
Search-and-Retrieval System 

(SARS) 

Matthew Bahr, Brian Crabtree, Brendan Hall, 

Erick Makris 

Dept. of Electrical Engineering and Computer 

Science, University of Central Florida, Orlando, 

Florida, 32816-2450 

 

Abstract  —  In recent years, drone technology has 
emerged at the forefront of scientific application and 

innovation. The purpose of SARS is to use automated 
vehicles to implement a search-and-retrieval system which 
shall have a number of real-world applications, ranging from 

military to commercial use. SARS consists of three major 
subsystems: 1) a quadcopter used for object location 2) a 
central hub in the form of a Linux-based application known 

as the Command Distribution Center  3) a land rover used 
for object retrieval. SARS makes use of a number of 
technologies including object detection by image processing, 

wireless communications, and automated vehicle control 
algorithms.  

Index Terms  —  Image processing, microcontrollers, 
object detection, pulse width modulation, satellite navigation 

systems, unmanned aerial vehicles, wireless communication. 

 

I. INTRODUCTION 

System automation and artificial intelligence has 

recently taken a place at the forefront of scientific research 

and development. From self-driving cars to automated 

homes, the latest trend is to relegate as many menial tasks 

as possible to computers, allowing people to focus more 

on creative activities. A desire to learn more about AI and 

system automation served as the primary motivation 

behind SARS.  

A multi-faceted aerial and ground object detection and 

retrieval system, SARS is composed of three major 

subsystems – a quadcopter, a Linux-based console 

application, and a land rover – which perform together to 

complete a successful search-and-retrieval mission. A 

mission shall be deemed a success if the system relocates 

a target object in the form of a tennis ball sitting on a sheet 

of white poster board from some starting position to the 

land rover’s initial location in a completely autonomous 

fashion. Throughout the entire process, the Command 

Distribution Center (CDC), shall provide real-time 

diagnostics and a live video stream of the mission to the 

user via a laptop computer running the latest version of 

Ubuntu. 

All three SARS subsystems have been designed to 

streamline the system function and ensure the highest rate 

of success. The CDC shall serve as the intermediary 

between the other two major subsystems, communicating 

over radio as well as Wi-Fi. The details of these 

subsystems shall be covered in the sections below. 

II. SYSTEM COMPONENTS 

SARS is best described through detailed explanations of 

its specific subsystems; thus, this conference paper shall 

be structured around these subsystems. Section II shall 

serve as a basic introduction to the quadcopter, land rover, 

and CDC subsystems before additional detail is provided 

in the subsequent sections. 

A. SARS Copter 

The SARS Copter was built from the DIYDrones Quad 

Kit sold by 3D Robotics. The individual hardware 

components of the quadcopter package include the 

quadcopter frame, the Pixhawk flight controller, the U-

blox GPS module, four electronic speed controllers, the 

power distribution board, the RC telemetry radio, the PPM 

encoder, and the lithium polymer battery. The Pixhawk 

flight controller runs Arducopter, an open source 

multicopter UAV platform. Missions may be loaded onto 

the flight controller using the Mission Planner software 

application. A GoPro Hero3 White is mounted just 

beneath the SARS Copter’s nose with its field-of-view 

directed towards the ground. Images taken with this 

camera are used to detect the target object on the ground. 

In the context of a mission, the SARS Copter travels to a 

series of waypoints making up a rough 7ft x 13ft grid to 

facilitate the search for the target object. At each of these 

waypoints an image is taken from the GoPro and saved by 

the CDC for processing.        

B. CDC 

The Command Distribution Center (CDC) is a Linux-

based console application which oversees the function of 

all SARS subsystems and governs the success of all 

missions. As the SARS Copter travels between its mission 

waypoints, the CDC pulls images from the live video feed 

provided over Wi-Fi by the GoPro. Once the SARS 

Copter’s mission has been completed and all the images 

have been captured, a blob detection algorithm runs on the 

CDC to check each image for the target object. If the 

object is detected, the GPS coordinates of its approximate 

location are relayed wirelessly to the microcontroller 

mounted on the SARS Rover. In addition to wireless 



communications between the two unmanned vehicles and 

coordination of subsystem functions, the CDC acts as a 

user interface for the entire system. It provides a live video 

feed taken by the GoPro as well as diagnostics and 

mission event updates from the SARS Copter and Rover 

subsystems. 

C. SARS Rover 

The hardware components which make up the SARS 

Rover include the chassis, the anodized aluminum plate 

frame, six 6V motors and wheels, the Turnigy lithium 

polymer battery and power switch, the Sabertooth 2x25 

Regenerative Motor Controller, the Texas Instruments 

Tiva C Series microcontroller, the Honeywell HMC5883L 

compass, six A3144 Hall Effect Sensors, the PING))) 

Ultrasonic Sensor, the Adafruit Ultimate GPS Breakout, , 

and two servo motors and a metallic robot arm for object 

retrieval. The SARS Rover function is not initiated until 

after the target object is located by the SARS Copter and 

CDC subsystems. It receives the approximate GPS 

coordinates of the target object and travels to those 

coordinates using its compass, GPS, and a control loop. 

Along the way, the rover uses the PING))) sensor to avoid 

obstacles. Once the SARS Rover has reached the received 

coordinates, it begins a systematic search of the area for 

the target object once again using the PING))) sensor. 

When the object has been found, the SARS Rover lifts it 

up with its robotic arm and travels back to its starting 

location.   

III. SARS COPTER 

A. Hardware 

The Pixhawk flight controller houses the copter’s 

internal measurement unit which contains a gyroscope, 

magnetometer, accelerometer, and barometer. The 

Pixhawk is loaded with Arducopter’s firmware which 

provides stabilization to the copter and allows the 

quadcopter to be compatible with our testing software, 

Mission Planner, as well as the pyMAVLink protocol we 

use to communicate with the CDC. It is compatible with 

UART, SPI, and I2C communication protocols, the latter 

of which is used to communicate with the GPS, RC 

telemetry, and Turnigy receiver. The Pixhawk also uses a 

pulse-position modulation sum signal to regulate the 

ESC’s, which was taken into consideration when 

purchasing the transmitter controller. 

 The peripheral components are the u-Blox GPS, 

3DR telemetry radio, Turnigy receiver, and PPM sum 

encoder. The u-Blox GPS is a highly efficient external 

GPS module that is accurate up to 1 meter, an operating 

voltage of 3.3V, and a 5HZ update rate. The u-Blox has 

exceeded expectations and allows for waypoint navigation 

with pinpoint accuracy, often to within less than a foot. 

The telemetry radio allows for 2-way full duplex 

communication between the CDC and quadcopter using 

time-division multiplexing. Messages are sent over the 

915 MHz bandwidth (the US standard), and the radios 

have built-in MAVLink protocol framing, as well as error 

correction for up to 25% if bit errors. Finally, the Turnigy 

receiver and PPM sum encoder are used to receive input 

from the Turnigy transmitter. The transmitter sends eight 

separate pule-width modulation signals across eight 

separate channels, but since the Pixhawk is not compatible 

with that protocol, the PPM sum encoder combines the 

PWM signals into one sum signal, which the Pixhawk 

then uses to adjust the orientation of the quadcopter and 

change flight modes.  

The quadcopter is powered using a 14.8 V, 4000 mAh 

lithium polymer battery connected to a power distribution 

board. The PDB is wired to all of the ESCs and the 

Pixhawk, which allow it to efficiently power all of the 

separate subsystems on the quadcopter. Figure 1 below is 

a table summarizing the details of the PDB. 

 
 3DR Power Module 

Max. Input 
Voltage 

18 V 

Min. Input 
Voltage 

4.5 V 

Max 
Current 

90 Amps 

Weight 38 g 

Flight 
Battery 
Cable 

6” 14AWG red/black cable 

ESC 
Cables 

4 female Deans connectors 1 XT60 
connector 

Fig. 1. Table of the 3DR power module specifications. 

 

The ESCs have a programmable throttle range which 

can be calibrated using the Mission Planner testing 

software, a maximum RPM of 70,000, and 20 A of 

continuous current. The quadcopter is able to sustain flight 

for between 20 and 30 minutes, which usually allows for 

five or six missions to be run before having to recharge the 

battery. 

The GoPro camera is mounted in its hard case just 

beneath the nose of the SARS Copter using industrial 

strength fabric hook and loop fasteners.  A layer of 

neoprene separates the camera case from the copter frame 

to dampen vibrations and help provide a stable image to 

be processed. For a picture of this mount setup, see Figure 

2 below. 
 
 



 

Fig. 2. Image of the homemade mount for the GoPro. A layer 
of neoprene separates the GoPro from the SARS Copter. 
Components are attached together using hook and loop fasteners. 
 

B. Software 

Communication with the quadcopter is done using a 

standard known as the MAVLink protocol, which stands 

for Micro Air Vehicle Link. The MAVLink protocol is a 

header-only message library that allows for the transfer of 

information based on a system ID (vehicle being 

communicated with), component ID (specific part of the 

vehicle from which information is being extracted such as 

RC servos, battery, etc.), and message ID and parameters 

(what piece of information is needed such as propeller 

speed, battery life, etc.). This communication protocol 

allows for easy transmission of commands and mission 

data that are used to control the copter while it is in the air. 

More importantly, the MAVLink protocol is designed to 

allow for easy waypoint navigation, a feature critical to 

smooth autonomous flight. Before the mission is executed, 

a text file is prepared detailing multiple attributes of each 

waypoint the copter will be flying to. The parameters of 

each waypoint are: the sequence number, latitude and 

longitude, relative altitude to takeoff, waypoint radius 

(how close to the exact coordinate the copter has to be 

before it can determine it has successfully reached it), and 

a time (in seconds) to delay between reaching a waypoint 

and traveling to the next one. After the text file has been 

formatted, the mission can be loaded into the quadcopter 

and flown autonomously with ease. 

IV. COMMAND DISTRIBUTION CENTER 

A. Hardware 

To enable the CDC to communicate with both the SARS 

Copter and SARS Rover, additional wireless 

communication hardware was utilized. The SARS wireless 

communication network consists of 3 dedicated 

connections, each utilizing its own wireless 

communication hardware interface. The three connections 

consist of a radio connection to the SARS Copter, a Wi-Fi 

connection to the SARS Rover, and another Wi-Fi 

connection to the GoPro camera. Figure 3 below diagrams 

the SARS wireless communication network. 
 

Fig. 3. The SARS wireless communication network consists 
of 3 separate wireless connections that all feed into the CDC. 

 

A 915MHz telemetry radio provides wireless 

communication between the CDC and the SARS Copter. 

The telemetry radio is connected via a USB port, and it 

communicates at 57,600 baud. In conjuction with 

PyMavLink, this telemetry radio enables the CDC to issue 

commands and request parameters from the SARS Copter. 

An 802.11n Wi-Fi connection to the SARS Rover is 

established using the internal Wi-Fi adapter of the laptop 

computer on which the CDC is running, and the CC3100 

network processor connected to the SARS Rover. This 

connection utilizes the TCP protocol to send and receive 

messages between the CDC and the SARS Rover. This 

enables the CDC to receive status messages from the 

SARS Rover, and to transmit the start command which 

sends the GPS coordinate to the SARS Rover so that it can 

begin traveling to the target. 

Another 802.11n Wi-Fi connection is established 

between the GoPro camera and the CDC. This connection 

utilizes an external USB Wi-Fi adapter and the internal 

Wi-Fi module of the GoPro to provide both live video 

streaming and image capturing. This secondary Wi-Fi 

adapter is an optional, but beneficial hardware component. 

The GoPro camera is only capable of ad-hoc Wi-Fi 

connections, which means that a centralized wireless 



network infrastructure cannot be utilized, and both Wi-Fi 

connections must be handled separately. The internal Wi-

Fi adapter could be used to alternate ad-hoc connections 

between the CC3100 and the GoPro, but this would 

constantly interrupt either the live video feed or the rover 

telemetry reporting. Utilizing the secondary Wi-Fi adapter 

provides a better user experience, thus the decision was 

made to include it. 

B. Software 

The Command Distribution Center (CDC) is a Linux-

based application which coordinates the operations of both 

the SARS Copter and SARS Rover. As the SARS Copter 

traverses a series of mission waypoints, the CDC pulls still 

images from the GoPro’s live video feed via Wi-Fi and 

saves them in an indexed array. Once the SARS Copter 

has completed its mission and all the images have been 

captured, a blob detection algorithm runs on the array to 

check each image for the target object. If the object is 

detected, the index of the image is cross referenced with a 

lookup table containing the GPS coordinate of each 

waypoint in the mission. This GPS coordinate is then 

transmitted wirelessly via Wi-Fi to the microcontroller 

mounted on the SARS Rover. The pseudo code in Figure 4 

below illustrates the algorithm as it is implemented in the 

CDC. 
 

Fig. 4. Pseudo code for the mission SARS Copter mission 
algorithm. 

 

In addition to handling both wireless communication 

and coordination of the two unmanned vehicles, the CDC 

acts as a user interface for the entire system. It is 

composed of 4 main interface components: the live video 

feed window, the  telemetry window, the mission status 

window, and the command console. Figure 5 below 

provides a screen capture of the CDC. 

The live video feed window utilizes the LibVLC media 

framework to connect to the GoPro's HTTP server and 

stream video utilizing the HLS (HTTP Live Streaming) 

protocol. Play and Stop buttons are included so that the 

video feed can be started or stopped at any time. This live 

video feed provides the user with a real time, first person 

view of the SARS Copter as it performs its mission. 

 

Fig. 5. Screenshot of the CDC application as it pulls data from 
the SARS Copter and displays the GoPro video feed. 

 

The telemetry window utilizes the RC telemetry radio 

that communicates with the SARS Copter to retrieve 

telemetry such as altitude, horizontal speed, distance to 

next waypoint, GPS coordinates, and current heading. It 

also utilizes the Wi-Fi connection to the SARS Rover to 

retrieve telemetry such as ground speed, distance to target 

object, ultrasonic sensor distance data, GPS coordinates, 

and heading. This information is periodically requested 

from the vehicles and automatically displayed in the 

telemetry window so that the user can monitor the status 

of the vehicles as the mission progresses. 

The mission status window reports the progress of a 

mission as the mission algorithm executes. It reports 

information such as the SARS Copter's current mission 

progress, the success or failure of image captures, the 

index of the image containing the detected object and the 

corresponding GPS coordinate, and the SARS Rover's 

progress as it travels to the target object. The mission 

status window gives the user an overview of a mission so 

they can determine if the mission can proceed or if it must 

be aborted at any time. 

The command console is a simple one-line text box that 

allows the user to issue commands to the CDC. 

Commands for both initiating and aborting missions are 

recognized. Various debugging commands are also 

included so that specific aspects of the mission algorithm 

can be tested separately, such as capturing an image from 

the GoPro or running the object detection on captured 

images. 

The CDC was developed with the Python scripting 



language. The UI was designed using Qt, which is a cross-

platform application framework for designing and 

programming UI's so that they have the native look and 

feel of the operating system on which they are currently 

running. Qt is designed for use with C++, but Python 

development was made possible through the use of the 

PyQt framework. PyQt takes a UI form designed with Qt 

and binds it to Python scripts instead of C++ code. This 

generated script serves as the backbone on which all other 

Python libraries, scripts, and functions required by the 

CDC have been built. 

To live stream the GoPro video feed, the decision was 

made to integrate an existing media player rather attempt 

to design one from scratch for the sole purpose of 

integrated live video streaming. LibVLC was chosen as it 

is free, open-source, capable of HLS streaming, and has 

bindings for several languages already available, including 

C, C++, Java, and most importantly, Python. LibVLC is 

also the media framework on which the popular media 

player VLC is based – a media player renowned for its 

stability and wide range of protocol and format support. 

The CDC pulls images from the GoPro using an open 

source Python library called GoProController. This library 

imports OpenCV to extract individual frames from the 

GoPro’s video feed, which it accesses via the ad-hoc 

network created by the GoPro.  These images are stored in 

an array before being processed. Once all waypoint 

images have been stored, the CDC runs a simple blob 

detection algorithm to identify the large white poster on 

which the tennis ball will be sitting. Essentially, this 

algorithm checks each image for 10 consecutive pixels 

whose RGB values average out above a certain value. This 

value may be adjusted based upon the intensity of the 

natural light at the time of the mission. For the pseudo 

code for this algorithm, see Figure 6 below. 
 

Fig. 6. Pseudo code for the image processing algorithm. 
 

Communication with the SARS Copter is achieved 

using the PyMavLink library. PyMavLink is an open 

source, Python implementation of the MAVLink protocol. 

In conjunction with the telemetry radio, PyMavLink 

allows the CDC to wirelessly request almost every 

parameter stored on the Pixhawk of the SARS Copter. 

These parameters are then used to display important 

telemetry data in the telemetry window, and to assist the 

mission algorithm with determining when the SARS 

Copter has reached a waypoint. 

V. SARS ROVER 

A. Hardware 

The SARS rover is based around the Dagu Wild 

Thumper 6WD all-terrain chassis. This chassis is designed 

with an aluminum frame and includes a pre-designed 

suspension system built using tension cords to balance out 

each pair of motors and wheels. The included motors are 

mounted using a t-shaped housing and are geared with a 

34:1 ratio, resulting in a 295RPM output shaft. Each 

motor operates on 6VDC and has a 5.5A stall current. 

The rover is powered by a 5000mAh, 3S1P Lithium Ion 

Polymer battery. This battery provides 11.1V, as well as 

20C constant discharge and 30C peak discharge. The 

power circuit also includes a single pole single throw 

(SPST) toggle switch. The switch supports up to 50A at 

12VDC and up to 25A at 24VDC. 

The first major electronic component is the motor 

controller. The controller selected is the Sabertooth 2x25 

Regenerative Motor Controller. This board will serve as 

the power control for the motors as well as the rest of the 

rover system. The motors will be connected so that the 

three left side motors connect to one channel and the three 

right side motors connect to the other channel. Each 

channel is capable of supporting 25A continuously as well 

as 50A peak. The board operates on a nominal voltage of 

6-30V, well within the range provided by our battery. This 

controller also has a built in battery eliminator circuit 

(BEC) capable of supplying 5V and 1A. The BEC is one 

of the most important features here because it will provide 

power to the rest of the electronic components included on 

the SARS rover. The Sabertooth will also be receiving 

commands from the main microcontroller over a UART 

connection. More details regarding this system will be 

included in the Rover Software section. 

The next key component is the microcontroller that will 

serve as the main brain of the rover. The selected 

microcontroller is the Tiva C series by Texas Instruments. 

The selected model is the TM4C1294XL. This model 

implements an ARM Cortex M4 processor operating at 

120MHz. It has 1024KB of flash memory and 256KB of 

RAM. It also has a multitude of connection technologies 

including 8 UART modules, 4 SSI/SPI modules, 10 I2C 

modules, and 140 GPIO pins. All of the external sensors 

and other modules will be connected to this board directly 

or via our printed circuit board. 

Sensors are another key component of the rover system. 

The simplest sensor implemented is a set of 6 A3144 Hall 



Effect sensors. These sensors operate communicate with 

GPIO and require a 10kΩ pull-up resistor. These sensors 

will be used to monitor wheel rotation to calibrate 

minimum power required to move on a given terrain as 

well as to monitor whether or not the wheels are rotating 

freely while the rover is not moving. The next sensor is 

the Parallax PING))) ultrasonic sensor. This sensor also 

operates on GPIO and can detect objects in front of it from 

2cm to 3m. This will be used for obstacle detection and 

avoidance as well as target object detection. 

Another important sensor in this system is the GPS 

module. We have elected to implement the Adafruit 

Ultimate GPS for this purpose. This module is capable of 

working on 66 channels and can update at up to 10Hz. In 

order to relay information, it sends NMEA style sentences 

over a UART connection. The internal antenna has -

165dBm sensitivity and an external active antenna is 

added to provide an additional 28dB gain. Coupled with 

the GPS is a compass module so that the rover is 

directionally aware. The selected compass is the 

Honeywell HMC5883L. This module communicates its 

three axes of measurement via I2C. 

The last electronic component of the rover is the 

CC3100 WiFi module. This module is a Texas Instruments 

product and is designed to interface with the Tiva C using 

SPI. More about this module is discussed in the CDC 

hardware section. 

The final hardware component of the rover is the object 

retrieval arm. The object retrieval arm will mainly consist 

of a 20mm square aluminum beam. This beam will be cut 

into two major pieces and attached at a right angle. The 

beams will be slightly different in length, with the longer  

Fig. 7. Rover arm diagram. 

 

piece attached to the control servos. Two servos will be 

used to ensure proper torque support. The general 

structure of this arm can be seen in Figure 7. Each servo is 

capable of handling 6.5Kg*cm. They are designed to 

operate at 5V and are capable of turning 60 degrees in .21 

seconds. The servos also include an analog feedback line 

for maximum control. The target object will be picked up 

using a magnet attached to the end of the retrieval arm. 

B. Software 

The majority of the software for the rover is all custom 

written for this system. Coding is done using Energia, TI’s 

version of the Arduino wiring language. Some external 

code is used for interfacing with various hardware 

components, but this will be referenced with regards to 

individual components of the software. 

The first component of the software is the interface with 

the motor controller. The Sabertooth is connected to 

UART6 Tx on the Tiva C. This connection will be 

operated at a baud rate of 9600. This is decided by the 

configuration of the hardware switches on the Sabertooth. 

This connection will be used to transmit a series of byte-

length commands to the Sabertooth, which will then 

execute those commands. The Sabertooth accepts a variety 

of byte patterns to designate the function to carry out. The 

selected set of commands operates using two major 

commands to the Sabertooth, one to control each channel. 

These commands are issued with a set of bit-level 

commands and the rest of the bits transmitted per byte of 

data define the direction and power to be transmitted to 

the motor. Each command gets 6 bits of resolution. The 

median value designates a stop value, while the max value 

indicates full forward and the minimum value indicates 

full reverse. The rover software is written to allow for easy 

command transmission using pre-calculated values. For 

example, for the main loop to tell send a movement 

command, it must simply call the transmit method 

indicating a direction (forward, reverse, left, or right) and 

a percentage (out of 100) indicating the desired power. 

This function is also augmented with an acceleration and 

deceleration function for smoother movement. 

Software for the Hall Effect sensors is simple. It 

digitally reads the connected pin to produce a value. A low 

value indicates a magnetic field is detected and a high 

value indicates no magnetic field. Software for the 

PING))) sensor is also fairly simple. The control software 

pulls the output pin low to clear it and then writes it high 

to initiate sensing. Five milliseconds later, it pulls the line 

low again. The pin is then reconfigured as an input and 

read in as a pulse that defines the distance. Using a small 



conversion, the distance is known in inches. 

The next major component of the software is interfacing 

with the GPS module. This is also achieved using a 9600 

baud UART connection, connected to UART2 of the Tiva 

C. Once a connection is established, the GPS module is 

configured to only send RMC sentences. RMC sentences 

are NMEA style sentences that contain the recommended 

minimum data from the GPS module. This data is 

transmitted to the Tiva C character by character in the 

form of a long string. Once a full string is received, which 

is denoted by a new line character, the string will be 

parsed to search for the appropriate data. The data parsing 

code is borrowed and slightly from the freely available 

Adafruit GPS code example. This parser will extract all of 

the relevant data and store it for later access. 

In order to make any use of the GPS data, the compass 

must also be configured. The compass being used is in the 

form of a 3-axis magnetometer, so the values for each 

access must be retrieved and converted to a usable data 

heading. Communications with this module are initiated 

using I2C module 0 of the Tiva C. Code for pulling the 

data from this module is a combination of recommended 

commands from the device’s data sheet as well as code 

from Adafruit for properly calculating the heading value. 

Data is transmitted to the Tiva C in two bytes per axis 

from the magnetometer and then using bit shifts, unit 

conversions, and geometry, it is converted to a heading 

angle between 0 and 360. 

Now that all of the software for directly interfacing with 

the sensors and other components has been defined, the 

practical functions can be discussed. We will begin with 

some simple navigation commands that must be taken into 

account. First, a function must be written to find the 

heading of the destination location with respect to the 

current location. This can be done using some simple 

geometry. Once this heading has been determined, 

software can then be written to turn the rover so that it is 

oriented towards its target. This is done by calculating 

which direction is closer to the target heading (left or 

right), and then issuing a turn command to the motors 

until the target heading is reached, to within 5%. Due to 

the nature of the motors, ultra-precise movement is not 

possible, so approximate movement must be used. The 

angle between the current heading and the heading of the 

target will be consistently monitored to keep the rover on 

course by readjusting as necessary. Another important 

function is calculating the distance between the rover’s 

current location and the target location. This cannot be 

done by simple geometry, but rather requires the 

Haversine formula for calculating the distance between 

two points on a sphere. This will be used to monitor 

progress to the destination. 

The last main aspect of the software is the obstacle 

avoidance code. This will mainly rely on the PING))). The 

idea behind this sub-routine is to actively monitor the 

space in front of the rover. When an obstacle is detected 

within 6 feet in front of the rover, the rover will 

immediately slow down to a stop and then it will scan the 

area in front of it to decide whether it can escape the 

obstacle more easily by navigating left or right. It will then 

perform that navigation, and realign with the target 

heading to finish the mission.  

Aside from the control code for the individual 

components, the other major portion of the code is the 

setup and control code. As depicted in Figure 8 below, 

Once the rover is powered on, the first step is to initialize 

the subsystems, including the all of the sensors as well as 

the motor controller. Once that has been completed, the 

rover will wait until a target location has been received via 

a start command. At this point, the main control loop can 

be initiated. This loop will run until the point when the 

mission is completed. The rover will first enter the 

inTransitToLocation state. While in this state it will be 

constantly monitoring the space in front of it for obstacles 

to avoid as well as comparing its current location and 

heading with the location and heading of the target. Once 

the target location is reached, the rover will enter target 

object retrieval mode. Upon completion of obstacle 

retrieval, the rover will return to its home location in a 

matter very similar to the way it moves to the target 

location. Finally, during each iteration of the main control 

loop, the rover’s telemetry data will be transmitted back to 

the CDC, if it is requested.  
 



 
Fig. 8. Psuedo code for the rover navigation program. 

VI. Conclusion 

SARS represents the forefront of drone technology and 

autonomous computer systems. Using two separate 

autonomous systems linked with communication software, 

SARS proves that automated drone technology will 

continue to innovate new applications, both military and 

commercial. Each of the SARS subsystems presented a 

significant design challenge to the engineers, and the 

project offered valuable integration experience. Over the 

past eight months, each member of the SARS Group has 

learned much and been allowed the opportunity to 

improve a number of engineering skills. 

ACKNOWLEDGEMENTS 

The SARS Group would like to thank everyone that has 

contributed in the process of developing this system. 

Primarily, thanks must be extended to our sponsors, 

Boeing and SoarTech. A special thanks is given to the 

employees of SoarTech for providing funding as well as 

guidance and input throughout the development process. 

Friends and peers of the SARS Group have also been 

invaluable throughout the process by providing insight and 

assistance into the progression of this project. 

 

REFERENCES 

"Reference | Energia." Energia Reference. Texas 

Instruments, n.d. Web. 09 Apr. 2015. 

<http://energia.nu/reference/>. 

"Adafruit Ultimate GPS." Overview. Adafruit, n.d. Web. 

09 Apr. 2015. <https://learn.adafruit.com/adafruit-

ultimate-gps>. 

"3-Axis Digital Compass IC HMC5883L." (2010): n. pag. 

HMC5883L Datasheet. Honeywell. Web. 

<http://www51.honeywell.com/aero/common/documents/

myaerospacecatalog-documents/Defense_Brochures-

documents/HMC5883L_3-

Axis_Digital_Compass_IC.pdf>. 

"DIY Quad Kit - 3drobotics.com." 3droboticscom. 3D 

Robotics Inc., n.d. Web. 09 Apr. 2015. 

<http://3drobotics.com/diy-quad-kit/>. 

"Tiva C Series TM4C1294 Connected LaunchPad 

Evaluation Kit (Rev. A)." Tiva  C Series TM4C1294 

Connected LaunchPad Evaluation Kit User's Guide 

(2014): n. pag. Texas Instruments. Web. 

<http://www.ti.com/lit/ug/spmu365a/spmu365a.pdf>. 

 

"CC3100 Simplelink™ Wi-Fi® Network Processor, 

Internet-Of-Things Solution For MCU Applications." 

Texas Instruments, n.d. Web. 09 Apr. 2015. 

<http://www.ti.com/lit/ds/symlink/cc3100.pdf/>. 

THE ENGINEERS 

Matthew Bahr is a Computer 

Engineering student at the 

University of Central Florida. He 

graduates in Spring 2015. He is an 

officer in UCF’s Cuong Nhu club 

and the front man of a local band. 

After his graduation, Matt will be 

traveling to Southeast Asia for an 

undetermined length of time. 

 

Brian Crabtree is a Computer 

Engineering major at the 

University of Central Florida. He 

graduates in Spring 2015. He is a 

member of the Burnett Honors 

College and an officer for the 

Men's Ultimate Frisbee Club at 

UCF. After graduation, Brian will 

be going to work for Intel as an 

SOC Design Engineer. 

 

Brendan Hall is a senior 

computer engineer at the 

University of Central Florida. He 

is a member of Sigma Nu 

Fraternity and has worked as a 

CWEP at Lockheed Martin for 

over two years. After graduation, 

he will be joining Citi’s 

Technology Leadership Program 

in Jacksonville, FL. 

 

Erick Makris is a senior 

computer engineering student at 

the University of Central Florida. 

He is currently working at FLIR 

Systems as a Software 

Engineering intern, and will be 

begin a full-time position as a 

Software Developer at FLIR upon 

graduation. 


