

finding the target object besides those already mounted on the rover. Essentially, the arm only 

needs to switch between two positions: picking up the object and dropping it in the storage unit. 

Because the task being performed is so simple, using a robotic arm to perform it may end up 

being a waste of time and resources. 

 

If the robotic arm is too involved for Group 4 to build in addition to all of the other SARS 

subsystems, a simpler design may be implemented. An electromagnet may be mounted 

underneath the chassis of the SARS Rover and turned on as the rover travels over top of the 

target object.  

 

The decision of which retrieval method is best for SARS has yet to be made. The scope of this 

subsystem is entirely dependent upon the difficulty in implementing the other SARS subsystems, 

so the decision will more than likely be postponed until January 2015 when the SARS Group has 

had more of an opportunity to work on the image processing, geolocation, flight dynamics, and 

rover object avoidance and detection elements of the project development. Limited design 

materials shall be included in this document for each of the proposed methods outlined above. 
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4.2.7 Non-Contact Obstacle Detection and Avoidance 
 

If the rover encounters an obstacle on route to object retrieval, it must be capable of detecting 

and avoidance these obstacles before contacting them so that it does not crash. Two sensor 

technologies have been considered for this purpose: infrared distance measurement sensors and 

ultrasonic distance measurement sensors. Each respective technology has its own advantages and 

disadvantages which will be briefly overviewed before discussing specific sensor models that 

have been considered for use with the SARS rover. 

 

4.2.7.1 Infrared Distance Sensors 
 

Infrared sensors work by triangulating the distance to the object. A pulse of infrared light is 

emitted from an infrared emitter, it reflects back off of the object, and then it strikes an infrared 

detector. When the light reaches the detector, it arrives at an angle that is dependent on the 

distance from the object from which it was reflected. The distance to the object is then 

determined from this angle using basic trigonometry, and the output voltage is varied according 

to this distance. Figure 4-12 illustrates how the infrared sensors work. 

 

 
Figure 4-12: Triangulation with Infrared Sensors 

Image Courtesy of ROBOTC 

 

Infrared sensors are good for precise detection of objects and are relatively cheap and easy to 

implement. Precise detection may become important if the rover must perform a close proximity 

search of the intended retrieval target using the object detection and avoidance system. Infrared 

sensors also have several very limiting disadvantages. First, they are extremely susceptible to 

influences from other light sources. SARS is designed to operate in outdoor environments, where 

sunlight will provide a significant amount of interference for the sensors. If the interference is 

too great for the infrared sensors to operate effectively, then they will be rendered useless. 

Second, the output voltage vs. object distance behaves according to a non-linear relationship (see 

figure 10), which makes accurate calculation of the object distance more complex and less 

reliable. The combination of these two disadvantages makes infrared based object avoidance a 

less desirable option than an ultrasonic based solution. Nevertheless, it is still considered in the 

event that precise objection detection becomes important to the system. 
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4.2.7.2 Sharp GP2Y0A21YK Proximity Sensor 
 

A popular infrared sensor is the Sharp GP2Y0A21YK. It has an effective range of 10cm to 80cm 

with an output voltage that ranges from 3.1V to 0.4V. The relationship of target distance to 

output voltage is illustrated below in Figure 4-13. 

 

 
Figure 4-13: Sharp GP2Y0A21YK V-L Relationship 

Reprinted with permission from Sharp (Pending) 

 

The sensor outputs are terminated with a 3-pin Japanese Solderless Terminal (JST), which 

consists of the 5V supply line, ground, and the output line. The sensor does not require an 

external clock or signal to operate. It continuously pulses its infrared emitter and reports the 

results via voltage to the output line, which requires around 30mA of current to operate. Table 

4-7 summarizes the sensor’s specifications. 

 

Sharp GP2Y0A21YK 

Cost $13.95 

Distance Output Type Analog (Voltage) 

Detecting Distance 10cm to 80cm 

Supply Voltage +4.5V to +5.5V 

Output Terminal Voltage +0.4V to +3.1V 

Operating Current 30mA to 40mA 

Operating Temperature -10°C to +60°C 
Table 4-7: Sharp GP2Y0A21YK Specifications 

 

4.2.7.3 Ultrasonic Distance Sensors 
 

Ultrasonic sensors work using sound instead of light. They operate using a principle similar to 

radar or sonar, whereby the distance to the target is determined by measuring the time it takes for 
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a sound wave to travel to the target and back to the sensor. Knowing the travel time and the 

speed of sound in the medium through which the sound wave was traveling, the distance to the 

target can be calculated. Figure 4-14 illustrates how this process works.  

 

 
Figure 4-14: Ultrasonic Ranging 

Image Courtesy of Wikipedia 

 

Unlike infrared sensors, ultrasonic sensors are not susceptible to influences of sunlight, which 

makes them very suitable for outdoor applications such as SARS. They also project the sound 

waves in a wider beam than a typical infrared sensor projects its light, so they are better at 

sensing objects in a general direction since they do not need to fire the sound wave directly at the 

target. They do have some disadvantages, though. First, they do not work well when measuring 

distance to sound absorbing objects such as sponges. If the rover encounters objects like this, it 

will not be able to detect and avoid them. Second, if the sound waves emitted by the sensor 

encounter an object or wall with sharp and/or irregular angles on its surface, the sound wave 

could be reflected at such a sharp angle that it never returns to the sensor and is lost. The sensor 

would then fail to report the obstacle, and the rover would be unable to avoid them. In addition to 

“lost” echoes, ultrasonic sensors are susceptible to “ghost” echoes, where sound waves reflected 

at sharp angles from an irregularly shaped object or wall can return to the sensor as a false 

positive. The rover would then attempt to avoid an object that isn’t actually there. Figure 4-15 

illustrates a scenario where this situation could occur. The third disadvantage of ultrasonic 

sensors is cost. They are considerably more expensive than infrared sensors, costing upwards of 

$20-$30 per sensor whereas infrared sensors are typically in the range of $10. 
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Figure 4-15: "Ghost" and "Lost" Echoes 
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4.2.7.4 Parallax Ping))) Ultrasonic Distance Sensor 
 

A popular ultrasonic distance sensor is the Ping))) by Parallax. It has an effective range between 

2cm and 3m. The Ping))) operates on 3 pins: a 5V supply pin, a ground pin, and a single pulse in/ 

pulse out IO pin. The sensor is triggered via the IO signal pin and returns the time it takes for the 

ultrasonic echo to return as a digital pulse via this same pin. An LED indicates when the sensor 

has triggered an ultrasonic burst and is awaiting return. The sensor requires 30 to 35mA to 

operate when active. Table 4-8 summarizes the sensor’s specifications. 

 

Parallax Ping))) 

Cost $29.99 

Distance Output Type Digital (TTL Pulse) 

Detecting Distance 2cm to 3m 

Supply Voltage +5V 

Operating Current 30mA to 35mA 

Output Terminal Voltage +3.3V or +5V 

Operating Temperature 0°C to +70°C 
Table 4-8: Parallax Ping))) Specifications 

 

4.2.8 Power 
 

Last but not least is the power source for the rover system. Last but not least is the power source 

for the rover system. There is a large host of options regarding battery selection for the rover 

system.  

 

The first aspect of choosing an appropriate battery for the rover system is choosing which type of 

battery the system should use. There are 6 major types of batteries: nickel cadmium, nickel metal 

hydride, reusable alkaline, lithium-ion, lithium-polymer, and sealed lead-acid. The comparison 

of these different batteries is in Table 4-9. The information presented helps begin the process of 

narrowing down which type of battery is ideal for the SARS Rover. A few of the options can be 

crossed off the list of possibilities fairly quickly.  
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NiCd NiMH 

Lead 

Acid 
Li-ion 

Li-ion 

polymer 

Reusable 

Alkaline 

 

Gravimetric 

Energy Density 

(Wh/kg) 
 

45-80 60-120 30-50 
110-

160 
100-130 80 (initial) 

Internal Resistance  100 to 200 
200 to 

300 
<100 

150 to 

250 
200 to 300 200 to 2000 

(includes peripheral 

circuits) in mΩ 
6V pack 6V pack 12V pack 

7.2V 

pack 
7.2V pack 6V pack 

Cycle Life (to 80% of 

initial capacity) 
1500 

300 to 

500 

200 to  
500 to 

1000 

300 to  50 

300 500 (to 50%) 

Fast Charge Time 1h typical 2-4h 8-16h 2-4h 2-4h 2-3h 

Overcharge 

Tolerance 
moderate low high 

very 

low 
low moderate 

Self-discharge / 

Month (room 

temperature) 

20% 30% 5% 10% ~10% 0.30% 

Cell Voltage(nominal) 1.25V 1.25V 2V 3.6V 3.6V 1.5V 

Load Current             

-    peak 20C 5C 5C >2C >2C 0.5C 

-    best result 1C 
0.5C or 

lower 
0.2C 

1C or 

lower 

1C or 

lower 

0.2C or 

lower 

Operating 

Temperature 

(discharge only) 

-40 to  -20 to  -20 to  -20 to  0 to  0 to  

60°C 60°C 60°C 60°C 60°C 65°C 

Maintenance 

Requirement 

30 to 

60 days 

60 to 

90 days 

3 to 6 

months 
not req. not req. not req. 

Table 4-9: Battery Type Comparison (From BatteryUniversity.com) 
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Reusable alkaline batteries will not even be considered due to their relatively low energy density 

of 80 Wh/kg, which drops off with every charge. Alkaline batteries will very quickly drop off to 

roughly 50% of their original capacity after just 50 cycles. This would be detrimental to the 

development process for the SARS Rover because 50 charge cycles could occur just during the 

testing process. The next battery to be eliminated is the lead acid battery. While these batteries 

have many useful features, they are too heavy to be useful for this system. Similar batteries of a 

different type will have 2-3 times the capacity at the same battery weight. The biggest 

advantages of the lead acid are the high overcharge tolerance, the low internal resistance, and the 

low self-discharge rate. These features are not available with any other type of battery, but are 

not beneficial enough to warrant use of a lead acid battery. The next battery to be eliminated 

from the running is the NiCd battery. Despite having a phenomenal fast charge time, excellent 

discharge rates, and great cycle life, these batteries have the same problem as the lead acid of 

fairly low energy density. They also have a maintenance requirement that can be as frequent as 

every 30 days, which will cause lots of difficulty. The last of the preliminary eliminations of 

battery type is the NiMH. These batteries have many favorable features. Energy density, 

discharge rate, cycle life, and charge time are all respectable values, but there are still some large 

downsides. These batteries have a whopping 30% self-discharge rate which is a major detriment. 

They also, like the NiCd batteries, have a maintenance requirement. It is not quite as frequent as 

the NiCd, but requiring maintenance every 60 to 90 days is still an unnecessary hassle. 

 

At this point, we are down to the last two major battery types and final selection becomes more 

difficult. Based on the information presented, li-ion and li-po batteries have very few differences 

between them. Both have similar discharge loads, operating temperatures, and self-discharge 

rates. Li-ion batteries have a slightly higher energy density and cycle life with slightly less 

internal resistance, but most of these differences are negligible. There are a few other key details 

that must be considered in choosing between these two types of battery. The li-po batteries are 

actually much smaller than the li-ion batteries making them easier to fit wherever they are 

needed. They are also safer than li-ion because they are not as likely to malfunction due to 

overcharging. These are key features for selection for the SARS Rover. 

 

Aside from battery selection, the other important aspect of the power system of the Rover system 

is the gauge of wire that must be used to ensure that current can travel safely without risk of any 

fires or damaging equipment. Table 4-10 illustrates the current capacity of various gauges of wire. 

The selected gauge of wire should be roughly 20% higher than the maximum anticipated current 

through the system to ensure that the safety requirements are met. Preliminary research suggests 

that the system power will peak at 50A per channel, for 2 channels, so wiring must support 

roughly 60A. 
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AWG 

gauge 

Conductor 

Diameter 

Inches 

Maximum 

amps for 

chassis 

wiring 

Maximum 

amps for 

power 

transmission 

AWG 

gauge 

Conductor 

Diameter 

Inches 

Maximum 

amps for 

chassis 

wiring 

Maximum 

amps for 

power 

transmission 

0000 0.46 380 302 14 0.0641 32 5.9 

000 0.4096 328 239 15 0.0571 28 4.7 

00 0.3648 283 190 16 0.0508 22 3.7 

0 0.3249 245 150 17 0.0453 19 2.9 

1 0.2893 211 119 18 0.0403 16 2.3 

2 0.2576 181 94 19 0.0359 14 1.8 

3 0.2294 158 75 20 0.032 11 1.5 

4 0.2043 135 60 21 0.0285 9 1.2 

5 0.1819 118 47 22 0.0254 7 0.92 

6 0.162 101 37 23 0.0226 4.7 0.729 

7 0.1443 89 30 24 0.0201 3.5 0.577 

8 0.1285 73 24 25 0.0179 2.7 0.457 

9 0.1144 64 19 26 0.0159 2.2 0.361 

10 0.1019 55 15 27 0.0142 1.7 0.288 

11 0.0907 47 12 28 0.0126 1.4 0.226 

12 0.0808 41 9.3 29 0.0113 1.2 0.182 

13 0.072 35 7.4 30 0.01 0.86 0.142 
Table 4-10: Wire Gauge Current Capacity Comparison 

 

4.3 Android Development 
 

The Android application is a critical component of SARS. It will serve as the communications 

hub through which the quadcopter and rover will report their current status and system 

diagnostics. The application will also be responsible for sending the commands to both begin a 

search and terminate a search early. It will also provide a live video stream of the camera 

mounted to the quadcopter so that users have a real time view of the SARS system as it performs 

its search and retrieve operation. 

 

4.3.1 Hardware 
 

The Android application will be initially designed for use with a Nexus 5 smart phone which is 

part of Google’s Nexus family of Android devices. The Nexus devices are designed, developed, 

marketed, and supported by Google but manufactured by original equipment manufacturers 

(OEMS) such as Samsung and LG. The Nexus devices are considered Google’s flagship Android 

devices, and are specifically designed by Google for use as Android software development 

devices. Because they are designed specifically to run on the latest, purest (un-customized) 

version of Android, they typically are the best suited devices for prototyping new applications. If 
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development proves successful on the Nexus 5, and ample time is allotted after project 

completion, the team may decide to also support SARS on tablets. In this case, a Nexus 10 tablet 

will be used for development Table 4-11 summarizes the specifications for the Nexus 5. 

 

Google Nexus 5 

Cost $399.00 

Screen 4.95” 1920x1080 Full HD IPS 

Size 69.17mm x 137.84mm x 8.59mm 

Weight 4.59oz (130g) 

Memory 
32GB NAND Flash 

2GB RAM 

Processor 
CPU: Qualcomm Snapdragon™ 800 @ 2.26GHz 

GPU: Adreno 330 @ 450MHz 

Sensors 
GPS, Gyroscope, Accelerometer, Compass, 

Proximity, Ambient Light, Pressure, Hall Effect 

Wireless Communications 

2G/3G/4G GSM/CDMA/WCDMA/LTE 

802.11 a/b/g/n/ac Dual-Band Wi-Fi 

Bluetooth 4.0 LE 

NFC 

Battery 2300mAh LiON 

Operating System Android 5.0 (Lollipop) 
Table 4-11: Google Nexus 5 Specifications 

 

4.3.2 Software 
 

The Android application will be designed with the Android Software Development Kit (SDK). 

The Android SDK is a comprehensive set of development tools that provides the API libraries, 

debuggers, emulators and other developer tools necessary to build, test, and debug applications 

for the Android platform. The most recent version of the Android SDK is API version 21, which 

only supports Android version 5.0 “Lollipop.” The target API of the Android SDK that an 

application is built with is developer configurable. Targeting lower versions of the Android SDK 

API allows a wider range of Android versions, and thus a larger number of user devices, to be 

supported. However, lower SDK API versions do not have support for any of the features 

implemented in newer versions of the API. For example, designing an application with SDK API 

version 14 allows a developer to support Android devices running version 4.0 “Ice Cream 

Sandwich” and up, which represents approximately 87.9% of all Android devices active on 

Google Play Services. Figure 4-16 illustrates the different API versions, and the cumulative 

percentage of supported devices for that version. As SARS is a prototype application with very 

specific purposes, the team has decided to develop with API version 19. API version 19 supports 

Android versions 4.4 and 5.0. All members of the SARS team have Android devices running at 

least Android 4.4 or higher, so initial development will be targeted only for these Android 

versions. As with device support, if software development with API 19 proves successful, and 

ample time is allotted after project completion, the team may decide to lower the target API 

down to version 14, which will support all devices running Android version 4.0 or higher. 
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Figure 4-16: Android SDK API Level Distribution 

 

4.3.3 Development Environment 
 

The Android application will be developed using the recently released Android Studio, which 

includes the Android Software Development Kit. Android Studio is an integrated development 

environment produced by Google but based off of the open source Java IDE by JetBrains named 

IntelliJ IDEA. Android Studio is designed to replace the current official Android development 

environment – Eclipse with the Android Development Tools plugin – and will become the 

official Android development environment when it has finished beta testing. Android Studio is 

the preferred development environment for the SARS team for several reasons. First, it is a more 

robust and easy to use development environment than Eclipse with ADT. Second, it has excellent 

tools for visualizing and designing the graphical user interface of the Android application. This is 

important to the SARS team as the application is intended to be as simple and easy to use as 

possible. Finally, two of the four members of the team have previously developed Android 

applications using Android Studio, so they are already familiar with the environment and are 

capable of developing an Android application with it. 
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4.4 Wireless Communication 
 

4.4.1 Xbee 
 

One of the wireless communication technologies that has been considered is Digi International’s 

Xbee wireless solution. The Xbees are a set of various RF modules that are designed to work 

with a variety of communication standards such as the IEEE 802.11b/g/n Wi-Fi standard, the 

IEEE 802.15.4 standard, the Zigbee standard (which extends 802.15.4 to higher protocol layers), 

and Digi’s own proprietary RF communication standard. Xbee’s are designed for simplicity and 

ease of use while still providing low latency, reasonable data transmission rates, and predictable 

communication timing. Another advantage of the Xbees is that they are also fairly cheap. The 

Wifi modules cost $35 each, the 802.15.4 modules cost $19 each, and the Zigbee modules cost 

$17.50 each. As the Wifi module is the version that SARS will most likely use, its specifications 

have been summarized below in Table 4-12. Since communication with an Android device over 

Wi-Fi will be required, two configuration scenarios have been considered. 

 

Digi Xbee WiFi S6B 

Cost $45.00 

Serial Communications Interface 
UART up to 1Mbps 

SPI up to 6Mbps 

Digital I/O Lines 10 

Wireless Communications Standard 802.11 b/g/n WiFi 

Wireless Communications Data Rate 1Mbps to 72Mbps 

Wireless Network Security WPA-PSK, WPA2-PSK, and WEP 

Wireless Network Channels 13 

Transmit Power +16dBm 

Receive Sensitivity -93dBm to -71dBm 

Supply Voltage +3.14V to +3.46V 

Transmit Current Up to 309mA 

Receive Current 100mA 

Operating Temperature -30°C to +85°C 
Table 4-12: Digi Xbee Wifi S6B Specifications 

 

The first scenario is to use two Xbee Wi-Fi S6B modules, one for the quadcopter and one for the 

rover, in an ad-hoc configuration so that each Xbee module can communicate with the other 

and/or the Android device concurrently. The topology of this configuration is illustrated in 

Figure 4-17. With this configuration, communication between devices is simplified because all 

devices can communicate with each other using the same wireless communication standard with 

no need for conversion between protocols. This is also the cheaper solution of the two, as all that 

is needed is two Xbee Wi-Fi S6B modules. However, the 802.11 radio requires a significant 

amount of power (309mA for transmission, 100mA for receipt) which could adversely affect the 

battery life of the quadcopter and rover. 
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Android Device

RF

RF RF

Rover Xbee Module Quadcopter Xbee Module

 
Figure 4-17: Ad-Hoc Topology 

 

The second scenario is to use either two Xbee 802.15.4 or Zigbee modules connected to a Digi 

ConnectPort X2 gateway which in turn connects to a wireless router. This gateway/router system 

allows Xbee modules communicating with the 802.15.4 or Zigbee standard to interface with 

devices communicating over the 802.11b/g/n standard via an HTTP/HTTPS web interface. The 

Android device could then communicate with the Xbee 802.15.4 modules through an application 

which integrates this web interface. The topology of this configuration is illustrated below in 

Figure 4-18.  

 

ConnectPort X2

RF

RF RF

Rover Xbee Module Quadcopter Xbee Module

Wireless Router

Ethernet

Android Device

RFEthernet

Laptop
 

Figure 4-18: Gateway Topology 
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The advantage of this configuration is that certain versions of the 802.15.4 and Zigbee modules 

can transmit and receive at much greater range than 802.11. For example, the Xbee-PRO S2 

802.15.4 modules can transmit and receive up to 1 mile, whereas the Xbee WiFi modules are 

limited to around 300 feet. By supporting wireless transmission over long distance in the initial 

design, SARS could potentially be scaled up later in the design process without concern over 

wireless transmission range. Integrating the gateway also allows for wider device support. While 

the initial design will be limited to communication with an Android device, support can easily be 

extended to any device that is capable of wired or wireless networking. However, this 

configuration requires both the ConnectPort X2 gateway and a wireless 802.11n router. The 

ConnectPort X2 is priced at $149.99, and an 802.11n wireless router can cost anywhere from 

$50-$150 depending on the model. The ConnectPort X2 gateway’s specifications are listed 

below in Table 4-13 for reference. 

 

Digi ConnectPort X2 

Cost $135.00 

Device Management Interface 
HTTP/HTTPS Web Interface 

Device Cloud Management Interface 

Protocols TCP, UDP, DHCP, SNMPv1 

Wireless Interfaces 
802.15.4, ZigBee, DigiMesh 2.4, 

900HP, XSC, 868 

Ethernet Interfaces 
ZigBee, 802.15.4, 

DigiMesh (XBee-PRO 900HP) 

Supply Voltage +12V 

Operating Current 100mA to 283mA 

Operating Temperature -30°C to +70°C 
Table 4-13: Digi ConnectPort X2 Specifications 

 

Group 4 is currently favoring the first scenario. While the extensibility of the second scenario 

would be beneficial, the simple and inexpensive setup of the first scenario is more ideal. The 

goal is to keep the wireless communication as simple as necessary but as effective as possible. 

 

4.4.2 X-CTU 
 

Another advantage to using the Xbees is that they are easy to set up using Digi’s X-CTU 

configuration software. X-CTU is a free, multiplatform application that allows users to quickly 

and easily configure Xbee modules for deployment in an Xbee network. X-CTU includes several 

useful features for developers, such as the ability to visualize the Xbee network with a graphical 

network view that shows the topology of the Xbee network as well as the signal strength of each 

Xbee’s connection. Using X-CTU will drastically simplify the setup, configuration, and 

management of wireless serial communication for both the quadcopter and the rover. This is 

favorable to the team as it will allow for less time to be spent on how the quadcopter, rover and 

Android device will communicate, and more time on what will be communicated between the 

various subsystems. A screenshot of the X-CTU application displaying the aforementioned 

graphical network view appears below in Figure 4-19. 
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Figure 4-19: X-CTU Configuration Platform 

 

4.4.3 SimpleLink 
 

Another wireless communication technology that has been considered is Texas Instrument’s 

SimpleLink WiFi solutions. The TI SimpleLink CC3100 BoosterPack is a self-contained 

processor that simplifies the implementation of WiFi network connectivity for low-cost, low-

power microprocessors such as the TI MSP430 and TI Tiva C Series (both microprocessors that 

are under consideration for use).  The CC3100 consists of a wireless network processor that 

contains an 802.11b/g/n radio, an embedded IPv4 TCP/IP stack, and a power supply. It is 

designed to simplify networking by offloading all network-related processing, transmission, and 

receipt from the host microcontroller thereby reducing the processing and power requirements of 

the host. Communication between the CC3100 and the host microcontroller is handled via 

UART or SPI. The CC3100 is slightly more expensive than the Xbee WiFi Module, retailing for 

$36.99 each as part of a combo pack that is required to enable PC connectivity for programming. 

Like the Xbee, the CC3100 can be configured for an ad-hoc network, so that the CC3100’s on 

both the quadcopter and rover can communicate directly with each other and also with the 

Android device. Table 4-14 summarizes the CC3100’s specifications for reference. 
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TI SimpleLink CC3100 

Cost $45.00 

Serial Communications Interface UART, SPI 

Wireless Communications Standard 802.11 b/g/n WiFi 

Wireless Communications Data Rate 
TCP: Up to 12Mbps 

UDP: Up to 16Mbps 

Wireless Network Security WPA2-PSK Personal and Enterprise 

Wireless Network Channels 13 

Transmit Power 
+18.0dBm @ 1 DSSS 

+14.5dBm @ 54 OFDM 

Receive Sensitivity 
-95.7dBm @ 1 DSSS 

-74.0dBm @ 54 OFDM 

Supply Voltage 
Wide Voltage Mode: +2.1V to +3.3V 

Preregulated Mode: +1.85V 

Transmit Current 223mA 

Receive Current 53mA 

Operating Temperature -40°C to +85°C 
Table 4-14: TI SimpleLink CC3100 Specifications 

 

4.5 Video Streaming 
 

In order to provide users with a real time view of SARS as it performs its search and retrieve 

operation, the Android application will stream live video from the Go-Pro camera mounted to the 

quadcopter. The Go-Pro camera saves its live video stream using the HTTP Live Streaming 

(HLS) protocol, which breaks the live stream into MPEG2 transport stream (.ts) files that are 

indexed in a UTF-8 M3U playlist (.m3u8) file. This playlist file can be accessed from the Go-

Pro’s internal file system via a simple HTTP server that is running on the camera and then 

opened on the Android device. Once opened on the Android device, the Android video player 

natively supports M3U playlists, and will begin playing the live stream from the Go-Pro. A 

diagram of the HLS protocol shown in Figure 4-20 illustrates how this process works. Therefore, 

all that is needed for the Android application to access the Go-Pro’s live video feed is to have the 

application navigate to the Go-Pro’s HTTP server and open the M3U playlist with the native 

video player application. 
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Figure 4-20: HLS Protocol 

Reprinted with permission from Apple (Pending) 

 

5 Hardware Design 
 

5.1 Quadcopter 
 

5.1.1 Flight Controller 
 

The flight controller that is included in the kit we purchased is a Pixhawk autopilot module that 

can be controlled from the Mission Planner flight control software. This device will be mounted 

to the copter and connected to both the BeagleBone Black microprocessor (which will send 

interrupts once the object being searched for is detected) as well as the u-blox GPS (for 

autonomous flight). The Pixhawk is composed of an L3GD20 3-axis 16-bit gyroscope, an 

LSM303D 3-axis 14-bit accelerometer magnetometer, an Invensense MPU 6000 3-axis 

accelerometer/gyroscope, and an MEAS MS5611 barometer. Listed below are the remaining 

specifications of the Pixhawk. 
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The flight controller is mounted in the center of the quadcopter so as to provide and balance to 

the UAV while it flies. It is attached using vibration dampening foam. The foam is used to limit 

the vibrations felt by the accelerometer and gyroscope which are highly sensitive, and whose 

readings can be thrown off quite easily. Dampening foam isn’t all that needs to be done though: 

gel pads also need to be attached to the board in order to isolate it from the rest of the frame and 

suspend it about ½ inch high to further reduce vibrations. 

 

5.1.2 Microcontroller Serial Communication 
 

One of the major components of our quadcopter system is the communication of the BeagleBone 

black with the flight controller. After being fed the series of waypoints from Mission Planner, the 

BeagleBone will then begin processing all of the images fed to it by the GoPro. Once, the image 

is detected, the BeagleBone MCU will need to signal to the Pixhawk that the waypoints can be 

ignored from then on, and the copter needs to instead navigate over to the object and then return 

to base. 

 

The easiest way to connect the two devices using the I
2
C serial interface protocol.  The 

BeagleBone has three I
2
C buses: i2c0, i2c1, and i2c2. i2c0 is not exposed in the expansion 

headers, so the bus i2c1 will be used for our project. The BeagleBone has 2x46 pin headers 

(Figure 5-1), and the location of the pins used for the i2c1 bus are pins 17 and 18 on the P9 

header. Pin 17 is I2C1_SCL (the serial clock for the I
2
C bus) and pin 18 is I2c1_SDA (the serial 

data line). Below is a layout of the pins for the P8 and P9 headers. 

 

Interfaces: 

 5x UART (serial ports), one high-

power capable, 2x with HW flow 

control 

 2x CAN 

 Spektrum DSM / DSM2 / DSM-X® 

Satellite compatible input up to 

DX8 (DX9 and above not 

supported) 

 Futaba S.BUS® compatible input 

and output 

 PPM sum signal 

 RSSI (PWM or voltage) input 

 I2C® 

 SPI 

 3.3 and 6.6V ADC inputs 

 External microUSB port 

 

Power System: 

 Ideal diode controller with 

automatic failover 

 Servo rail high-power (7 V) and 

high-current ready 

 All peripheral outputs over-current 

protected, all inputs ESD 

protected 

Weight and Dimensions: 

 Weight: 38g (1.31oz) 

 Width: 50mm (1.96") 

 Thickness: 15.5mm (.613") 

 Length: 81.5mm (3.21") 
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Figure 5-1: BeagleBone I2C ports. Permission from jkridner. See Appendix B for details. 

 

When connecting to the device though, sometimes the actual name of the device will not be 

mapped correctly to its physical name so it is also important to know the memory address of 

each of the buses. The memory address of i2c0 is 0x44E0B000, i2c1 is 0x4802A000, and i2c2 is 

0x4819C000. The BeagleBone for this project is set up using an embedded Ubuntu environment, 

so it is possible to detect the names of the I
2
C buses using the ‘ls’ Linux command. 

 

Both the BeagleBone Black and the Pixhawk operate at 3.3V, so there is no need for power 

conversion between the two or the addition of any level-shifting devices. Below is a schematic 

diagram demonstrating the wiring between the BeagleBone and the Pixhawk. 
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Figure 5-2: Wiring diagram between BeagleBone and flight controller 

 

5.1.3 GPS 
 

The u-blox GPS (summarized below) can be easily connected to the Pixhawk device. There is a 

DF13 6-pin connector that can be plugged into the GPS port on the Pixhawk, and a 4-pin DF13 

connector that attaches to the I
2
C splitter module. The GPS module has to be mounted separately 

from the flight controller since it is an external piece of hardware that is interfaced to it. One 

extremely important detail is that the GPS must be an acceptable distance from any interfering 

magnetic fields so as not to interfere with its readings. The GPS should face the sky clearly and 

point towards the front of the copter. The device runs at 3.3 V so it is consistent with the other 

microcontrollers on the copter. 

 

U-Blox GPS: 

 5 Hz update rate 

 25 x 25 x 4 mm ceramic patch antenna 

 Rechargeable 3V lithium battery pack 

 Low noise 3.3 V regulator 

 I
2
C EEPROM for configuration storage 

 Power indicator LEDs 

 APM-compatible 6-pin DF13 connector 

 Exposed RX, TX, 5V, and GND pad 

 Size: 38 x 38 x 8.5 mm 

 Weight: 16.8g 
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Because the u-blox will be connected to the I
2
C splitter module, it will be enable to communicate 

simultaneously with both the BeagleBone and the Pixhawk. This is helpful because no additional 

wiring is needed in order to connect the BeagleBone to the GPS. 

 

5.1.4 Power Source 
 

As mentioned in the specifications of the Pixhawk listed above, there are several different ways 

to power the quadcopter. Depending on whether the copter is being tested in a closed 

environment or being flown outside, there are multiple combinations of power sources. The 

primary ways of powering the different components of the quadcopter are through USB, ESCs, 

and battery-eliminator circuits (BECs). 

 

ESCs are motor controllers that are used to increase or decrease the speed of the blades on the 

copter that adjust its speed and orientation. The ESC receives input from the flight controller 

(which houses the accelerometer, gyroscope, and other measurement devices used to determine 

how to keep the copter in flight) and uses these inputs to control the speed of the motors. ESCs 

contain their own processors and firmware in order to correctly process the information being fed 

to it. When researching ESCS, there are several important factors to consider. The first is amp 

rating. The amp rating of the ESC needs to be higher than those of the props/motors or else it 

will overheat and die. The second is the refresh rate. Typically, updates are sent from the flight 

controller at a rate of 400 MHz or greater, so the ESC needs to be to deal with the speed of these 

updates. If the ESC is not designed for the specific copter being powered, it will need to be 

flashed with new firmware, a tedious process that can be voided by choosing the right one before 

purchase. Finally, the size and energy usage are important. If the ESC is too heavy or gives off 

too much heat, it may need to be cooled on-board. There are several 4-in-one ESCs that are 

perfect for our medium-sized copter (are able to power all four propellers at once) that draw far 

less power. 

 

20-Amp SimonK Electronic Speed Controller: 

 3 start modes: normal, soft, super-soft 

 Programmable throttle range 

 Separate Voltage regulator for on-board microprocessor 

 Max supported motor speed (6 poles): 70,000 RPM 

 20 Amp continuous current and 25 Amp burst current (10 sec max) 

 BEC output 5V 2A 

 Battery: 2-4 LiPo 

 Weight: 21g 
 

BECs are smaller devices that eliminate the need for an additional receiver or servo battery pack. 

They draw from the high voltage that is used to power the blade motors and convert it to a lower-

level voltage that is in turn used to power the receiver. 

 

In addition to these, a power distribution board (PDB) is needed to properly power all of the 

different parts of the copter, many of which require different voltage levels. The PDB will draw 
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power from a 14.8 V 4 Amp Lithium Polymer Battery (specifications below). The battery 

contains an XT60 connector and a JST-XH charging connector. 

 

Quad Battery Pack: 

 4S 14.8 V 

 4000 mAh 

 XT60 Connector and JST-XH charging connector 

 Dimensions: 31 x 51 x 146 mm 

 Weight: 407 g 

 

5.1.5 Quadcopter Power Distribution 
 

In order to correctly distribute power to all the different parts of the quadcopter, the 3DR Power 

Module (PM) will be used as the central power distribution board. There are several advantages 

to using this board, the biggest of which is that it is made to efficiently communicate with the 

PixHawk, GPS, and motor controllers of our specific copter. The power module provides a 

consistent 5.3 V and 2.25 amps to the Pixhawk and also has a built-in feature where if the power 

level begins to reach capacity, it triggers a return-to-base safety flag that will send the copter 

back to its launch location to prevent over-powering the unit and possible frying the circuits. 

Additionally, the PM allows the firmware loaded on the quadcopter to compensate more 

accurately for the magnetic interference affecting the compass as a result of board and multiple 

ESC’s.  It is important to note, though, that while the PM does provide sufficient power to a lot 

of the copter’s components, it does not directly provide power to the servo motors; these are 

controlled by the ESC’s. 

 

  3DR Power Module 

Max. Input 
Voltage 18 V 

Min. Input Voltage 4.5 V 

Max Current 90 Amps 

Weight 38 g 

Flight Battery 
Cable 6" 14AWG red/black cable 

ESC Cables 
4 female Deans connectors 1 XT60 

connector 
 

Table 5-1: 3DR power module summary 

 

The 3DR Power Module connects to the 4S Lipo battery we have chosen to power the copter and 

can handle a maximum voltage input of 18V and a maximum current flow of 90 amps. However, 

when paired with the Pixhawk, only up to 60 amps can be measured. The setup is very 

straightforward when using Mission Planner’s software; it allows you to control the voltage and 
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current levels, as well as set flags for when the power usage reaches a certain percentage of its 

maximum or when the battery dips below a certain power level. 

 

 
Figure 5-3: Power connection screen 

 

When the wiring of the copter is completely finalized, the wiring diagram below will reflect the 

final connections between each of the components needed to control the quadcopter. As can be 

seen, the PDB distributes power to the Pixhawk and the 4 ESC’s, but no the propellers directly. 
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Figure 5-4: Quadcopter wiring diagram. Permission from Arducopter. See Appendix B for details. 

 

5.1.6 Microcontroller Power Distribution 
 

Although the primary components of the quadcopter can be powered by the PDB, the 

BeagleBone Black is a separate piece of hardware that is not native to the copter, and thus will 

have to have its own power source. There are two primary ways to power the BeagleBone: 

through the 5V barrel connector or through a USB input. These two methods are fed to the on-

board regulators. Powering through the USB port can provide specific limitations as to the 

amount of power distributed, and there needs to be some runtime management to continuously 

check that the current running through the USB input does not exceed its threshold, and thus 

accurately powering the board through the USB can be a bit more tedious. As far as simplicity 

and ease in providing power, the 5V barrel connector is the preferred method. However, because 

we are powering the BeagleBone from a remote location and will be battery powered, the USB 

option is easier for our purposes. 

 

In order to maximize battery life, a voltage regulator with tremendous efficiency will need to be 

used. A switching regulator that provides at least 5V at 1 amp is preferred, and though it may be 

possible to connect the board to the LiPo battery powering the rest of the quadcopter, it is easier 

to simply use “AA” batteries. To be able to monitor whether the BeagleBone is powered 

efficiently during our testing, a simple LED and push-button connection will be used to power-

on the board. Thus, while the BeagleBone is powering up, the LED will flash dictating that the 

board is currently booting up. Once the MCU is running, the LED will be held in a solid-state. 

Finally, when the board is powered down, the light will turn off. One of the benefits of this 

system is that as we implement certain tasks for the BeagleBone black to perform during testing, 
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we can include additional indicators to the LED to let us know it is running correctly. For 

example, when the BeagleBone is doing image processing, the LED can blink at a specific rate, 

or when the board sends the interrupt once the item has been detected, the LED could blink three 

times. This helps us tremendously during debugging when we are doing field testing because we 

will not be able to peek into the board during flight time. 

 

The following list of materials will be needed in order to correctly power the BeagleBone: 

 

 BeagleBone expandable case  

 (1) Push-button 

 (1) LED 

 (1) Resistor 330 ohms 

 A soldering iron and wires 

 5V switching regulator 

 USB DC power adapter 

 Six AA Cells with suitable holder 

 

There are several voltage regulators that could be used. The first, the PT78ST105, is a wide-input 

range 3-terminal regulator that has a maximum output current of 1.5 amps and an output voltage 

that is tailored to several industry standard voltages: 3.3V, 5V, and 12V. It has an efficiency 

greater than 85%, self-contained inductor, internal short-circuit protection, and over-temperature 

protection. The next possible voltage regulator, the PTS84250, has a 2.5 amp DC/DC convertor, 

a wide input range from 7 V to 50 V, and a variable output that can be adjusted from 2.5 V to 15 

V. On top of that, it has a 96% efficiency, switching frequencies between 300 kHz and 1 MHz, 

overcurrent and temperature protection (temperature range between -40
o 

C and 85
o
 C), and is 

9mm x 11mm x 2.8 mm. The third and final voltage regulator taken into consideration, the 

MuRata OKI-78SR-5. The MuRata has an input range of 7V to 36V and fixed outputs of 3.3V or 

5V up to 1.5 amps. In addition, it has an efficiency of 90.5%, short circuit protection, a DC/DC 

power converter, and is 10.4 mm x 16.5 mm. Below is a summary of the specifications of all the 

voltage regulators being taken into consideration. After considering all the specifications, the 

PT78HT205 is the best option due to its wide output voltage rage, small size, and high 

efficiency. 

 

  PT78ST105 PTS84250 
MuRata OKI-78SR-

5 

Input Voltage Range 9V - 38V 7V - 50V 7V - 36V 

Output Voltage Range 3.3V, 5V, 12V 2.5V - 15V 3.3V or 5 V 

Max Current 1.5 A 2.5 A 1.5 A 

Efficiency 80%, 85%, 90% 96% 90.50% 

Short-Circuit Protection? Yes Yes Yes 

Temperature 
Protection? Yes Yes No 

http://www.newark.com/murata-power-solutions/oki-78sr-3-3-1-5-w36-c/dc-dc-conv-linear-reg-1-o-p-4/dp/72R3615
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Size 
23.9mm x 22.9mm x 

7.9mm 

9mm x 11mm x 2.8 

mm 

10.4 mm x 16.5 

mm 

Frequency Range 600 kHz - 700 kHz 300 kHz and 1 MHz 500 kHz 

Cost $20.00  $17.00  $4.30  
 

Table 5-2: Voltage regulator comparison table 

To power the BeagleBone, first connect the positive side of the battery to the voltage regulator 

input and the negative side to the ground. Then, connect the output of the voltage regulator to the 

USB +5V and the regulator ground to the BeagleBone ground. Below is an image of the USB 

converter being used to attach the regulator to the USB cord of the BeagleBone. 

 

 
Figure 5-5: Voltage regulator to USB connection 

 

After the connection is secure, the circuit will need to be verified before attaching the LED. The 

polarity should be checked and there needs to be 5V of power being provided to the board. Once 

the circuit is checked, the push button and LED switch can be attached to the BeagleBone. For 

our purposes, we will be using an OMRON A3DT-7111 push-button switch with an OMRON 

A3DT-500GY LED. Pin 1 of the push-button switch will be wired to P8 pin 26 and Pin 2 of the 

push-button switch will be connected to the 330 ohm resistor then to P8 pin 45 (ground) on the 

BeagleBone. For the LED, the anode is connected to P9 pin 14 and the cathode is connected to 

another resistor of 330 ohms and P9 pin 1 (ground). Below is a wiring diagram for the push-

button switch and LED to the BeagleBone. 
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Figure 5-6: BeagleBone Black power source wiring diagram 

5.1.7 Remote Controller/Receiver 
 

Although most of the initial testing will be done inside and in a controlled environment where 

the quadcopter will not actually be flying, once the copter is tested in the field we will need a 

way of controlling it in case anything goes wrong. The copter is supposed to fly autonomously, 

but there needs to be a method to regain control and return the copter to base safely so as not to 

damage any of the components if the copter were to crash. For that reason, we will need a remote 

controller to guide it back to its launch point. 

 

Manual flight control can be accomplished by coupling a Remote Control (RC) transmitter and 

receiver. The two can communicate via telemetry and the Mission Planner control station to 

ensure safe guidance of the copter in an emergency situation. For our project, we will be using 

both telemetry as well as controllers and receivers to ensure full control of the copter. 

 

When setting up the controller, there are multiple channels that control different parts of the 

copter. For example, normally one channel controls throttle, one controls turning left or right, 

one controls rolling left or right, and one controls the pitch forward and pitch backward. When 

considering a controller, the amount of channels it has needs to be considered: there are 4-

channel, 5-channel, 6-channel, 8-channel, and 9-channel controllers. Four channels are needed at 

the minimum for a quadcopter (one for pitch, one for roll. One for throttle, and one for yaw), so 

any of the previously mentioned controller could work. Additional channels allow the user to 

control other parts of the quadcopter while I flight, such as potentiometers or flying in different 

modes. Below is a diagram of how a 5-channel controller can be used to fly a quadcopter. 
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Figure 5-7: Remote controller layout example. Permission from Oscar Liange. See Appendix B for details. 

 

When flying the copter, there are two primary modes that it can be flown in, commonly known 

simply as Mode One and Mode Two. Mode One has the elevator and rudder control on the left 

joystick and throttle and aileron control on the right joystick. Mode Two, however, is the more 

common setup when flying a quadcopter. In this setup, throttle and rudder are on the left joystick 

where elevator and aileron control are on the right joystick. The right joystick centers itself in 

both axes, where the left joystick only centers itself in the horizontal axis. Below is a 

visualization of the two different possible modes. 
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Figure 5-8: Mode One and Mode Two example. Permission from Oscar Liange. See Appendix B for details. 

 

When deciding on one transmitter and receiver to consider purchasing, there are several key 

factors that need to be considered. The first is most obviously price, as just the transmitter can 

run from $20 to well over $1000, a huge price that does not fit our budget at all. The second, as 

mentioned before, is the number of channels. Arducopter recommends that the transmitter have 

at least six channels in order to efficiently control the copter. Other factors to consider are the 

mode it comes in (either Mode One or Mode Two), frequency it operates at, and the weight of 

the receiver it comes paired with (as we don’t want a receiver that will weigh down the 

quadcopter too much). Below is a table comparing the different transmitter/receiver 

combinations that were considered. After weighing the options, we will be going with the 

Turnigy 6X receiver/transmitter pairing due to the lightweight receiver, cost effectiveness, and 

FM modulation. 
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Transmitter 
Number of 

Channels Mode Modulation 
Frequency 

(GHz) 
Receiver Weight 

(g) Price 

Turnigy 6X 6 2 FM 2.4 11.5 $30  

HK-T6A-M2 6 2 FM 2.4 15 $25  

HK-6DF-M2 6 2 FHSS 2.4 14 $31  

Futaba 6EX 6 2 FASST 2.4 7 $170  
 

Table 5-3: Remote transmitter comparison table 

 

5.1.8 Telemetry Modules 
 

As far as the telemetry radios, our group will be choosing the 3DR radio set, two telemetry 

radios that operate at 915 MHz (US standard) and allows us to communicate directly with the 

quadcopter via the Mission Planner. By being able to communicate with the copter, we will be 

able to fine-tune the mission in-flight, monitor data real-time (allowing us to cross-reference the 

data being streamed to the Android application we develop and ensure it is accurate), and even 

change the flight mode in case something goes wrong. Below is a layout of the specifications for 

the telemetry radios we will be using.  

 

3DR Radio Set: 

 6-position DF3 connector 

 100 mW maximum output power 

 -117 dBm receiver sensitivity 

 2-way full-duplexcommunication 

 3.3V UART interface 

 Supply Voltage 4.7-6 VDC (from USB or DF13 connector) 

 Transparent serial link 

 MAVLink Protocol Framing 

 FHSS (Frequency Hopping Spread Spectrum 

 26.7 mm x 55.5 mm x 13.3 mm 
 

5.2 Rover 
 

5.2.1 Chassis 
 

The chassis selected for the SARS system is mostly prefabricated. The selected chassis includes 

a frame with a suspension system as well as the 6 necessary motors and wheels. The Figure 5-9 

and Figure 5-10 show the main dimensions of the chassis. The main frame is 120mm across by 

380mm long by 89mm high. The total height of the chassis with the wheels is 135mm. Each 

wheel has a diameter of 126mm. The frame is made out of anodized aluminum plate with 

stainless steel and nickel plated brass fittings. The chassis also has a built in suspension system 
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that allows for the rover to traverse virtually any terrain. The suspension system is based on 

spring loading the individual motor housings allowing for each wheel to move independently 

from the rest of the rover. 

 
 

 
 

  

Figure 5-9: Rover chassis dimensions without wheels (Permission to reproduce pending) 

Figure 5-10: Rover chassis dimensions with wheels (Permission to reproduce pending) 
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5.2.2 Motors/Motor Controller 
 

The selected chassis also includes 6 motors to be used with the system. Each of the motors is 

rated for 6V DC with a stall current of 5.5A. Each motor is also rated for a RPM of 10000 with a 

gearbox speed ratio of 34:1. The motors have an output shaft speed of 295RPM and a stall torque 

of 4Kg/cm. Each motor has an independent housing. The housing is designed to prevent the 

motors from vibrating out of place. 

 

The motors will be wired up to a motor controller for power and control. The selected motor 

controller is the Dimension Engineering Sabertooth 2x25 motor controller. Table 5-4: Sabertooth 

2X25 Motor Controller Specifications illustrates the specifications of this motor controller. This 

controller is capable of handling an input voltage of 6-24V and an output current of 25A per 

channel continuous and 50A per channel peak. The motor controller has support for 2 separate 

control channels. Three motors will be attached to each control channel and the motors will be 

wired in parallel for consistent current across the different motors. Assuming the motors are 

identical, all 3 motors on each channel will also have roughly the same voltage across them. This 

motor controller is designed with heat sinks included to help dissipate the heat that will be 

generated while it is running. These help to keep the controller cool and prevent damage to it. 

Also, by mounting the controller directly to the rover chassis, which is also made of metal, the 

entire chassis will act as an additional heat sink for the controller, giving it maximum heat 

dispersion. Heat dispersion is very important in high current applications to prevent damage from 

all aspects of the system. The power source for the entire rover will also be connected to the 

motor controller which will distribute power to all necessary aspects of the system. More detail 

regarding power is discussed in section 5.3.6. 

 

Sabertooth 2X25 V2 

Drive Channels 2 

Input Modes 

Analog 

Continuous 

Amperage (Per 

Channel) 

25A R/C 

Peak Amperage 

(Per Channel) 
50A Simplified Serial 

Nominal Voltage 6-30V Packetized Serial 

Maximum Voltage 33.6V Dimensions 60 x 80 x 21 mm 

Weight Support Up to 300lb Weight 90g 

Operating Modes 

Independent 

Speed + 

Direction 

Protection 
Thermal and 

Overcurrent 

Lithium 

Compatibility 
Yes Regenerative Drive Synchronous 

Table 5-4: Sabertooth 2X25 Motor Controller Specifications 
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5.2.3 Control Boards and Sensors 
 

The control boards act as the brains of the entire rover. The control boards are in charge of 

sending movement operations out to the motor controller, interpreting sensor data regarding 

wheel rotation, interpreting data from the inertial measurement unit, interpreting sensor data for 

object detection and avoidance, communicating with the GPS module, and communicating with 

the other aspects of the SARS system through the communications module. 

 

The first, and one of the most important connections is the connection between the Tiva C 

control board and the Sabertooth motor controller. The Sabertooth motor controller is compatible 

with the RS232, so a UART communication configuration can be used to send commands from 

the Tiva C to the Sabertooth. The next important operation is interpreting input data about wheel 

rotation speeds. Wheel rotation will be measured using a magnet and a Hall Effect sensor. The 

Hall Effect sensors will be connected to the Tiva C using GPIO. The sensors work by setting the 

data pin high when a magnetic field is detected. Based on this principle, a small magnet will be 

attached to the wheels and the sensor will be made aware of how fast each of the wheels are 

rotating. This information will be relevant in the software design. 

 

Hand in hand with the Hall Effect sensors is the inertial measurement unit (IMU). This unit is 

based on a Texas Instruments Booster Pack to be used along with the Tiva C development 

boards. This Booster Pack communicates with the Tiva C using a combination of UART and I
2
C 

communications across a set of 40 pins, not all of which are actually in use. These pins are 

illustrated in Table 5-5. 

Table 5-5: BOOSTXL-SENSHUB Sensor Pack pin locations (Permission to reproduce pending) 



64 

 

 

The Tiva C will also be connected to a sensor to be used to detect objects in the travel path of the 

rover. The SARS Rover will employ a Parallax PING))) Ultrasonic Distance Sensor. The 

PING))) operates using a pulse in/pulse out pair of pins. It will be powered directly from the Tiva 

C board. In order to maximize functionality of the ultrasonic sensor, it will be mounted on a 

small servo that allows it to pivot and better observe the space in front of the rover. This servo 

will be operated with the control software and manipulated appropriately to allow the PING))) to 

rotate approximately 120 degrees. 

 

The final sensor to be used with the rover system is the GPS. The GPS module selected for use is 

the Adafruit Ultimate GPS Breakout. The GPS will connect to the Tiva board using UART. The 

Tiva C will use the GPS module to influence many of the other actions that it makes. This GPS 

module is accurate to less than 3 meters, which is within the specified range of operation of the 

PING))) sensor. This will allow for seamless operation when approaching the target object. 

Relevant data for this module is available in Table 5-6. 

 

Adafruit Ultimate GPS Breakout 

Tracking 
Satellites 

22 
Tracking 

Sensitivity 
-165 dBm 

Searching 
Satellites 

66 Vin Range 3.0-5.5 VDC 

Update Rate 1 to 10 Hz 
Operating 

Current 

25mA 
Tracking 

Position 
Accuracy 

< 3 meters 
20mA 

Navigation 

Velocity 
Accuracy 

.1 m/s 
Communication 

Protocol 
NMEA 0183 

Warm/Cold 
Start 

34 seconds 
Default Baud 

Rate 
9600 

Acquisition 
Sensitivity 

-145 dBm PRN Channels Up to 210 

Table 5-6: Adafruit Ultimate GPS Breakout Specifications 

 

The last remaining aspect of the control system for the rover is the communications module. The 

XBee communications module will connect to the Tiva C using UART. Once the XBee is 

configured it will allow for wireless communication with the quadcopter and Android to send 

and receive the necessary data. Most of the XBee functionality will be based on the software 

implementation of its features.  

 

Figure 3-1 shows the overall wiring design of the rover system. It illustrates the directionality of 

communications between the microcontroller and the individual modules. The only module that 

the microcontroller will send data out to is the motor controller, the rest of the modules are 

primarily for receiving data from sensors or outside sources. 
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Figure 5-11: Rover Internal Communications Wiring Diagram 

 

5.2.4 Object Retriever 
 

At the stage in the development of SARS, the final method of object retrieval has not yet been 

decided upon. Two designs are being considered for prototyping. Basic design information will 

be outlined for each of these potential prototypes. 

 

5.2.4.1 Universal Gripper 
 

The Universal Gripper is a device designed by researchers at the University of Chicago and 

Cornell University to grab and lift any object. It involves lowering a balloon filled with coffee 

grounds onto an object to be lifted. Once the object is engulfed by the balloon, a vacuum is 

applied. The balloon tightens over the object which can then be lifted up. To implement this 

system, this balloon would need to be suspended at the end of a robotic arm, mounted on the 

front of the rover with three degrees of freedom. This setup is displayed in Figure 5-12: Robotic 

Arm Design below. 

 

Microcontroller
(Tiva C / Arm Cortex M4)

Motor Controller 
(Sabertooth 2X25)

GPS Module
(Adafruit 

Ultimate GPS 
Breakout)

XBee
Sensor Hub 

(Texas Instruments 
BOOSTXL-SENSHUB)

Hall Effect Sensors
Echolocation Sensor
( Parallax PING))) )

UART #4

UART #1

UART #2
UART #3

I2C #1
GPIO #2

GPIO #1
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Figure 5-12: Robotic Arm Design 

 

This design requires three degrees of freedom. The first degree of freedom, the bottom joint in 

the image, lowers the entire arm. The next degree of freedom, the middle joint in the image, 

rotates with the same orientation as the first degree of freedom to ensure that when the Universal 

Gripper is lowered, it travels in a straight line directly toward the ground. The final degree of 

freedom, the top joint in the image, rotates with the opposite orientation as the other two degrees 

of freedom to ensure that as the Universal Gripper is lowered, it does not tilt but faces straight 

down toward the object being retrieved.  

 

Each of these degrees of freedom requires a servo motor and an encoder; however, because the 

robotic arm only needs to serve one function, Group 4 may not use an encoder and may instead 

try to hard code the rotations for the degrees of freedom.  

 

For this system to work, the balloon needs to be secured to the end of the robotic arm. Group 4 

will use a 3D printer to make a bowl-shaped casing to house the balloon. This casing will be 

attached to the end of the robotic arm and will have a hole in its base to allow the vacuum tubing 

to enter the balloon. This setup is displayed below in Figure 5-13: Universal Gripper Casing. The case 

would be fitted with a mount to connect it to the end of the robotic arm; however, as the 

materials to be used in the arm are still up in the air, this fitting is yet to be determined. 
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Figure 5-13: Universal Gripper Casing 

 

The tubing will lead into a vacuum pump mounted on the SARS Rover. Group 4 has found a 

useful tutorial on how to convert a $10 electric air compressor into a vacuum pump. The air 

compressor has an air intake, an air outtake, and a tube leading to an air pressure gauge, and a 

piston for directing air from the intake to the outtake. The air intake needs to be sealed with 

epoxy. Then the line leading to the air pressure gauge needs to be cut and covered with a 

makeshift valve. This valve may be fashioned out of a sheet of metal and a piece of paper. The 

air outtake line will then be fed into the Universal Gripper Balloon. Now, when the piston fires, 

outtake 1 will always be open when outtake 2 is closed, and vice versa. Air will be pulled out of 

the balloon, but the valve on the second line will prevent air from reentering the balloon, 

effectively creating a vacuum. The valve on the second line can be created using a sheet of 

aluminum flashing, a rivet, and a sheet of paper. A diagram of this design is displayed below in 

Figure 5-14: Vacuum Pump Design. 
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Figure 5-14: Vacuum Pump Design 

 

5.2.4.2 Electromagnet 
 

If Group 4 decides not to go with the Universal Gripper and instead uses an electromagnet to 

retrieve the target object, this electromagnet would still be mounted on the end of a robotic arm. 

Unlike the arm for the Universal Gripper displayed in Figure 5-12: Robotic Arm Design, it may 

be possible to get away with only two degrees of freedom for this robotic arm since the magnet 

only needs to hang over top of the target object. It does not need to be pressed directly down onto 

it. The robotic arm is not entirely necessary, as the electromagnet could be mounted underneath 

the chassis of the SARS Rover to pick up the target object when the rover drives over it. 
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5.2.5 Object Storage 
 

Object storage is one of the least technically challenging aspects of the rover system, but it is still 

vital to the system as a whole. The apparatus employed for storing the objects must be firm 

enough to ensure that objects will not be unintentionally ejected as the rover traverses the terrain, 

but it must also be lightweight to avoid adding excess weight to the rover as a whole, because the 

system has a weight capacity after which the motors become encumbered. This makes a plastic 

bin of some sort the best option for object storage. Fortunately, the chassis is designed to allow 

for easy mounting of any extra equipment right onto the top of the chassis using the bountiful 

mounting holes already drilled into it. There is one more important consideration with regards to 

how the storage apparatus will be mounted onto the chassis. The storage space must be easily 

accessible by the object retriever in order to minimize unnecessary difficulties involved with 

moving the target object around while it is being held onto. The storage apparatus must also be 

mounted to the rover in a way such that it does not interfere with the freedom of motion of the 

object retrieval arm. This means leaving ample space between where the arm is mounted and 

where the storage is mounted. This, in turn, presents the challenge of having a large enough 

storage space to keep any retrieved objects contained, without having the storage space reach 

past the main boundaries of the body of the rover. If the storage space exceeds the main body of 

the rover by too much, it will cause unnecessary torque on the frame and may cause decreased 

mobility and performance. 

 

5.2.6 Power 
 

The finishing aspect of the rover hardware design is the inclusion of the power system for the 

rover. Power to the rover will be provided by a lithium polymer (LiPO) battery. The selected 

battery for this system has four secondary cells and one primary cell. It is designed to output 

14.8V and has a capacity of 5000mAh. This battery also has is rated for 20C continuous and 30C 

peak output. This translates to a maximum continuous current output of 100A and peak current 

output of 150A. As was mentioned in the section discussing the motor controller, the motor 

controller has a max throughput of 64A. Based on this number, the selected battery can handle 

significantly higher output than the motor controller, making it an excellent candidate for usage 

on this system. Another important aspect in battery selection is the overall weight of the battery. 

This battery weighs 536g. This is a reasonable weight for the battery pack for this system. At 

roughly half a kilogram, the battery will not cause an excessive amount of torque on the motors it 

is mounted over. It is also large enough that its weight will be spread out fairly evenly across the 

chassis. Had a different type of battery, such as a sealed lead acid battery, had been selected for 

use with this system, weight would be a significantly greater concern. 

 

Now that the specifications of the battery have been discussed, mounting the battery can be 

covered. Due to the fact that the battery is wider than the chassis, it must be mounted so that the 

long edge of the battery follows the long edge of the chassis. Once a proper mounting space has 

been selected, the battery can be held in place using screws. Screws along each of the edges of 

the battery will keep it held in place while allowing for fairly easy removal for charging. 

 

The final aspect of power for the rover is wiring it up to the control system. The motor controller, 

fortunately, can handle most of the power distribution needs for the system. The Sabertooth has 
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an integrated power stepper to allow for the 5V and 500mA needed for the microcontroller to 

operate. The battery will be wired directly to the power terminals of the motor controller, and the 

controller will take care of distribution to the motors and the control boards.  

 

5.3 Wireless Communications 
 

5.3.1 Quadcopter Wireless Communication 
 

Serial communication from the quadcopter to either the rover or Android device will be achieved 

as follows: The Xbee S6b will be connected to the BeagleBone Black through an Xbee Cape. 

Wireless communication between the quadcopter and the rover and/or Android device will occur 

over 802.11n Wi-Fi via the Xbee module. The quadcopter’s Xbee module will then route 

communications to the BeagleBone Black via UART. The Xbee Cape is configured to use the 

BeagleBone Black’s UART2 by default. UART2 transmits on header P9 pin 21 and UART2 

receives on header P9 pin 22. The Xbee Cape also has a dedicated 3.3V linear regulator to 

provide and regulate power to the Xbee. Wireless communication between the quadcopter Xbee 

and the rover Xbee and/or Android device will be configured using Digi’s X-CTU configuration 

utility. 

 

5.3.2 Rover Wireless Communication 
 

Serial communication from the rover to either the quadcopter or Android device will be achieved 

with a configuration similar to the quadcopter. The Xbee S6b will be connected to the TI Tiva-C 

Launchpad through an Xbee SIP Adapter. Wireless communication between the rover and the 

quadcopter and/or Android device will occur over 802.11n Wi-Fi via the Xbee module. The 

rover’s Xbee module will then route communications to the Tiva-C via GPIO. The Xbee SPI 

Adapter will be configured to connect to the GPIO pins of the Tiva. The Xbee SPI Adapter has 

an onboard 3.3V regulator to provide and regulate power to the Xbee. It also has 5V to 3.3V 

logic translator buffers so that the Xbee (which operates at 3.3V) can properly communicate with 

the 5V GPIO pins. Wireless communication between the rover Xbee and the quadcopter Xbee 

and/or Android device will be configured using Digi’s X-CTU configuration utility. 

 

6 Software Design 
 

6.1 Quadcopter Software Design 
 

6.1.1 Mission Planner 
 

Because one of the goals for our system is to have quadcopter fly autonomously, we need to have 

a central control software that is easily integratable and allows us to monitor the telemetry of the 

copter during the flight. The obvious choice here is to use the Mission Planner platform, a native 
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software/firmware integration tool that allows us to seamlessly fly the copter while still 

providing a significant amount of flexibility. 

 

Created by Michael Oborne, the software is completely open-sourced and has an extensive 

online library and support community that provides wide-reaching control of the copter with a 

sleek and user-friendly interface. Some of the features available include point-and-click 

waypoint entry with Google Maps integration, mission commands that can be sent during the 

flight, a flight simulator to create a full hardware-in-the-loop UAV simulator, and the ability to 

read the output from the Pixhawk’s serial terminal. The last feature is especially important 

because this can aid in testing the flight controllers communication with the BeagleBone Black. 

 

 
Figure 6-1: Mission Planner 

 

Mission Planner allows us to easily connect the different components of the copter through 

simple drop-down menus, as well as choose transmission rates between external modules such as 

the Xbee communication device. It provides firmware that can quickly be installed on the 

Pixhawk, as well as all the drivers necessary for the Pixhawk to correctly communicate with the 

control center. Finally, Mission Planner provides simple calibration for all of the on-board 

devices  
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6.1.2 Image Processing Subsystem 
 

 
Figure 6-2: Image Processing Subsystem 

 

The purpose of SARS’s image processing subsystem is to retrieve individual frames from the 

GoPro camera’s live video feed and analyze them for a brightly colored, orange tennis ball. As 

illustrated in Figure 6-2: Image Processing Subsystem, the BeagleBone will access the video 

feed over a wireless ad hoc network created by the GoPro. From this point, it will use OpenCV 

to extract individual frames from the feed. The wireless connection with the GoPro and the frame 

extraction will be handled by an open source GoProController script written in Python. 

 

 
Figure 6-3: GoProController Activity Diagram 

 

The function __init__, as seen in Figure 6-3: GoProController Activity Diagram, creates the 

application logs and sets up and enables WiFi for the BeagleBone, and the connect function 

establishes the connection between the BeagleBone and the GoPro. Once the two devices are 

connected, the getImage function will continuously extract individual frames from the video 

feed. It uses cv2 to create a stream from the feed. It then uses the Image library to pull a frame 

from a read of the stream. The open source code contains several other function definitions, but 

these are the only ones that should be needed to access the images for analysis.  

 

The GoProController class only defines the above functions. Another Python script will need to 

be written to implement the behavior depicted in the activity diagram in Figure 6-3: 

GoProController Activity Diagram. This class will be called GoProFrameAnalysis. It will import 

GoProController, and once a frame has been saved to an image file, GoProFrameAnalysis will 

analyze the image using OpenCV to detect the tennis ball. Once the analysis is complete, 

GoProFrameAnalysis will either extract another frame from the feed if the object is not detected, 
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or it will calculate a heading that the quadcopter needs to take in order to position itself directly 

over the object if the object is detected. 

 

The detection of the object will be handled by functions and classes defined in the OpenCV 

library. Each frame extracted from the video feed is tested against a cascade of classifiers. The 

OpenCV Python application for face detection imports from the numpy and cv2 libraries. Using 

the xml created by the OpenCV CascadeClassifier application. After reading in a jpg file and 

converting it to a grey image, the application uses the detectMultiScale function to detect faces 

within the grey image. These faces are returned as rectangular coordinates.  

 

The output of the Python code is displayed in Figure 6-4: Face Detection Output, reprinted 

pending permission from OpenCV. This code is not only intended to detect eyes and faces, 

though. To alter this code to detect a tennis ball, modifications only need to be made to the xml 

files passed as arguments for the CascadeClassifier method at the top of the image. These xml 

files contain the classifiers which dictate what passes as a face or an eye and what does not. 

Classifier training will be covered later on in this section; however, for a more detailed 

discussion on the training of classifiers, reference Section 4.1.3: Image Processing.  

 

 
Figure 6-4: Face Detection Output 

 

OpenCV includes two applications for training cascade classifiers, opencv_haartraining and 

opencv_traincascade. Opencv_traincascade is the more recent of the two and has rendered 

opencv_haartraining obsolete; therefore, opencv_traincascade is the trainer which shall be used 

by SARS. The trainer works by analyzing two sets of images, a positive set containing the object 

to be detected and a negative set not containing the object. The positive set is created by the 

application opencv_createsamples. This program takes in a source object image and a 

background description file containing a list of background images to be used randomly with 

alterations of the source image. After running, it outputs a file containing an arbitrary number of 
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positive samples. The number of samples is determined by the user; however, thousands of 

samples are sometimes necessary for creating high performance classifiers. The negative samples 

must be created manually and stored in a folder residing in the same directory as a text file 

containing the file name and relative path of each image. With the positive and negative image 

sets created, opencv_traincascade can create the classifiers and store them in an xml file located 

in a folder specified in the command arguments.  

 

Image set creation and cascade training can be performed on any machine prior to the launching 

of SARS. The file cascade.xml needs to be transferred to the BeagleBone prior to launch, and the 

object detection code can run on the BeagleBone as many times as is necessary to detect the 

tennis ball.  

 

Once the object has been detected, a flag will be sent via serial connection from the BeagleBone 

to the quadcopter microcontroller to interrupt the current course of the quadcopter. A new 

heading will be calculated by taking the indices of the central pixel within the rectangle 

containing the detected object relative to the indices of the image center. Based on the slope and 

distance between the two pixels, a new heading shall be sent via serial connection from the 

BeagleBone to the quadcopter microcontroller. The image processing will continue to run until 

the quadcopter is located directly over top of the target object. 

 

6.1.3 Waypoint Navigation and Interruption 
 

Prior to flight, using Mission Planner it is possible to create a mission consisting of a series of 

waypoints. Because our copter is scanning an area for an object and collecting images of the 

entire field, it is necessary that we plan the waypoints such that the copter scans the full area. 

Mission Planner has a setting for waypoint navigation known as Auto Grid, a setting which has 

the quadcopter go back and forth over a designated area in a lawnmower pattern, which is perfect 

for our project.  
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Figure 6-5: Auto Grid 

 

The significant part of the design approaches once we have the detected the image. The copter is 

following a pre-determined path during its flight, but once the GoPro discovers the object we are 

looking for in its field of vision, the BeagleBone’s image processing needs to be able to send an 

interrupt to the flight controller, slowly moving the quadcopter until it is hovering directly over 

the object. The copter will then transmit the GPS coordinates of its position to the rover, and the 

copter will return home. 

 

When sent on a mission using waypoints, the quadcopter is operating in Auto mode. Once the 

GoPro detects the object though, the copter will need to execute a series of steps in order to 

complete the mission successfully. First, the copter will switch into Guided mode, a mode in 

which the copter receives a specific GPS coordinate as an input, and then moves toward that 

point and hovers above it. The BeagleBone, as it process the location of the image (how close it 

is to the center of the camera), will need to periodically send the next location to the flight 

controller. This new location can be sent using the Waypoint command, which takes in the 

latitude, longitude, and hold time of the next point to navigate to. 

 

Once the object has been centered in the camera’s field of view, the copter will need to switch to 

Loiter mode. In this mode, the copter will hover in its location for a specified amount of time. 

While doing this, the BeagleBone will read the coordinate from the u-blox GPS and transmit 

them to the rover via the Xbee communication module. The copter can be switched into loiter 

mode with the Loiter_Time command, which takes in the time (in seconds) in which to hold its 

position. 
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Finally, the copter can be given the Return_To_Launch command, which will override the 

remaining waypoints that were programmed at the beginning and cause the quadcopter to return 

back home as its contribution to the project will have been complete. 

 

Because the flight controller (as well as the BeagleBone) are native to Python, a script can be 

sent to the copter that executes the series of commands once the image has been detected. Below 

is the pseudo code for what will have to be executed by the copter. 

 

 
Figure 6-6: Image processing and object detection flow chart 

  

6.1.4 Geolocation Subsystem 
 

Once the quadcopter has identified the target object on the ground and is hovering directly over 

top of it, it needs to send its GPS coordinates to the SARS rover and to an Android App running 

the SARS App. This will be accomplished using the Ublox LEA-6H GPS module designed by 
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3D Robotics Inc. This GPS module has an APM compatible 6-pin DF13 connector which can be 

used to interface with the Pixhawk controlling the quadcopter. The entire process implemented 

by the geolocation subsystem is displayed in Figure 6-7: Geolocation Subsystem Activity 

Diagram. 

 

Once the quadcopter has halted over the target object, its GPS coordinates will be sent from the 

Pixhawk to the BeagleBone Black via serial connection. This will be handled by Python scripts 

on both boards which will run after the Pixhawk receives the halt flag from the BeagleBone 

Black. At this point, the ASCII message received by the BeagleBone Black will be sent to the 

microcontroller on the SARS rover via Wi-Fi using the XBee module. Once again, this will be 

handled by a Python script on the BeagleBone Black. Additionally, since SARS is designed to 

include an Android application for the user to monitor diagnostic information and to view the 

video feed from the quadcopter, the ASCII message will need to be converted into a readable 

format if it is to be displayed for the user to see. There is a useful tutorial on the Internet on GPS 

serial communications which includes a code written in C that can be used to receive and convert 

the coordinates. This code will be a useful resource as the team attempts to implement the 

communications and the conversion in Python. After the coordinates have been sent to the SARS 

rover, they will be sent from the BeagleBone Black to the Android device running the SARS 

App once again via Wi-Fi using the XBee module.  

 

 
Figure 6-7: Geolocation Subsystem Activity Diagram 

 

6.1.5 Object Detection Interruption 
 

Initially, the course of the quadcopter will be set using Mission Planner. The quadcopter will 

travel between waypoints along some arbitrary path. In order to avoid missing areas on the 

ground and to maximize the chance of picking up the target object with the camera, this arbitrary 

path will more than likely be in the shape of a grid. When the target object is detected in the 

video feed by the BeagleBone, a new heading will be sent via serial connection from the 

BeagleBone to the Pixhawk. This flag will halt all Mission Planner processes and direct the 
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quadcopter to follow the new heading. All the variables governing how the quadcopter will be 

directed to follow the new heading will need to be determined through extensive calibration and 

testing. 

 

The task of interrupting the Mission Planner application will be accomplished by adding a 

Python script to the Pixhawk. This script will receive the serial output of the BeagleBone and 

pause the execution of the current Mission Planner command. For an illustration of how the 

interrupt is meant to work, see Figure 6-8 below. 

 

 
Figure 6-8: Object Detection Interrupt Activity Diagram 

 

The ArduCopter software is open source, which means that a check flag subroutine can be added 

to the code. The flag will be set when the new heading is received from the BeagleBone. Once 

this flag is set, the check flag subroutine will interrupt the current Mission Planner Command, 

and redirect the quadcopter along the new heading. The quadcopter will continue receiving 

heading information from the BeagleBone until it is positioned over top of the target object with 

no more than six inches of error. At this point the quadcopter’s GPS coordinates will be sent to 

the BeagleBone via serial communication, and the BeagleBone will transmit them to the land 

rover using the XBee’s Wi-Fi capability. Once all of this has been completed, the quadcopter 

will be directed to land back in its original takeoff location.  

 

It is important that the check flag subroutine and the Mission Planner interruption do not take so 

many clock cycles as to disrupt the actual flight mechanics of the quadcopter, which must 

maintain stability as it changes course. This will require careful optimization of the altered code. 

 

6.2 Rover Software Design 
 

6.2.1 Speed and Direction Control 
 

The first and foremost aspect of rover movement is speed and direction control. It will be the job 

of the Tiva C to send the speed commands out to the motor controller to get the rover into 

motion. The Tiva C will be responsible for sending one or more of the fourteen possible 

commands to the Sabertooth controller on each iteration of the control loop. The main control 
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loop of the software will involve reading each of the sensors and then issuing the appropriate 

command to the motor controller. 

 

The Sabertooth has two different control modes with a total of fourteen possible commands. One 

mode is the independent control mode, where each motor channel is programmed independently 

and commands can be issued to drive each channel either forwards or backwards. Each motor 

channel has three possible commands, drive forwards, drive backwards, and drive. Drive 

forwards and backwards both use 8 bits to define the forwards or backwards speed of the 

specified channel. Drive uses the same 8 bits to define whether the channel is in forward or 

reverse operating mode and a speed. The downside to this command is reduced control over the 

specific speed of the motors, but it does allow for issuing multiple direction commands with the 

same main command. There are also two commands that control the maximum and minimum 

voltages that the Sabertooth will operate on, but these commands will not be used. 

 

The other command mode for the Sabertooth is the mixed mode command set. This command set 

has six possible commands and does not divide the command set based on motor channel. The 

controller will internally determine which direction each channel will be sent in based on the 

command issued. This control mode has a drive forward, drive backward, and drive command 

with the same configuration as the independent control mode, but channel is not specified. The 

mixed mode command set also adds new commands for turning the rover. There are three turn 

control commands, turn left, turn right, and turn. Turn left and right operate as expected, and turn 

allows for encoding either a left or a right turn and a turn speed to be encoded in a single 

command. This command mode will be much easier and effective for use on the SARS rover, 

and will be implemented in the control software. 

 

Now that the command set has been defined for the Sabertooth, the required code on the Tiva C 

for sending packets to the Sabertooth can also be defined. The Sabertooth requires a 31 bit 

command be sent out from the microcontroller to properly issue commands. The first byte of the 

packet contains the address of the Sabertooth, which is determined by physical switches on the 

Sabertooth. The next byte defines the command being sent. The third byte includes the data for 

the command being issued. The final seven bits of the command is a checksum that must be 

computed and included in the packet sent. Functions will be built into the Tiva C command code 

that will take in the desired data for each possible command being sent to the Sabertooth and will 

generate the packet to be sent out over the serial communication line. 

 

Once all of the functions to issue commands to the Sabertooth have been constructed, the code 

for deciding what commands to issue can be defined. Most straight line drive commands will be 

based on whether or not the rover is moving as expected based on checks made against object 

detection and GPS navigation, which will be explained later. Assuming the rover is on course 

and not about to collide with something, on each iteration of the control loop the microcontroller 

will first look to the Hall Effect sensors mentioned in section 4.3.3. The microcontroller will 

verify that the wheels are moving as expected by comparing the data from the Hall Effect sensors 

with the data provided by the accelerometer. If the Hall Effect sensors claim that a wheel is 

rotating, but the accelerometer determines that the rover as a whole is not moving as expected, 

the software must make adjustments to speed and direction commands issued because the rover 

is likely to be stuck on some aspect of the terrain. Corrective actions will include turning as well 
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as reversing to find a more easily traversed piece of terrain. These sensor checks are vital in 

keeping the rover moving forward towards its target and will have the most important say in 

which commands are issued to the Sabertooth. 

 

6.2.2 Object Detection 
 

While the rover is in motion using the commands defined in the previous section, it is certainly 

possible that obstacles will appear in the path of the rover that must be avoided. Obstacle 

avoidance is a challenging task for any autonomous system. With functional hardware to detect 

obstacles, there is a large amount of software that must also go along with it. The check for 

obstacles must be performed on most to all iterations of the control loop, depending on the rate at 

which the control loop is cycled. With a more frequently operating control loop, fewer checks for 

obstacles must be made. If the control loop is iterating slowly, object detection checks must be 

more frequent. Once the frequency of checking has been determined, the actual procedure for 

object avoidance can be detailed. 

 

At the first sign of an object being detected, the forward speed of the rover must be reduced, so a 

command doing such will be issued. After the rover has been slowed down, the decision making 

process on how to avoid the object can begin. 

 

The other side to object detection is target object detection. This will require an entirely different 

set of operations from object avoidance. The GPS will be relied on to get the rover within 2 

meters of the target object, and from that point a coarse location of the object must be made 

using the main object detection sensors on the rover. 

 

6.2.3 GPS Navigation 
 

After object detection has been completed, GPS based navigation can be implemented. There are 

two aspects to GPS based navigation, coordinate retrieval and direction determination. The first 

aspect is coordinate retrieval. The microcontroller will have to reach out over 

COMMUNICATIONS PROTOCOL to the GPS module to retrieve the rover’s current GPS 

coordinates. Once the coordinates are retrieved, the direction heading needed to reach the target 

location can be determined. By calculating the ΔX and ΔY values between the current location 

and the target location, the angle and direction the rover must rotate can be determined. 

 

𝑋2 − 𝑋1 = 𝛥𝑋 

𝑌2 − 𝑌1 = 𝛥𝑌 
 

Table 6-1 shows how to determine the direction to the target location from the current location. 

Any locations to the west of the current location will require the rover to turn to the left and any  

ΔX ΔY Direction to Target 

>0 >0 Between North and East 

<0 >0 Between North and West 

<0 <0 Between South and West 

>0 <0 Between South and East 
Table 6-1: ΔX and ΔY directions by value 
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locations to the east of the current location will require the rover to turn right. The angle that the 

rover must turn can be determined using the following equation 

 

𝛩 = 𝑡𝑎𝑛−1(𝛥𝑋
𝛥𝑌⁄ ) 

 

where a negative value for Θ is indicative of an angle to the left of the current position and a 

positive value for Θ indicates an angle to the right of the current position. These calculations can 

be used to approximate the command that must be sent to the Sabertooth indicating the amount 

of rotation that needs to take place. As the rover is rotated in place, checks can be continually 

performed using the magnetometer in the sensor hub to verify that the rover is rotating to the 

proper angle so that it can drive straight towards the target object. 

 

During the majority of the travel time once the proper heading has been determined for reaching 

the target object, the rover will be traveling at its maximum capable speed. This must change, 

however, the closer the rover is to its target. Once the rover is within a few meters of the target 

object, as determined by the distance formula, the rover must slow down to allow for fine 

controlled movement as well as to allow for other sensors to control the motion, as described 

previously. Once the rover is within the 2 meter range of its target, GPS will no longer be a 

factor in determining the path moving forwards. GPS is only expected to have an accuracy up to 

roughly 2 meters, making it useless once the rover has covered the majority of the distance to the 

target. 

 

6.2.4 Object Retrieval 
 

The software for object retrieval is near the top of the list of technically challenging software 

development. The more degrees of freedom that are applied to the object retrieval apparatus, the 

more intricate the control software must be in order to account for it. The object retrieval 

software will include three main components once the rover is within range for the apparatus to 

retrieve the target object. The first component is positioning the apparatus so that it can apply the 

grabber. The next component is applying the grabber and verifying that the object has been 

secured, and the final aspect is returning the object to the object storage bin. 

 

The first stage of the retrieval software is the most difficult stage. The software must first 

determine the current status of the retrieval arm. Once the arm’s status has been determined, the 

arm can be commanded to move towards the target object. As the arm is moving, a sensor on the 

arm must be used to determine whether or not the arm is closing in on the target object. This will 

be an intricate interaction between the physical sensor and the software. Because the sensor 

being used will not involve computer vision, distinguishing between the target object and the 

ground will be a challenge in itself. The arm will likely have to move to where the sensor 

indicates it is over the object, and from there the arm will have to be moved from side to side and 

back and forth to determine where the center of the object is for the strongest pickup success 

potential. 

 

Once the software has determined the arm to be centered over the object to be retrieved, the 

actual retrieval process must begin. The software must command the apparatus to make contact 



82 

 

with the target object and engage its grabbing feature. The biggest question to arise at this point 

is how long must the grabbing command last to ensure that the object is successfully grabbed? It 

is unlikely that this can be theoretically determined and will in turn require testing to effectively 

discern. The software must be designed with this in mind. The software must be capable of 

having constants easily modified to maximize success rates when grabbing target objects. 

 

The final step to the software for object retrieval is returning the object to the storage bin once it 

has been grabbed by the grabbing apparatus. This will also be a somewhat complicated step 

because it requires the software to be aware of the arm’s current location with respect to the 

object storage bin. The sensor attached to the arm can be used in conjunction with the list of 

commands issued to navigate to the object with the arm to return the arm to release the item into 

the storage bin. Assuming the arm starts centered over the storage bin, if the list of commands 

issued to reach the object are stored, the commands can be reversed to approximate movement 

back to being centered over the storage bin. The sensor can also be used to determine where the 

bin is. Once the arm is determined to be centered over the bin, the release command can be 

issued from the software to drop off the item 

 

6.3 Android Application Design 
 

6.3.1 Application Requirements 
 

The Android application will serve as the interface between the human users and the robotic 

subsystems that form SARS. The Android application performs 3 major tasks. First, it initiates, 

aborts, and reports progress on a search and retrieve mission as it progresses. Second, it provides 

access to the live video stream of the quadcopter’s camera, so that a mission can be observed in 

real time. Third, it provides diagnostics and telemetry data from the quadcopter and the rover so 

that mission conductors can monitor each subsystem during a mission and determine how to 

proceed at each step of the mission. To accomplish these tasks, the Android application needs to 

have a simple and intuitive text-based interface with touch controls that allows users to easily 

monitor SARS as it performs a mission. As each subsystem of SARS is physically independent 

of one another, the Android application needs to communicate with each subsystem wirelessly 

using 802.11 Wi-Fi. The success of a SARS mission is critically dependent on fast and accurate 

communication between each system, so the Android application must be designed to connect 

and communicate with each system as quickly and efficiently as possible. As the SARS 

application will potentially be viewed by demonstration participants, there must be a system in 

place to lock the user interface when viewing the video stream to prevent anyone other than the 

mission conductors from interacting with the SARS subsystems. The key application 

requirements are summarized below. 

 

Application Requirements 

 Initiate and abort SARS missions 

 Monitor mission progress 

 View camera live stream quickly and easily 

 Communicate with other SARS subsystems wirelessly 

 Limit administrative access to essential mission personnel only 
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6.3.2 Users and Modes of Operation 
 

There are two types of users of the SARS application. Users who are actively conducting a 

mission with SARS, and users who are passively observing a SARS mission take place. 

 

Mission Conductors: The mission conductors need the SARS application primarily for 

diagnostics and mission control. They will use the application to initiate missions, abort 

missions, monitor mission progress, view the mission live stream, and monitor the quadcopter 

and rover diagnostics and telemetry. 

 

Passive Observers: The SARS application will also be used for passive observation by 

demonstration participants. They will primarily use the application to view the live stream from 

the Go-Pro camera. They should not be able to access other parts of the SARS application 

interface when viewing the camera stream so as not to disrupt any aspect of a mission in 

progress. 

 

There are two modes of operation for the SARS application that directly corresponds with the 

user type. Mission Conductors need to have full administrative access to the entire SARS system 

in what is termed “Administrative Mode.” Passive Observers have limited access to the rest of 

the application when viewing a mission live stream. In this scenario, the application will be in 

“Guest Mode.” 

 

Administrative Mode: In this mode, users have unrestricted access to every menu of the SARS 

application. They can initiate missions, abort missions, view mission progress reports, view live 

video streams, and view quadcopter and rover diagnostics and telemetry. 

 

Guest Mode: In this mode, users only have access to the live video stream and the quadcopter 

and rover diagnostics and telemetry. Access to the mission control menus of the application 

(where missions can be initiated, aborted, and monitored) will be prohibited. 

 

6.3.3 Operational Features 
 

The following are features that the SARS application MUST include in order to be fully 

operational. Without these features, the SARS application will be considered incomplete and 

incapable of conducting a SARS mission.  

 

Required Features: 

 Application runs on a Nexus 5 running Android 5.0 (Lollipop) 

 TCP/IP based wireless communication with the quadcopter’s Xbee module using 802.11 

b/g/n WiFi 

 TCP/IP based wireless communication with the rover’s Xbee module using 802.11 b/g/n 

WiFi 

 HTTP/HLS (TCP/IP) based wireless communication with the Go-Pro Hero 3 camera’s 

web server using 802.11 b/g/n WiFi 
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 Touch buttons for initiating and aborting missions 

 Text based status report of a mission in progress 

 Text based report of quadcopter diagnostics and telemetry 

 Text based report of rover diagnostics and telemetry 

 Toggle for switching between Administrative and Guest modes 

 Password lock for Administrative mode 

 

The following are features that are not considered essential to the SARS application’s 

operational status, but are nonetheless deemed important by members of the team. These features 

will be implemented if time permits, but are otherwise considered entirely optional to the 

operational status of the SARS application. 

 

Optional Features: 

 Application runs on any Android phone running Android 4.0 (Ice Cream Sandwich) and 

higher 

 Application runs on any Android tablet running Android 4.0 (Ice Cream Sandwich) and 

higher 

 SARS mission live stream is viewable by multiple concurrent Android devices 

 Aesthetically pleasing user interface with SARS logos and themes throughout the 

application 

 Enhanced graphical display of mission status report 

 Enhanced graphical display of quadcopter diagnostics and telemetry 

 Enhanced graphical display of rover diagnostics and telemetry 

 

6.3.4 Implementation 
 

The SARS Android application will be designed using Android Studio on a Windows 8.1 based 

desktop/laptop development environment. The application will initially be designed for API level 

19, which supports Android 4.4 and 5.0. If time permits, the API level will be lowered to 14, 

which supports all devices running Android 4.0 and higher. A Git repository will be established 

to track and control every version of the application that is built. This Git repository will be 

managed locally by Erick Makris, the lead engineer for Android application development. In the 

event that other SARS members become more involved in the Android application development, 

the Git repository will be moved to GitHub to provide centralized control and distribution 

between all group members. The application will be written in Java, the programming language 

used for all Android applications. Version 8 of the Java Development Kit will be used for 

application development. 

 

6.3.5 High Level System Design 
 

The SARS application will be designed as a Client-Server architecture. The Android application 

acts as the “server” in this model as it is both the interface between SARS and its human users 

and the central hub for inter-device communication. The quadcopter’s and rover’s Xbee modules 

as well as the human users act as the “clients” that interact with the Android application. The Go-

Pro camera’s web server contains all of the live video stream files and playlists, so it acts as 
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another “server” in this model. Figure 6-9 below illustrates the design of this architecture. The 

directional arrows indicate the direction of data flow between each client and server in the 

system. This diagram only illustrates the client-server nature of the Android application as it 

relates to the other subsystems of SARS. It does not necessarily reflect the entire SARS system 

architecture, as the other subsystems will interact with each other directly, independent of the 

Android application. 

 

 
Figure 6-9: High Level System Architecture 

 

6.3.6 Design Issues 
 

Reusability 

The SARS application is designed for a very specific purpose. It is unlikely that any of the user 

interface or mission control specific code can be reused. However, the socket programming code 

for communicating with the Xbee modules and the Go-Pro web server could probably be 

repurposed for future projects involving Xbees or a Go-Pro camera. It would thus be in the best 

interest of the team to develop the socket programming code to be as nonspecific and modular as 

possible to facilitate reuse of the code in future projects. 

 

Maintainability 

SARS is a Senior Design project that will be designed, developed, and tested over the course of 

two semesters. At the end of the second semester, it will be presented to a review board. It is 

unlikely that development on the project will continue after it is presented for two reasons. First, 
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many parts of SARS are funded by sponsors, and thus belong to the University of Central 

Florida. Upon project completion, these parts must be returned to the university, which will 

make further development of the system impossible. Second, all members of the SARS team will 

be graduating upon completion of Senior Design, and will likely be seeking full-time 

employment. This will limit the available time and willingness to continue development on the 

project. 

 

Testability 

Testability is critical to the success of SARS as a whole. The entire system will be continually 

and thoroughly tested throughout the development process. Thus, it is critically important that 

the Android application be designed with testability in mind. The application should be able to 

start and stop missions as many times as necessary. Each mission reset should properly 

reinitialize each SARS subsystem as well as the Android application. The application should not 

need to be closed or stopped in order to properly reset for a new mission. 

 

Performance 

SARS must have real-time communication performance to be successful. Luckily, the data 

overhead is not large for wireless communications between subsystems. The 802.11b/g/n 

protocol will provide more than enough bandwidth and low enough latency to provide real time 

communications to and from the Android application. However, the application should be 

optimized for performance wherever possible by minimizing operational complexity and 

eliminating redundant or unnecessary data transmission. 

 

Portability 

As stated previously, the application will initially only be designed for a Nexus 5 running 

Android 5.0 and will be back-ported to older versions of Android with a wider array of device 

support if time permits. As such, it is recommended that the application be designed to use as 

few API level 19 and above specific development features as possible. If little to no API-specific 

features are implemented, then porting to other versions and devices may be as simple as 

enabling them in the list of supported devices in the Android Studio project. 

 

Safety 

Safety is another critical aspect of SARS. Mission conductors must be able to monitor all aspects 

of the SARS subsystems in real time to determine if a mission needs to be aborted at any time to 

prevent damage to the system or to the surroundings. It must be readily apparent in the 

application how to abort a mission and the commands must be sent as soon as possible to the 

quadcopter and rover to abort their current mission.  

 

7 Integration Summary 
 

The SARS integration plan has not been completely established yet; however, some of the wiring 

diagrams have been created, and certain aspects of the hardware/software integration have been 

considered. These diagrams are included in Section 5: Hardware Design. The BeagleBone Black 

and the Pixhawk both have local Python support; therefore, the SARS Group has decided to use 

Python to implement as many of the image processing and quadcopter functionalities as possible. 
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The diagram for the UART connection between the BeagleBone Black and the XBee module has 

yet to be created; however, the BeagleBone Black will communicate with the GoPro camera 

using the XBee module. The power source for the BeagleBone Black has not been decided upon 

as of this stage in the development. The BeagleBone may simply be powered using 6 AA 

batteries and a voltage regulator; however, if mounting these extra batteries on the SARS Copter 

becomes a problem, the BeagleBone may split the power source with the Pixhawk. 

 

Once a frame has been extracted from the GoPro feed and stored on the BeagleBone Black, the 

OpenCV Python library shall be used to process the image and identify the target object in the 

image. Once the object has been found in a video frame, the BeagleBone shall notify the 

Pixhawk by sending a flag via UART. Prior to this interruption, the SARS Copter shall navigate 

between waypoints using the Mission Planner application which is compatible with ArduCopter. 

The wiring diagram for this connection between the two microcontrollers is displayed in Figure 

5-2: Wiring diagram between BeagleBone and flight controller. 

 

The Pixhawk will need to be wired to the IMU and the Ublox GPS unit as well as to the power 

source. This diagram has not yet been created; however, extensive information on the various 

ports of the Pixhawk have been included in the research and design sections of this document. 

 

The Tiva board used as the microcontroller for the SARS Rover will need to be wired to the 

XBee module, the Adafruit Ultimate GPS breakout, the motor controllers, and the sensors used 

for object detection and for GPS navigation. The prefabricated rover selected for SARS makes 

the connection between the microcontroller and the motor controllers incredibly simple. 

 

The Tiva board is not as high level as the BeagleBone or the Pixhawk. It and all of its 

functionalities are to be coded in C. The XBee module will be used to receive the GPS 

coordinates of the target object from the BeagleBone Black mounted on the quadcopter. The 

SARS Rover will use its GPS module along with the magnetometer in the sensor hub to navigate 

to the target object’s location. Along the way it will be programmed to avoid obstacles, and once 

the SARS Rover reaches the target GPS coordinates, it will search for the target object using 

ultrasonic sensors. Upon object retrieval, the SARS Rover will return to its starting location once 

again using the magnetometer and the GPS module. 

 

The method of object retrieval and its implementation have not yet been decided upon. This 

aspect of project development shall be revisited in early January when more progress has been 

made with the build of the other SARS subsystems. Various potential prototypes are discussed in 

Section 5.3.4: Object Retriever.  

 

The remainder of this section will be devoted to listing the parts necessary for the 

implementation of SARS. This is not the team’s final list, as it is possible that certain necessary 

parts have been overlooked. A complete list of the parts included in the quadcopter kit is 

displayed in Figure 4-10: Quad kit components; therefore, these parts shall not be included in the 

list below. 

 

SARS Copter 

 BeagleBone Black 
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 XBee S6B 

 XBee Cape 

 GoPro Hero3 White Edition with mount 

 Lithium powered battery 

 4 electronic speed controllers 
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SARS Rover 

 Chassis 

 Frame 

 6 motors 

 6 wheels 

 6 motor Controllers 

 Tiva C Series 

 XBee S6B 

 Adafruit Ultimate GPS Breakout 

 6 Hall Effect sensors 

 6 magnetometers 

 Parallax Ping))) ultrasonic distance sensor 

 

The only hardware necessary for the implementation of the Android application is a device 

running the Android operating system. For testing purposes, the team will be using a Nexus 5.  

8 Prototype Construction and Software Development 
 

8.1 Quadcopter Parts Acquisition 
 

8.1.1 Camera 
 

The GoPro Hero 3 White was ordered from Amazon at a price of $199.99. It came with a 

protective, weatherproof case, two adhesive mounts, and a USB for connecting to a computer 

and for charging. The two adhesive mounts will not be necessary for the final implementation of 

SARS as the quadcopter already has a prefabricated GoPro mount built into it; however, they 

may prove useful during the testing of the image processing subsystem. The camera may be 

mounted on any surface and the target object placed inside its range of view. Preferably, the 

majority of the testing of this subsystem will be done without the use of the quadcopter. This will 

reduce the risk of damaging the quadcopter, the boards mounted on the quadcopter, or the 

camera.  

 

The GoPro arrived undamaged in the mail on Friday, October 17, 2014. The parents of one of the 

SARS Group members have elected to pay for the GoPro as they are interested in keeping it once 

the project has been completed. 

 

8.2 Quadcopter Assembly 
 

8.2.1 Camera 
 

The GoPro camera will be mounted underneath the quadcopter using the prefabricated mount. 

The camera angle will be adjusted to 90 degrees so that the field of view is directed straight 

down towards the ground with an acceptable error of 1 degree. One foreseeable complication 
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could be that the prefabricated mount may not be designed to support a 90 degree adjustment. If 

this is the case, a flat panel of plastic will be mounted in the prefabricated mount at an angle of 0 

degrees. The flat, adhesive mount which came with the GoPro shall be attached to this panel, and 

the GoPro shall be mounted here with its field of view directed towards the ground. If a flat 

panel of plastic cannot be manufactured to fit the prefabricated mount, a second weatherproof 

GoPro case may be acquired and the adhesive mount attached to the flat backside of this case. 

For a design diagram of this setup, see Figure 8-1: GoPro Mount Design below. 

 

 
Figure 8-1: GoPro Mount Design 

 

8.3 Rover Parts Acquisition 
 

8.3.1 Chassis, Motors, and Motor Controller 
 

The chassis selected, the Dagu Wild Thumper 6 Wheel Drive is readily available from various 

online retailers. It is manufactured by a company called Dagu Electronics, but Dagu Electronics 
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does not offer the product directly at a reasonable price. The chassis, however can be purchased 

from retailers such as Sparkfun.com, Polou.com, and RobotShop.com for a reasonable price of 

roughly $250. Fortunately, the chassis is a prefabricated kit, and requires minimal assembly and 

limited searching for compatible parts. The chassis kit, as a bonus, also includes all six motors 

required to drive the system. The kit includes these motors already assembled into their 

respective housings and with the wires already running to an easily accessible location on the 

chassis. The chassis also includes a preconfigured suspension system to allow for easy terrain 

traversal. The kit is available with two different colors, chrome and black as well as with two 

different motor configurations, motors with a 34:1 gear ratio and motors with a 75:1 gear ratio. 

The chassis with the black body and the 34:1 geared motors was selected. The 34:1 gears allow 

for higher speeds and a slightly lower load capacity than the 75:1 geared motors. The chassis was 

acquired by purchasing it through Sparkfun.com. 

 

The other important aspect of the rover system in this category is the motor controller. The 

selected motor controller, the Dimension Engineering Sabertooth 2x25, is available online 

directly from the manufacturer, as well as through Robotshop.com and through Amazon.com. 

This product, however does have a short wait time before it can be shipped, and will be ordered 

early to ensure timely arrival. It is available for $125 regardless of the purchase source. 

 

8.3.2 Microcontroller 
 

The microcontroller selected is the Tiva C series microcontroller, which is available from Texas 

Instruments. There are various available development boards in the Tiva C series, but the one 

being used is the Tiva 1294XX. Texas Instruments distributed free development boards at a 

workshop that was attended by a SARS team member. This development board will be used for 

the majority of the design and testing process. As the completed prototype deadline approaches, 

this microcontroller will be transferred to a printed circuit board along with any sensors that can 

be integrated into a PCB. 

 

8.3.3 Sensors 
 

Many of the major sensors for the rover system are included in a single chip from Texas 

Instruments. This chip is the Sensor Hub Booster Pack, designed to be used with the Tiva C 

development board. This board includes the accelerometer, gyroscope, magnetometer, as well as 

some other sensors that will not be used. This sensor set was acquired at the same Texas 

Instruments workshop that the main microcontroller for the rover was acquired at. This sensor 

hub will be included in the PCB for the microcontroller. 

 

The Hall Effect sensors and magnets necessary for them are readily available through online 

retailers and will be purchased from amazon.com. Both the sensors and the magnets can be 

purchased for less than $10. The Parallax PING))) ultrasonic sensor is also available online and 

will be purchased directly from Parallax. It comes packaged in a kit that includes mounting 

brackets and a 180° servo motor for $45. The same is true of the Adafruit Ultimate GPS breakout 

chip which is priced at $45. 
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8.3.4 Retrieval Apparatus 
 

Parts acquisition for the retrieval apparatus will be slightly different from the rest of the Rover’s 

acquisition process. Much of the hardware needed to construct the arms will be purchased at a 

hardware store such as Lowe’s or Home Depot. High torque servos will be purchased from a 

website such as sparkfun.com or servocity.com. 

 

The gripper will be designed using some parts that are to be 3D printed. There is a 3D printer 

available for use in the Texas Instruments Innovation Lab on the UCF Campus that will be used 

for this purpose. Other materials needed such as the balloon and filter can be obtained from any 

of many general retail stores. 

  

8.3.5 Communications Module 
  

8.3.6 Power Source 
 

The main power source for the rover is a single Lithium Polymer (LiPO) battery pack. When 

selecting one of these battery packs, there is a huge range of available products. The website 

hobbyking.com has the best selection of these batteries for the best prices. The battery selected in 

the design section is available for $33 from the Hobby King website. 

 

In addition to needing a battery, a battery charger is also needed. It is important to note that 

charging LiPO batteries requires an electronic controller to ensure that the batteries are not 

overcharged. Such a charger is available from Hobby King’s website for $20, and will be 

purchased from there. 

 

8.4 Rover Assembly 
 

8.4.1 Chassis, Motors, and Motor Controller 
 

Assembly of the main chassis for the rover will require very little. The chassis comes as a kit 

with the motors pre-installed along with the suspension system. The only assembly required is to 

mount all six of the wheels onto the motor shafts. The wheels and wheel mounts are all identical, 

and can be mounted on any of the motors. 
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Mounting the motor controller will be a slightly more difficult task. The mounting bays within 

the chassis are roughly .5cm too thin to house the motor controller in it’s out of the box form. 

Some of the edges of the board must be shaved down in order to allow the board to fit properly. 

The other task in mounting the board is drilling appropriate holes in the chassis to support it. The 

chassis is designed to support many mounting options because it comes pre-drilled with a full 

array of available mounting points. Unfortunately, these mounting points do not line up with the 

available holes on the motor controller for mounting. Once the appropriate holes are drilled 

through the chassis, a small screw will be used in conjunction with a corresponding nut to secure 

the motor controller in place. The mounting location is illustrated in Figure 8-2. 

 

After mounting is complete, the initial wiring can take place. Wiring will be done as specified in 

the design section. The motor controller can first be connected to the differenct motors. This can 

be done very simply through the central wiring hub on the chassis. This hub is part of the 

chassis’ initial configuration and is visible in Figure 8-3. The wires seen are the wires for the 

each of the six motors. The motors are separated and connected to the hub based on the motors 

on the left side of the chassis and the ones on the right side of the chassis. The wires are also 

separated into positive and negative lines. Due to the way the the wires are adjoined in the hub, 

the motors for each side of the rover will be connected in parallel, allowing for equal voltage 

across all of them. 

 

  

MOTOR CONTROLLER 

MOUNT POINT 

MICROCONTROLLER 

MOUNT POINT 

Figure 8-2:  Motor Controller and Microcontroller Mount Points 
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8.4.2 Microcontroller, Sensors, and Communication 
 

After the main chassis components are assembled, the electronics can be mounted and installed. 

The first of the electronics to be installed will be the microcontroller. The mounting point for the 

microcontroller is visible in Figure 8-2. In the finished prototype, the microcontroller will be 

implemented with a printed circuit board. Creating the PCB will eliminate the mounting issues 

presented by the motor controller. With a PCB, the design can intentionally leave space in the 

necessary spots on the board so that it can be lined up and mounted using the available mounting 

space already on the chassis. Once the PCB has been mounted, it can be wired in. Power will be 

supplied by the microcontroller power output on the motor controller. Once power has been 

wired in, the next step is to run the data wires back to the motor controller as well. Wiring 

schemes are shown in the design section. 

 

Now that the PCB is in place and powered, the sensors can be addressed. The main sensor hub, 

as discussed in the design section, will be included in the PCB, so it will not be need to be further 

addressed during assembly. The sensor that requires the most assembly is the PING))) ultrasonic 

sensor. The first task is to mount the sensor onto a small servo. This will be achieved using an 

adhesive such as a two part epoxy. Once the sensor is mounted, the servo can be mounted onto 

the chassis. The servo will be mounted very close to the front of the chassis to prevent the sensor 

from getting interference from within the Rover system. Both the servo and the sensor must be 

wired to the PCB for data and power. 

 

The Hall Effect sensors are the next to be implemented. They will be mounted proximally to the 

driveshaft for each motor using a two part epoxy. Each driveshaft will then be outfitted with a 

small magnet also using the two part epoxy. Each of the six sensors will then be wired to the 

GPIO pins available on the PCB.  

 

Mounting the GPS module will require slightly more effort because it must be slightly elevated 

from the rover chassis to allow for better signal reception. It will first be mounted onto a pair of 

rods to extend it off of the chassis. These rods will also function as a route for the wiring to 

follow down to the PCB. After mounting is completed, the wiring will be run to a UART 

connection on the PCB. 

 

Figure 8-3: Central wiring hub for Rover 
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Finally, the communications module can be mounted. It will be attached directly to the chassis 

and will likely require new holes to be drilled so that it can be secured. Its mounting will be 

oriented so that its antenna will have optimal reception. Once mounting is complete, it will be 

wired to another of the UART connections of the PCB. 

  

8.4.3 Retrieval Apparatus 
 

Much like the elevated level of design required for this aspect of the Rover, assembly is also a 

daunting task for the retrieval apparatus. The first stage of assembly is constructing the object 

grabber. As described in the design section, a hollowed out semi-circular piece of plastic for the 

balloon will be created with a 3D printer. The balloon will be appropriately filled with coffee 

grounds to allow for the gripping property. The balloon then must be fed through the opening in 

the semicircle and the filter must be installed. Next the vacuum tube must be attached securely so 

that no air can escape. 

 

Once the main gripper apparatus is assembled, next is the actual arm. The arm will have to be 

assembled in pieces. Each section of the arm will have two aluminum beams separated by 

enough space for the servos to allow for the degrees of freedom. The arm sections will be 

connected at both ends to another section with the servo in position to allow each joint to rotate. 

At the end of the arm where the gripper is attached, the joint will be connected onto the short arm 

with the gripping apparatus on the end. The end of the arm that attaches to the rover must be 

attached to a small plate and that plate must be mounted to the servo for rotation. 

 

After completing assembly of the mechanical aspects of the retrieval apparatus, the vacuum 

tubing and wiring can be completed. The vacuum pump must be mounted directly to the chassis 

and the tube currently connected to the gripper must be run along entire length of the arm and 

secured in place using loose fitting zip ties. The tube must then be secured onto the vacuum 

pump. Next, we move on to the wiring. Control wires for each servo must be run to the 

appropriate PCB connections. Similar to the tubing, the wires should be loosely attached with zip 

ties. Power must also be connected to the servos. Lastly, the vacuum pump must be connected to 

the power and wired to one of the GPIO ports of the PCB for control. 

 

8.4.4 Power Source 
 

The final, and perhaps most crucial element of the Rover’s assembly is properly attaching the 

battery. As discussed in the design section, the battery must be easy to connect and disconnect as 

well as install and remove. While keeping these requirements in mind, the battery must also be 

extremely secure so that movement of the Rover does not cause the battery to get displaced or 

jostled loose and also does not cause wires to disconnect. 

 

Battery mounting will begin by first installing the necessary threaded spacers for the frame 

around the battery. Once installed the spacers should be far enough off of the body to allow for 

the height of the battery with very little extra space. Three spacers will be installed along each 

long side of the battery and two spacers across each short side of the battery. Next, the top 

securing panel must be drilled to line up with the layout of the spacers. A small amount of 

cushioning will be adhered to the top panel to absorb some of the shock on the battery from the 
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movement of the Rover. Once the top panel is prepared, place the battery down into the frame 

and verify there is enough space for the lead wires to be connected and secure the top panel. 

 

Once the battery has been mounted, connecting it is the next priority. Wiring must be run from 

the battery leads to the appropriate terminals on the power switch. Before running these wires, it 

is vital that the power switch be in the “off” positon to avoid sparking and unnecessary danger. 

Once the battery has been connected to the power switch, wire can be run from the power switch 

to the main wiring hub of the rover. Once this has been completed, any further power wiring can 

be completed from the hub. 

 

8.5 Android Application Development 
 

In Android application development, any screen or menu of the application interface that is 

accessible to users is known as an activity. The SARS Android application will consist of 5 main 

activity screens. Each screen is illustrated and explained below. 

 

Main Menu 

When the application first launches, users will be presented with the Main Menu activity. From 

here, users can select to view the Mission Control, Video Stream, Quadcopter Diagnostics, and 

Rover Diagnostics activities. A screenshot of the current prototype UI for the Main Menu 

activity appears below in Figure 8-4 for reference. 

 

 
Figure 8-4: Main Menu Screen 
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If the user presses the Mission Control button, they are taken to the Mission Control activity. 

From this screen, users can initiate and abort missions. System status as well as mission progress 

is also displayed to users via text in the center of the screen. A screenshot of the current 

prototype UI for the Mission Control activity appears below in Figure 8-5 for reference. 

 

 
Figure 8-5: Mission Control Screen 

If the user presses the Video Stream button, they are taken to the Video Stream activity. This 

activity connects to the Go-Pro’s web server, accesses the appropriate M3U playlist, and opens 

this playlist in the native video player in full screen. There are no user controls on this screen, it 

is simply a full screen live video feed. However, if the user taps the screen, video controls as 

well as the Android navigation soft buttons will appear on screen. If the user wishes to exit the 

video player, they simple press the soft back button, and it will hierarchically navigate to the 

previous screen (Main Menu). Figure 8-6 illustrates what the video feed looks like on the Nexus 

5 when in full screen. Figure 8-7 illustrates what happens when the user taps the screen while in 

a full screen video. 
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Figure 8-6: Full Screen Video (No Controls) 

 

 
Figure 8-7: Full Screen Video (With On-Screen Controls) 

 

If the user presses the Quadcopter Diagnostics or Rover Diagnostics buttons, they are taken to 

the respective Quadcopter Diagnostics or Rover Diagnostics activity. On this screen, the 

quadcopter’s or rover’s diagnostics and telemetry data are displayed to the user in text form in 

the center of the screen. A screenshot of the current prototype UI’s for the Quadcopter 

Diagnostics and Rover Diagnostics screens appears below in Figure 8-8. As the exact 

information that will be displayed has not yet been decided, the UI prototype currently uses 

placeholders. 
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Figure 8-8: Quadcopter and Rover Diagnostics Screens 

 

9 Prototype Testing 
 

9.1 Hardware Test Environments 
 

9.1.1 Quadcopter 
 

The quadcopter will initially be tested indoors until it is capable of stable, sustained flights. Once 

this has been accomplished, testing will be moved outdoors. Typical outdoor test environments 

will include consist of sunny, clear skies with moderate temperature and climate. The quadcopter 

will not be tested during excessively windy conditions or other inclement weather. As this is the 

first SARS prototype, the quadcopter will not be weatherproofed so the team does not want to 

risk weather damage as the quadcopter is the single most expensive part of SARS. 

 

9.1.2 Rover 
 

All rover hardware testing will take place outdoors unless. Unless specified by one of the tests 

cases, testing will take place on a flat concrete surface, such as an empty parking lot. Incline tests 

will be performed in a parking garage and other rough terrain tests will be executed in any 

available places described in the specific test procedure. One important aspect of testing is 
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verifying that the battery is at 50% charge for each hardware test. This will ensure that the rover 

is operating under ideal power. 

 

9.2 Hardware Test Cases 
 

9.2.1 Quadcopter 
 

9.2.1.1 Serial Communication Test Interface 
 

Purpose: Validate that the BeagleBone Black MCU is able to communicate to the Pixhawk flight 

controller over the I
2
C serial communication interface. 

 

Procedure: 

1. Connect Pixhawk to laptop via micro USB cable and power on. 

2. Connect BeagleBone Black to laptop via micro USB cable and power on 

3. Verify correct pin connections between BeagleBone Black and I
2
C bus 

a. Serial Clock Line to P9_17 

b. Serial Data Line to P9_18 

4. Verify Pixhawk connected to I
2
C splitter 

5. On BeagleBone, run script to verify data bus can be accessed 

6. Confirm connection by running iotcl() command on BeagleBone 

7. Send Return_to_Launch command to Pixhawk. Confirm that the message was received 

by the flight controller. 

8. From the Pixhawk, send the current coordinates to the BeagleBone Black over the serial 

interface. 

9. Run the block of code that reads from the I
2
C bus on the BeagleBone MCU. 

10. Verify that the coordinates sent and received are identical 

 

Expected Result: Two-way communication interface works correctly. BeagleBone Black is able 

to send flight mode interrupt to the Pixhawk and the flight controller is able to respond with the 

current location coordinates. 

 

Conditional Requirements: 

 No timeouts between two MCUs 

 Data transmitted in under 1 second 

 

9.2.1.2 Microcontroller Power Testing 
 

Purpose: Validate that power is being distributed to the BeagleBone Black correctly and that it is 

able to run on batteries for the entire duration of the mission time 

 

Supplies: 

 BeagleBone Black 

 Power Source 
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o Voltage Regulator 

o OMRON A3DT-7111 push-button switch  

o OMRON A3DT-500GY LED 

o 6 AA Batteries 

o Battery holder 

 

Procedure: 

1. Verify power source is connected to BeagleBone Black via design specifications in IDD 

2. Press the push-button switch to deliver power to the board 

3. Confirm LED is beating in a heartbeat pattern to validate board is powered correctly 

 

Expected Result: LED blinking in heartbeat pattern 

 

9.2.1.3 Power Distribution Testing 
 

Purpose: Verify power is distributed to correctly to the Pixhawk flight controller as well as the 

four ESC’s that power the propellers. 

 

Supplies: 

 LiPo Battery 

 3DR Power Module 

 4 ESC’s and propellers 

 Pixhawk flight controller 

 Associated cabling and connetors 

 Laptop (with Mission Planner) 

 

Procedure: 

1. Connect LiPo battery to 3DR power module 

2. Connect 3DR Power Module to Pixhawk flight controller via 6-pin DF13 conncetion 

cable. 

3. Connect 3DR power module to ESC’s to the Pixhawk by securing the power (+), ground 

(-) and signal (s) wires to the main output pins on the Pixhawk 

4. Power up copter propellers and verify they can run at 3000 rotations-per-minute (RPM) 

(minimum requirement) to 10,000 RPM (maximum requirement) 

5. Run a simple guided flight mission simulation on the Mission Planner and confirm it runs 

successfully. 

6. Cross-reference with test flight data logs 

 

Expected Result: Power correctly distributed to all components of the copter 

 

9.2.1.4 ESC Calibration Testing  
 

Purpose: Verify that the ESC’s are calibrated correctly so that the quadcopter is able to fly with 

stability and accuracy and the propellers spin at the correct speeds 
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Supplies: 

 LiPo Battery 

 3DR Power Module 

 RC Transmitter Controller 

 Pixhawk Flight Controller 

 4 ESC’s 

 Laptop (with Mission Planner) 

 

Procedure: 

1. Plug in battery to 3DR power module and secure connections from PM to all four ESC’s 

2. Set transmitter flight mode to “Stabilize” 

3. Wait 30 seconds for GPS lock to settle. On the Pixhawk flight controller, the RGB LED 

light will turn green. 

4. Hold the throttle down and rudder to the right for 5 seconds. Confirm that the red arming 

light turns solid. 

5. After the light turns red, give the copter a small amount of throttle again. 

6. Disarm copter 

 

Expected Results: When giving the copter a little throttle in Step 5, the motors should all begin 

spinning at the same time and continue spinning at the exact same speed. If this is not achieved, 

re-arm the copter (Steps 2-4) and try again. 

 

9.2.2 Rover 
 

9.2.2.1 Stationary Power Test 
 

Purpose: Verify that all Rover subsystems are receiving the power necessary for operation and 

basic load testing of motors and servos on the battery. 

 

Procedure:  

1. Verify all wiring is securely in place with no loose wires or uncapped live wires 

2. Use power switch to power on the system 

3. Allow 30 seconds of idle operation, if no issues, continue 

4. Issue start command to microcontroller 

5. Verify motor functionality 

6. Issue continue command to microcontroller 

7. Verify functionality of all other subsystems 

8. Turn off power 

 

Expected Results: All powered systems will function as specified in the Rover Design section. 

 

Conditional Requirements: 

 Power switch will allow current to flow from the battery to the motor controller powering 

it on, and subsequently powering on all other subsystems 

 All subsystems power on into proper functioning mode (no failed power on attempts) 
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 Major powered subsystems can operate in unison without overloading circuits 

o Motors operate at full speed 

o Motion sensor servo able to rotate as specified 

o All degrees of freedom for the arm move as specified 

o Object grabber operates as specified 

o Control boards power on and able to execute orders 

 

9.2.2.2 Straight Line Movement Test 
 

Purpose: Verify that the Rover can move forward in a straight line over basic terrain 

 

Procedure:  

1. Power on the Rover and issue start command 

2. Verify movement along straight line 

3. Power off the Rover 

 

Expected Results: Rover moves in a straight line for specified amount of time 

 

Conditional Requirements: 

 Power source must be able to handle movement while under load of the Rover’s own 

weight 

 Motors must be functioning properly 

 Motor controller must be distributing power correctly to all of the motors 

 No mechanical or electrical failures 

 

9.2.2.3 Advanced Movement Test 
 

Purpose: Verify motor controller functionality to allow for more advanced movements including 

stationary turning and turning while in motion 

 

Procedure:  

1. Power on the rover and issue start command 

2. Verify forward movement along a straight line 

3. Verify backward movement along a straight line 

4. Verify 90 degree left turn (stationary) 

5. Verify 180 degree left turn (stationary) 

6. Verify 90 degree right turn (stationary) 

7. Verify 180 degree right turn (stationary) 

8. Verify moving left turn 

9. Verify moving right turn 

10. Verify stop 

 

Expected Results: All tests listed in the procedure are completed 

 

Conditional Requirements: 

 Motor controller commands operate as specified 
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 All motors operating as designed 

 No mechanical or electrical failures 

 

9.2.2.4 GPS Movement Test 
 

Purpose: It must be verified that the GPS module and magnetometer for the Rover are 

functioning properly. This test will ensure that the Rover is capable of navigating to a specified 

GPS coordinate location. 

 

Procedure: 

1. Power on Rover system and start software control loop 

2. Input test target GPS location 

3. Issue command for Rover to start navigation to target 

 

Expected Results: Rover successfully turns and faces the correct direction and moves forward 

until reaching the specified coordinates. The Rover will then stop. 

 

Conditional Requirements: 

 Magnetometer must relay correct orientation based on Earth’s magnetic field (proper 

function) 

 GPS module must receive accurate location data from satellites (proper function) 

 

9.2.2.5 Rough Terrain Movement Test 
 

Purpose: Verify the rover’s ability to traverse difficult terrain 

 

Procedure:  

1. Place the rover near a location with loose ground (slip correction test) 

2. Power on the system and issue the start command 

3. Verify the rover’s ability to cross this land 

4. Place the rover near a location with uneven ground (suspension assisted navigation test) 

5. Verify the rover’s ability to cross this land 

6. Bring the rover to a location with an incline of at least 30 degrees (incline test) 

7. Verify the rover’s ability to ascend the incline 

8. Verify the rover’s ability to descend the incline 

 

Expected Results: Rover will successfully traverse all presented terrain challenges 

 

Conditional Requirements: 

 All wheels properly secured to motors 

 Weight distribution does not cause tipping or a specific wheel/group of wheels to become 

inoperable 

 Suspension functions properly under system weight 

 

9.2.2.6 Retrieval Apparatus Test 
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Purpose: Verify grabber’s ability to pick up an object 

 

Procedure:  

1. Place the rover within 2 meters of target object (assuming success of GPS navigation to 

object) 

2. Verify rover positions itself in place to pick up object 

3. Verify arm moves to proper position to lower onto object 

4. Verify arm lowers directly onto object and grabber activates 

5. Verify grabber successfully grasps the object 

6. Verify arm moves to position object over storage bin 

7. Verify grabber releases and arm returns to neutral position 

 

Expected Results: Object will be successfully deposited in storage on rover 

 

Conditional Requirements: 

 Rover capable of executing fine movement adjustments 

 Arm moves as expected 

 Arm and servos able to withstand torque applied by object 

 Grabber successfully grasps the object and is able to hold on long enough for deposit in 

storage bin 

 

9.3 Software Test Environments 
 

9.3.1 Quadcopter 
 

9.3.1.1 Image Processing Test Environment 
 

The Image Processing Subsystem will be tested on a BeagleBone Black; although, any Linux 

machine capable of connecting to an ad hoc Wi-Fi network would technically be sufficient. The 

complete list of materials for this test is as follows: BeagleBone Black, XBee module, GoPro 

Hero3 White Edition, power source. The application retrieving the frames from the GoPro 

camera’s live feed and processing these images will be written in Python. The BeagleBone Black 

has native Python support. The application cannot run on a Windows machine because Windows 

does not have access to all of the necessary libraries, specifically, Windows does not support the 

dbus library. 

 

Initially, tests will be performed indoors. Positive and negative sample images will need to be 

supplied for a tennis ball in an indoor setting. Section 6.1.2: Image Processing Subsystem gives 

detailed information on how to generate the samples. These first tests do not need to be 

extensive. For example, the tennis ball simply needs to be detected while sitting alone on the 

floor. Once the script has been verified to detect the object indoors, the tests shall be moved 

outside. The object detection will be tested with a tennis ball in the grass as well as on asphalt. 

This test will also require many positive and negative samples. Once these tests generate 

satisfactory results, the subsystem will be tested from the quadcopter as it hovers about 10 feet in 
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the air, and, finally, once the subsystem is ready for integration, it will be tested with the serial 

communication and waypoint interruption. 

 

Testing for this subsystem will begin in mid to late November 2013 and will continue until 

integration in February and March of 2014. 

 

9.3.1.2 Geolocation Subsystem Test Environment 
 

The testing of the Geolocation Subsystem will be done across multiple microcontrollers. The list 

of parts involved in this subsystem is as follows: Pixhawk, BeagleBone Black, U-blox LEA-6H 

GPS module, Android device, Tiva C Series Launchpad. Tests for the Geolocation Subsystem 

will be conducted in an outdoor setting, where the GPS module will most easily receive satellite 

signals. Initial testing will be done on the ground, and to reduce the risk of damaging hardware, 

aerial testing will only be conducted once integration is ready to take place after the subsystem 

functions have been verified and validated. As these tests mainly involve communications 

between microcontrollers, they will be conducted later on in the development and production of 

SARS. The target start date for the testing of the Geolocation Subsystem is in mid-January; 

however, depending on the success of the Image Processing Subsystem tests, the geolocation 

testing may commence in late December or early January. Certain aspects of the testing may be 

conducted on isolated microcontrollers; for instance, the conversion of data to a readable format 

can be done on the BeagleBone Black with no communications with other devices. Tests of these 

isolated functions shall be conducted first. 

 

9.3.1.3 Waypoint Interruption Test Environment 
 

The testing of the waypoint interruption will be done across multiple microcontrollers. The list of 

parts of this subsystem is as follows: BeagleBone Black, Pixhawk, quadcopter hardware, GoPro 

Hero3 White Edition. The testing of this subsystem shall be conducted in an outdoor setting, as it 

involves the flight of the quadcopter. It may be possible to simulate the testing without flying the 

quadcopter, in which case, initial tests could be conducted anywhere. Group 4 will have to judge 

the feasibility of performing these simulations as well as their effectiveness in testing the 

subsystem before deciding to pursue this course of action. One definite benefit of running 

simulations would be to reduce the number of aerial tests, thus, reducing the risk of quadcopter 

malfunctions and damage to hardware components. The first tests may be conducted in the 

absence of the Image Processing Subsystem. The BeagleBone Black would send the flag to 

interrupt the waypoint after a predetermined amount of time. Eventually this process, however, 

will be integrated with the Image Processing Subsystem along with the rest of the SARS 

subsystems. 

 

As the waypoint interruption involves the integration of several subsystems as well as 

communications between the Pixhawk and the BeagleBone Black, its testing will be conducted 

later on in the development and production of SARS. The estimated commencement date of 

these tests is early February, and the estimated conclusion date, at least for the initial testing is 

mid to late February, this leaves plenty of time for integration testing. 
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9.3.2 Rover 
 

The software testing process for the rover involves all of the necessary code sequences being 

prepared before each individual test begins. All software specified in the software design section 

should be completed so that any necessary functions can be readily accessed for testing. The key 

to each of the tests will be modifying the main control loop to execute the operations for the 

required tests. 

 

Initial testing will involve speed and direction control. Each control program will be injected to 

the microcontroller and will then be executed in the environment specified in the hardware 

environment. Effectiveness of testing will be visually verified by the movements of the rover. 

 

The next batch of testing will involve sensor testing, and can be completed while the rover is 

stationary or close to stationary and the microcontroller will be connected to a computer to keep 

the debug channel open while tests are performed. This will allow for verification of anticipated 

test data. 

 

Once these aspects of testing is completed, the final rounds of testing will all be completed in the 

hardware test environment and any necessary data monitoring will be performed by transmitting 

the data over the wireless communication channels. 

 

9.4 Software Test Cases 
 

9.4.1 Quadcopter 
 

9.4.1.1 Waypoint Navigation Testing 
 

Purpose: Validate that when a series of waypoints are fed into the quadcopter, the copter is able 

to navigate to each of those points with accuracy within the tolerance range. 

 

Supplies: 

 Laptop (with Mission Planner installed) 

 Fully-assembled Quadcopter (with Pixhawk and u-Blox GPS) 

 Micro-USB cable 

 

Procedure: 

1. Connect the Pixhawk flight controller to the laptop with Mission Planner loaded on It via 

the micro-USB cable 

2. On Mission Planner, click “Connect” in the upper right-hand corner and verify the 

connection was successful 

3. Arm the motors (Test Procedure X.X) 

4. In the “Flight Plan” tab, set the takeoff point to the current location 

5. Add three waypoints to the flight plan, with each point exactly 15 meters from the home 

location (this can be done by right-clicking the point and selecting “Measure Distance”). 
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Keep the altitudes of each waypoint consistent. Record the expected latitudes and 

longitudes of each point. 

6. After each waypoint, include a “Loiter_Time” command, instructing the copter to hover 

over its position for 10000 milliseconds (10 seconds). 

7. Execute the mission. At each waypoint, record the latitude and longitude displayed in the 

Flight Statistics tab, noting the error between expected and actual results. Also at each 

waypoint, place a small flag and measure the distance from the takeoff point, recording 

the actual distance vs. the expected difference (15 m). 

8. Compare the results 

 

Expected Result: Copter correctly navigates to all of the programmed waypoints 

 

Conditional Requirements: 

 Latitude and Longitude accurate to within ±1
o
 

 Distance accurate to within ±1 meter 

 

9.4.1.2 Microcontroller Software Test 
 

Purpose: Test that the OS is correctly installed and flashed to the eMMC and that the software is 

running correctly on the BeagleBone Black. 

 

Supplies: 

 BeagleBone Black Microcontroller 

 SD card with Ubuntu eMMC flasher written to it 

 Laptop 

 USB Cable 

 

Procedure: 

1. Insert SD card into powered-off BeagleBone Black 

2. Hold down “boot” button and power the board by plugging the BeagleBone MCU into 

the laptop. 

3. Let the board sit for approximately 10 minutes while the OS is being flashed 

4. Verify all of the LED’s are in a solid state and not flashing 

 
Figure 9-1: BeagleBone Black reference LED locations 

 

5. Login to Ubuntu 
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a. User: ubuntu 

b. Password: temppwd 

6. Run test script to blink external LED 

 

Expected Result: LED blinks correctly 

 

Conditional Requirements: 

Test blinking at various speeds to ensure board is able to display status of various flight modes 

during flight tests 

 

9.4.1.3 Microcontroller Interrupt Testing 
 

Purpose: Verify that the BeagleBone Black is able to send an interrupt to the Pixhawk flight 

controller that signals a Return_To_Launch command after the object has been detected. 

 

Supplies: 

 Pixhawk flight controller 

 BeagleBone Black MCU 

 Laptop (with Mission Planner) 

 2 micro USB cables 

 I
2
C splitter 

 

Procedure: 

1. Connect Pixhawk flight controller to laptop via the micro USB cable and power on 

quadcopter 

2. Connect BeagleBone Black to laptop via micro USB cable and power on BeagleBone 

Black and confirm Ubuntu boots correctly 

3. Verify serial communication interface connection between BeagleBone Black and 

Pixhawk flight controller 

4. Set up auto-grid flight plan on Mission Planner and execute mission simulation 

5. During the mission, run Return_to_Launch script on BeagleBone that sends mode change 

to Pixhawk 

 

Expected Result: Mission Planner updates and shows mode as Return_To_Launch 

 

9.4.1.4 Pixhawk Firmware Test 
 

Purpose: Verify Pixhawk firmware is loaded correctly on the Pixhawk 

 

Procedure: 

1. Confirm Mission Planner has been installed correctly on the computer. 

2. Connect the Pixhawk flight controller to the laptop with a micro USB cable. 

3. Verify Mission Planner drivers installed correctly. 

4. In Mission Planner, select the drop-down menu in the top right-hand corner and select 

“PX4 FMU” with a baud rate of 115200. 

5. On the “Install Firmware” tab of Mission Planner, select “Arducopter V3.0.1 Quad” 
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6. Go to the Flight Data screen and slowly tilt the quadcopter. 

 

Expected Result: The firmware is correctly installed on the Pixhawk and all readings are 

accurate.  

 

Conditional Requirements: 

 In the bottom right, Mission Planner should display “Upload done” after the firmware is 

loaded 

 In the Flight Data screen, the flight statistics displaying pitch, yaw, etc. should update on 

the Heads-Up Display as the quadcopter is tilted. 

 

9.4.1.5 Image Processing Test Environment 
 

The Image Processing Subsystem will be tested on a BeagleBone Black; although, any Linux 

machine capable of connecting to an ad hoc Wi-Fi network would technically be sufficient. The 

complete list of materials for this test is as follows: BeagleBone Black, XBee module, GoPro 

Hero3 White Edition, power source. The application retrieving the frames from the GoPro 

camera’s live feed and processing these images will be written in Python. The BeagleBone Black 

has native Python support. The application cannot run on a Windows machine because Windows 

does not have access to all of the necessary libraries, specifically, Windows does not support the 

dbus library. 

 

Initially, tests will be performed indoors. Positive and negative sample images will need to be 

supplied for a tennis ball in an indoor setting. Section 5.1.2 on the Image Processing Subsystem 

design gives detailed information on how to generate the samples. These first tests do not need to 

be extensive. For example, the tennis ball simply needs to be detected while sitting alone on the 

floor. Once the script has been verified to detect the object indoors, the tests shall be moved 

outside. The object detection will be tested with a tennis ball in the grass as well as on asphalt. 

This test will also require many positive and negative samples. Once these tests generate 

satisfactory results, the subsystem will be tested from the quadcopter as it hovers about 10 feet in 

the air, and, finally, once the subsystem is ready for integration, it will be tested with the serial 

communication and waypoint interruption. 

 

Testing for this subsystem will begin in mid to late November 2013 and will continue until 

integration in February and March of 2014. 

 

9.4.1.6 Geolocation Subsystem Test Environment 
 

The testing of the Geolocation Subsystem will be done across multiple microcontrollers. The list 

of parts involved in this subsystem is as follows: Pixhawk, BeagleBone Black, U-blox LEA-6H 

GPS module, Android device, Tiva C Series Launchpad. Tests for the Geolocation Subsystem 

will be conducted in an outdoor setting, where the GPS module will most easily receive satellite 

signals. Initial testing will be done on the ground, and to reduce the risk of damaging hardware, 

aerial testing will only be conducted once integration is ready to take place after the subsystem 

functions have been verified and validated. As these tests mainly involve communications 

between microcontrollers, they will be conducted later on in the development and production of 
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SARS. The target start date for the testing of the Geolocation Subsystem is in mid-January; 

however, depending on the success of the Image Processing Subsystem tests, the geolocation 

testing may commence in late December or early January. Certain aspects of the testing may be 

conducted on isolated microcontrollers; for instance, the conversion of data to a readable format 

can be done on the BeagleBone Black with no communications with other devices. Tests of these 

isolated functions shall be conducted first. 

 

9.4.1.7 Waypoint Interruption Test Environment 
 

The testing of the waypoint interruption will be done across multiple microcontrollers. The list of 

parts of this subsystem is as follows: BeagleBone Black, Pixhawk, quadcopter hardware, GoPro 

Hero3 White Edition. The testing of this subsystem shall be conducted in an outdoor setting, as it 

involves the flight of the quadcopter. It may be possible to simulate the testing without flying the 

quadcopter, in which case, initial tests could be conducted anywhere. Group 4 will have to judge 

the feasibility of performing these simulations as well as their effectiveness in testing the 

subsystem before deciding to pursue this course of action. One definite benefit of running 

simulations would be to reduce the number of aerial tests, thus, reducing the risk of quadcopter 

malfunctions and damage to hardware components. The first tests may be conducted in the 

absence of the Image Processing Subsystem. The BeagleBone Black would send the flag to 

interrupt the waypoint after a predetermined amount of time. Eventually this process, however, 

will be integrated with the Image Processing Subsystem along with the rest of the SARS 

subsystems. 

 

As the waypoint interruption involves the integration of several subsystems as well as 

communications between the Pixhawk and the BeagleBone Black, its testing will be conducted 

later on in the development and production of SARS. The estimated commencement date of 

these tests is early February, and the estimated conclusion date, at least for the initial testing is 

mid to late February, this leaves plenty of time for integration testing. 

 

9.4.2 Rover 
 

9.4.2.1 Speed Control Test 
 

Purpose: Verify that the software designed decide on a speed for the rover and transmit that 

speed to the motor controller are functioning properly. 

 

Procedure:  

1. Power up the system and begin the testing code on the microcontroller 

2. Verify 25% movement speed 

3. Verify 50% movement speed 

4. Verify 75% movement speed 

5. Verify 100% movement speed 

 

Expected Results: The rover will travel in a straight line at measurably different speeds 
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Conditional Requirements: 

 Communications with the motor controller from the microcontroller will be successful 

 Commands being issued from the microcontroller are encoded as expected 

 Values calculated to be sent to motor controller are calculated correctly 

 

9.4.2.2 Direction Control Test 
 

See Advanced Movement Test 

 

Additional Conditional Requirements: 

 Correct commands are being issued from the microcontroller to the motor controller 

 Correct values are being calculated to create directional movement 

 Left and right motor channel commands are being separated appropriately 

 

9.4.2.3 Echolocation Sensor Test 
 

Purpose: Verify that echolocation sensor is functioning properly and results are being calculated 

appropriately 

 

Procedure:  

1. Power up the system and begin the testing code on the microcontroller 

2. Place object at .1m from the sensor and verify detection 

3. Move object to .5m from the sensor and verify detection 

4. Move object to 1m from the sensor and verify detection 

5. Move object to 2m from the sensor and verify detection 

6. Move object to 3m from the sensor and verify detection 

7. Verify servo and sensor rotation to maximum angle (120 degrees) left of straight ahead 

8. Verify servo and sensor rotation to maximum angle (120 degrees) right of straight ahead 

 

Expected Results: PING))) module will correctly locate objects at .1m, .5m, 1m, 2m, and 3m 

away and the servo will rotate as specified 

 

Conditional Requirements: 

 PING))) is properly connected to the microcontroller 

 PING))) is functioning as specified 

 Microcontroller is issuing correct signals to PING))) 

 Microcontroller is correctly interpreting results returned from PING))) after it senses 

something 

 

9.4.2.4 Accelerometer and Gyroscope Sensor Test 
 

Purpose: Verify functionality of accelerometer and gyroscope sensors 

 

Procedure:  

1. Power up the system and begin the testing code on the microcontroller 
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2. While holding the system and without rotating it, slowly move it forwards and then 

backwards 

3. Slowly move the system to the left and then to the right 

4. Slowly move the system up and then down 

5. Verify output results for accelerometer 

6. While holding the system in place, slowly rotate the system forwards and then backwards 

7. Slowly tilt the system with a clockwise roll and then with a counterclockwise roll 

8. With the system flat, slowly rotate it clockwise and counterclockwise within the plane it 

is on 

9. Verify output results for gyroscope 

 

Expected Results: The microcontroller will record expected results for all six tested degrees of 

freedom 

 

Conditional Requirements: 

 Accelerometer and gyroscope are functioning properly 

 Microcontroller is correctly connected to accelerometer and gyroscope 

 Microcontroller is correctly interpreting data received from accelerometer and gyroscope 

 

9.4.2.5 Hall Effect Sensor Test 
 

Purpose: Verify that the Hall Effect sensors are properly connected, properly detecting magnetic 

fields, and data is being handled properly by the microcontroller 

 

Procedure:  

1. Power up the system and begin the testing code on the microcontroller 

2. Pass a magnet by sensor number 1 and verify response on microcontroller 

3. Pass a magnet back and forth past sensor number 1 and verify microcontroller response 

4. Repeat steps 2 and 3 for sensors numbered 2 through 6. 

 

Expected Results: Each Hall Effect sensor will function as it is designed to and the 

microcontroller will properly interpret data from each sensor 

 

Conditional Requirements: 

 All 6 Hall Effect sensors are in proper working order 

 All 6 Hall Effect sensors are properly connected to the microcontroller 

 Microcontroller is properly interpreting results from each of the Hall Effect sensors. 

 

9.4.2.6 GPS and Magnetometer Test 
 

See GPS Movement Test 

 

Additional Conditional Requirements: 

 Magnetometer is correctly connected to the microcontroller 

 Microcontroller is properly interpreting magnetometer inputs 
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 GPS module is properly connected to the microcontroller 

 Microcontroller is properly interpreting GPS inputs 

 Angle and direction calculations are correctly performed by microcontroller 

 Commands to turn the rover are functioning properly (See Direction Control Test) 

 Stop command is issued by microcontroller when destination is reached 

 

9.4.2.7 Rough Terrain Movement Correction Test 
 

See Rough Terrain Movement Test 

 

Additional Conditional Requirements: 

 Microcontroller recognizes slippage based on information from Hall Effect sensors and 

properly corrects for the issue 

 Microcontroller recognizes the rover is stuck based on accelerometer/gyroscope input and 

properly corrects 

 Microcontroller handles necessary speed adjustments for ascending/descending 

inclines9.2.2.5 

 

9.4.2.8 Retrieval Apparatus Test 
 

See Retrieval Apparatus Test 

 

Additional Conditional Requirements: 

 Microcontroller successfully navigates from a short distance to the target object 

 Microcontroller properly issues commands to manipulate arm servos to move the arm 

into place for pickup, drop off, and return to neutral 

 Microcontroller issues commands for grabbing action and grasp release correctly 

 

9.4.2.9 Object Avoidance Test 
 

Purpose: Verify that sensor data is appropriately employed to successfully navigate around 

obstacles in the rover’s path 

 

Procedure:  

1. Power on the rover and issue a start command with a target location separated from the 

rover’s current position by 3 obstacles as seen in FIGURE 8-1 

2. Verify successful avoidance of obstacles 1-3 

3. Verify rover stops at target location 

 



116 

 

 

 

Expected Results: Rover will successfully navigate to specified location without colliding with 

any obstacles in its path 

 

Conditional Requirements: 

 Full function of the PING))) module as described in Echolocation Sensor Test 

 Microcontroller issues necessary movement commands to move around obstacles 

 Microcontroller maintains target location despite subroutines to avoid obstacles 

 Microcontroller recognizes orientation of obstacles compared to rover system 

 

9.4.3 Image Processing Subsystem Test 
 

This section contains all the tests which shall be performed on the SARS image processing 

subsystem. It contains information on where and how these tests shall be performed. The section 

also defines the passing criteria for each test. 

 

9.4.3.1 Testing the GoProController Python Script 
 

Figure 9-2: Obstacle layout for Object 

Detection/Avoidance Test 
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Purpose: To access the GoPro video feed over the camera’s ad hoc network using a BeagleBone 

Black with a Wi-Fi attachment and to verify that a frame may be extracted from the feed. 

 

Materials:  

 BeagleBone Black 

 XBee S6B (for testing purpose any Wi-Fi adapter will do) 

 XBee Cape 

 Power supply 

 GoPro Hero3 White Edition 

 

Test Procedure 1: The writer of the open source project has supplied a clearly defined 

installation and testing procedure. 

 

To install the prerequisites on the BeagleBone Black, run the following command: 

 

sudo apt-get install python-numpy python-opencv git 

 

To clone the repo, run the following command: 

 

git clone https://github.com/joshvillbrandt/GoProController.git 

 

To test the script, run the following Python commands: 

 

from GoProController import GoProController 

c = GoProController() 

c.test() 

 

Expected Results: The result of this test should be that the script will print the status of the 

camera. If the BeagleBone Black is unable to connect to the camera, an error shall be thrown. 

This test cannot pass until the connection is made and the status is printed successfully.  

 

Test Procedure 2: To verify that the script may extract a frame from the GoPro video feed, run 

the following Python command: 

 

c.getImage(<ssid>, <password>) 

 

Expected Results: The result of this test should be that a .png file will be created and stored on 

the BeagleBone Black. Furthermore, the following message should be stored in the log: 

“getImage(<ssid>) – success!”. If, instead, the log contains the message, “getImage(<ssid>) – 

failure”, then the test has failed. Before passing the subsystem on this test, open the image file 

and verify that it is an image from the video feed.  

 

9.4.3.2 Testing the Object Detection 
 

Purpose: To verify that the BeagleBone Black can detect a brightly colored target object in the 

frames extracted from the GoPro video feed. 
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Materials: 

 GoPro Hero3 White Edition 

 BeagleBone Black 

 XBee S6B 

 XBee Cape 

 SARS Copter 

 Power Supply 

 

Test Procedure 1: After creating a set of classifiers, test OpenCV’s object detection application 

on the target object while it is indoors. 

 

Expected Results: This test should yield no less than a 99% detection rate and no more than a 

1% false positive rate. 

 

Test Procedure 2: After creating another set of classifiers, test OpenCV’s object detection 

application on the target object while it is outside. Perform this test on both grass and asphalt 

using the same classifiers.  

 

Expected Results: This test should yield no less than a 99% detection rate and no more than a 

1% false positive rate. 

 

Test Procedure 3: After creating another set of classifiers, test OpenCV’s object detection 

application on the target object while the GoPro and the BeagleBone Black are mounted on the 

SARS Copter, hovering approximately 10 feet in the air.  

 

Expected Results: This test should yield no less than a 99% detection rate and no more than a 

1% false positive rate. 

 

Test Procedure 4: Using the same set of classifiers as in the third test procedure, test OpenCV’s 

object detection application in conjunction with the waypoint interrupt process. 

 

Expected Results: This test should yield no less than a 99% detection rate and no more than a 

1% false positive rate. Furthermore, once the target object has been detected, the SARS Copter 

should reposition itself over top of the object with an acceptable error of 6 inches. 

 

Conditional Requirements: The first tests of this functionality should be conducted indoors. 

After the subsystem has passed the indoor test, it shall be tested outdoors with the target object 

sitting on the grass and on the asphalt. All tests shall require the collection of positive and 

negative samples for the creation of classifiers. Section 6.1.2: Image Processing Subsystem 

illustrates how these collections are built. For the initial tests no less than 500 positive samples 

and 500 negative samples should be collected; although, to get the desired detection and false 

positive rates, more samples may be necessary. For later tests, when the GoPro is mounted to the 

SARS Copter, no less than 2000 positive samples and 2000 negative samples should be 

collected.  
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9.4.3.3 Image Processing Subsystem Integration Test 
 

Purpose: To verify the function of the subsystem once it has been integrated first with the 

waypoint interruption, then with the geolocation subsystem, and finally with all of the SARS 

subsystems. 

 

Materials: See the list of parts in Section 7 Integration Summary. 

 

Test Procedure 1: This test involves the integration of the image processing subsystem with the 

waypoint interruption. The quadcopter shall travel from a starting position to a waypoint. This 

waypoint can be specified using the Mission Planner application that comes with ArduCopter. 

Somewhere between the starting position and the waypoint, the quadcopter shall pass over the 

tennis ball on the ground. This test shall be conducted following the initial testing of the 

waypoint interruption. 

 

Expected Results: The SARS Copter should abandon the waypoint and hover over top of the 

tennis ball, adjusting its position so that it comes to within 6 inches of being directly over top of 

the target object. After maintaining this position for approximately 10 seconds, the SARS Copter 

should land in the immediate vicinity of the tennis ball. A success rate no less than 95% should 

be achieved. 

 

Test Procedure 2: This test involves the integration of the image processing subsystem with the 

geolocation subsystem. The same testing procedure shall be followed. The SARS Copter shall be 

traveling from Point A to Point B when it passes over the target object. This test shall be 

conducted following the initial testing of the geolocation subsystem. 

 

Expected Results: The SARS Copter’s initial mission shall be interrupted when the BeagleBone 

detects the tennis ball on the ground. Once it has zeroed in and is hovering directly over top of 

the tennis ball, the copter shall send its GPS coordinates either to the Tiva Launchpad or, 

depending on the progress made with the Android application, to an Android device running the 

SARS App. If the SARS App is running, it shall be fairly simple determining if the GPS 

coordinates were relayed correctly. Otherwise, the coordinate information will need to be 

accessed on the Tiva Launchpad. After sending the GPS coordinates, the quadcopter should 

return to its starting position and land. A success rate of no less than 95% should be achieved. 

 

Test Procedure 3: This test of the subsystem involves the integration of the image processing 

subsystem with the entirety of SARS. The same testing procedure shall be followed as in the first 

and second image processing integration tests. This test shall be conducted after all subsystems 

have been thoroughly tested. 

 

Expected Results: The result of this test should be that the SARS rover retrieves the tennis ball 

after the quadcopter has relayed its position, and the SARS rover and the quadcopter should both 

return to their respective starting positions. A success rate of no less than 95% should be 

achieved. 
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Conditional Requirements: These tests must be conducted outside, as they require the flight of 

the SARS Copter and accurate receipt of GPS coordinates via satellite. 

 

9.4.4 Geolocation Subsystem Test 
 

This section contains all the tests which shall be performed on the SARS geolocation subsystem. 

It contains information on where and how these tests shall be performed. The section also defines 

the passing criteria for each test. 

 

9.4.4.1 Testing the BeagleBone Black/Pixhawk Serial Communications 
 

Purpose: To verify that the Pixhawk can send GPS coordinate data to the BeagleBone Black via 

serial connection without data corruption or loss of information. 

 

Materials: 

 Pixhawk microcontroller 

 BeagleBone Black 

 Ublox LEA-6H 

 Power supply 

 

Test Procedure: Have the Pixhawk send the GPS coordinate data. Check the data once it has 

been received by the BeagleBone Black. This test is scheduled to commence in mid-January 

2015. 

 

Expected Results: The data received must be 100% accurate. It is imperative that the correct 

GPS coordinates are received. 

 

Conditional Requirements: This test may be conducted on the ground, and for the sake of 

receiving a strong satellite signal, the test shall be conducted outdoors. 

 

9.4.4.2 Testing the BeagleBone Black/Tiva Launchpad Wi-Fi Communications 
 

Purpose: To verify that the BeagleBone Black can send GPS coordinate data to the Tiva C 

Series via wireless communications without data corruption or loss of information. 

 

Materials: 

 BeagleBone Black 

 Tiva C Series 

 2 XBee S6B’s 

 XBee Cape 

 Power supply 

 

Procedure: Have the BeagleBone Black send the data. Check the data once it has been received 

by the Tiva C Series. This test is scheduled to commence in mid-January 2015. 
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Expected Results: The received data must be 100% accurate. It is imperative that the correct 

GPS coordinates are received. 

 

Conditional Requirements: This test may be conducted indoors as it does not actually involve 

receiving GPS information via satellite. 

 

9.4.4.3 Testing the GPS Data Conversion 
 

Purpose: To verify that the GPS data received by the BeagleBone Black from the Pixhawk is 

being converted to an easily readable format. This is simply a matter of parsing the string of 

characters received over the serial connection. 

 

Materials: 

 BeagleBone Black 

 Pixhawk microcontroller 

 Power supply 

 

Procedure: A test function shall be provided in the Python script responsible for handling this 

conversion. 

 

Expected Results: The test function shall print to the terminal the new coordinates in the 

standard format. 

 

Conditional Requirements: This test may be conducted indoors as it does not actually involve 

receiving GPS information via satellite. 

 

9.4.4.4 Testing the BeagleBone Black/Android Wi-Fi Communications 
 

Purpose: To verify that the BeagleBone Black can send GPS coordinate data to an Android 

device running the SARS application via wireless communications without data corruption or 

loss of information. 

 

Materials: 

 BeagleBone Black 

 Nexus 5 running the SARS application 

 XBee S6B 

 XBee Cape 

 Power supply 

 

Procedure: Have the BeagleBone send the converted GPS coordinate data. Check the data once 

it is displayed by the Android device. The commencement date of this test is TBD, as it depends 

upon the progress made on the Android application. 

 

Expected Results: The received data must be 100% accurate. It is imperative that the correct 

GPS coordinates are displayed by the application. 
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Conditional Requirements: The test may be performed indoors, as it does not actually involve 

receiving GPS information via satellite. 

 

9.4.4.5 Testing the Rover GPS Navigation 
 

Purpose:  To verify that the SARS Rover can navigate to a specific GPS coordinate while 

avoiding obstacles along the way. 

 

Materials: 

 SARS Rover 

 Adafruit Ultimate GPS Breakout 

 Hall Effect Sensors 

 Parallax Ping))) 

 Magnetometers 

 Power supply 

 

Test Procedure 1: Given a set of GPS coordinates as a target, the rover shall be instructed to 

travel to those coordinates. No obstacles shall be placed in its path. 

 

Expected Results: The SARS Rover shall travel to within 9 feet of the destination. If the rover 

stops more than 9 feet from the target, the test shall be considered a failure. This test must yield a 

95% success rate before integration testing may commence. 

 

Test Procedure 2: Given a set of GPS coordinates as a target, the rover shall be instructed to 

travel to those coordinates while avoiding obstacles along the way. 

 

Expected Results: The SARS Rover shall travel to within 9 feet of the destination. If the rover 

stops more than 9 feet from the target, or if the rover collides with any obstacles along the way, 

the test shall be considered a failure. This test must yield a 95% success rate before integration 

testing may commence. 

 

9.4.4.6 Geolocation Subsystem Integration Testing 
 

Purpose: To verify the function of the subsystem once it has been integrated first with the image 

processing subsystem, waypoint interruption, and wireless communications, and finally after it 

has been integrated with all of the SARS subsystems. 

 

Materials: See the list of parts in Section 7 Integration Summary. 

 

Test Procedure 1: This test involves the integration of the geolocation subsystem with the 

image processing, the waypoint interruption, and the wireless communication between the 

BeagleBone Black, the Tiva C Series, and the Android device. This test shall have the same 

procedure as the second integration test in Section 9.4.1.3: Image Processing Subsystem 

Integration Test; therefore, the two tests shall be performed at the same time. 
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Expected Results: Once the SARS Copter has zeroed in on the target object and is hovering 

directly over top of it, verify that the Android device is displaying the correct GPS coordinates of 

the tennis ball. Once the quadcopter has safely landed, verify that the Tiva Launchpad received 

the correct coordinate data from the BeagleBone Black. Finally, once the GPS coordinates have 

been sent, the quadcopter should return and land in its original starting location. A success rate 

no less than 95% must be achieved. 

 

Test Procedure 2: This test involves the integration of the geolocation subsystem with the 

entirety of SARS. The same testing procedure described in the previous integration test shall be 

followed. This test shall be conducted after all subsystems have been thoroughly tested. 

 

Expected Results: The result of this test should be that the SARS rover retrieves the target 

object after the SARS Copter has relayed its position, and the SARS rover and the SARS Copter 

should both return to their respective starting positions. A success rate no less than 95% must be 

achieved. 

 

9.4.5 Quadcopter Waypoint Interruption Test 
 

This section contains all the tests which shall be performed on the SARS waypoint interruption 

subsystem. It contains information on where and how these tests shall be performed. The section 

also defines the passing criteria for each test. 

 

Initial Interruption Test: The purpose of this test is to verify that the BeagleBone Black may 

interrupt the quadcopter’s progress towards a destination specified by Mission Planner. This test 

may be done in the absence of the image processing system. It would involve sending a flag from 

the BeagleBone Black while the quadcopter is traveling from Point A to Point B after a 

predetermined amount of time has passed. When this flag is received, the quadcopter will be 

directed to pause and hover briefly and then to land at its current location. Depending on the 

feasibility of simulating the quadcopter flight using text outputs, Group 4 may opt to conduct this 

test indoors; however, it is highly likely that an effective simulation will not be easily achieved, 

in which case the test would need to be conducted outdoors. In either case, a 95% success rate 

must be achieved for this test to pass. The initial interruption tests are scheduled to commence in 

early February. 

 

Waypoint Interruption Integration Tests: The purpose of this test is to verify the function of 

the waypoint interruption subsystem once it has been integrated first with the image processing 

subsystem, then with the geolocation subsystem, and finally with all of the SARS subsystems. 

These tests must be conducted outside, as they require the flight of the quadcopter and accurate 

receipt of GPS coordinates via satellite. 

 

All three of these integration tests and their requirements are defined in the integration testing 

part of Section 8.4.1. 

 

9.4.6 Quadcopter Waypoint Interruption Test 
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This section contains all the tests which shall be performed on the SARS waypoint interruption 

subsystem. It contains information on where and how these tests shall be performed. The section 

also defines the passing criteria for each test. 

 

9.4.6.1 Initial Interruption Test 
 

Purpose: To verify that the BeagleBone Black may interrupt the SARS Copter’s progress 

towards a destination specified by Mission Planner. 

 

Materials: 

 BeagleBone Black 

 SARS Copter 

 Power supply 

 

Procedure: This test may be done in the absence of the image processing system. It would 

involve sending a flag from the BeagleBone Black while the SARS Coper travels from Point A 

to Point B after a predetermined amount of time has passed since takeoff. The initial interruption 

tests are scheduled to commence in early February. 

 

Expected Result: When the flag is received, the SARS Copter will be directed to pause eand 

hover briefly and then to land at its current location. A 95% success rate must be achieved for 

this test to pass. 

 

Conditional Requirements: Depending on the feasibility of simulating quadcopter flight, the 

SARS Group may opt to conduct this test indoors; however, it is highly likely that an effective 

simulation will not be easily achieved, in which case the test would need to be conducted 

outdoors. 
 

9.4.6.2 Waypoint Interruption Integration Tests 
 

The purpose of these tests is to verify the function of the waypoint interruption subsystem once it 

has been integrated first with the image processing subsystem, then with the geolocation 

subsystem, and finally with all of the SARS subsystems. These tests must be conducted outside, 

as they require the flight of the quadcopter and accurate receipt of GPS coordinates via satellite. 

 

All three of these integration tests and their requirements are defined Section 9.4.1.3: Image 

Processing Subsystem Integration Test. 

 

9.4.7 Quadcopter/Rover Communications Test 
 

Purpose:  
To test if the quadcopter’s BeagleBone Black microcontroller and the rover’s Tiva C 

microcontroller can communicate wirelessly through the Xbee WiFi modules. 

 

Supplies: 
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 Windows desktop or laptop environment 

 PuTTY Client 

 BeagleBone Black Microcontroller 

 Tiva C Microcontroller 

 Xbee Wifi Module (2) 

 Micro-USB Cable (2) 

 

Procedure: 

1. Ensure the Xbee is connected to the BeagleBone according to the design in section 5.4.1. 

2. Ensure the Xbee is connected to the Tiva according to the design in section 5.4.2. 

3. Ensure that the BeagleBone has its serial communications test script loaded. 

4. Ensure that the Tiva has its serial communications test code flashed. 

5. Connect the BeagleBone to the desktop/laptop environment with a Micro-USB cable. 

6. Connect the Tiva to the desktop/laptop environment with a Micro-USB cable. 

7. Open a serial communications connection to the Beaglebone using an instance of PuTTY. 

8. Open a serial communications connection to the Tiva using another instance of PuTTY. 

9. Send a test message to the Tiva’s serial communications console from the BeagleBone’s 

serial communications console. Determine if the message arrives on the Tiva. Measure 

the time delay between transmission and receipt. 

10. Send a test message to the BeagleBone’s serial communications console from the Tiva’s 

serial communications console. Determine if the message arrives on the BeagleBone. 

Measure the time delay between transmission and receipt. 

11. Repeat steps 9 and 10 3 more times. 

 

Expected Results: 

 Messages sent from the BeagleBone to the Tiva successfully register on the Tiva’s serial 

communications console in PuTTY.  

 Messages sent from the Tiva to the BeagleBone successfully register on the 

BeagleBone’s serial communications console in PuTTY. 

 

Conditional Requirements: 

 The messages must arrive intact and in order. 

 The delay between transmission and receipt of messages must not exceed 250ms. 

 

9.4.8 Android/Quadcopter Communications Test 
 

Purpose: 
To test if the quadcopter’s BeagleBone Black microcontroller can communicate with the Nexus 

5 Android device. 

 

Supplies: 

 Windows desktop or laptop environment 

 Nexus 5 Android device with the SARS Quadcopter test application installed 

 PuTTY Client 

 BeagleBone Black Microcontroller 
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 Xbee Wifi Module 

 Micro-USB Cable 

 

Procedure: 

1. Ensure the Xbee is connected to the BeagleBone according to the design in section 5.4.1. 

2. Ensure that the BeagleBone has its socket communications test script loaded. 

3. Connect the BeagleBone to the desktop/laptop environment with a Micro-USB cable. 

4. Open a serial communications connection to the Beaglebone using an instance of PuTTY. 

5. Open the SARS Quadcopter test application on the Nexus 5. 

6. Click the Test button on the SARS Quadcopter test application running on the Nexus 5. 

7. A test message should appear on the BeagleBone’s serial communications console in 

PuTTY. Determine if the message arrives on the console. Measure the time delay 

between transmission and receipt. 

8. Send a test message to the Android application from the BeagleBone’s serial 

communications console. 

9. A test message should appear in the center of the Android application interface. 

Determine if the message arrives on the application. Measure the time delay between 

transmission and receipt. 

10. Repeat steps 9 and 10 3 more times. 

 

Expected Results: 

 Messages sent from the BeagleBone to the Nexus 5 successfully register on the 

Quadcopter test application’s interface. 

 Messages sent from the Nexus 5 to the BeagleBone successfully register on the 

BeagleBone’s serial communications console in PuTTY. 

 

Conditional Requirements: 

 The messages must arrive intact and in order. 

 The delay between transmission and receipt of messages must not exceed 250ms. 

 

9.4.9 Android/Rover Communications Test 
 

Purpose: 
To test if the rover’s Tiva C microcontroller can communicate with the Nexus 5 Android device. 

 

Supplies: 

Windows desktop or laptop environment 

 Nexus 5 Android device with the SARS Rover test application installed 

 PuTTY Client 

 Tiva C Microcontroller 

 Xbee Wifi Module 

 Micro-USB Cable 

 

Procedure: 

1. Ensure the Xbee is connected to the Tiva according to the design in section 5.4.2. 
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2. Ensure that the Tiva has its socket communications test code flashed. 

3. Connect the Tiva to the desktop/laptop environment with a Micro-USB cable. 

4. Open a serial communications connection to the Tiva using an instance of PuTTY. 

5. Open the SARS Rover test application on the Nexus 5. 

6. Click the Test button on the SARS Rover test application running on the Nexus 5. 

7. A test message should appear on the Tiva’s serial communications console in PuTTY. 

Determine if the message arrives on the console. Measure the time delay between 

transmission and receipt. 

8. Send a test message to the Android application from the Tiva’s serial communications 

console. 

9. A test message should appear in the center of the Android application interface. 

Determine if the message arrives on the application. Measure the time delay between 

transmission and receipt. 

10. Repeat steps 9 and 10 3 more times. 

 

Expected Results: 

 Messages sent from the Tiva to the Nexus 5 successfully register on the Rover test 

application’s interface. 

 Messages sent from the Nexus 5 to the Tiva successfully register on the Tiva’s serial 

communications console in PuTTY. 

 

Conditional Requirements: 

 The messages must arrive intact and in order. 

 The delay between transmission and receipt of messages must not exceed 250ms. 

 

9.4.10 Android/Go-Pro Video Streaming Test 
 

Purpose: 
To test if the Nexus 5 can successfully connect to and live stream from the Go-Pro camera both 

manually and through the SARS application. 

 

Supplies: 

 Nexus 5 Android device with the SARS application installed 

 Go-Pro Hero 3 

 

Procedure: 

1. Ensure that WiFi is enabled on the Go-Pro. 

2. Connect to the Go-Pro’s web server on the Nexus 5 by navigating to Settings > Wi-Fi. 

The Network ID should be “Hero3.” 

3. Open the Chrome browser on the Nexus 5 and enter the URL http://10.5.5.9:8080/ in the 

address bar. 

4. Click the folder named live, then the file named amba.m3u8. 

5. The live stream should open in the native Android video player. Determine if the live 

stream is working as intended. 

6. Close the Chrome browser and reconnect to the original Wi-Fi network. 

7. Open the SARS application on the Nexus 5. 

http://10.5.5.9:8080/
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8. Click the Video Stream button. The native Android video player should launch the live 

stream exactly as before with the browser. Determine if the live stream is working as 

intended. 

 

Expected Results: 

  The live stream successfully plays when accessed from the Chrome browser on the 

Nexus 5. 

 The live stream successfully plays when accessed from the SARS application on the 

Nexus 5. 

 

Conditional Requirements: 

  The live video must stream with acceptable quality and latency. 

 

9.4.11 Android User Interface Test 
 

Purpose: 
To test if the Nexus 5 user interface is easy to use, intuitive, and functions according to the 

specifications laid out in section 6.3. 

 

Supplies: 

 Nexus 5 Android device with the SARS application installed 

 

Procedure: 

Open the SARS application on the Nexus 5. Navigate every screen of the user interface and click 

every on screen button. Determine if the application is working as intended. 

 

Expected Results: 

 The user interface is easy to navigate. 

 The user interface is intuitive. 

 The user interface functions according specification. 

 

10  Administrative Content 
 

10.1 Milestones 
 

Design documentation will be handled concurrently with all project milestones. The following 

tables display the development phases of each project subsystem as well as the intended 

completion date for each phase. 

 

Table 10-10-1: Quadcopter Milestones below displays the intended completion dates for all 

major development phases of the SARS Copter. Development of this project component is 

currently on schedule. The design stage was very brief, as the team decided to go with a 

prefabricated quadcoper, and the build stage is expected to be completed on time. 
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Component  Completion Date 

Quadcopter Specs 9/9/2014 

 Research 10/10/2014 

 Design 11/23/2014 

 Build 1/9/2014 

 Test 2/13/2015 

 Integration 4/1/2015 
Table 10-10-1: Quadcopter Milestones 

Table 10-10-2: Image Processing Milestones below displays the intended completion dates for 

all major development phases of the SARS image processing subsystem. Development of this 

project component is currently on schedule. The design stage was very brief, as OpenCV 

provides most of the libraries necessary for object detection and as the SARS Group has found 

an open source Python script which will facilitate the interfacing of the BeagleBone Black with 

the GoPro Hero3. The build stage is expected to be completed on time. 

 

Component  Completion Date 

QC Camera/Item Detection Specs 9/9/2014 

 Research 10/10/2014 

 Design 11/23/2014 

 Build 1/9/2015 

 Test 2/13/2015 

 Integration 4/1/2015 
Table 10-10-2: Image Processing Milestones 

Table 10-10-3: Quadcopter Communications Milestones below displays the intended completion 

dates for all major development phases of the SARS Copter communications interface. 

Development of this project component is currently on schedule. 

 

Component  Completion Date 

QC Communication Interface Specs 9/9/2014 

 Research 10/10/2014 

 Design 11/21/2014 

 Build 12/12/2014 

 Test 2/2/2015 

 Integration 4/1/2015 
Table 10-10-3: Quadcopter Communications Milestones 

Table 10-10-4: Ground Rover Milestones below displays the intended completion dates for all 

major development phases of the SARS Rover hardware. Development of this project 

component is currently on schedule. 
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Component  Completion Date 

Ground Rover Specs 9/9/2014 

 Research 10/10/2014 

 Design 11/7/2014 

 Build 1/9/2014 

 Test 2/13/2015 

 Integration 4/1/2015 
Table 10-10-4: Ground Rover Milestones 

Table 10-10-5: Rover Item Detection Milestone below displays the intended completion dates for 

all major development phases of the SARS Rover item detection subsystem. Development of this 

project component is currently on schedule. 

 

Component  Completion Date 

Rover Item Detection Specs 9/9/2014 

 Research 10/10/2014 

 Design 11/23/2014 

 Build 1/9/2015 

 Test 2/13/2015 

 Integration 4/1/2015 
Table 10-10-5: Rover Item Detection Milestones 

 

Table 10-10-6: Rover Communications Milestones below displays the intended completion dates 

for all major development phases of the SARS Rover communications interface. Development of 

this project component is currently on schedule. 

 

Component  Completion Date 

Rover Communications Specs 9/9/2014 

 Research 10/10/2014 

 Design 11/21/2014 

 Build 1/9/2015 

 Test 2/2/2015 

 Integration 4/1/2015 
Table 10-10-6: Rover Communications Milestones 

Table 10-10-7: Android Application Milestones below displays the intended completion dates 

for all major development phase of the SARS Android application. This project component is 

currently on schedule. 
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Component  Completion Date 

Android Application Specs 9/9/2014 

 Research 10/10/2014 

 Design 10/24/2014 

 Build 11/23/2014 

 Test 2/13/2015 

 Integration 4/1/2015 
Table 10-10-7: Android Application Milestones 

Displayed are the significant project milestones for each SARS subsystem. These milestones 

correspond with the build, test, and integration phases of the related SARS subsystems.  

 

Figure 10-1: Quadcopter Milestones below displays all major tasks necessary for the completion 

of the build stage of the SARS Copter development.  

 

 
Figure 10-1: Quadcopter Milestones 

 

 

Figure 10-2: Image Processing Milestones displays all major tasks necessary for the completion 

of the build stage of the SARS image processing subsystem development. 

 
Figure 10-2: Image Processing Milestones 

Figure 10-3: Rover Milestones below displays all major tasks necessary for the completion of the 

build stage of the SARS Rover development. 
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Figure 10-3: Rover Milestones 

Figure 10-4: Android Application Milestones below displays all major tasks necessary for the 

completion of the build stage of the SARS Android application development. 

 
Figure 10-4: Android Application Milestones 

 

10.2 Budget and Financing 
 

Group 4 has received $500 from SoarTech and $1000 from Boeing in sponsorships for a grand 

total of $1500 in funding. This amount of funding should be more than enough to cover all 

hardware and testing needed to implement the complete search-and-retrieval system. The largest 

portion of project expenses comes from the quadcopter. Depending on the pre-installed 

capabilities of the copter and whether or not it is pre-assembled, it can realistically run up to 

$1000. Group 4 decided to go with a quadcopter costing $550. This cost will be financed through 

the Boeing sponsorship. On top of just the copter, the camera device and mounting system used 

for the field detection can also be quite expensive as we need a reliable camera for the item 

detection from the air. The camera, a GoPro Hero3 White, cost $199.99; however, the parents of 

one of the group members have opted to pay for it. The other main expense will be the rover 

chassis, motors, power supply, and motor controller, along with the sensors for object detection 

and the object retrieval apparatus. So far, approximately $400 has been spent on a chassis, a 

motor controller, and several sensors. This was the maximum funding we expected to allocate to 

the rover; however, because the camera will not be paid for using sponsored funding, there is not 

currently a significant risk of running out of funds. In the event that all sponsored funding is 

depleted, Group 4 has decided to pool personal funds to cover any remaining costs. 
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10.3 Bill of Materials 
 

Below in Table 10-8 is the current list of all materials that will be required to implement the 

Search and Retrieval System. Some items have already been acquired, and the list is subject to 

change pending final design implementation.  

 

Item Cost Notes 

Quadcopter 

$550.00 

Copter frame, Pixhawk flight controller, 3DR power 

module, 4 ESC’s, propellers, u-blox GPS, wiring and 

screws 

QC Camera $200.00 Go-Pro Hero 3 

Xbee Wifi Module (2) $60.00  

Rover $400.00 Chassis, motor, motor controller, and sensors 

Object Retrieval Apparatus $50.00  

Rover Microcontroller $20.00 TI Tiva C Series 

Xbee SIP Adapter $31.50 For mounting the Xbee Wifi Module 

Ping))) Ultrasonic Sensor Kit  $45.00 Includes Mounting Bracket and 180° Servo 

GPS Chip $50.00  

PCB $60.00  

Tennis Balls $30.00 Items being detected 

Xbee USB Development 

Board $80.00 
 

Beaglebone Microcontroller $0.00 Donated 

BeagleBone Xbee Cape $9.00 For mounting the Xbee Wifi Module 

BeagleBone Power Source 

$50.00 

BeagleBone case, voltage regulator, 6 AA batteries, 

OMRON A3DT-7111 push-button switch, OMRON 

A3DT-500GY LED 

3DR 915 MHz Telemetry 

Radios $100.00 
 

Turnigy 6X Radio Control 

Transmitter and Receiver $30.00 
 

Total $1,765.00  

Table 10-8: Bill of Materials
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B. Copyright Permissions 

 
Figure 4-1: “Schematic of reaction torques on each motor of a quadrotor aircraft, due to spinning 

rotor” by Gabriel Hoffma is licensed under CC by 2.5 

 

Figure 4-2: “Cascade Classifier” by Paul Viola and Michael Jones 

 

Figure 4-3: “Classifier Features” by Paul Viola and Michael Jones 

 

Figure 4-7: “Black Hardware Details” by jkridner under CCA by 3.0 

 

Figure 4-8: “Typical SPI bus: master and three independent slaves” by en:User:CBurnett under 

CCA BY-SA 3.0 

 

Figure 4-9: 

 
 

Figure 4-12: “Triangulation with Infrared Sensors” Licensed under CC-BY-SA-2.5 

 

Figure 4-13: “Sharp GP2Y0A21YK V-L Relationship”

 
Senior Design Project 

 
Erick Makris <nox357@gmail.com> Wed, Dec 3, 2014 at 12:06 PM 
To: karamy@xposureunlimited.com 

 
Dear Karamy, 
 
My name is Erick Makris and I'm a Senior Computer Engineering student at the University of Central 
Florida. I am currently working on a Senior Design project, and we may be incorporating some Sharp 
IR sensors into our automated rover to aid with object detection and avoidance. As part of our design 
documentation, we would like to request permission to use some of the figures and graphs from 
Sharp's datasheets, specifically the data sheet for the Sharp GP2Y0A21YK infrared sensor. I'm not 
sure if you are the right person to contact regarding this matter. If you aren't, would you be able to 
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direct me to the proper channels to get this permission? Your assistance in this matter is greatly 
appreciated! 
 
Sincerely, 
Erick Makris 

 

 

 

Figure 10-5: “Ultrasonic Ranging” Dual licensed under GFDL and CC-BY-SA-3.0 

 

Figure 4-20: “HLS Streaming Protocol” 

Erick Makris 

3379 S. Kirkman Rd., Apt. 1038 

Orlando, FL 32811 

12/02/14 

 

Apple Inc.,  

Attention: Rights and Permissions,  

1 Infinite Loop MS 169-3IPL,  

Cupertino,  

CA 95014. 

 

To Whom It May Concern, 

 

My name is Erick Makris and I'm a Senior Computer Engineering student at the University of 

Central Florida. I am currently working on a Senior Design project, and will be performing some 

HTTP Live Streaming from a Go-Pro camera to an Android device as part of the project. As part 

of our design documentation, we would like to request permission to use the HTTP Live 

Streaming diagram illustrated in Apple's HTTP Live Streaming Guide located at  

 

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/Streamin

gMediaGuide/Introduction/Introduction.html 

 

The design document will be hosted on the University of Central Florida's Computer 

Engineering Senior Design website, but the design document itself would not be used for any 

commercial purposes, only educational. Please respond in kind at your earliest convenience. 

Your assistance in this matter is greatly appreciated! 

 

Sincerely, 

Erick Makris  

 

Figure 5-1: “Cape Headers I2C” by jkridner under CCA by 3.0 

 

Figure 5-1: “Quadcopter Wiring Diagram” by Arducopter under CC by 3.0 

 

Figure 5-7 & 5-8: Photos by Oscar Liange under CC by 2.5 

 

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html
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Figure 5-9 & Figure 5-10: “Product Details Dimensions” 2005-2014 Welcome to DAGU Hi-

Tech Electronic Robotics online Shop! Copyright, All Rights Reserved. 

 

Robust Real-time Object Detection 

Permission to Use Figures From Robust Real-time Object Detection 

 
Matthew Bahr <mattbahr1992@gmail.com> Wed, Dec 3, 2014 at 9:43 PM 
To: viola@merl.com, mjones@crl.dec.com 

 
Hello, 
 
I am a Senior Computer Engineering student at the University of Central Florida. I am currently 
working on a design project that involves the training of classifiers to detect objects using a camera 
mounted on a quadcopter. As part of our design documentation, we would like to request permission 
to use some of the figures and graphs from your paper, Robust Real-time Object Detection. Your 
assistance in this matter is greatly appreciated! 
  
Sincerely, 
Matthew Bahr 
 

 

 

Equation 1: “Integral Image Equations” by Paul Viola and Michael Jones 

 

OpenCV Copyright Permissions 

Permission to Use Copyrighted Material 
 

Matthew Bahr <mattbahr1992@gmail.com> Wed, Dec 3, 2014 at 10:08 PM 
To: admin@opencv.org 

 
Hello, 
 
I am a Senior Computer Engineering student at the University of Central Florida. I am currently 
working on a design project that involves the training of classifiers to detect objects using a camera 
mounted on a quadcopter. As part of our design documentation, we would like to request permission 
to use some of the figures from the OpenCV website. Your assistance in this matter is greatly 
appreciated! 
  
Sincerely, 
Matthew Bahr 

 

 

Figure 6-4: “Face Detection Output” Copyrighted 2011-2014 by opencv dev team 

 

  

mailto:viola@merl.com
mailto:mjones@crl.dec.com
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Diagram Copyright Permission Request 

crabbybrian 
Wed 12/3/2014 1:14 PM 

Sent Items 

To:sale@dagurobot.com <sale@dagurobot.com>; 

 
Hello, 
I am a student at the University of Central Florida and I am currently working on a senior design 
project involving the 
Dagu Wild Thumper 6WD Robot Chassis. I would like to request permission to use the product 
dimension diagrams available on your website on the Wild Thumper product page 
(http://www.dagurobot.com/goods.php?id=154 ) in our documentation of this project. Documentation 
will be posted online and visible to the general public, and Dagu will be properly identified as the 
creator of the diagrams. Please let me know your decision regarding your permission to use the 
copyrighted material. 
 
Thank You, 
Brian Crabtree  
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GEN, Email Technical Support, www.ti.com, 

EKTM4C1294XL/BOOSTXL‐SENSHUB 

 
crabbybrian@knights.ucf.edu 
Wed 12/3/2014 7:23 PM 

Inbox 

Cc:crabbybrian@knights.ucf.edu <crabbybrian@knights.ucf.edu>; 

 
[This Email Sent From: Email Technical Support 

http://www.ti.com/general/docs/contact.tsp] 

[wfsegen] 

[DATE / TIME ﴾UTC﴿: Thu, 04 Dec 2014 00:23:49 GMT] 

[CUSTOMER'S REGIONAL LOCAL TIME: 12/3/2014, 7:23:49 PM] 

[Name: Brian Crabtree] 

[Prefix: Mr.] 

[First Name: Brian] 

[Last Name: Crabtree] 

[Job Title: ] 

[Company: University of Central Florida Student] 

[Email: crabbybrian@knights.ucf.edu] 

[Phone: 4079252953] 

[FAX: ] 

[Country: USA] 

[Address1: 560 Serenity Place] 

[Address2: ] 

[City: Lake Mary] 

[State: FL] 

[Postal Code: 32746] 

[Part# or Description: EK‐TM4C1294XL/BOOSTXL‐SENSHUB] 

[Category: Access and Licensing] 

[Application: Other] 

[Design Stage: New design] 

[Estimated Annual Production: 1 units] 

[Production Date: 4/1/2015] 

[Problem: 

Hello, I am a student at the University of Central Florida and I am currently working on a senior design project 

involving the 

TM4C1294 Connected LaunchPad and the Sensor Hub BoosterPack. I would like to request permission to 

reproduce diagrams and tables contained within the user manuals for both of these products within our design 

documentation. Once completed, our design documentation will be posted online and visible to the general 

public, and Texas Instruments will be properly identified as the creator of the diagrams and tables. Please let me 

know your decision regarding your permission to use the copyrighted material. Thank You, Brian Crabtree] 
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