

BroBot
Hey Bro, can you watch my stuff?

 Jacob Stewart

Richard Landau

Sarah Patten

Anson Contreras

i

Table of Contents

1.0 Executive Summary .. 1

2.0 Project Description: ... 1

2.1 Project Motivation and Goals: ... 1

2.2 Objectives .. 2

2.3 Security Detail .. 6

2.3.1 Item Identification .. 6

2.3.2 Camera ... 7

2.3.3 Microcontroller ... 8

2.3.4 Wireless ... 10

2.4 Navigation .. 10

2.4.1 Chassis ... 10

2.4.2 Hardware Considerations ... 11

2.4.3 Software for Movement ... 13

2.5 App ... 14

2.5.1 Design/Flowcharts .. 14

2.6 Power Considerations .. 15

2.6.1 Battery... 15

2.6.2 Voltage Regulators .. 15

3.0 Research Related to Project Definition .. 16

3.1 Similar Projects and Ideas .. 16

3.1.1 B.R.A.V.O ... 16

3.1.2 Knight Sweeper 4200 .. 17

3.1.3 R.C Ghost Rider ... 18

3.1.4 Track Detector ... 19

3.2 Relevant Technologies ... 20

3.2.1 Wi-Fi .. 20

3.2.2 Roomba ... 20

3.3 ARM Microcontrollers: ... 21

3.3.1 Texas Instruments Tiva C Series and Other Considerations: .. 21

ii

3.3.2 STM32F407VGT6:.. 24

3.3.3 ATSAM4S16B ... 26

3.3.4 Conclusion of ARM Processors: .. 27

3.4 Low Power Microcontroller ... 28

3.4.1 MSP430 ... 28

3.4.2 Arduino Uno .. 29

3.4.3 PIC ... 29

3.4.4 Conclusion for Low Power Microcontroller .. 30

3.5 Movement .. 30

3.6 Chassis .. 31

3.6.1 4WD Robot Chassis ... 32

3.6.2 Aluminum 4WD Robot Chassis ... 33

3.6.3 Baron-4WD Mobile Platform .. 34

3.6.4 Pirate-4WD Mobile Platform .. 34

3.6.5 Dagu Rover 5 Chassis 2WD ... 36

3.6.6 Conclusion of Chassis .. 37

3.7 Navigation .. 37

3.7.1 Algorithm .. 37

3.8 Sensors for Navigation ... 40

3.8.1 Sharp GP2Y0A02YK0F ... 40

3.8.2 Sharp GP2D120XJ00F .. 40

3.8.3 Pololu 38 kHz IR Proximity Sensor .. 41

3.9 Camera ... 41

3.9.1 Camera Setup .. 41

3.9.2 JPEG Image/Video Compression: .. 43

3.9.3 IR Motion Sensor ... 45

3.9.4 TTL Serial JPEG Camera: .. 46

3.9.5 MT9D111:.. 47

3.9.6 Conclusion for cameras: .. 49

3.10 External Memory ... 49

3.11 Android Application ... 52

3.11.1 Communication ... 52

3.11.2 APIs.. 53

iii

3.11.3 App Picture Manipulation ... 54

3.12 Voltage Regulators ... 55

3.12.1 LT1121CN8-3.3 .. 55

3.12.2 LT1587CT-3.3 .. 55

3.12.3 LM2594N-3.3 .. 56

3.12.4 Conclusion for Linear Regulators .. 56

3.13 Bluetooth Modules .. 56

3.14 Batteries ... 58

3.14.1 Lithium-Ion .. 58

3.14.2 Nickel Metal Hydride .. 59

3.14.3 Nickel Cadmium .. 60

3.14.4 Lithium Ion Polymer .. 61

3.14.5 Battery Conclusion .. 61

4.0 Project Hardware and Software Design Details ... 62

4.1 Initial Design Architectures and Related Diagrams .. 62

4.2 Item Watcher ... 63

4.2.1 Hardware Configuration ... 63

4.2.2 Camera .. 64

4.2.3 Item Watching Program .. 70

4.2.4 ARM Microcontroller .. 72

4.3 Navigation .. 80

4.3.1 MSP430G225... 80

4.3.2 Interfacing with the IR sensors ... 83

4.3.3 Algorithm and Interrupts .. 84

4.3.4 Communication with the ARM processor ... 87

4.4 Wireless System ... 87

4.5 Pololu 38 kHz IR proximity Sensor ... 89

4.6 Android Application ... 91

4.6.1 Programming Language .. 91

4.6.2 IDE ... 91

4.6.3 Libraries and Tools .. 92

4.6.4 Compatibility ... 92

4.6.5 Communication with hardware .. 92

iv

4.6.6 Permissions ... 93

4.7 Bluetooth module .. 93

4.8 Power Protection ... 95

5.0 Design Summary of Hardware and Software ... 96

5.1 Item Watcher Subsystem ... 96

5.1.1 Hardware Configuration ... 96

5.2 Navigation .. 97

5.2.1 Hardware Configuration ... 97

5.2.2 Steering Mechanics ... 98

5.2.3 Algorithms and Interrupts ... 98

5.3 Android Application ... 98

6.0 Project Prototype Construction and Coding .. 99

6.1 Navigation .. 99

6.1.1 Sensors .. 99

6.1.2 Movement ... 100

6.2 App Integration .. 101

6.3 Camera ... 101

6.3.1 Communication with Camera module .. 103

6.3.2 Data extraction by ARM Processor ... 104

6.4 PCB ... 105

6.5 Integrating Vision Software ... 106

7.0 Project Prototype Testing .. 107

7.1 Item Watcher Subsystem Hardware .. 107

7.1.1 Camera communication and data flow ... 107

7.1.2 Communication between subsystems .. 108

7.1.3 Test LEDs ... 109

7.2 App Stand Alone Testing .. 109

7.3 Image Tracking Testing .. 110

7.4 Navigation Testing ... 110

7.4.1 Sensors .. 110

7.4.2 Software for Movement ... 111

7.5 Prototype Testing ... 112

7.6 Battery Life Testing .. 113

v

7.7 IR Sensor Testing .. 114

8.0 Administrative Content .. 115

8.1 Administrative Content Management ... 115

8.2 Administrative Content Milestone ... 116

8.3 Budget .. 120

Appendix A ... 122

Appendix B ... 124

Appendix C ... 125

1

1.0 Executive Summary

The future of personal security is here. As alarm technology improves, homes
are becoming more and more secure from intruders looking to rob you of your
hard-earned belongings. However, there is one place where members of society
are more vulnerable than ever – the library, a place where people go when they
do not want to be disturbed and need to get some work done.

In the library, all your things are typically stacked up into one small area. This is
fine when you’re studying, but if you have to step away to go to the bathroom or
make a phone call, it becomes a potential jackpot for thieves. This is where
BroBot comes in. Using computer vision technology, BroBot is a mobile robot
that seeks you out when it is called, and has your back by watching your things
when you need to step away. Housed on a mobile chassis, BroBot consists of a
camera feeding images into an algorithm hosted on an STM ARM processor.
This processor maintains a Bluetooth connection to the user’s smartphone,
where a custom Android application allows the user to monitor their items in real-
time and be notified immediately if something gets stolen.

The ARM processor also connects to a low-powered MSP430, housing our
motion algorithm. Given the user’s approximate location within the library, the
algorithm steers BroBot in the correct direction, avoiding both people and
immobile obstacles while he traverses the labyrinth. The motors to control BroBot
are a part of the mobile chassis, allowing movement.

BroBot is powered by a battery, allowing it a full range of indoor motion with
extended life. This battery will be rechargeable, allowing BroBot to be charged at
night after a long day of item rescuing to be ready again the next day. Using a
rechargeable battery will dramatically cut down on the cost of long-term use.

BroBot attempts to solve a real world problem by implementing several different
areas of electrical and computer engineering. Power and circuit analysis,
computer vision, embedded hardware, Android programming, Bluetooth, and
motion/object avoidance software all come together to achieve the goals of
BroBot.

2.0 Project Description:

2.1 Project Motivation and Goals:

Across the country, studious students gather in libraries to prepare for exams,
work on projects, and finish homework. While some students prefer to work with
a group, there are others that can only be productive alone. In engineering these

2

reclusive studiers seem to be more prevalent, as observed from within. When
these students are off trying to be productive, they come to face a dilemma when
they’re in need of a break. Should they pack up their study materials, take them
along, and risk losing their prime study location? Or, should they leave their
valuables unattended and risk having them stolen? This situation is faced
regularly, and needs a viable solution.

BroBot is the proposed solution for this problem. This robot will watch the user’s
belongings when they need a break. Upon request, a student in the library will
request BroBot from the library with a mobile app. If available, BroBot will travel
to the location the user gives by the use of infrared sensors and a general map of
the library. This map will mainly be used just as a general direction that BroBot
needs to travel in. Upon arrival, BroBot will have an extending camera that will
peer over the edge of the table to have sight of the objects. The user will select
which objects need to be watched and then activate him. The user can then
leave their belongings knowing BroBot is on guard. When watching the user’s
valuables, BroBot should be able to make sure none of the user-selected items
disappear. If by chance they do, BroBot will sound an alarm, take a picture of the
thief, and send a text to the user communicating the situation.

To be able to complete all of these tasks, BroBot will have a Bluetooth to
connection to the phone application. This will be used to initially request BroBot
to come to the user’s table, allow the user to select which items need to be
watched, as well as obtaining a wireless number for SMS notifications and alerts.
There will be infrared sensors that will be used in navigation to the user to avoid
collisions with people and other objects along the way. There will be a camera
that will be used in the detection of the actual objects. The images taken will be
processed to determine the amount of change within the frames, and whether an
object completely disappears. BroBot will also be able to use the object detection
algorithm to also be able to tell the difference between the user’s objects and
another person’s things. An alarm will be implemented to alert people in the area
that something has been taken, as well as to scare the thief.

In the future, we would like BroBot to be used in multiple college libraries. The
library could have multiple BroBot’s to allow multiple users at once. Another goal
would be to create a portable version to allow the user to have a personal object
detector. This portable version wouldn’t need to travel, so he would simply watch
items and sound the various alerts.

2.2 Objectives

To accomplish the goals of BroBot, many subsystems need to work in harmony.
Without any one of these subsystems, BroBot would not function and the
defenseless items left to its care would be completely vulnerable to poachers
nearby. In this section we will discuss each of the subsystems as a whole.

3

Further into this document, we will discuss each of the subsystems and their
workings in detail.

Figure 2.2-1 gives an overview of each of the subsystems of BroBot. This chart
divides BroBot's hardware systems from the software systems. The hardware
components consist of the chassis + motors, power system, and the physical
integration of the microcontrollers. The software includes both the algorithms
used in BroBot and the software to communicate between each subsystem. Each
of these software subsystems must be coded to both do what they are designed
to do and also must establish and use their connection with other subsystems.

Figure 2.2-1 created by Richard

The first and arguably most important subsystem is the power system. All of the
other components, from the smallest of users, the camera, to the largest, the
motors, require electricity to function. Without this power, all the other
subsystems are worthless. Although more economical forms of power were
considered, they all have drawbacks that make them unusable for BroBot – for
example, solar power cannot be used in the indoor setting of a library. We will be
going with what has been the staple of portable power use for decades – the
battery.

The core of BroBot revolves around the item watching subsystem. This system
physically consists of a camera connected to a high-power ARM processor. This
processor will be running BroBot’s item watching software. The camera will
continuously feed pictures it takes to the software. The software will decide if
something about the picture has “changed,” and if so, will set off BroBot’s alarm.
If the picture is similar to the original one, it will continue to stand by and watch,

4

constantly taking new pictures to compare. A Bluetooth module is included on the
processor to allow it to constantly communicate with the user interface on the
app.

This processor will be connected to a second microcontroller, this one a low
power MSP430. This connection will serve to pass the destination information
from the ARM processor to the MSP430. The MSP430 will be in charge of the
software dictating BroBot’s movement. This simple navigation software will tell
BroBot to head in the direction of his destination. IR sensors will send a signal to
this processor if something is in BroBot’s way. In this case, the software will wait
a few seconds to see if it is something that is going to move out of the way. If not,
it will turn and attempt to find another route.

All of these systems are on board a portable chassis, equipped with a motor and
wheels. This chassis will be the body of BroBot, allowing it autonomous
movement. It also provides the base upon which the camera is mounted,
allowing BroBot to have a downward-angled perspective of the items it is
monitoring. This is important to eliminate false alarms due to background
movement.

The user interface to BroBot will take the form of an Android application, usable
on most Android smartphones and tablets. This app will allow the user to select a
destination for BroBot to travel, and will receive pictures of BroBot’s field of vision
to ensure security of watched items. The app will communicate with the item
watching software via the Bluetooth functionality of the device. If something is
stolen and the app is in range, it will notify the user and will be sent updated
pictures. If it was a false alarm, the user can choose to send BroBot back into
watch mode.

Figure 2.2-2 gives a visual representation of the information flow through
BroBot's subsystems. The user receives their information and is able to send
commands through the Android application on his or her phone. This information
is shared only with the STM processor, which contains a Bluetooth module
enabling it to send and receive data via the medium. This processor has the item
watching software loaded on it, and communicates both ways with this software.
The software also takes in inputs from BroBot's camera and uses it in the
analysis.

The STM processor is connected with the MSP430 processor. The main purpose
of this connection is to allow BroBot's destination information, received from the
user's choice in the Android application, to flow from the item watching software
and get passed to the MSP430 where it will be used. The MSP430 runs the
movement software, and uses the destination to decide where it will go. The
resulting decision is passed to the motors on the chassis, which turn the wheels
and enable BroBot's movement. Facilitating all this is the power system. Although

5

this power system does not require an exchange of information with any
subsystem, it will connect to each one to supply the power required.

Figure 2.2-2

Figure 2.2-3 shows the interaction between the software and the external
information they involve. The Android app shares information back and forth with
the item watching software. The item watching software takes as inputs this
information and the jpegs inputted from the camera. The item watching software
also receives the information about BroBot’s destination, and shares this with the
movement software. The movement software sends the signals to the motors
built into the chassis.

6

Figure 2.2-3

2.3 Security Detail

2.3.1 Item Identification

The core of this project relies on watching the user’s items and knowing when
something is stolen. Unfortunately, computers do not have very reliable ways of
knowing what something is by looking at it. Because pictures are just stored as a
matrix of numbers, where these numbers represent the color and brightness of
the picture, it is nearly impossible for a computer to be able to distinguish
between two separate objects or tell the difference between two pictures.

Because of these limitations, we are forced to use a more rudimentary technique.
We will take a picture of the area when BroBot is activated. This picture will serve
as a base. Every few seconds, a new picture will be taken and the difference of
the two will be taken using matrix subtraction. After this, the magnitude of this
difference will be calculated. If this difference differs from a threshold value, it will

7

trigger the alarm, if it is not, it will not. This threshold should be a value where
small changes like brightness does not set off the alarm, but a big change like
something disappearing will. Because slow changes such as an encroaching
shadow or change of brightness will eventually cause the alarm to be falsely
triggered, we will occasionally update the initial picture in an effort to trigger the
alarm for only sudden changes, and let slow changes get absorbed.

2.3.2 Camera

One of the main features of BroBot will be its item watching subsystem. To fully
implement this a camera while be needed on the robot itself. This camera will be
interfaced with a microcontroller which will take the image and store it for future
computations. The camera will be small enough so that it will not impede on
BroBot's ability to navigate through the given terrain. Also the camera will be on
a perch above the body of the robot, which is another reason for the camera to
be small and light weight so the arm that holds it won't need to be too heavy.
The camera will only be used during the image watching process it will supply,
when asked from a microcontroller, a picture will be sent from the camera to the
microcontroller.

The picture that will be sent might not need to be compressed if there is enough
processing power and memory in the microprocessor to manipulate larger picture
files. But since the communication between the processor and the camera might
be serial it would be much faster if there was some type of image compression
done by the camera itself. While serial communication isn’t necessary some type
of image compression would be ideal for this project. The compression from the
camera would be most useful if there was a way to control the quality.

Since it is hard to know the quality of the taken picture we would it’s hard to know
if the image is of a good enough quality to do the proper manipulations of the
image. With an adjustable quality comes the ability also to scale the byte size of
the image, which can decrease the amount of time the microcontroller will need
to process the image. Though this scaling will not be linear we can still obtain
really nice compression through the lower qualities of images.

The images themselves will need to be of a high enough quality that we can
discern different items in the image. Therefore when choosing a camera with the
ability to scale its quality it will be extremely useful in the debugging phase of our
building to be able to change this setting. Another way the camera can easily
scale the size of the image is through adjusting the resolution of the image
coming in. The ability to change the resolution would be one of the easiest ways
to adjust the overall size of the image.

Another item for consideration is that the camera must be able to send a picture
two times a second, which means that the serial communication must be fast
enough to compensate for the size of the files that will be sent. The data that is

8

sent from the camera can also come from a parallel data stream as long as the
microcontroller that is picked can interface with it. Data streams in parallel are
much faster than a serial wire but also take up a lot more pins on the
microcontroller. Also the microcontroller that is picked will have to be a lot more
powerful to take in that amount of data easily.

Since BroBot will run on battery power during the main operation it will be ideal to
get a low power camera so the battery will have enough power left to be able to
get back to its home station. Also the camera will need to be able to go into a
lower power state, though this can also be controlled by a microcontroller that will
power up the camera when it needs to be used.

The ability to zoom would be a beneficial functionality of the camera. With the
ability to zoom comes the ability to limit the amount of items or objects that can
cause a problem with BroBot’s watching program. But with a zoom feature the
camera will need to be able to auto focus from the zoom feature. Another nice
but not needed feature would be being able to grab a video feed from BroBot’s
camera. Video would take a much more powerful processor to get what we want
out of it, also it would take a lot more memory then photos would. A zoom
feature might be nice if the user only wants a small part of the field of view
watched. But since the user is choosing what items the processor will watch this
feature isn't a necessity.

Instead of using a full implemented camera a CMOS sensor matrix could be
implemented to retrieve a picture. While this would give total control of the raw
data coming it this would be the most difficult idea to implement. Also we would
have to compress the images ourselves. This could be done using a specific
DSP that was designed for this type of functionality.

2.3.3 Microcontroller

For the item watching process a microcontroller is needed to communicate with
the camera and also to manipulate the image and tell the user if something is
wrong. Also the microcontroller will be able to take an input from the user
wirelessly to turn on the camera and send a picture back to the application so the
user can define what items he/she wants BroBot to watch. Along with
communication with the user the microcontroller will need to be able to either
interface with SRAM or external ROM and will be able to store multiple pictures
on the processor itself.

The external memory that could be interfaced with the microcontroller will need to
be large enough to hold a good amount of pictures, around a GB would be more
than enough for pictures. This external memory also needs to be able to send
information fast to the microcontroller. This is to make sure that the memory will
not slow down the image calculation process. Also the external memory will
need to interface well with the microcontroller.

9

Since the microcontroller will be need to perform image processing duties it will
need to be quite fast and have the ability to do floating point operations. Though
a DSP would be work great for the image processing on this project, it would
increase the amount of money that we would need to spend. Since a good
amount of powerful microcontrollers have cheap development boards they would
be a better choice. A DSP development board is very expensive and also has a
high learning curve when it comes to using it properly. The program for image
processing and to communicate with the user will be quite large so around 1 MB
of ROM will be needed. As stated early the processor will need to be able to
store at least 1 MB of data pertaining to the images that the camera is sending
them.

The microcontroller will also have some type of serial communication since it
needs to communicate with multiple items including the camera, blue tooth
module, and other microcontrollers that control the movement of BroBot. These
communications are vital to the overall success of BroBot. The microcontroller
will also be able to go into low power mode when not in operation, so to conserve
battery power. An arm processor will be strong enough to do the calculations but
also won't take a lot of power and will be much cheaper to test then a dedicated
DSP built for image processing.

A small goal for BroBot is the ability to check older images or be able to pull back
older images so the user can look at them. If the system takes a picture every 2
seconds and BroBot will watch the item for 15 minutes that will be 450 pictures to
store. While this is a large amount of data to store on the microcontroller
external memory can help with this a lot. If the pictures take 10KB to store that
would be 4.5 MB to store. This feature will act as a way to look back at when the
items were taken and also for the user to help catch the perpetrator.

An interesting problem is the amount of money that we are willing to spend on a
microcontroller. Since this is just a prototype with no real intention of going into
production a microcontroller with a cheap development board is needed. Some
development boards are wonderful pieces of testing technology, though that is
not needed for this project. For example some ARM microcontroller development
boards come with a LCD screen already built in along with a capacitive touch
screen. While these features would be really interesting to work with they are not
needed for our project and would be better if there was a development board that
is much cheaper with less extra peripheral.

Another consideration is a second low power microcontroller that will control the
data flowing from the camera to the processor that will be doing the calculations
on the images. This will certainly increase the amount of power the main
processor can use towards image manipulation and calculations. A problem with
this is it will complicate the system a little more, but the microcontroller can also
have control of all data going in to the main processor, and tell vital information

10

pertaining to the data coming in or out of the more powerful microcontroller. In
the system the low power microcontroller will act as the master while the more
powerful controller will be the slave. Even though it will oversee the entire data
flow of the system the microcontroller can be much less powerful then the image
processor, this is because the microcontroller wouldn’t do many calculations
when addressing the camera and the image processor.

2.3.4 Wireless

To communicate with the user BroBot will use a wireless protocol that will be
connected to the main microcontroller that is doing the image processing. The
protocol will only need to work in a short range (<10 m) since this particular
communication will only happen when the robot is near the user. The wireless
system that will be used to implement this protocol will need to have a low power
option so that the wireless module that is used will not drain the primary battery
on BroBot. The system that is implemented will also need to be small enough to
fit inside the robot.

Communicated wirelessly will be the first image for the user to pick their items
and also to switch BroBot into item watching mode. Therefore the method that
will be used only needs to send one stream of information to the microcontroller.
Also this transferring of information needs to be accessible for Android
applications since control of BroBot by the user is through an Android application.
Since BroBot will be used in the library setting then it would be ideal to use a
wireless system that can work well with many people using wireless products.
Also this system might be able to integrate into the overall wireless system that is
being implemented for communication to the authorities when an item is stolen.

2.4 Navigation

2.4.1 Chassis

As we shall be adding things on top of our foundation, the base should be
sufficiently strong. Along with the chassis being strong, it should be able to
support all of the necessities of the project, which include the processor, the
microcontroller, the various sensors, as well as the camera and its support
fixtures, and any additional items that could be added. The camera will possibly
be added on to a tube to replicate a telescope to peer over the edge of the table.
All these add-ons will be fairly light, but the base should be able to support up to
five pounds, just in case. This means it has to be made of a sturdy material.

The chassis should have adequate steering capabilities. There will be times in
the course where BroBot should be able to handle ninety degree turns, as well as
navigating around still standing objects. Some things that will affect the ability to
turn will be the type of steering as well as the wheels.

11

The final consideration for chassis selection will be the size. For our project there
will need to be enough room to build on top of it. Possible considerations for size
would be between eight and fourteen inches for both length and width. This is so
that we can add all the necessities for the project, as well as possible additions
that could be created later.

2.4.2 Hardware Considerations

The hardware for the navigation system of BroBot needs to meet a couple of
simple parameters. One of these parameters is the ability to control at least 2
motors at one time, which will be used for the overall movement of the robot and
the steering the robot will need to perform. This can be done a couple of
different ways, with a microcontroller that has built in motor drivers, or external
motor drivers that are controlled using a small low power MCU. A microcontroller
with a motor driver might be too much for our project, though if a good
compromise can be found then that could work. If we use separate motor drivers
then a much easier to work with microcontroller can be used. Another big
consideration for the navigation system of BroBot will be the microcontroller that
will be the brains of the operation

2.4.2.1 Microcontroller

The microcontroller that will be used for the navigation will need to be low power
and will not need to do too many calculations. Since all it is doing is pulling up a
location and then instructing the motors where to go. Also the microcontroller will
need to be able to communicate with the processor that is in charge of the entire
project. There are a couple of good serial communications that could be used,
I2C, SPI, and/or UART. Depending on the amount of pins that will be used we
will choose the corresponding protocol. The microcontroller will need to be able
to hold the locations of the different sections that it will go to. Since the number
of locations will be small the ROM of the microcontroller will not need to be too
big. Also since the microcontroller will not be doing a lot of different
mathematical operations and will not need to store too many different variables
then the RAM doesn’t need to be too large.

The microcontroller will not need to do any floating point operations, which will
greatly reduce the cost and the power consumption of the overall system. This
will also mean that processor will not need to be too large, which is great since it
will be on our robot while the robot is moving, the less weight the less amount of
power that will be needed to move the robot. A good amount of GPIOs will also
be helpful when interfacing with different sensors that the robot will need during
the navigation period.

There is a lot of flexibility in the choice of microcontroller since it isn’t doing
anything extremely power intensive, and because of this we can choose a

12

microcontroller that can be easily tested, or even we could use a specific family
of microcontrollers that might be able to do the job at hand. Another
consideration that must be looked at is the overall price of using the
microcontroller.

The navigation system is only a part of the overall robot that will be implemented.
Therefore the microcontroller will need to be able to go into an extremely low
power mode when the system isn’t in use. The ability to wake up from these
different modes will also be extremely useful in the system, since it
communicates with the main processor via a serial line. It would also be great if
the microcontroller could do all that is needed in a low power mode, since a lot of
power will be used when this subsystem is working.

Since we will need a development board to be able to test the microcontroller, a
cheap microcontroller with an expensive development board should not be the
answer. Therefore the microcontroller’s development board will need to be
inexpensive and straightforward to use. There are many great low power
microcontrollers that have inexpensive development boards.

2.4.2.2 Sensors

The sensors are what the robot will use to be able to see what is going on with
the real world. The sensors will need to also be able to easily interface with a
low power microcontroller. Which means that it will need to take up a small
amount of pins and also not use too much power. The power consideration is
very important since it will be used when the overall system will be using the
most amount of power, during the movement of the robot. Also to be able to
interface easily with the low power microcontroller, it would be advantageous if
the output of the sensor is a digital output.

A problem that can occur with a digital output is the lack of calibration that can
occur. Since only a one or a zero is outputted it is hard to adjust when the
sensor will see something, and this could prove to be problematic during the
navigation coding if the sensor says something is in the way when in actuality
nothing is in the way. But with analog output the microcontroller will have to
convert that output so that it can give data that can be used. Though to get
around that we could use external Analog to Digital converters. This would
further complicate the system that we want to implement, but might be the only
way for the system to get a good dependable reading from the sensors.

The sensors will also need be to light weight, since more weight will mean more
power from the system overall during movement. But they also need to be able
to see at least 10-30 cm ahead of themselves, so that when they do something
the robot can come to a stop easily and not run into whatever it sees. Since the
sensors will be used in a library setting they will need to be able to sense with a
lot of ambient sound and a lot of other electrical devices being in use.

13

2.4.2.3 Motors

The motors will need to be able to pull the amount of weight on BroBot and more.
They need to do this while not using too much power on the system, since after
the navigation system is used BroBot will then need to be able to watch the items
and then finally come back, so power consumption is a large part of the overall
system. The ability to control these motors digitally is also a consideration.

Just because a motor can pull a lot of weight with lower power doesn’t mean that
it should be used in our project. Control is extremely important since we aren’t
using anything in the navigation that will tell us our location. This means that we
will need to keep a tab on where we are. This can be done if you know how
many rotations the motor has made and how big the tires are. With that
information it is easy to see where the robot is. Any easy way to accomplish this
goal is with stepper motors. While stepper motors give a user a lot of control
they are much harder to implement and interface with a microcontroller, even
with a stepper motor driver.

2.4.3 Software for Movement

The software in charge of vehicular transportation will have a few major
components. Starting, there will be a general route that should be used as a
guide for BroBot. What this would entail is finding a way to give BroBot a sense
of direction. He would have a starting and ending location given to him, and a
preprogrammed layout of the library in which he’d be operating. This would not
serve as the only component of the movement software needed however.

Another aspect of the software will be object detection. As he will be in a library,
there will be people walking around, as well as tables and chairs that can be
moved. He will need to be able to detect any object and determine if he should
wait for it to move, if it is a person, or reroute because the object is inanimate and
won’t move.

Combining these two requirements, our BroBot will be capable of incorporating a
movement algorithm which continuously reads in from the sensors, as well as
ensures that he is still going the correct direction of the object. While doing this,
he should be able to make sharp turns, travel at a relatively fast speed, and stop
quickly. For the stopping, the sensors will be used to determine the distance of
objects directly in front of it. If there is something there, it will slow to a stop
before it can collide with it.

14

2.5 App

2.5.1 Design/Flowcharts

Figure 2.5.1-1 shows the flow control from the app’s perspective. When the app
is started, the user is prompted for their location area number. When the BroBot
is activated, the app is on standby while BroBot monitors the items in its sight. If
it detects an item has been stolen, it sends a timestamp to the user along with a
picture of what it sees. If the user is in Bluetooth range, the app sends regular
picture updates of its field of vision whether or not the alarm has been triggered.
If nothing has been stolen, the user can choose to disable the alarm and allow
BroBot to continue monitoring. Every minute or so, the initial picture will be
updated to take into account changes of shading or light.

Figure 2.5.1-1

15

2.6 Power Considerations

2.6.1 Battery

BroBot will be a mobile robot that will need to be wireless, due to this constraint
BroBot will have to run on a battery system. The battery will need to be able to
supply a constant voltage and current to the system, along with the battery a
power grid will need to be implemented in the system, since a lot of the items on
the robot have different voltage and current demands.

Since the robot will be used in a library setting and will be used multiple times
during the day a rechargeable battery is ideal. Since the robot will go back to its
starting location that location can have a charging station for the robot. The
weight of the battery will need to also be looked into, since the robot will be using
its own power system to move the robot to the user. The heavier the robot is the
move power will need to be used by the motors to get the proper movement.

The voltage of the battery will also need to be higher or the same of the highest
voltage requirement, this is to ensure that the system will work properly and there
will be no problems with the power consumption of the system. It should also be
noted that it is much easier to step down DC voltage than it is to step up a DC
voltage source.

One simple configuration of the system would be to have all the parts on one
battery system. This means that all of the voltage buses will come straight from
the battery and would need to be created using some type of voltage regulator to
get the needed rails. While this type of system would be easy to implement and
regulate there could be other configurations. Since the most power draw in the
system will be the motors during the navigation operation a separate set of
batteries could be used for that system. If this system were to be implemented
then a smaller battery could be used for the electronics of the system. The
problem that this would bring up is charging the overall system.

The last consideration for the battery will have to be the price of the battery.
Which battery that is chosen can greatly increase the price of the overall system.
Since our robot will not be really heavy we can do without an expensive battery.
The price does go up with the ability to recharge the battery, which is going to
need to be in our minds when choosing our battery system.

2.6.2 Voltage Regulators

Since we plan to only use one voltage source, i.e. a battery, that source will need
to be divided into different voltage rails. An easy way to execute this is by using

16

voltage regulators with a voltage divider circuit. The voltage regulators will need
to be somewhat inexpensive and will also need to operate in a normal indoor
temperature range. Since the electronics in the robot will not be enclosed in a
box the electronics will be able to dissipate heat a little easier than if the robot’s
electronics where open to the outside.

Also voltage regulators can have a large variation in size. For our project we will
use regulators that can easily fit on a PCB board inside the chassis of the robot.
The regulators should be lightweight as well, which should limit their size.

With all of the components that we have chosen only one voltage needs to be
supplied to the system. This is because the chassis that was chosen already
powers the motors for us. This will severely shrink down the power consumption
of the control section of the robot. Every part in the circuit board needs or can
have 3.3 Volts, therefore we will only need to produce one line of 3.3 Volts. It
might be advantageous to add another line at 5 V if we plan on external memory,
since a lot of the external memory IC’s researched take that voltage to work at
the proper speeds.

3.0 Research Related to Project Definition

3.1 Similar Projects and Ideas

To properly research the development of BroBot, some past projects were
examined to gain an understanding of some working implementations of different
attributes. Using the information obtained, we may consider similar solutions to
handle our problems. The projects that seemed worthy of note, due to their
similarity to the BroBot, were B.R.A.V.O, Knight Sweeper 4200, RC Ghost Rider,
and Track Detector. Each of these projects had some similarity to our vision of
what BroBot will be.

3.1.1 B.R.A.V.O

This project was an implementation of a fully autonomous vehicle that can travel
between two points on a designated path, avoid collisions, and follow the basic
rules of the road. This type of technology is needed as a way to increase the
safety in the most dangerous situation a person can put themselves in.

B.R.A.V.O relates to our project because it involves navigation of an RC hobby
car, and BroBot will focus on similar navigation of a chassis. Also, this project
uses image processing, which we’ll also be incorporating in our project. While
they have a predetermined path to follow, and specific locations (roads) that they
can travel on, the BroBot will still need to travel between two designated points,
but there won’t be designated locations he can travel, due to regular human

17

movement through a library, as well as the movability of various objects, mainly
tables and chairs, throughout the layout of a library.

After their in depth research of the possible choices for the project, some
decisions were made about the parts to use. For the camera, the Link Sprite
JPEG color camera was chosen for its price, size, picture size, and usability with
available computer vision algorithms. For detection of objects, as well as some
line detection, the Maxbotix LV-EZ1 ultrasonic sensor was chosen over Infrared
sensors for many reasons. It is more accurate, uses less power, and is less
susceptible to noise. For the physical transportation, the Turnigy 1/16 Mini rally
car was chosen for its price, size, pre-installed components, and four-wheel-
drive. This option was mainly just the simplest pick.

In order to begin navigation, the vehicle would have to be able to travel in a
straight line. In order to ensure this, a line detection algorithm would be
implemented. This algorithm was chosen for the simplicity. The idea was that the
camera wouldn’t use the entire image for the algorithm, it would only use a
portion. It would search the image until white was found, upon this finding, there
would be a set left edge of the new picture. The car should keep that along the
left within a certain width. The line and the centroid of the car could be used to
determine the offset of the car from the line. Along with staying straight the car
would have to be able to obey signs on the road. To “read” the signs, it was
decided that an ultrasonic sensor, as well as the camera, would be used. The
information returned from the two could then be fed through algorithms to
determine the shape of the sign. For this, OpenCV had a lot of useful functions
that would be implemented.

3.1.2 Knight Sweeper 4200

The Knight Sweeper is designed to travel between two locations, and search for
metal objects along the way. It could be used to find mines, traps, or improvised
explosive devices so that a safe path can be made. It is all made on a four
wheeled rover platform.

The Knight Sweeper directly relates to the project because it also tries to find a
path between a start and end point. The path it finds is based on metal objects
found along the way however, when BroBot finds a path based on any object in
the way. Their project uses infrared sensors, ultrasonic devices, and a GPS unit
to navigate. All three of which we could consider. Based on how well these
methods worked with their project we may decide to do a similar implementation.

For this project, the team researched many popular techniques in solving their
problems, but ultimately decided on a few options for their design. Due to its
ease of debugging, immense amount of sample code, speed, and most
importantly, the greater amount of memory, the Stellaris M3 was chosen as the
microcontroller. For tracking the location, the 20 Channel SR-92 seemed the

18

most suitable fit. Because it is highly accurate, easy to integrate and test, it
minimized noise, and it needs no additional hardware; it made it much simpler to
implement. For navigation, they implemented the ultrasonic LV-MaxSonar-EZ
Ultra_Sonic Sensor as well as two Sharp Sensors, which are Infrared sensors.
The first is chosen because it can detect objects close and far away, and the
infrared are chosen because they are economical, easy to implement, and don’t
require much power. All of these parts were mounted on the A4WD1. This was
the final selection for their chassis due to its wide base, larger wheels, and ability
to traverse through various terrains.

How everything comes together for this project is fascinating. The project is trying
to find a safe path between two points by avoiding obstacles as well as IEDs, so
along with the mentioned parts, there is another sensor to detect IEDs. So, the
robot has the IED detector on the front edge to make sure it doesn’t run over
anything, the ultrasonic sensor facing forward above it, and the two Infrared
sensors on the sides, slightly skewed as a way to get “peripheral vision”. They
then run C/C++ on the microcontroller to direct the robot’s motion, being sure to
follow the input from all the aforementioned sensors. Basically, if any of them is
detecting something, change the direction.

3.1.3 R.C Ghost Rider

This project didn’t really have a lot of motivation, other than simply being in the
class and wanting to have fun. The ghost rider had two main parts; the cockpit,
where the user controlled the car, watch what the car could see, and feel
“realistic” motions of what the car was experiencing, the other part was the actual
car that traveled around based on the motions of the driver in the cockpit.

The correlation between the Ghost Rider and BroBot basically comes down to
the vehicle, video transfer, and wireless communication, though it may not even
be far. This particular project doesn’t have to guide itself to a destination, but it
has to be able to take the directions from a cockpit fairly far away. BroBot has to
be able to be called over from an unknown location to initially get him to travel
towards the person in need. Ghost Rider sends the video it is continuously
recording to a computer in front of the person driving in the cockpit. This can be
looked into, as our project needs to be able to be able to send images to either a
wireless device, or simply the processor within. This particular part of the BroBot
is still being decided.

The physical body to the car aspect of Ghost Rider was just a general RC Car,
this was because they didn’t need to change much about the physical body for
their project, and they simply needed to attach a camera and a PCB board. As
for the image and data transfer, the XBee 1mW and a typical surveillance
camera and receiver were used. They were the best option for the project
because they had nearly identical ranges, as well as similar SNR at a distance
from the cockpit.

19

The XBee was used to deal with the communications from the camera to display.
The RC car transferred 15 bytes of packed data, as did the Cockpit, during every
transmission. This happened in a serial, which is something being considered for
the BroBot. Although it would have been useful, there wasn’t a lot noted about
how the data sent for directional input physically manipulated the RC car. It
basically just talks about sending all of the data via the XBee.

3.1.4 Track Detector

Boy Scouts of America has an annual derby car race that usually requires people
to take various measurements, such as the top speed of the cars, final speed, as
well as track position, and many more. To assist in making the competition easier
to manage, this senior design group decided to make a device that could do all of
these tasks for a specific Club Scout Pack to more reliably tell the winner.

At first glance, this project doesn’t appear to have any relation to BroBot, but in
fact in has many attributes that could prove useful in understanding their
approaches. They implement wireless communication as well as an LED display,
both of which BroBot will implement. For their project, the wireless
communication is used between the various subsystems, while we would need to
use it between a cell phone and BroBot.

 For the wireless communication a Bluetooth connection was used. This was
decided because of the lack of difficulty in implementing it. For the
communication of the Bluetooth device to the MSP430 processor, a SPI
interface. To do this, the CC2540 that’s being used acts as the master and the
MSP430 is the slave, so the Bluetooth SPI input connects to the display drivers
through nets in the Eagle schematic tool. For their LED display, they use it to
display speeds, which is not what is of use to our group. However, how they
connected the display and sent the information is useful.

To actually use the SPI interface, 16 bit words were chosen to be used. One
problem that our project could encounter that theirs didn’t is that we may be
using the Bluetooth for more than one connection, where there’s was only
needed for the connection between the CC2540 and the MSP430. The
connection between these two devices can be expanded to create multiple
slaves, which is something we may need to consider. To send and control the
display, the sensor detecting the speed was hardwired to the processor. From
there the output was decoded for each of the four lanes. This implementation
seems pretty straight forward, so it seems we shouldn’t run into any difficulties
implementing a display, as ours will not be decoding information from a sensor
before displayed.

20

3.2 Relevant Technologies

3.2.1 Wi-Fi

Wi-Fi is a technology that has been around since the 1980s, providing powerful
wireless support to all sorts of devices. Wi-Fi is a technology we are exploring to
use as a means of communication between the app on the user’s phone and with
the item watching program on BroBot’s microprocessor.

Wi-Fi is a strong technology to use as a communication method because it has a
very long range. Unlike other technologies such as Bluetooth, which require both
users to be within the immediate vicinity of each other, Wi-Fi allows a fast
connection at distances up to 200 yards. Not only is it longer range than
Bluetooth, but it operates at speeds of up to 250 mbps, allowing for us to transfer
pictures wirelessly.

While normal Wi-Fi connections require an external router as a host, Wi-Fi direct
is a feature allowing one of the users to act as the host, eliminating the need for
the middleman. In our case, Android 4.1 and above allows for direct Wi-Fi, with
additional support in 4.2. Since our requirement for the app calls for somewhere
above this range, it is safe to assume all users using our app can make a
connection to the processor.

3.2.2 Roomba

This product is one that’s been out for over ten years now, but is still being
improved by its brilliant techies. It is a little disk shaped robot that every home
could surely use. The overall duty of this product is to autonomously clean the
floor of a room better than a person could be the use of a broom and dustpan.
Initially this product just had a few settings to pick the room size. The second
generation had the ability to determine the room size itself, as well as improved
dirt detection and fast charging. The latest model improved the size of the
cleaning system, a new filter, as well as a better battery life. This model also
used an infrared sensor to sense objects and reduce the speed. It also has a
“Dock” button to force it to dock itself and charge, rather than be carried. While
there were a couple models between those mentioned, a large amount of
improvement happened within the years of production. Prior to the object
detection used, the Roomba simply had a bumper designed to absorb the impact
of crashing.

This autonomous robot has many similarities to some final goals for our project.
While it must travel across every exposed inch of the floor, it still needs to be
able to navigate around objects. Our project looks for the best path, but still
needs some sort of object detection and collision avoidance like implemented in
the Roomba. Another similarity is the traveling to the charging station. Both this

21

product and our project need to have the ability to travel to their charging station
on their own. Knowing this product already exists makes it a little simpler and
trying to figure out how we can get our project to also do this task.

In Roomba, a lot of the detection of the system is done using the infrared
sensors. They start by first determining the size of the room by sending out the
signal and calculating how long it takes for it to return to the sensor. These
sensors are also used to find “cliffs” so that it doesn’t tumble down a flight of
stairs. This part works by continuously sending out infrared signals from the
bottom of the robot. If there ever is a time when the signal doesn’t return almost
immediately, it knows it has found a cliff, so it backs up and changes direction of
its course. For the path determination, the Roomba uses its wall sensors to figure
out how close it is to bumping into something. Once it reaches the “perimeter” of
the room, it simply rotates and starts going in the next direction, typically
following counterclockwise rotation. This is done so that it doesn’t repeat the
same portion of the room repetitively. Another reason this perimeter aspect
works is that a room typically has four walls, so it is trying to travel around that.
The Roomba also has the ability to set up virtual walls so that it can stay within a
defined area that may not have physical walls. These virtual walls act the same
way within the algorithm as the sensed walls did. For the autonomous returning
to the charger, infrared signals are also used. The charger emits a signal that the
robot follows to the docking location.

Knowing how the Roomba does its space detection, object detection, and overall
idea behind its navigation will help come up with ideas on how to make BroBot
do similar tasks. As infrared sensors are in consideration, using the same
methods is a possibility. However, the user will not be emitting an infrared signal
for him to follow, so the methods will only be used in the process of navigating
from the desk to the user. We could also set up virtual walls so that our BroBot
stays along a general path, similar to how Roomba uses them to keep within a
desirable area. It states that the virtual walls send out an infrared signal, this is
done because they are physical objects. However, we won’t be able to use those
because BroBot is not being used in a private location. Our virtual walls will be
set up within the layout of the library, if this is the decided method of travelling.

3.3 ARM Microcontrollers:

3.3.1 Texas Instruments Tiva C Series and Other Considerations:

Texas Instruments has a great selection of arm processors ranging from the very
powerful to low power ARM chips. A big consideration for the arm processor is
how easy is it to test with the limited resources we have as students. Texas
Instruments has a great line of low priced development boards meant to act as a
gateway to the ARM processor called the launch pad. At the moment only two
different launch pads are made with an ARM processor, the Tiva C Series
LaunchPad and the Hercules Launchpad. The general information of the

22

microcontroller on the Tiva C series Launchpad, the TM4C123GH6PM is shown
below in table 3.3.1-1.

Flash Memory 256KB
SRAM 32KB
GPIOs 43
Operation Speed 80Mhz
Package 64LQFP
Price 5.45
Table 3.3.1-1

The microcontroller has enough speed to deal with small image processing jobs.
But the RAM size is very small and would not be able to hold the amount of
pictures that we want to store, but would be a good platform to start the coding
and testing on with much smaller pictures so it could store them. This
microcontroller can also perform floating point operations, which is what we
desire from this microcontroller.

While most of the GPIOs will not be used it is helpful to have a lot of pins for
testing switched and for status LEDs. Status LEDs will be important to see if a
picture was sent, asked for and/or received. Also on this microcontroller is 4 I2C
ports, and 8 UART ports, which is important for receiving and sending data either
to the camera, the user or another microcontroller. The microcontroller comes in
a 64LQFP pin package which would not be very difficult to place and solder onto
a PCB even with our limited knowledge and skill. The microcontroller doesn’t
have the functionality to easily interface with a bank of external memory, which
would severely limit the amount of data this microcontroller can access. This
could cause a big problem if we run out of memory space and need to send a
picture somewhere else and act like that data is in the memory of the
microcontroller. Also this would be much more difficult to implement than a
microcontroller that has the ability to easily interface with an external data
source.

A nice feature of ARM processors is what is called micro direct memory access.
This controller inside the processor can move data around while the processor
deals with other operations, this could be useful since we will be using the
majority of the memory coming into the microcontroller. This is extremely
relevant for this microcontroller since its data space is very limited and would
need to be properly sorted and moved. It can transfer data to and from the
SRAM, though it since they flash and the ROM are located on a different internal
bus the micro DMA cannot operate on the ROM and flash memories.

The TM4C123GH6PM doesn't meet an important memory requirement needed
for this project so other Tiva microcontrollers that can interface easily with
external memory where researched. TI has a feature in some of their ARM
microcontrollers called external peripheral interface (EPI). EPI is an interface

23

dedicated for peripherals and memory and has a very large spot in the memory
map. This functionally also has many different options for external memory
interfacing including NAND flash, NOR flash, SRAM, and others. Therefore the
TM4C129ENCPDT was looked at since it has this nice functionality. Table 3.3.1-
2 below shows the general specifications of the microcontroller.

Flash Memory 1024KB
SRAM 256KB
GPIOs 90
Operation Speed 120MHz
Package 128TQF
Price 10 USD
Figure 3.3.1-2

The TM4C129ENCPDT is a 32 bit ARM Cortex-M4F processor core
microcontroller. The size of flash memory is much larger in this microcontroller
than in the TM4C123GH6PM, but there are some regulations when using the
flash memory since it isn't perfectly EEPROM. For example only an erase can
change bits from 0 to 1, also only a write can change bits from 1 to 0, and this
means that there has to be a lot of care when dealing with memory operations
inside the flash memory. Most ROM systems have this type of constraint, and
can be overcome easily with care while dealing with the storing of the image
information.

The external peripheral interface can have an 8/16/32-bit dedicated parallel bus
for external peripherals and memory, which is perfect for integrating with the
camera or extra RAM space. The EPI has three modes, a synchronous dynamic
random access memory mode (SDRAM), a general-purpose mode, and a
tradition host-bus mode. For our purposes SDRAM might me very difficult to get
working correctly, but the host-bus configuration works great to access SRAM,
NOR flash memory and other devices.

Unlike the first Tiva C series microcontroller that was discussed above the
TM4C129ENCPDT doesn't have a cheap development board. The development
board for this microcontroller has a lot of not needed features and comes in at
200 USD, which is well above the budget for BroBot. Upon further research
every Tiva microcontroller that had the EPI functionally has very expensive
development boards and no cheap alternatives.

The other microcontroller that has a LaunchPad and an ARM processor from
Texas instruments is the TMS570LS0432 and the RM42L432. While the
Hercules microcontroller is built for safety applications in mind, it still has enough
functionality to do what we would require from the processor. The RM42L432 is
a more powerful processor; its useful specifications are shown in table 3.3.1-3
below.

24

Flash Memory 384KB+8kEEPROM
SRAM 32KB
GPIOs 8
Operation Speed 100Mhz
Package 32 PDIP
Price 5.85 USD

Table 3.3.1-3

The RM42L432 has dual CPUS running in lockstep, this is to ensure that all the
calculations are correct and with small amounts of error, since this processor is
made with safety in mind. While this does have the muscle to do what we need,
all of the special functions built into the microcontroller are of no use to this
project. Using this processor would be a waste of time and effort.

Texas Instruments also has a high end ARM processor line that would be more
then able to perform what is needed for the BroBot Project. These processors
are ARM Cortex-A8 and A15, with over 1.35GHz clock speed, which is 10 times
above what we initially wanted. They also come with easy integration of
embedded Linux, which is great if we were to use OpenCV for our image
processing algorithms. Texas Instruments also produces an inexpensive
development board called the BeagleBone, which was created as a small and
inexpensive replacement for a computer. The BeagleBone has 512MB DDR3
RAM, 2GB on board storage, 65 digital I/O 4 serial lines 2 I2C lines, and also a
USB Host. This development board also has a great deal of literature dedicated
to it, its use, and programming the board. A concern with using this processor is
creating a PCB for the board. When discussed with other students who have
gone the route of BeagleBone, they explained the cost of trying to create a PCB
that could support the processor that the BeagleBone uses was well above our
proposed budget.

3.3.2 STM32F407VGT6:

STMicroelectronics makes many different ARM processors for various embedded
applications. They, like Texas Instruments, have inexpensive development
boards with an ARM processor on it, the main difference is that the processors on
St's development boards are a lot more powerful than that of what Texas
Instruments offers. A good example of this is the STM32F407xx family
microcontrollers, on the STM32F4Discovery kit, which are the mid-high end of
their ARM processor line and upon first glance meets the general requirements
for the BroBot project. Some of the more interesting parameters are shown in
table 3.3.2-1.

Flash Memory 1 MB
SRAM 192 KB

GPIOs 72

25

Operation speed 168Mhz
Package LQFP100
Price 5USD
Table 3.3.2-1

Also with this microcontroller comes the ability to easily interface with external
memory, which is another requirement for the BroBot project. The flexible static
memory controller (FSMC) has 5 different modes of operation for easy integration
with external memory, there is PCCard/Compact Flash, SRAM, PSRAM, NOR
Flash and NAND Flash. Since the internal advance high-performance bus (AHB)
does transactions with 32 bit wide data, it will split into data that is 16 or 8 bits
wide consecutively. The max frequency for synchronous accesses is 60 MHz,
this microcontroller has 2 8 bit lines for the FSMC.

The STM32F407VGT6 has 4 different modes of operation including normal
operation, they are sleep mode, stop mode, and standby mode. Standby mode
uses the lease amount of power and would be the mode that is used when the
robot is going towards its destination. The data sheet fully explains how to
properly power this chip, which is great for this project since the users designing
the robot are very limited in powering knowledge. The STM32F407VGT6 has 3
I2C bus interfaces which supports standard-mode (100Hz) and up to fast-mode
(400kHz).

DSP instructions are also implemented into the microcontroller. The DSP
instructions make the multiplying instructions executed in a single cycle, which
drastically improves performance. With this functionality comes 10 times the
speed of normally 32 bit floating point operations. The microcontroller also has a
single precision floating point unit to help increase calculation speed of the
processor.

This microcontroller also has up to 14 timers. While this high amount of timers
will not be needed they will be extremely useful when trying to get a good stream
of images coming into the processor. With these timers the microcontroller will
be able to keep an eye on the time of how long it has been till it got its last photo,
how long it took for the user to get back and how long it has been till the user
asked BroBot to watch their items.

This microcontroller has built in a system to take in video and image information
from a camera module or a CMOS sensor. This functionality can run 8-14 bit
parallel communication between the controller and the camera module, this
feature can run up to a rate of 54 Mbytes/s. While this functionality is made with
video in mind it can also serve as a great tool to be used by this project. It would
greatly simplify the use of the MT9D11 camera module, since this module uses 8
bit parallel data to output its JPEG images. The speed at which the MT9D11 can
send information is between 6 Mhz to 80 Mhz, while we wouldn't be able to use

26

the max speed of the camera module the speed of this system falls within the
range of the camera output speed.

The development board that has the STM32F407VG6 on it is from st.com and is
around 15USD. The board itself has a header for every pin coming from the
microcontroller and also has two push buttons, eight status and general-purpose
LEDs. It runs on an usb connection, which also is used to program the
microcontroller. Also there are many free ready to run application firmware
examples on St's site. This would be useful if we were to use this microcontroller
for the BroBot project.

3.3.3 ATSAM4S16B

The ATSAM4S16B is a 32-bit Atmel ARM cortex-M4 microcontroller. Shown in
table 3.3.3-1 are the specs of the microcontroller.

Flash Memory 1 MB
SRAM 128 KB
GPIOs 47
Operation speed 120Mhz
Package LQFP64
Price 11 USD

Table 3.3.3-1

The ATSAM4S16B also has and external bus interface that supports SRAM,
PSRAM, NOR Flash, and NAND flash. The max IO pins on this processor is 47,
and also has some DSP features built into the instruction set. It has two USARTs
and two two-wire UARTs, which is all that would be needed for the BroBot
prototype.

The processor has 5 different modes of operation including normal operation.
The four other modes are backup mode, which consumes the least amount of
power but has to wake-up before performing the immediate task, there is wait
mode which is a lot like backup mode but instead the processor does not need to
wake up and keeps the processing core powered throughout. The final mode is
sleep mode, which stops the core clock but doesn't stop any peripheral clocks,
the total power saved is dependent on which peripherals are turned off and white
ones are turned off. Any of these modes can be canceled with a simple interrupt
or instruction inside the software.

This microcontroller also has the capability to take in up to 8 bit parallel data, and
send out up to 32-bit parallel data, which is what some of the camera modules
output normally. This functionally is realized with the parallel input/output
controller built into the microcontroller. The 8-bit parallel capture mode was
made with CMOS image sensors in mind, which is the type of image sensor that
could be used by BroBot.

27

Atmel has a nice development board that comes with an ATSAM4S16B chip
already on it. On the board also is 2 pushbuttons, one LED a SD card socket,
headers for all pins from the microcontroller, and 2Gb of NAND Flash. This
development board would be very useful during our testing phase of the project.
Since it already has 2Gb of NAND Flash on the board it would be easy to choose
what type of external memory, if we needed it, we would get, because we would
just choose the exact memory chip that is already on the development board.
This board is more expensive than others that have been researched, but not too
big of a price where it is outside our budget, at around 40 dollars. Also Atmel has
a starter kit for this exact processor which comes with software and expansions
on this board, if we were to use this board we would probably go this route.

3.3.4 Conclusion of ARM Processors:

Most of the research done for these processor was to ensure a small list of
functionalities, easy implementation, enough computational power to do the
image processing that this project requires, and enough communication lines
needed to talk to every peripheral that BroBot is going to use for the item
watcher. Another main consideration that was looked into was the size of
memory and also the ease at which to integrate the microcontroller with external
memory, have it be NOR, NAND, etc.

The first microcontrollers that were looked at where Texas Instruments various
lines of arm processors. As it turns out these processor where either not strong
enough or way too strong for the problem at hand. While their development
boards are inexpensive and have a great community behind them, all the
processors on those boards do not have the memory or the ability to easily
integrate external memory. The higher end processors, including the
BeagleBone, would cost too much during the final prototype stage due to
complexity of the processors.

The ATSAM4S16B is a great microcontroller that can easily handle everything we
would throw at it for this project. Its ability to easy interface with external memory
is ideal and also has many GPIOs which are great for testing, and has plenty of
ways to communicate with different peripherals which is perfect for the project.
Also Atmel makes an inexpensive development board for this processor. But this
microcontroller doesn't have built in functionally for taking in parallel data from a
peripheral.

While the ATSAM4S16B doesn’t have the functionality the STM32F407VG6
does. Which is why it will be used for this project. This microcontroller was built
for the processing of images and video coming in from a CMOS sensor. While
we don't need that type of work it can still be used to our advantage for taking in
images and video from the MT9D111. Also the development board created by
STMicroelectronics is cheaper than every development board that was found for

28

the other microcontrollers. Another added bonus for this microcontroller is that
ST has given users many avenues to explore with the STM32F407VG6 in the
form of different examples for the development board.

3.4 Low Power Microcontroller

To ensure the highest efficiency possible for BroBot, we are going to use two
different microprocessors. One, a more expensive, higher power processor, will
be used to run the image processing program. This processor needs more
memory and more speed due to the need to store images and perform
operations on them in a limited time frame. The other processor is a low power
microcontroller. This controller will be used for the motion software. It will control
BroBot’s movement, and adjust it based on destination and objects detected by
sensors. In this section, we examine different options for this low power
microcontroller.

3.4.1 MSP430

The MSP430 is a 16-bit microcontroller created and sold by Texas Instruments. It
is a low-power, low-cost microprocessor able to run simple programs. The
controller chip itself costs somewhere in the neighborhood of $2 depending on
what features we need on it. It is very flexible, containing several modes to
disable unneeded clocks to save power when they are not needed. The MSP430
comes in many different models, but we will focus specifically on the
MSP430x4xx series. This microcontroller comes with anywhere from 4-120 KB of
Flash and ROM, 256B-8KB RAM, and many other peripherals such as Op Amps,
several times, multiplexers, comparators, and more.

The MSP430 has several built-in ports. It has a port for input, that is read only,
and simply allows the state of the pins to be read in. It has a port for output state
to be read out. It has a configuration port, a select port, and a port to enable or
disable the pull-down resistor, as well as several more. We are mostly concerned
with the output port. When the program decides which way to turn, or to travel
straight, this signal will be reflected in the state of the output port. If it’s a high
voltage, it will direct the motor to run, if low, it will not.

Software development tools for the MSP430 are supplied directly from Texas
Instruments. The IAR C/C++ compiler and IDE are available, as well as TI’s own
Eclipse-based tool Code Composer Studio.

The biggest benefit to using the MSP430 over the other microcontrollers is the
cost. While the microcontroller chip itself costs around $2, the development
board in its entirety only costs $4.30 and often can be received as free samples.
Also, it is a very low-energy microcontroller, so it will take a load off of our power
system that will be powering the microprocessor and especially movement.
However, it has very little memory for a microcontroller, and has a comparably

29

low clock speed. While it should be high enough for our purposes, a lower clock
speed could lead to clunkier steering.

3.4.2 Arduino Uno

Arduino is another kind of microcontroller used in many projects. This board is
open-source, and there is a lot of documentation and use of it, making
compatibility less of an issue. The processor typically comes with a development
board at a fairly high price of $30.

The board comes with many nice features, such as 14 digital input/output pins, 6
analog inputs, a 16 MHz ceramic resonating clock, and a USB connection to
easily load code. It comes with all the pieces needed to run it out of the box,
making it very simple to set up and run. It comes with 32 KB of flash memory,
along with 2 KB of SRAM and 1 KB of EEPROM. Although it can be powered
from a USB connection, in our application it will need an external power source to
keep it operating remotely. The software can configure each of the pins to be
either an input port or an output port. The Arduino software is free, and is used to
program the code for the Arduino.

Although the Arduino’s development kit is priced at $30, the CPU itself is only
$2.82. This is the same price as the MSP430. For testing purposes, the Arduino
is much more expensive in this regard, but for prototyping the cost will remain the
same. The Arduino is only an 8-bit processor, compared to the 16-bits of the
MSP430. It does have much more storage space and RAM, which is likely not a
factor since this microcontroller is just storing code and sensor inputs. However,
it has a boot loader, which allows code to easily be loaded onto the
microcontroller. The MSP430 requires a programmer device just to load code.
Additionally, the Arduino controls things such as the clock speed by itself, making
it much simpler to implement. For these reasons, the Arduino Uno holds a clear
advantage for us over the MSP430.

3.4.3 PIC

PIC is another family of microcontrollers sold by Microchip Technology. They are
cheap, widely used, and reprogrammable. It has separate memory for the code
stored on the microcontroller and the data stored. All RAM locations can be used
as registers to allow any variables needed to be saved. The code is saved
separately on ROM. PIC controllers are widely known to have the highest speed
to cost ratio, making them very effective as a low-power controller. Free
emulators are available to test software before putting it on the board as part of
Microchip’s IDE, MPLAB. C compilers are also sold for a price that interface well
with MPLAB. As students, we are eligible to receive a free version of the C
compilers.

30

The PIC is programmable while attached to the target circuit. PICs have a feature
called In Circuit Serial Programming and another called Low Voltage
Programming that does not require the PIC to be removed when being
programmed. This is extremely beneficial for prototyping as we will be able to
reprogram the controller as needed without having to take apart the circuit,
saving us from having to do extra work.

3.4.4 Conclusion for Low Power Microcontroller

After an analysis of the pros and cons of each microcontroller, we have decided
on the MSP430. While the cost is attractive, the deciding factor in this decision is
the flexibility. The Arduino Uno has lots of resources behind it and is easy to
interface with most projects, but it does a lot of the work for the user, leading to
settings such as the clock speed being uncontrollable. While it is more difficult to
do all of these things by hand, it gives us a level of control over the project that
we otherwise would not have. For example, if the clock speed were set
incorrectly, the movement software might not update as quickly as we need and
will not properly be able to detect objects in the way. The MSP430 is the best
choice to support this level of flexibility.

It has been decided that an MSP430 would be the best option for our project, but
there are a variety of models that can be chosen from. We needed one that
would be able to be used with the specific Launchpad, which meant that it
needed to have the appropriate number of pins, as well as the correct package.
Along with this, it needed to be able to use the same communication styles as
the ARM processor.

The MSP430 G2553 is able to be tested and evaluated on the LaunchPad Value
Line Development kit, because it is already in possession of one of the team
members and would save money to not have to buy a different Launchpad. This
model has 20 pin DIP, as was needed. It is also capable of I2C or SPI
communication. While there were a variety of models that had these two things,
this one was chosen because it had the most memory available, used the correct
frequency, and it is easy to obtain a free sample of it. The last reason was why it
was chosen over one other model that had all the other specifications, but it
wasn’t available as a free sample.

3.5 Movement

Axial steering is a common type of movement that is used in many vehicles.
When it is used, the front wheels are connected by an axel, as are the back
wheels. When the vehicle attempts to make a turn, it takes the front axle, if it is
front wheel drive, and rotates the entire thing about the center axis of the car.
This allows for a rotation of two wheels at once when the car is trying to turn.
When this is done, the vehicle can take sharper turns, and the wheels move

31

more in unison. When trying to find chassis models that use this, it usually isn’t
the steering that comes with it. However, it is possible to change a vehicle to this
type of steering, and it is usually considered an upgrade.

Another type of steering is skid steering. In this, when the vehicle needs to turn it
breaks on the wheels on the side of the vehicle that it would like to turn. So, if the
car would like to make a left hand turn, it would break on the left side of the car to
allow the right half of the car to continue moving. When it does this, it causes the
wheels being help still to be dragged around the turn, which would be where the
skid steering title comes from. This method of steering is more common in robot
chasses because it is more easily implemented, and is easier to assemble.

If it were desired to implement axial steering, since it is not typically the given
implementation of steering, there would have to be a few different parts that
would need to be ordered. One of these being an axial rod, which for a chassis
would have to be the exact size, and the prices start around twenty dollars for the
upgrade. Some other parts that are needed for an axial upgrade are the securing
pieces for the axle, and the new steering mechanism. Since it is no long steered
by breaking, or turning off the motors, on the wheels that need to be pivoted
about, it would also need a new method of attaching the motors, as well as a
different connection to the processor to control the steering.

Since this type of movement is more common among chasses and other robotic
car options, it would be more likely to find an option that supports this type of
steering. Since it would be more work to try to change the chassis to support
axial steering, as well as more costly, and most chasses already come with skid
steering, it is would be more beneficial to implement skid steering for the project.
When looking for the appropriate chassis, we won’t need to look for upgrade kits
for the model, or a model that already implements the axial steering.

3.6 Chassis

Looking into different types of chasses, there were several things we had to keep
in mind. As we received no funding, cost was pretty important. The next
consideration was the physical structure and shape; this matters so much
because we need to easily be able to build upon our robot. Relatedly, the size of
the chassis is fairly important, as we may have quite a few parts to add onto it.
The last thing that will be considered, in regards to the physical chassis selection,
is where it will be used. Since it should be used in a library setting, the tires
should be appropriate, and it should have the ability to easily turn ninety degrees.

32

3.6.1 4WD Robot Chassis

3.6.1-1 Image reproduced with permission from Hobby King

Length 180mm
Height 80mm
Width 155mm
Price $12.19

Table 3.6.1-2

This particular robot chassis kit is sold on the hobby king website. It was
designed to be used by students and hobbyists. The two red plates are built from
acrylic, and contain numerous mounting points. The size allows for enough
space to add various items. The motor that comes with this chassis runs at a
fairly low voltage, so the question comes, would it be able to travel quickly with
weight? Based on the information provided, this particular chassis, while cheap,
wouldn’t move at a speed we would like to achieve. Another downfall of this
model is flimsy structure. There have been notes of it not being durable. While it
would only be used indoors, it will be picked up and set down by the user, so this
could lead to difficulties of the user dropping it. In this circumstance, we need a
durable machine that won’t break so easily.

33

3.6.2 Aluminum 4WD Robot Chassis

Figure 3.6.2-1 Image reproduced with permission from Hobby King

Length 210mm
Height 66mm
Width 202mm
Price $45.37

Table 3.6.2-2

This particular robot chassis kit is sold on the hobby king website. It was
designed to be used by students and hobbyists. The frame is built from heavy
duty anodized aluminum with plenty of mounting locations. The internal volume
was designed so that it could store a lot. The motor that comes with the kit isn’t
the best, but that’s something that could be substituted if needed. If chosen, we
may consider changing the wheels as well, as they appear to be difficult to work
with. Since this frame is meant to be strong, although the maximum load is not
given, it would be assumed that it can hold the weight of our attached parts.

34

3.6.3 Baron-4WD Mobile Platform

Figure 3.6.2-1 Image reproduced with permission from dfrobot.

Length 230mm
Height 110mm
Width 185mm
Max Load 800g
Price $56.00

Table 3.6.2-2

This particular robot chassis is sold on dfrobot website. This chassis comes with
a few interesting features. It comes with an infrared sensor switch, not an actual
sensor, as well as the ease to install a look for line sensor. So, this model would
be beneficial to get if we had the desire to add these sensors. It also comes with
an encoder kit that is compatible with Arduino. Even if Arduino wasn’t used, the
encoder kit could be switched out with a different one that is compatible with
whatever processor best fits the needs for our project. Obstacle avoidance would
be easily implemented. The design of the body allows it to have good climbing
ability. The frame on this is created from a high strength aluminum alloy. Along
with this, it has thick acrylic to help reinforce areas where thin, fragile acrylic
could cause defects. The motor on this model is also powerful; it can go up to 6V,
which is twice as much as previous chasses’ voltage capabilities. With max load,
it can obtain a speed of 68cm. This model also has a platform with plenty of
mounting locations of different shapes and sizes. It is also an appropriate size
that would allow for the various components to be added easily. It is slightly more
expensive than the last model, but it brings a lot more to the table.

3.6.4 Pirate-4WD Mobile Platform

35

Figure 3.6.4-1 Image reproduced with permission from dfrobot.

Length 200mm
Height 105mm
Width 170mm
Price $49.90

Table 3.6.4-2

This chassis is also distributed through the dfrobot website. This model is
intended to be used with an Arduino mobile platform, but it doesn’t come with the
encoders, so it would be possible to use this chassis with a different
microcontroller. This kit simply comes with the frame, the motor, and the wheels.
It also has a high-strength aluminum alloy body. This body, because lightweight
and durable, allows for quick movement. The wheels which are included all for
fast in flexible movement, even in grass, gravel, sand, or on slopes. This means
that in a library setting, it would be able to travel with greater speed and
precision. The electric supply voltage ranges from three to twelve volts. As visible
in Figure 3.6.4-1, there are multiple mounting locations, and the size is
appropriate for how much we need to add. This chassis is almost identical to the
previous one, but it comes with fewer features and is slightly smaller. The
features it doesn’t have include the encoder kit, a power switch, the installation
line, or the infrared switch mounting bracket. None of those are essential to this
project though, unless Arduino is used. As an additional bonus, due to the lesser
amount of features, it is slightly cheaper.

36

3.6.5 Dagu Rover 5 Chassis 2WD

Figure 3.6.5-1 Image reproduced with permission from Active-Robots.

Length 9.5 in
Height 8 in
Width 4.5 in
Price $80.00
Speed 25cm/s

Table 3.6.5-2

Dagu Rover 5 is distributed on a website called active-robots. The have a wide
variety of different types of robots, and components to create your own robot.
The model under consideration is far different than the other types of chasses; to
start it doesn’t have four tires. Having two tracked tires allows for easy traversal
over various terrains. Within a library, it would move with ease; this would be
pretty useful. The tires are capable of shifting heights to manage going over
uneven ground, as well as traveling over objects. The wheels are able to lift up to
almost two inches, which doubles the height of the enter frame. The internal
carrying capacity is limited due to the structure of the chassis. This frame would
hold the motor, which can obtain a maximum speed of 25 cm/s, as well as a few
other small pieces. Another bad thing about the frame is that it would be difficult
to mount an extendable camera on top. The price of this device is $80, which is
far more expensive than any of the other models. The best aspect of this chassis
is its adaptability of height when traveling, but even that isn’t a necessity in our
project.

37

3.6.6 Conclusion of Chassis

Based on the research of difference models of chasses, a general model was
constructed of what was needed. We need a chassis that is approximately a foot
in length and width, to adequately support the necessary materials, and be able
to carry up to two pounds, as a high maximum. It would also need to be able to
travel quickly and efficiently on carpet, while still having the ability to make sharp
turns. Option 4 seemed to have the best ability to fill our needs for the project. It
is a desirable cost, it is easy to maneuver, it is fast, and can easily be built onto.
Something else exceptional about this model is that it doesn’t require, or expect,
Arduino to be used, and it will be easy to implement a different processor. It also
has a sturdy body that will allow an appropriate amount of weight to be
supported.

3.7 Navigation

3.7.1 Algorithm

In designing our BroBot, we had to keep in mind the method in which he should
travel to the requesting user. When requesting BroBot’s assistance, the user will
use the app and input their location. Along this path, because there will be
random obstacles along the way, he will have to be equipped to avoid collisions.
Some of the methods which have been considered for this obstacle avoidance
include computer vision and infrared sensors. Along with these methods, there
will need to be a general path finding algorithm that will implement the
aforementioned method of choice.

To start, the location of the user needs to be determined. Using a GPS to
transmit the precise location to the user is something that could be useful in this.
When the user is requesting the assistance of BroBot they could have the ability
to allow the application to determine their location and pass the information along
for navigation. This would be quite useful to be able to just give BroBot exact
coordinates, but the ideal use of him would be within a library setting, and this
could cause some difficulties in determining where in the building the user is, it’s
not as applicable as originally thought. Another negative aspect about this is the
cost. Typical sensors start out around one hundred dollars, which is a little out of
the budget for the project. If that weren’t enough, interfacing GPS tends to be a
difficult task.

Rather, to determine the location, the application could have a preprogrammed
map. The map would have different labeled sections of the library, as
predetermined by the group. As the user is summoning BroBot, they look at a
map and highlight the area which they are located. When selected, BroBot will
then have a specific coordinate within this location, probably at the center, that

38

he will then use as the user’s location. As the traveling destination has been
determined, he will then proceed with implementing his movement algorithm.
This method would also be beneficiary because he will already be receiving
signals from the application via Bluetooth, and this wouldn’t add much work that
wouldn’t already be done for another part of the project. Rather, we’d be able to
really implement it to its full potential.

There have been a few classes which have taught on the basics of path finding.
However, all the methods that have been learned are static. The traveler tries
possible paths until he finds one that works. This is done using backtracking and
recursion. The traveler “looks” to all the possible directions immediately around
him, if it is open he recursively calls his search on that position. Each call checks
all four cardinal directions, and if the position is open, the recursive call is made
to check the surrounding positions of the now current position. If at any point a
position is found where it cannot travel in any of the next directions backtracking
comes in , and the program considers that path null and shifts back to the last
possible position and search from there. In the first instance that the traveler can
reach the final destination, the path returns true and the traveler follows this path.
While this method works for a layout that is given in advance, it wouldn’t be able
to work precisely as is within a library where the surroundings can constantly be
changing. Since our surroundings are dynamic, we need to be able to regularly
get feedback from the environment and move if something appears in front of
BroBot. Our algorithm for transportation needs to be able to allow the robot to
continuously move in a direction until an obstacle is encountered. Once there is
something in the way, the robot should either change directions or just move
around the object to continue along the same path.

One method that could be used for the general direction he travels is traveling
with right angles along the cardinal directions. Between any two points, only two
directions really need to be traveled; either east or west, and either north or
south. This is true, unless the two points lie on the same path. Since BroBot will
know both his starting and ending position, as well as a general layout of the
library, he will know the two main directions which are required to reach the
destination. So, to begin his travelling he will start traveling in one of the two
directions until the two points lie along the same path. At this point, he should
change directions and go straight for the user. One fault that comes from this
algorithm is when BroBot needs to travel down a hallway that isn’t lying in one of
the cardinal directions. Another downfall is that this would not be the shortest
path, and therefore would cause him to take more time traveling to the user.

Another possible method of traveling between the two points would just be
travelling along the straight path between the two points, since this would be the
shortest path possible. When an obstacle is encountered, it could just move
around it. The same idea would be used as before, observe inputs as the path is
traveled, and change direction and recalculate the shortest path to the user. So
this would also account for the issue with walls or other long still objects. When

39

these are encountered, the robot would keep checking to see if he could turn
towards where he needs to go, if he can’t, he’ll keep traveling along the wall until
it is possible to change directions. When that point is reached, the recalculation
would occur. Now the only thing missing from the algorithm is how the data will
be read from the surrounding environment.

As computer vision will be using elsewhere in the project, it seemed logical that it
should be considered for the traveling as well. If this method were used, the robot
would need to use the camera to collect images of the environment, and decide
what is actually in the path. This seems like a simple idea, because as a human
we do this automatically with our depth perception, but a robot would have a bit
more difficulty with this. The images would have to be used to determine all of
the aspects in front of him; the walls, ceiling, floor, tables, chairs, people, etc.
BroBot would have to know that it’s okay to travel on the floor, but if there is
anything directly in front of him, he would need to move. This now plays into the
depth perception; one idea would be to just use the size of the object to
determine if movement is necessary, but this wouldn’t necessarily work if there
were a book shelf in front of him. It would be a large object, that may need to be
traveled around, but BroBot could take it as being closer than it really is. Another
issue is that a camera wouldn’t be able to see anything out of range, such as a
person walking towards him or an object that is beneath the camera’s line of
sight. While these things could then be fixed with collision recovery, a person
might get annoyed if BroBot ran into their foot because it was out of his line of
sight. After these things were found, computer vision seemed far too complicated
to use as the method of observing the environment.

The use of infrared sensors is another possible implementation of the object
detection during the traveling. IR sensors are typically passive, which means that
it only reads infrared signals, rather than emitting them as well. This could be
implemented within the motion algorithm by determining when there are objects
within too close of a range. Rather than sounding an alarm, which is typical for
most uses of PIR sensors, it could redirect the signal of the detection of an object
to the movement algorithm and tell it that the direction needs to change.

For the final decision on the algorithm that should be used, not just one of the
mentioned methods would suffice. Instead, Bluetooth will be used for the
determination of the user’s location because it is already being implanted by the
system, and it isn’t too difficult to implement. The robot will use the location of the
user and have a general predetermined route around the large objects and walls
along the way. While traveling the route, it’s likely that there will be objects in the
way, such as moved tables or chairs; for this the infrared sensors will be used to
divert the path away from the object, just long enough so that it knows it is no
longer in the way. From this moved location, BroBot will adjust his path based on
his location on his preprogrammed map and continue towards the final location.
To know the location on the map, there will be internal calculations done using
the speed, amount of time traveling, as well as the direction being traveled. So

40

the actual algorithm that is used will use parts of the path finding algorithm
previously mentioned, as well as interrupts from the infrared sensors.

3.8 Sensors for Navigation

3.8.1 Sharp GP2Y0A02YK0F

The Sharp GP2Y0A02YK0F is a long range IR sensor. The package contains an
infrared emitting diode (IRED) and a position sensitive detector (PSD). It can
detect objects between 20 and 150 cm away. The closer an object is to the
detector, the greater the output of the package’s signal processing circuit. This
signal can vary between 0.5 V for a distance of 150 cm and 2.7 V for a distance
of 15 cm.

Feature Specification

Measurement Range 20 to 150 cm

Analog or Digital Output? Analog

Size 29.5 x 13 x 21.6 mm

Typical Current Use 33 mA

Supply Voltage 4.5 to 5.5 V

Price $14.95 each

Table 3.8.1-1

A concern with the IR sensor is the color of the reflective surfaces. According to
the data sheet, if reflected from a white sheet of paper, 90% of the originally
emitted IR signal’s intensity will reach the detector. If reflected from a gray sheet
of paper, only 18% of the original signal will reach the detector.

The long range sensor is not suitable for BroBot. BroBot is a compact robot and
does not need to adjust its path for obstacles more than 60 cm away. 60 cm is
enough space for BroBot to stop and change directions. A short range device
would better suit our needs

3.8.2 Sharp GP2D120XJ00F

The Sharp GP2D120XJ00F is a short range IR sensor. The detector can find
objects between 3 and 30 cm away. Similar to the Sharp GP2Y0A02YK0F, the
proximity to the detector increases the amplitude of the output signal. This would
be useful in a project that requires a variety of actions based on distance.

Feature Specification

Measurement Range 4 to 30 cm

Analog or Digital Output? Analog

41

Size 29.5 x 8.4 x 13.5 mm

Typical Current Use 33 mA

Supply Voltage 4.5 to 5.5 V

Price $13.95 each

Table 3.8.2-1

The short range sensor is more applicable for BroBot. Unfortunately, the
maximum range of 30 cm might not provide enough space for impact-free
maneuverability. A device that can have a greater reach but still detect obstacles
less than 10 cm away would be preferable.

3.8.3 Pololu 38 kHz IR Proximity Sensor

This device is an IR sensor with a short range. The package contains both an IR
LED and an IR detector, the Vishay TSSP77038. The LED can be turned off and
on using an I/O pin from the microcontroller. When the device is powered, the
LED is set high by default; as long as the Pololu is ON, the LED will emit an IR
signal. Unlike the other two sensors, the Pololu has a digital output. This will
allow us to directly communicate with the microcontroller without any conversion
of an analog signal into digital. The device will simply output low when it detects
any IR signal.

Feature Specification

Measurement Range 30 or 60 cm

Analog or Digital Output? Digital

Size 10.16 x 5.08 x 15.24 mm

Typical Current Use 16 mA

Supply Voltage 3.3 to 5.5 V

Price $4.95 each

Table 3.8.3-1

The Pololu is the best choice for BroBot. The digital output and enable make
integration simple. Also the voltage needed to be supplied to this sensor is in the
range of most of the other items that will be used by BroBot. This consideration
will also only take up two pins on our microcontroller. Since we are using a low
power low pin out microcontroller

3.9 Camera

3.9.1 Camera Setup

The final aspect of constructing our robot is deciding how the camera will be set
up on the chassis to allow for maximum item watching capabilities. BroBot should

42

be able to see all the items on the table, but whatever means necessary. The
camera is small and lightweight, so the structure doesn’t have to be extensively
strong or large to support it.

Considering first the raising of the camera, we must lift it a distance that will allow
BroBot to peer over the edge of the table, as it seems most fitting that he should
sit in the chair to take the user’s place when they need a break. Some different
materials to consider for lifting it are PVC pipes, a thin metal rod, and a
rectangular piece of wood. Starting at the beginning, PVC pipes are lightweight,
sturdy, the size can be adjusted as needed, and they’re cheap. Along with this, it
is hollowed out so the cords would be able to be placed inside to hide them from
view, as well as protect them. Next a metal rod would be sturdier than PVC pipe,
but it would also weigh more, which could cause problems with the chassis, as it
will just be creating unnecessary weight, but it would also be hollowed out to
allow for cord protection. The last option would be a solid block of wood. This
option would be the sturdiest, as well as being easier to attach to the chassis, but
it wouldn’t allow for the cords to be hidden. This being said, PVC pipe would
probably be the best option for material to use.

The next thing to consider is how the camera’s position will be able to be shifted
after BroBot has been placed in the chair. One option would be simply rotating
the pipe the camera is connected to. This would result in a wide range of
horizontal movement, but the camera wouldn’t be able to be tilted up or down, if it
were needed. Another flaw in this approach is that it would be more difficult to
connect the rod to the chassis and still allow rotational movement. Another option
is attaching the camera onto an extension that is added on the end of the pipe.
Luckily, PVC pipes have a lot of options for extension. To obtain the various
pitches, a hinge support could be used, but this alone wouldn’t allow for changing
the yaw of the camera. While a hinge would be nice, it could be hard to find a
hinge support for PVC pipe, so instead, we could use an angled connecting piece
to change the direction; if two were used we could allow them to rotate and
simulate the hinge movement. Lastly, we need to take care of the horizontal
movement. We could add more extending pieces to the PVC pipe, but this would
cause the weight to begin to be more unevenly distributed. Another option would
be a ball and socket type joint, this would allow for horizontal movement, as well
as some vertical, so only one angle connecting piece would be needed; or a
hinge support if one can be found for PVC pipes.

43

Figure 3.9.1-1

3.9.2 JPEG Image/Video Compression:

Since raw image files would be very large and hard to work with, the JPEG
standard of image compression was looked into for this project. JPEG is a very
robust type of lossy image format, which has a selection of quality which affects
the overall size of the picture. For a high quality JPEG can reach 10:1 size
adjustment from a raw file to a jpeg image. The lower you go in quality factor of
the JPEG image the more image artifacts you gain due to the compression.
Compression artifacts could have a great effect on our project if they start to
interfere with the image processing. By a quality factor of 10 artifacts start to
overtake the boundary of the object inside the image. For our project we will
need to use a quality factor higher than 10. But with a quality factor of 25 the
objects in the image almost have no real lose to them. The range of 10-25 will
be used for the project when deciding on the quality factor. Table 1 below shows
the size of the file with different values of quality, these numbers are from
Visengi’s JPEG encoder, with a picture at 352*288 resolution, which is much
smaller then what might be implemented into BroBot. It also must be noted that
this is only to get a general idea of how well JPEG compressed depending on

44

what the quality factor is, these numbers will not be true at all for our
implementation.

Quality Factor Compression Ratio Quality Factor Size(Bytes)

100 1.62 50 12.89

95 3.53 40 14.86

90 5.03 30 17.76

80 7.45 20 22.99

70 9.48 10 35.49

60 11.27 1 68.36

Table 3.9.2-1

Table 3.9.2-1 shows how well the JPEG standard scales with the quality factor.
Looking at this data shows that there is a pretty big increase in compression ratio
near the end of the quality factor. While a quality factor of 1 would be the
smallest it would not be useful when trying to identify different objects the user
wants watched. But around the range that was talked about above the
compression ratio is still very good when compared to higher qualities. This data
also shows that from a quality factor of 50 to 90 there is little change in the
compression ratios.

Also in the jpeg standard is the ability to change the chroma components. These
components deal with the amount of data that is used to describe the color of the
image, and since not a lot of color is needed when watching the items it’s another
tool to help scale down the image size. Below is data from Visengi’s JPEG
encoder when it comes to the compression factor of using different chroma
schemes, this does not show the monochrome option in the jpeg standard, and
might be available in the camera module that will be used.

Chroma Subsampling Bits per Pixel

4:4:4 3.8

4:2:2 Horizontal 3.2

4:2:2 Vertical 3.2

4:2:0 2.8

Table 3.9.2-2

From table 3.9.2-2 we can see that the bits per pixel decrease slightly when
using a smaller chroma subsampling. For this project the least amount of
sampling should be implemented for the system to ensure that the picture is as
small data wise as possible. These numbers are also don’t tell the full story of
how the subsampling shrinks the size of the final image. Since JPEG also
encodes the color sometimes the picture could be smaller if a higher
subsampling is used, but this normally isn’t the case.

Another way to scale down an image is by lowering it resolution. This can
dramatically lower the amount of information that is need to be stored for an

45

image. For example going from 800x600 resolution to a 1900 x 1200 increases
the amount of pixels by a factor of 4.75. Though this problem cannot be explored
during primary research and must be looked further into during the testing part of
the prototype cycle.

A problem that might occur with using the JPEG format is that jpeg is encoded
using entropy coding. Entropy coding uses a zigzag route to arrange the image
components inside the file. This might make the programing of the item watcher
more difficult to write then it would for a raw file that uses a horizontal/vertical
encoding scheme. But this type of encoding is done throughout the standard, so
as long as the pictures are the same resolution there shouldn’t be too much of a
problem, as long as there is care in the program.

JPEG is one of the most used formats in embedded applications and in the
world. Because of this many modules exist with cameras that output the jpeg
format. No other form of compression was looked at for this project since JPEG
is so widely used. Also there is a standard for video that uses JPEG encoding.
Video can still be explored for this project if there is enough time to fully test it.

3.9.3 IR Motion Sensor

In general, infrared sensors are those which can see the light emitted within a
certain range or the spectrum, which is naked to the human eye. They are
capable of detecting heat as well as motion. Different sensors can detect
different length signals; the ranges go from 210 nanometers up to 100
micrometers. Within these, they are classified as either near, mid, or far. There
are two types of IR detectors; active and passive. Luckily our project is designed
for indoor use because IR sensors become faulty when there is too much
humidity.

Active sensors emit a signal from either a light emitting diode (LED) or a laser
diode. This signal is emitted then reflected back to a receiving diode and
produces a signal. These types of signals are able to provide count, presence,
speed, and occupancy. Due to the advanced amount of things determined by
these, they would surely be more difficult to implement, not to mention that none
of those things are needed to be determined.

This is the type of IR sensor which is used in the Roomba. The other type of IR
sensor is the passive infrared sensor. These simply pick up on the infrared
signals put out by objects within the detectable region. These have been used in
many applications, such as house alarm systems, computer mice, television
remotes, and most importantly, autonomous cars. Passive IR sensors are a little
simpler than active IR sensors, and still accomplish the tasks this project needs
them to, so they will be used.

46

Objects at room temperature emit radiation between the range eight micrometers
to twenty-five micrometers, which is classified as mid-range infrared. The human
body is slightly warmer than room temperature, so it begins border lining the far-
ranged infrared. Since the majority of the objects that will need to be detected are
inanimate, and will be at room temperature. The mid-ranged infrared signal
should be used. Since it will be on a vehicle, multiple mid-range PIRs will be
used.

3.9.4 TTL Serial JPEG Camera:

The TTL Serial JPEG color camera from adafruit.com is a small CMOS image
sensor camera that outputs a JPEG serially through 3 wire UART
communication. The module itself is very small at 32mm x 32 mm. The camera
also can be used as a video camera with a frame rate of 30 fps in 640*300
resolution. The largest jpeg resolution that this camera can output is 640x480
which is small when compared to the other camera modules, but is alright for our
desired ability of the image watcher process.

There are some other nice added features to this camera system. One is the
ability to manually adjust the focus of the camera. This feature can be changed
so that the camera is first in auto focus, but if the user wants to use the manual
focus it would be integrated into the application, focusing would be beneficial to
the user if they wish to only watch items that are in the background of the image.
It would bring an added dimension to our project that was overlooked in the initial
project description.

Also built into the camera system is a motion detection option. This option would
bypass the need for an arm processor and would drastically simply our design
process of BroBot. Though this option is very nice for out project the user
doesn't have total control of the motion detection, which could cause some
misfires of the callback system. Also not having complete control means that
there is absolutely no way to tweak the system when it comes to motion
detection, which could cause many problems down the road.

The range of the camera is about 10 to 15 meters which is adjustable with the
lens. The module runs at 75mA and with an operating voltage of 5V DC. The
transistor to transistor logic runs at 3.3V. If we were to integrate this camera
system with the proposed BroBot system it would take at least 5 wires, with 3
wires for the serial communication and the other two wires for powering the
camera system. This number is much less than the MT9D11. The baud rate at
maximum is 115200 which is considerably slower than the MT9D11, this is mostly
due to the fact that the image that will be transferred will be transferred via the
three serial wires instead of 8 parallel data lines that the MT9D11 uses.

47

This module was created for easy integration with an Arduino microcontroller
system. It is intended to send a picture to the microcontroller and then the
microcontroller sends the data wherever it is needed, for our project this will
either be the SRAM that will store our photos or the data space on the ARM
processor. While this complicates the system by one microcontroller, it also
helps that there is a preexisting projects that have used this camera with the
Arduino.

3.9.5 MT9D111:

The MT9D111 is a device with a 2 mega pixel camera, a processor to control the
data from the camera, and different encoding features as shown in the figure
below. The module that has this device on it from uctronics.com uses a 2 wire
serial interface to control the system's different modes of operation. The camera
can output different types of image file including JPEG and can also output a
video stream. There are 8 data lines coming from the camera which has to be
interfaced to a microcontroller.

Figure 3.9.5-1 with permission pending

The MT9D111 has great low-light performance which is perfect for use inside of a
library, which doesn't have a lot of outside light in it due to its size. The size of
the module is very small and has 20 header pins coming out from the board.
Also if we wish to have the camera mounted above the body of the robot then it
wouldn't be much of a problem since the MT9D11 is very light weight and made
to be held up by its PCB.

The maximum resolution of the camera is 1600 x 1200 pixels (in 4:3 format), the
pixel size is 2.8 um x 2.8 um. The maximum data rate that the module can
output is 80 MB/s since its master clock can range from 6 Mhz to 80 MHz. At full
resolution the camera will run at 348mW though for our purposes the camera will

48

not consume this much power, but is a good reference when selecting our power
components.

The two line serial port gives you access to the all the functionalities of the
MT9D11, including things like zoom, gamma and contrast. You also can set up
the specific mode that you want to use and put the system into standby mode,
which is used to save power.

One of the more useful features of this system is its ability to have full control of
the JPEG encoding. It has the quality factor tables so we can have full control
over the quality of the image, which would be useful during testing to see how big
the files are and seeing how fast we can process though images and adjust
accordingly, even though quality doesn't linearly scale with the data outputs it still
can have a major factor in the size of the file. It also has three different color
schemes for the JPEG images that are outputted by the system, 4:2:2, 4:2:0, and
monochrome. With 4:2:2 having more colors available this also helps scale
down the size of the file that will be outputted. Also the system is made to have a
stream of 30 fps of JPEG images, which is much faster than what we intend to
implement in our system.

This camera system can also output the raw black and white image files, which
could be useful if we run into trouble with the image processing on the JPEG
images, i.e. amount of calculation power is too large for our processor to handle.
While these files might be bigger since they are not compressed they would be
easier to work with then JPEGs.

In the camera module is an auto focus feature that uses a focus algorithm that
will try to maximize the sharpness of the vertical lines. This takes out a lot of
guess work from our side on how to correctly use this camera when it is
interfaced with the microcontroller, meaning its one less thing that we will have to
worry about when it comes to getting the system to work if we do indeed choose
this system.

While this system does have many nice features that could help us to compete
our task and also help during the testing of BroBot the data out could cause an
interesting problem. This problem is that using this module will take a minimum
of 13 lines that tell the microcontroller when a line and frame is valid. Therefore if
this camera system will be lines, 2 for the serial communication, 8 for the data
lines, and 3 more handshaking implemented in our system we will need enough
pins on the microcontroller to interface correctly with the camera. Another
consideration for this system is that the data sheet and developer guide leaves a
lot to be desired. Unlike the other camera that will be discussed there isn't too
much information on other projects using this specific camera. All the information
from other people is that this system has a lot of strange errors and might output
something that was not intended by the user. Finally the cost of the module of
this system is quite low at about 20 USD.

49

3.9.6 Conclusion for cameras:

For the image watcher the camera is gateway to the outside world. The camera
needs to be able to adjust the picture coming into the system so it will be easier
to fix the system if there is any problem of performance on the main arm
processor. For BroBot the best answer isn't apparent when looking at these two
cameras, while the MT9D11 is very powerful and also very robust the TTL serial
JPEG camera from adafruit.com encloses a lot of what the project is doing.
Since this project is a senior design project, where the group members want to
learn as much as possible about different applications of image processing, the
MT9D11 best suites our needs.

MT9D11 was picked because of its ability to send a lot of data very fast and also
for its robustness. Since the camera system can control the quality factor of the
jpeg that will be sent out we will have great control on the amount of memory the
image will affect. The smaller the size of the image bit wise the less amount of
processing time will be needed, therefore increasing the performance of BroBot.
Since a limiting factor on the speed of processing is on the microcontroller which
once decided on will be hard to change, it is a great thing to be able to change
the size of the picture coming in.

3.10 External Memory

Since the pictures might take up more space than is available on the
microcontroller some type of external memory will need to be interfaced, both
extra RAM and ROM will be discussed. Since the STM32F407VG
microcontroller was chosen earlier in the report the memories that interface well
with that microcontroller will be looked into. Since the size of the internal SRAM
on the microcontroller is can only hold a couple pictures along with other things
Alliance memory’s AS6C62256 was looked into. Figure 3.10-1 shows the overall
information of the SRAM.

Size 256kB(32K x 8)

Package 28-DIP

Interface Parallel

Voltage Supply 2.7V - 5.5V

Speed 55ns (18MHz)

Price 1.79USD

Memory Type Asynchronous SRAM

Figure 3.10-1

This SRAM was chosen mostly for its ease of testing since it has a 28DIP
package. A problem that can arise from using this memory is that it is much
slower than what the microcontroller can interface with. This could cause a

50

bottleneck effect of the flow of data. This particular unit is very cheap and would
interface well with the microcontroller since it takes in parallel data. Also the
voltage requirements for this IC are very wide, which is extremely useful. It
would lower the amount of voltage leads we need when designing the power
portion of the project. If we wanted more speed we would need to use an IC that
consumes more power than the AS6C62256. Below in figure 3.10-2 are the
specs for IDT’s IDT71256SA/TTSA SRAM.

Size 256kB (32K x 8)

Package 28-DIP

Interface Parallel

Voltage Supply 4.5-5.5V

Speed 20ns (50MHz)

Price 3.82 USD

Memory Type Asynchronous SRAM

Figure 3.10-2

This IC is much faster than the previous SRAM IC, but that comes at a cost.
That cost is the voltage that is need is much higher and the memory will use
more power. Those are the two main differences between these IC’s. For
SRAMs with dip packages this is the highest amount of information the SRAM’s
can store. If a SRAM that doesn’t have an easy package is used then a breakout
board will need to be bought and installed. Luckily these memory packages
would be perfect for our project if more SRAM is found to be needed during
testing.

While more SRAM would be nice, it would be more important to have more
overall memory to store a good amount of images. This is so the microcontroller
can keep a record of all the pictures that were taken and would be able to send
any of those pictures to the user or security. This type of data storage is best for
ROM devices, since it doesn’t need to be extremely fast but it does need a lot of
space. The microcontroller can easily interface with NOR and NAND flash,
therefore those types of flash ROM was researched. Figure 3.10-3 shows the
specifications of Spansion’s S25FL512SAGMFI011.

Size 512Mb (64M x 8)

Package 16-SOIC

Interface SPI Serial

Voltage Supply 2.7V-3.6V

Speed 133MHz

Price 6.93 USD

Memory Type NOR Flash ROM

Figure 3.10-3

512 Mbytes would be enough space to store many pictures even at a high
resolution and no real compression. A breakout board would need to be bought if

51

this memory IC were to be used, which would increase the price by about 5-10
dollars. Though this does have a real fast speed it only takes serial interfacing
for information. While this won’t cause a problem it would mean that
communication between them would be very slow. It would be increasing difficult
to test with a memory IC that could not be put on a breakout board. This
severely limits the amount of memory units that could be used on this project.
One more memory ic was explored. Figure 3.10-4 shows Winbond Electronics’
W25Q128FVSIG-ND.

Size 128Mb (16M x 8)

Package 8-SOIC

Interface SPI Serial

Voltage Supply 2.7-3.6V

Speed 104MHz

Price 2.76 USD

Memory Type Flash ROM

Figure 3.10-4

The W25Q128FVSIG-ND is an inexpensive serial flash IC that would meet our
memory needs for this project if our memory needs turn out to be small. The
main difference between these two IC’s other than one is NOR and the other is
NAND flash ROM, is the overall price. Though the price difference is within our
budget it would be beneficial to use the smaller memory size, since it is only
serial communication lines that need to be interfaced with the microcontroller.

A main problem with this using this external memory unit is that it would not use
the flexible static memory controller in the microcontroller. This is because the
controller is made for parallel interfacing with external memory units. The last
external memory that will be looked at is microchip's SST39SF040-70-4C-PHE.

Size 4Mb (512Kb x 8)

Package PDIP-32

Interface Parallel

Voltage Supply 4.5-5.5V

Speed 70ns (14 MHz)

Price 1.90 USD

Memory Type NOR Flash

Figure 3.10-5

Figure 3.10-5 shows all the specifications for the SST39SF040-70-4C-PHE.
While this is the smallest memory that has been looked at, it is fully supported by
the microcontroller’s flexible static memory controller, which is will be very useful.
Also this comes in a nice dip package so it will be easy to test with. Which is
what is needed for this project. The size is just above the size needed to hold a
minute of passed images.

52

To come to a conclusion on which external memory IC will be used there needs
to be some testing done on the camera and the microcontroller that will be used.
The testing will need to look at the size of the picture coming from the camera,
this will give a much better picture of what is needed. For example if the pictures
are small but the program needs a lot of RAM to do the needed calculations then
one of the SRAMs will need to be interfaced with the microcontroller. If the
pictures are larger than anticipated (over 30 Kbytes) then both memories will
need to be interfaced, or a completely new microcontroller might be needed.
Research into implementation shows that these memories would be difficult to
implement with the microcontroller without a good breakout board. Since it isn’t
yet known if external memory will be needed there will be no external memory
interfaced, but the research is there.

3.11 Android Application

3.11.1 Communication

In order to enable communication between the information generated by the item
watching program on the microprocessor and the user interface on the Android
app, a channel must be maintained between the two devices. Several such
technologies exist. Some, such as a USB connection, are wired and will not work
for our purposes. Others, such as infrared, are rare on platforms such as Android
and often require direct line of sight in order to operate. A third category including
sonar requires complete lack of noise from the surrounding environment, a
situation not likely to happen on a college campus (or anywhere else). We will
focus our attention on two of the most widely used forms of wireless
communication, Bluetooth and Wi-Fi.

Bluetooth is a technology created in 1994 to replace wired RS-232 serial
communication busses. It is highly secure, and operates up to a distance of
about 110 yards. It is very universal, and comes standard on almost every
Android phone imaginable. Tablets are less common to have it, since it’s used
often to connect phones to car systems. It is also very cost effective – a common
Bluetooth module for a microprocessor normally runs for around $8. However,
our requirements demand as high a communication radius as possible, and
Bluetooth simply cannot operate at long enough distances.

The other major technology we are examining is Wi-Fi. Specifically, a form of Wi-
Fi called Wi-Fi Direct. Typical Wi-Fi operates from a device acting as a router,
with all users of the connection accessing the router. Direct, on the other hand,
allows one of the devices involved in the connection to act as the router and cut
out the middleman. It maintains Wi-Fi speed and range of up to 200 yards at 250
mbps with even more universalism than Bluetooth. The downside to this
technology is that it’s expensive. A typical Wi-Fi module costs around $50 to

53

$100 to buy. Additionally, Wi-Fi is not as simple to implement, and will not provide
the same ease of integration that Bluetooth will.

3.11.2 APIs

In the world of computer vision, two major application programming interfaces
(APIs) are used. These two are OpenCV and OpenSURF. Both of these contain
libraries that can be included in programs running on most major operating
systems that enable the use of many useful functions for computer vision.

OpenCV is a library that contains functions useful for all sorts of vision problems,
from facial recognition to augmented reality. It also contains an entire library that
can be included to allow the easy use of machine learning. Basic functions such
as cvLoadImage and cvShowImage are used to read images into the program
and display them. More advanced functions useful for this project include the
object detection functions, namely CascadeClassifier and HOGDescriptor, both
of which can be used to detect common objects using machine learning. For this
project, we could detect items such as notebooks, laptops, and backpacks by
using machine learning concepts, and then track these items to ensure they don’t
disappear. Another possible approach is using OpenCV’s matching keypoints
functionality to find similarities between two images. Using this feature, we can
compare each new picture taken against the original, and check it for differences.
A variety of this method is what we will be using and is detailed in another
section.

OpenSURF is a slightly lesser known API that has a different set of features to
OpenCV. OpenSURF contains a very useful feature called background
subtraction that allows the computer to differentiate between the background and
foreground of a picture. That is, the programmer must specify what consists of
the foreground, and what consists of the background. Items in the background
are ignored for changes such as lighting and brightness changes. Another nice
feature of OpenSURF is blob detection, where a point can be extended to its
boundary to detect the entire object. This feature could be used when the user
chooses a point on their object to watch. Blob detection could expand that point
to the entire object and could then use item tracking functions to monitor this
blob.

An API that will be used in the Android app is the Android Bluetooth API to
establish communication with the item watching program. Importing
android.bluetooth allows the application to implement Bluetooth features,
establish a link to the microprocessor via the Bluetooth module, and exchange
data with it. The getDefaultAdapter() method returns the Bluetooth radio
equipped on the user’s phone. If this returns null, the user does not have
Bluetooth and we know we can exit the app with an error. Following this, the API
contains a method to check if Bluetooth is enabled on the phone. If it is not, the
user can be prompted to turn it on directly from the app without having to

54

navigate to the system settings. Once Bluetooth is enabled, methods exist to
check if the Bluetooth module on BroBot is already known – if it is, it is simply
used to connect, if not, it is discovered and added to the list of known devices.
The ARM processor used for the item watching program will also need to include
this API in order to manage its end of the connection process and have a way to
send out data.

3.11.3 App Picture Manipulation

The app must deal with pictures by displaying them for the user to see. The item
watching software has the functionality to send pictures of the user's items to the
app for an added sense of security and also if something is stolen. Several
special functions must be called in the app in order to display pictures.

ImageView imageView =
new ImageView(getApplicationContext()); (1)
LayoutParams lp = new
LayoutParams(LayoutParams.WRAP_CONTENT,
LayoutParams.WRAP_CONTENT); (2)
String path = Environment.getExternalStorageDirectory() + "/your folder
name/image_name.bmp"; (3)
Bitmap image = BitmapFactory.decodeFile(path); (4)
imageView.setImageBitmap(image); (5)
RelativeLayout rl =
(RelativeLayout) findViewById(R.id.relativeLayout1); (6)
rl.addView(imageView, lp); (7)

These commands are integral to displaying a picture to the app. After the picture
is received from the Bluetooth link, it will be stored in local media. (1) simply
initializes an imageView given the phone's inherent screen properties. (2) creates
the layout parameters and accepts the settings to use as parameters. (3) creates
the path location. It gets the phone's storage space from the phone itself and
appends the directory that the pictures are saved to. (4) retrieves the file from
memory and stores it as a bitmap, using the path that we created as a parameter.
(5) uses the imageView we created in (1) and sets the picture to the bitmap. (6)
just creates a layout of the screen, upon which the imageView containing the
picture is added in (7).

To get the picture onto the phone from the item watching software, the Bluetooth
link must be utilized. Once the devices are connected, the BluetoothSocket can
be used to invoke the connection. Once set up, the socket's inputStream and
outputStream may be used to share files

55

3.12 Voltage Regulators

Since we need a 3.3V line to power all of the IC’s on the board a couple of
different linear regulators where looked at. Some considerations for these
regulators was the ability to pass up to 200mA, though our system might not
need to pass this much current through the system we should have some wiggle
room built into the system. Since the battery isn’t known yet the input voltage on
the regulators need to be within a good range. From around 5-10V should
suffice.

3.12.1 LT1121CN8-3.3

The LT1121CN8-3.3 is a linear regulator produced by linear technology the table
below shows the needed numbers of the regulator.

Input Voltage Range 4.17V - 30V
Output Voltage 3.3V
Operating Temperature 0C - 125C
Package 8 - PDIP

Voltage-Dropout(Typical) .42V @ 150mA
Max Current Output 150mA
Price 3.02 USD

Table 3.12.1-1

This is a great linear amplifier that uses an 8 PDIP package for simple integration
into the PCB. The implantation is very simple and has a shutdown option, which
could be useful if the system runs into unexpected trouble. The capacitor that
would be needed is a 1uF capacitor. While having an 8 PDIP package would be
nice there are other regulators that don’t have 8 pins that need to be interfaced.

3.12.2 LT1587CT-3.3

The LT1587CT-3.3 is a 3 prong linear regulator produced by linear technology.
The table below shows the numbers of interest for this regulator.

Input Voltage Range >=4.75V
Output Voltage 3.3V
Operating Temperature Range 0C - 125C
Package 3 Prong, through hole
Voltage-Dropout 1.15V @ 3A
Min Current Input 3.1 A
Price 6.16 USD

Table 3.12.2-1

56

This regulator will need a lot of amps to be able to use in our system. Though it
does have 3 prongs, which would make implementation simpler. Also this
regulator doesn’t have a cap on the input voltage, which could be useful
depending on the battery that we use.

3.12.3 LM2594N-3.3

The Lm2594N-3.3 is a switching regulator made by Texas Instruments, it
ensures a +/- 4% tolerance on output voltage under all of the given range of input
voltages. The table below shows all of the needed information of this linear
regulator.

Input Voltage Range 4.5V - 40V
Output Voltage 3.3V
Operating Temperature Range -40C – 125C
Package 8-DIP
Synchronous Rectifier No
Output Current 500mA
Price 3.02 USD

Table 3.12.3-1

While the LM259N is inexpensive and comes in a nice package there is a major
problem if we plan on using it. And this is the current coming out of the IC is very
high and could cause problems for our system. The temperature range is really
nice but we will more than likely go with a linear regulator instead of a switching
regulator.

3.12.4 Conclusion for Linear Regulators

For this project we will use one LT1121CN8-3.3 linear regulator since it meets all
of our requirements nicely. This regulator is cheap and doesn’t need a large
amount of current to regulate the voltage. Also since it is a 8-PDIP package we
can put a socket on the PCB for this IC, just in case we cause physical harm to
the device by pulling too much current. Another nice feature of this IC is its price
at only 3.02 USD

3.13 Bluetooth Modules

For our system, the Bluetooth module needs to satisfy a few basic requirements.
To be able to communicate with our processor, the Bluetooth that is chosen
should be able to use UART serial communication, as well as obtain the farthest
connection possible, as decided by the different classes of modules. There are
three classes for them; class 1 has a range of 100 meters, class 2 has a range of
10 meters, and class 3 has a range of 1 meter. The chosen device will also need
to be able to interface with an android device, which shouldn’t be too difficult

57

because Bluetooth devices come with their own address that an android phone
should be able to just look up and connect to. It should also consume low
amounts of power. Based on the size of the chassis that will be used, the
Bluetooth should be as small and lightweight as possible, while first satisfying the
other requirements. When reading the datasheets that accompany the devices,
we should be able to understand them so that we can more easily work with the
device, this means they need to be in English. Along with this idea, we need to
be able to easily test the device by soldering wires to it to test its capabilities.
Lastly, the price of the device will come in to effect because our budget is limited.

The first module under consideration is the TI LMX9830. This model was made
to communicate with UART serial communication, and is capable of being
interfaced with Android devices. Another positive thing about this model is that it
consumes very little power and is fairly cheap, but in the description it is said to
be class 2 Operation, so it only can obtain connections at a distance of ten
meters, which if it is intended to be used in a library, that distance is far too small
to be able to work. If we had planned on using this in a smaller location, it would
be possible, but if this were the case, the item watcher wouldn’t be as useful
anyway.

Another module under consideration is the BC04 Bluetooth module. It is capable
of UART interfacing, and is said to have low power consumption. Although it
doesn’t specify the power consumption, it has low power modes park, sniff, hold,
and deep sleep, available. The size of this module is 27.5 x 14.5 x 2 mm, which
is pretty small, and would be lightweight as well. The price of this one can also be
found at much cheaper than many other Bluetooth modules. As it seems, this
would satisfy all the listed requirements, however there is speculation as to
whether it is actually a class 1 operation; there are a few different websites listing
it, and some say it can only obtain a class 2 connection.

An option that is fairly common for Bluetooth implementation is the RN41
module. It is class 1 operational, which is small and lightweight. The dimensions
of it are that of a postage stamp. It has very low power consumption, both in
active mode as well as sniff mode. While it is Bluetooth version 2.1, it also has an
enhanced data rate that allows for faster communication, and it is backwards
compatible. Another convenience with this model is how easily it can be
incorporated into a project; it supports multiple interface protocols and has a
high-performance antenna. It also is capable of UART communication, as is
needed for our processor.

Another consideration for our Bluetooth module is the BLE112. This module is
also capable of connecting to our processor, as is an expectation. It also
consumes little power for its needs. This one however is only a class 2, which
wouldn’t allow for the range we would need for our project. However it can be
powered by a simple 3V battery, where the RN-41 needs at least 3.3V. This is
about the only place it exceeds it though.

58

The WT41 module is a sophisticated Bluetooth module with UART capabilities,
as well as having a long distance connection able to be established, for this
specific option it can get up to 800 meters. This is much farther than the previous
connection capabilities, as a typical class one can connect up to 100 meters.
This model is also able to have a USB interface mode that probably won’t be
needed, but is there if it ends up being useful. One downfall is that this model is
more expensive than the previous ones, but this is expected because of the large
range.

 Connection

ability

Class Low Power

Consumption

Price

LMX9830 UART 2 – 10m Yes $13.46

BC04-B UART ? Yes $9.96

RN-41 UART 1 – 100m Yes $21.70

BLE112 UART 2 – 10m Yes $21.00

WT41 UART 1 – 800m Not specified $33.00

Table 3.13-1

Based on the different modules which were compared, it seems that the RN-41 is
the best option for the price. While the BC04-B is much cheaper, there were
some sources that said it was a class 2, and others that said it was class 1; this
uncertainty makes it a bad choice. The WT-41 does have a much wider range for
connection, but it is also more expensive than the RN-41. Also, we won’t need as
far of a range as the WT-41 is capable of.

3.14 Batteries

Possibly the most important subsystem within BroBot is the power system.

Without power, not one subsystem would function, from the motors to the

software running on the microcontrollers. We have decided to implement a

rechargeable battery for this project. While this will cost more initially, it will save

us money in the long run on disposable batteries. Most of our hardware requires

an operating voltage of around 3.3V, but our battery needs to be slightly higher to

account for fluctuations. We are implementing a voltage regulator to limit this

voltage where applicable. The only subsystem not powered by this battery is the

motors powering the chassis. The motors come with their own AA batteries to

use. In this section, we will examine each kind of battery to determine which is

most appropriate for our use in the rest of BroBot.

3.14.1 Lithium-Ion

59

Lithium-Ion is the most commonly-used battery in cell phones and other

electronics. They are rechargeable batteries, unlike normal lithium batteries that

are not. Lithium-Ion batteries can be made several ways, such as Lithium-Cobalt-

Oxide batteries that provide high energy but have inherent safety risks, Lithium-

Iron-Phosphate, Lithium-Manganese-Oxide, and Lithium-Nickel-Manganese-

Cobalt-Oxide batteries that provide longer life and safety but provide less power

per unit area. These batteries function by the transfer of lithium ions from the

anode to the cathode. During charging, this process is reversed.

Lithium-Ion batteries are more dangerous than other kinds of batteries, because

they are kept pressurized and contain a flammable electrolyte. While safety

features are built in to these kinds of batteries, many accidents have occurred

from their use.

Lithium-Ion batteries have a decaying battery life. It lasts the longest when new,

and decreases with age of use until it is unusable. Their battery life is also

dependent on temperature. The hotter the battery, the quicker they die. This

should not be a problem, because our intended use is within an air-conditioned

library.

Lithium-Ion batteries are especially advantageous due to their comparatively high

energy densities. The energy density of a lithium ion battery ranges between

250-360 W*h/L. This will allow us to get the voltage we need with the minimum

size. Since we only have limited chassis space, shrinking the battery is

advantageous for us. If it is small enough, we can put the battery on the PCB

itself if there is room. If not, we can keep the battery external.

3.14.2 Nickel Metal Hydride

Another kind of battery is called Nickel Metal Hydride, or NiMH. It is also

rechargeable, utilizing the positive electrodes of nickel oxide hydroxide and a

hydrogen alloy as the negative electrodes. It is very similar to the now-obsolete

nickel cadmium batteries. A nickel metal hydride battery has two to three times

the capacity of a nickel cadmium, and has an energy density approaching the

level of lithium ion. Specifically, nickel metal hydride has an energy density of

300 W*h/L. NiMH batteries are also cheaper than lithium ion batteries, saving us

some money on our budget.

The biggest weakness of nickel metal hydride batteries is its fast rate of

discharge. Nickel metal hydride batteries typically lose 20% of their charge on the

first day, and 4% per day after that. There exists a low self-discharge variant of

the NiMH, but this variety comes at the cost of 20% of its total capacity.

60

Overcharge can also cause damage to the battery. Also, NiMH batteries produce

a lot of heat while charging, which can be a fire hazard. Overall though, NiMH

batteries are safer to use than lithium ion batteries.

To safely charge a NiMH battery, a very low current is required. This causes the

battery to take longer to charge. Also, charging the battery for longer than a

recommended 10-20 hours can damage the battery. This should not be a

problem, because our battery would be charged all night, every night, so

overcharging will not be a risk. Also, the battery will have time to slowly charge

up.

NiMH batteries typically provide about 1.25V per cell, so we would require at

least four cells to meet our power needs. This could occupy more space than the

equivalent voltage from lithium ion batteries. If we implement NiMH batteries, we

will be forced to spare more room on the chassis for the power system, and will

definitely not be able to fit the batteries on the PCB along with our processors.

3.14.3 Nickel Cadmium

Nickel Cadmium, or NiCd batteries use nickel oxide hydroxide as the positive

electrodes just like NiMH batteries. However, NiCd batteries use cadmium as

their negative electrodes. Their discharge voltage is only 1.2V, so we would need

to use several as with NiMH batteries.

Many batteries do have a higher initial voltage than NiCd batteries. However,

NiCd batteries see their voltage change very little over time, such that after a

period their voltage will be higher than their competitors’ which drops in potency

with time.

Although NiCd batteries have lower energy densities than most other

rechargeable batteries, they do offer some advantages. They are very durable,

able to be used for long periods of time with few ill effects. They also can

withstand more charge/discharge cycles than other kinds of batteries.

Unfortunately, NiCd batteries are fairly toxic and cannot compete with NiMH

batteries in most categories. Although their self-discharge rate is lower, they

have smaller energy densities, are more toxic, and are more expensive. For this

reason, they cannot compete with NiMH batteries for our project.

61

3.14.4 Lithium Ion Polymer

Lithium Ion Polymer batteries, or Li-Po, is another form of rechargeable battery.

They consist of cells arranged in parallel, and their output is proportional to the

amount of cells arranged as such. Typically, a Li-Po battery ranges between

4.23V when fully charged to 2.7V when discharged.

Li-Po batteries have several advantages. They are extremely thin and carry a

very high energy density. They also come in many different sizes, allowing us to

select the one that would fit our space requirements best. They are also very

safe batteries compared to the other types, however overcharging them can still

lead to risk of explosion.

The major downside to Li-Po batteries is their need to be regulated. During use,

as soon as each cell’s voltage falls below 3V, they need to be removed and

recharged, or they risk being permanently damaged and unable to hold as high

charges in the future. Additionally, specific chargers are required for this kind of

battery or they run the risk of catching fire, exploding, or both due to the

arrangement of the cells.

3.14.5 Battery Conclusion

We have decided to go with a Tenergy Lithium Ion 7.4V 5200mAh battery pack.

This battery comes with onboard protection to prevent overcharging or over-

discharging. When the charge gets too high or too low, the battery is cut off to

protect itself. This eliminates a major risk of explosion inherent in lithium-ion

batteries. The voltage is high enough to power all of our systems, while low

enough to not be wasteful. 5200mAh is plenty to ensure BroBot can go a long

time before needing a recharge. It is very light and has a very high energy

density. Relevant statistics are shown in table 3.14.5-1.

Voltage 7.2V (8.4V peak)

Capacity 5200mAh

Dimensions 135mm (L) x 37mm (W) x 21.5mm (H)

Weight 6.4oz

Cut-off Voltage 6V

Table 3.14.5-1

This battery will need to be purchased with an adapter to charge it with.

Recommended for use with this battery is the Tenergy TLP-2000 Smart charger.

This charger provides a constant current of 500mA when charging. It works with

all 100-240V AC outlets. It automatically stops charging when the battery is fully

62

charged to prevent damage to the battery. This charger works for several

batteries with a switch to select the voltage needed. For our battery, the charging

voltage should be set at 7.4V.

4.0 Project Hardware and Software Design Details

4.1 Initial Design Architectures and Related Diagrams

Figure 4.1-1 shows the control flow for the item watching program. When the
program begins executing, it saves a picture of the items it is watching. It then
takes a new picture to compare the two. This picture is then compared against
the initial picture. If it is similar, the cycle repeats. If it is not, the alarm is triggered
and a picture and timestamp are sent to the user of the app. From the app, the
alarm can be disabled. This will set BroBot back into the watching state where
the cycle is continued. Not shown in this diagram is the occasional update of the
initial picture. To prevent long-term changes like shadows from falsely triggering
the alarm, the initial picture will be occasionally updated as well.

Figure 1.1-1

63

4.2 Item Watcher

4.2.1 Hardware Configuration

Diagram 4.2.1-1 shows the overall communications for the hardware side of the
item watcher subsystem. The microcontroller in the middle of the system has
control over all of the data flow. It will act as the master for all I2C
communications for the subsystem. It will handle all of the data flow from the
camera to any external thingy, and it will also be in control of the control lines of
the camera. The microcontroller will also inform the navigation system of its
duties, ie where to go. The microcontroller will go into a low power mode during
navigation and will turn on when the navigation subsystem has completed its
task. Also in this implementation will be 4 test LEDs, this are for the testing
phase of the prototyping and also will be used for explaining different errors that
the microcontroller could run into, for example too large of an image coming into
the system, or if the external memory is full.

Diagram 4.2.1-1

Diagram 4.2.1-1 shows the different lines of communication that will be
implemented for BroBot. The line A will be done using I2C with the navigation
subsystem being a slave to the ARM microcontroller, which will act as the master.
Line B and C in diagram one will also be I2C, but these lines will be on a different
I2C port than line A, this is because these peripherals will be used during the

64

item watcher subsystem. This is so that the item watching program can be
written only using one I2C port and will not have to worry about problems with the
navigation subsystem. The information coming from the navigation subsystem
will be small indications of problems or completion of the task. Line D and E are
going to be the data lines coming from the ARM microcontroller. These lines will
count for the most amount of lines coming from the microcontroller. Also for line
E in Diagram 1 there will be the address lines that the external memory needs to
know where to put the data.

Line F in diagram 1 will be GPIO pins coming from the ARM microcontroller.
There will be 4 different LEDs, one will show power, and the other three will be
used for debugging. With 3 LEDs come 8 different error calls that can be sent to
the user. One of the LEDs will be used to show power to the microcontroller.
The overall use of these test LEDs are for testing purposes and are subject to
change since they might not be needed in the final prototype.

4.2.2 Camera

The MT9D111 camera module by micron is going to be used in this project. The
MT9D111 gives a lot of flexibility when it comes to the compression of the image
files. Since this is such a big deal for an embedded system with a small amount
of memory this camera was chosen. Figure 4.2.2-1 shows the breakout of the
module that the camera is on. The camera has 20 different pins that need to be
used, though not all of the lines are going to the microcontroller. 10 wires will go
from the camera to the microcontroller, these are the 8 parallel data lines and the
2 serial control lines. The camera will need only need one line of voltage to
power it at 3V. The other pins on the camera module are used to control a
mechanical shutter and an external flash. These pins will be set to ground since
they will not be used.

Figure 4.2.2-1 with permission pending

4.2.2.1 Initializing the Camera Module

To start the camera module a sequence of events must occur. Power up the
power supplies, provide an input clock, and perform a hardware reset. To
perform a hardware rest the sequence of events below must be followed. This is
done when all supplies are stable.

65

1. Give the module an input clock
2. Make RESET# low for at least 1us
3. Make RESET# high (while input clock is running)
4. Wait 24 clock cycles before using the two-wire serial interface

The power for the three lines are as follows, the analog voltage is at 2.8V for the
best image performance, the digital voltage is 1.7-1.9V while the I/O voltage is
1.7-3.1V. Before the camera module can be used 5 different subsystems need to
be configured and enabled. This is done via the serial interface. The
subsystems are:

 PLL

 Pad slew rate

 Preview mode

 Auto focus

 Capture mode

Each subsystem has their own needs when it comes to setting them up. The
PLL is to help the serial communication work with faster frequencies and will be
set up for 10Mhz, which is the standard setup configuration for the PLL. To
configure and enable the PLL you first need to program the frequency settings,
then power up the PLL by setting R0x65:0[14]:0. After these first two steps you
then have to wait for the PLL to settle, which takes about 200us. Next and finally
you will need to turn off the PLL bypass by changing R0x65:2[15]=0. It must be
noted that while PLL isn’t enable the two wire serial interface will be limited in
speed. Once it is enabled the communication speed can be increased.

Next to configure is the pad slew rate. This will be configured to the default
setting since some tests will need to be run to see if the slew rate from the data
or the serial interface is causing a problem. Next is the preview mode, which
defaults to 800x600 and up to 30 fps. This mode will not be used for this project
so everything will be left in default. Next the auto focus will be configured, for our
project this will be set to snapshot mode.

In snapshot mode the camera will autofocus each time a user commands to do
so. The autofocus will occur using its own autofocus algorithm, then it will take a
picture and wait for the user to send another command. Finally the capture
mode will be configured for the different features that are needed in this project.

4.2.2.2 2-Wire Serial Control Line

From the serial control line the camera and encoding can be set up to whatever
is needed for the given project. It has full control over what type of image or
video will be sent out, the resolution, and the quality factor if the image stream is
compressed. The control line will also tell the camera module when to send a

66

picture. The control line can send information on the picture like its size, which is
be useful for the microcontroller to know if the images are too big. From the
control line different registers can be manipulated or checked upon, this is so to
give the user complete control over the camera module. All of these registers
and how to access them are in the camera's data sheet.

The control serial lines have a specific protocol for interfacing, which might cause
some problems when first implementation. The protocol works a lot like I2C
interfacing but with some minor but important differences. The two lines of
communication are SDATA and SCLK, one line being the data line and the other
being the clock line. SDATA is pulled up by the camera module and can be
pulled down by the master or the module. It works on a master/slave model
similar to I2C. The protocol for the bits are as follows:

 A start bit

 The slave 8-bit address

 A(an) (no) acknowledge bit

 An 8-bit message

 A Stop bit(or another acknowledge bit and continuation of the stream of
data)

With all of these include that makes one stream of information to the camera
module 19 bits long, meaning there is a minimum of 19 clock cycles that need to
be inputted at a minimum into the camera module.

A typical read or write sequence follows this type of structure:

1. Master sends a start bit with a 8 bit slave device address, of which the
last bit of the address indicates either a read or a write, with “0” being a
write and a “1” being a read

2. To acknowledge the address the salve device sends an acknowledge bit
to the master

3. If the request is a write than the master will send a 8 bit register address
to the camera module

4. Once again the slave sends an acknowledge bit to the master, which tells
the master that the address was received

5. Then the master will transfer the data 8 bits at a time, the slave sends an
acknowledge bit after each 8 bits

The registers inside the camera module are 16-bits long, therefore it takes 2 data
cycles to write to one register. After 16 bits have been inputted the
microcontroller on the camera module automatically increments the register
pointer and moves on to the next register. This action doesn’t stop until the
master sends a stop bit after the data.

67

According to the implemented protocol inside the camera module a start bit is
defined as a high to low transition on the data line while the clock is high. The
stop bit is defined as a low to high transition on the data line while the clock line
is high. For one bit of data to transfer the data line needs to be stable during the
high period of the clock line. The data line can only change when the serial clock
is low. For the acknowledge bit the receiver will pull the line low when it receives
the acknowledge clock pulse. A no-acknowledge bit is used to stop a read
sequence and is defined by when the data line is high from the receiver during
the acknowledge clock pulse. Figure 4.2.2.2-1 shows a write timing to
R0X09:0—Value 0x0284.

Figure 4.2.2.2-1 with permission pending

This special serial communication will be implemented using a bit banging
system with 2 GPIO pins acting as the data line and the clock line. Though this
will take more time to implement through programming we will have complete
control over this line of communication. Another consideration is the timing of the
SCLK, a time of 1MHz will be implemented first and tested out.

By default the sensor serial bus responds to addresses 0xBA and 0xBB, when
SADDR is set the sensor will respond to addresses 0x90 and 0x91. Since it
doesn’t matter which slave address we use we will just ground this pin so that the
module will react to the addresses 0xBA and 0xBB.

Whenever the camera is not in use but overall system is powered, ie navigation,
the camera will be put in standby mode, which is its lowest power consumption
state. The standby pin shown in figure 2 controls weather or not the camera is in
standby mode, but also a command line must be sent to a particular register on
the camera module's microcontroller.

4.2.2.3 Still Mode Configuration

The resolution that will be used will be at 800 x 600 resolution, this is to ensure
that the picture will be big enough to include everything in front of the camera but
not too large that the system will not be able to work with it. The jpeg
configuration will be at 4:2:0 chroma subsampling, this is the lowest setting that
the camera has for the Chroma sampling, another consideration is to output
greyscale images. The initial quality factor will be 20 from the camera module.

68

This configuration could be subject to change during the testing part of the
prototyping process. Since the camera module has the ability to change the
quality factor of the image coming in there could be a lot of change in this design.
All the other settings will be put to default, this is mostly camera settings like auto
focus or optical zoom, since they will not be needed for this project.

Since the manual focus will not be used for this project the camera will be used in
the snapshot mode. In this mode the module will auto focus with a command
from the microcontroller. Once the camera auto focus is finished then a picture
will be taken. To be able to take and output pictures the camera will also be in
snapshot mode, this will take full use of the modules ability to capture and
encode a taken image. The auto exposure feature needs to be set in a specific
mode as well. The mode that will be used in this project will be the scene
evaluative algorithm mode, since this will adjust the exposure so to ensure the
best quality of image coming into the microcontroller.

To control this configuration some variables on the camera module need to be
adjusted. All of these variable can be either read or written, format, a uchar,
controls the color scheme, with 1 being the one that is desired (4:2:0). The
config variable is used for overall configuration and handshaking. This variable
will be either 0x78 when the microcontroller is ready for a picture or 0x70 when
the microcontroller isn’t ready for a picture. The final registers that are of use for
this project are the datalengthMSB and the datalengthLSBs, these show the
previous frame’s data length. This variable will be used during testing to see how
big the images are for different settings.

69

Figure 4.2.2.3-1

The camera will be mounted onto the chassis of the robot so that it will be easy
to put BroBot on a chair and have the camera be able to get a good picture of
what the user wants. An arm will be used to hold the camera up if BroBot is
needed to be put on a chair, this is shown in figure 4.2.2.3-1. Also on top of the
arm will be a piece that will be able to swivel the camera so brobot’s vision can
be manually adjusted to include everything that the user will want to see.

4.2.2.4 Output data configuration:

For the MT9D111 the jpeg data is output with an 8 bit parallel bus, dout0-dout7,
frame_valid, Line_valid, and pixclk lines. The camera module will output the
pictures in spoof mode. This mode is to make the output look like a normal video
stream, with a set size of packages for the picture. This mode is going to be
used due to how the microcontroller deals with taking in the information. In this
mode the Line Valid line acts like the Vsync line in the microcontroller and the

70

data valid line will act like the hsync line in the microcontroller. Figure 4.2.2.4-1
shows the timing for the spoofing configuration.

Figure 4.2.2.4-1

Every jpeg image that is streamed has padded data at the end of the stream as
shown in figure 10. When line valid is high that indicates a correct package.
This timing is not what will be exactly implemented, the pixclk line is gated. In
the real implementation the pixclk line will not be gated to ensure nothing weird
will occur.

The microcontroller will take all the data and store it on the microcontroller so it
can do the needed calculations for the item watching process. Some variables
are used by the microcontroller on the module to hold important values, including
the size of the picture and the configuration of the JPEG encoder.

4.2.3 Item Watching Program

OpenCV, upon which we plan to use some functionality, is usable in conjunction
with C++, C, Python, and Java. Of these, C is the most adaptable and malleable
for use on low memory platforms such as the microprocessor we plan to run it
on. Moreover, members of the team already have some experience in image
analysis using C, so it will be an easier extension to utilize OpenCV with more
familiar techniques. On the downside, using C is much more complex than using
Java. Memory management must be dealt with, and pointers complicate the
code.

Using Java would be much easier to code, since OpenCV already supports it,
and the language provides automatic garbage collection and automatic pointers
in the form of object references. Unfortunately, its ease of use comes with a

71

price. Java is not as flexible as C, and we have a very limited amount of space
on the microprocessor. In addition to the code, we need to be able to store two
pictures taken by the camera at a resolution high enough to perform analysis on.
This feat may not be possible with just the on board memory, so we may
incorporate some SRAM to help with the load. Even with this help, we would like
to exert the most control over our memory use, so we will be using C.

This software will be running on an STM processor, so we need to ensure
compatibility between the software and the controller. Using a Bluetooth
connection, we will communicate from the item watching program to the app
running on the user’s phone. Information will not be constantly transmitted, it is
only necessary to send information upon initialization and if an object is stolen
from BroBot’s field of vision. Although Bluetooth has a max range of about 100
meters, the audible alarm functionality will continue to safeguard items even
while the user is outside of this range.

The program works by storing an initial picture of the items to watch. This picture
is constant and unchanging and saved as a matrix of pixels, where higher
numbers correspond to a higher brightness. After some interval of time, a new
picture will be taken. This picture will be compared to the original one by
comparing them pixel-by-pixel and possibly using third party tools such as
background subtraction, detailed in the API section. The magnitude of the
brightness of this picture will be summed up by taking the square root of the
square of the difference of the two. If this magnitude exceeds a threshold, found
by experimentation, it means it is different enough to be considered an entirely
different picture. This could be due to fringe cases like a change of brightness
over time or something new being added into the picture, but will most often be
the removal of an object. When this value crosses the threshold, it will trigger the
alarm functionality on BroBot.

Although the pictures taken over time should be similar to the initial picture,
subtle changes can occur that will make this not the case. For example, a
change in brightness or shadows can corrupt the picture. These changes usually
occur gradually. We want to be on guard against sudden changes, and be able to
successfully ignore subtle changes that should not trigger the alarm. To
accomplish this, we will update the initial picture, against which the subsequent
pictures are measured, every minute or so. If we did this update quickly, every
second or two, it would allow someone to slowly move an object out of frame
without being detected. If we did this update too slowly, changes in shadows and
lighting could occur before the initial picture updated to take this into account,
falsely triggering the alarm. This gradual change of the initial picture needs to be
in that in-between range where it is slow enough to prevent actual sudden
changes to the picture but fast enough to change before the shadows or lighting
changes caused the picture difference to cross the threshold.

72

The alarm being triggered will do a few things. First of all, it will set off an audible
alarm to alert people nearby that something has been taken, and they can
intervene. It will also send the current picture to the user’s app for verification,
along with a timestamp. If the user sees that something is missing, they can rush
back to defend his or her things. If it was a false alarm, the user can press a
button to send BroBot back into watch mode.

4.2.4 ARM Microcontroller

We are using the STM32F407VGT6 microcontroller due to its ability to easily
take in 8 bit parallel data and its large amount of memory space. The
microcontroller will be in a 100 pin package, the pin out is shown in figure 6. To
communicate with the different peripherals 2 I2C ports will be used. The
microcontroller will act as the master in the I2C system. By default the
microcontroller is in slave mode, so this will need to be changed in the
programming.

4.2.4.1 2-Wire Serial Communication

The M9D111 cannot be implemented using the I2C system since it sends 8 bits
of data information and I2C only supports 7 or 9. The USART features can't be
used because they have to send an end bit and a starting bit, which would be too
mean the information would overflow to the serial line for the camera. Also the
UART system is a 3 wire system and a selector would also need to be
implemented into the system, further complicating things. Because of this the
communication line will need to be implemented using 2 GPIO pins on the same
port. They need to be on the same port due to the fact that they need to change
simultaneously.

The fastest the GPIO pins can toggle is every two clock cycles, with a clock cycle
of 168MHz that means the fastest rate this can be implemented is at 89MHz,
which would be overkill for the camera system. The program for the control of
the camera will need to throw out clock cycles so that the camera module can
receive the information. The camera module interface will initially be run at
1MHz, though this could be easily changed in the programming during the testing
of the camera module.

The two serial lines will initially be high and therefore will need to be pulled down
by the master system, which in our implementation is the ARM microcontroller.
The line will be at 5 volts for high and ground for a low voltage. This is the
maximum that the ARM microcontroller can output, therefore some other
resisters will need to be implemented so that this system will run smoothly.
There are pull up and pull down resistors on each of the GPIOs on the
microcontroller which eliminates the need for added extra resistors, which saves
on PCB space. The structure of the five-volt tolerant I/O port bit is shown in
figure 4.2.4.1-1.

73

Figure 4.2.4.1-1

The configuration of the ports for output will be open drain pull down, since the
line will be driven high by the camera module. The input will be pull down, for the
same reason that the output is open drain. For an input a pull down resistor will
be activated. This is to ensure that the internal hardware of the microcontroller
will not be damaged. Since the microcontroller has many GPIO pins, the pins
that will be used will not be shared with another system. For example there will
need to be I2C communication between the navigation system and the
microcontroller, the pins for the I2C communication will not be used for the bit
banging operation of the camera module.

4.2.4.2 Digital Camera Interface (DCMI)

The digital camera interface built into the microcontroller is designed for easy
integration with camera modules and CMOS sensors. This feature was the main
reason for choosing this ARM microcontroller. The DCMI can have 8-14 bit
parallel synchronous interfacing, has a continuous or snapshot mode, and
supports compressed JPEG data. This functionality assumes that all the pre-
processing is done by the camera module, like resizing and cropping. There are
17 pins associated with the DCMI, 14 are for the data lines, and the other three
are HSYNC, VSYNC, and PIXCLK. The two clock domains are the PIXCLK and
HCLK, PIXCLK is a derivative of HCLK and the period of PIXCLK must be higher

74

than 2.5 HCLK periods. For JPEG image reception the JPEG bit must be set.
This bit is bit 3 of DCMI_CR register. Figure 4.2.4.2-1 shows the DCMI block
diagram, showing how the synchronous interfacing works.

Figure 4.2.4.2-1 with permission pending

To capture the picture that is coming in on the DMA interface the CAPTURE bit in
the DCMI_CR register must be set. Since the camera sends out information in 8
bits the 8 bit option will be used in the microcontroller. To go into this mode
EDM[1:0] in DCMI_CR need to be 00, this will capture D[0:7]. Since the data will
be placed in 32-bit words the first byte will be in the LSB position in the 32 bit
word, while the 4th byte will be in the MSB position.

The synchronization of the data from the camera module to the microcontroller is
one of the most important systems that need to work well in the system. Since
the microcontroller has a lot more restrictions when it comes to interfacing with
JPEG image information, so the camera module will be changed from default to
meet with the needed settings. For the JPEG input mode on the microcontroller
only the hardware synchronization mode will available. For this mode VSYNC on
the microcontroller shows the start/end of an image, while the HSYNC is used as
a data valid signal. Figure 4.2.4.2-2 shows what the microcontroller needs, it
also is important to see that this figure and figure 10 look the same, this means
that integration will be possible.

75

Figure 4.2.4.2-2 with permission pending.

The snapshot capture mode will be used in the DCMI. Once the capture bit is set
in the DCMI_CR the system will hold until the start of a frame. After the first
frame is sent the capture bit is cleared in DCMI_CR. Also the IT_FRAME
interrupt will be generated, if it is enabled. For our system we will enable that
interrupt, this is so it will be easy to know when a picture is done coming in and
then it can be worked on. If there is an overrun then picture will be lost, but the
capture bit will be cleared. Due to the way JPEG is encoded and compressed
there are no limits of the input size for the image.

The DCMI is controlled by register DCMI_CR on the microcontroller. Before
enabling the DCMI the entire register should be configured. Therefore when the
interface will be enabled only one bit will change on the register. Before enabling
the number that will be inputted is 0x00EA, though some of those bits need to be
changed to zero and some do not need to be changed. Also some interrupts will
be enabled in the DCMI, therefore the DCMI interrupt enable register
(DCMI_IER) needs to be adjusted for such. The overrun interrupt and the
capture complete interrupt will be enabled, these two interrupts are enabled on
the last two bits of DCMI_IER, and therefore the number inputted will be 0x0003.

76

4.2.4.3 I2C

To communicate with the navigation subsystem the serial protocol I2C will be
implemented. The ARM microcontroller will act as the master in the system while
the microcontroller that deals with navigation will be the slave. The system on
the microcontroller can support the standard speed (up to 100kHz) and the fast
modes which can be as high as 400kHz. For this project the standard up to
100kHz speed mode will be used, since the other microcontroller might not have
this functionality and that would cause problems, also the speed at which this
data is transferred doesn’t need to be sent extremely fast.

Over this line simple communications will occur between the two
microcontrollers. The information shared will be first that the navigation system
needs to wake up, then it will send the destination through I2C. Since the final
number of destinations will be a small number one 7 bit number will be fine to
send over, since there is a combination of 127 locations. Since this
communication between these two microcontrollers will be the only information
going over the I2C bus then only 2 lines will be needed from the ARM
microcontroller.

The microcontroller can be put into 4 different modes slave receiver/transmitter,
and master receiver/transmitter. As previously stated the microcontroller will act
as the master and therefore be only in master receiver/transmitter modes. To
initiate the system the microcontroller will be in the master receiver mode. For
master mode the following sequence is required:

 The peripheral input clock in I2C_CR2 will need to be programmed in
order to produce the right timings.

 The clock control registers will need to be configured.

 The rise time registers need to be configured

 I2C_CR1 register will need to be program to enable the peripheral to start
and act as the master

 Finally the start bit in the I2C_CR1 register will need to be set to generate
a start condition.

Once the start bit is set the interface will start to generate a start condition. The
sequence diagram for master transmission of the I2C system is shown in figure
4.2.4.3-1. The top part of the diagram shows what will be sent on the SDA line
while the bottom part shows what happens within the hardware part of the
system, for example a specific register is going to be cleared or whatnot.

77

Figure 4.2.4.3-1 with permission pending.

Every event can throw an interrupt if the ITEVFEN bit is set. If the system
doesn’t have enough time to get the data onto the buffer then the SCL will be
stretched low. Once the last byte of information is on the DR register then the
STOP bit needs to be set by the software, this will generate a stop condition.
After the stop condition the interface automatically goes back to slave mode.

After the address transmission and the clearing of the ADDR by the hardware
this interface goes into the master receive mode. Once in receive mode the
interface can receive bytes from the SDA line, these bytes are put into the DR
register, after each byte the interface will generate a specific sequence, first an
acknowledge pulse, if that ACK bit is set, and the RxNE bit is set, this will trigger
the interrupt if the ITEVFEN and ITBUFEN bits are high in the configure register.

When the last bye is received from the slave the master will send a NACK, when
the slave receives this NACK it will lose control of the SCL and SDA lines, then
the master can send a Stop/Restart condition. In order to create a NACK pulse
after the last data byte is received the ACK bit must be cleared just after the
second to last byte of data is read. To do the stop/restart condition the software
needs to set the stop/start bit after reading the second to last data byte. Since
we know exactly how big the amount of data that will be sent is we won’t have
too many problems implementing these types of implementation settings inside
the software. Since we will only be sending one byte the ACK disable has to be
made during the EV6 (shown in figure 12) then the stop condition will be made
after EV6.

A couple different errors can occur for this interface, some of which can throw
interrupts if the error occurs. A bus error happens when the interface sees an
external STOP/START condition during a data or an address transfer. When this
occurs the BERR bit is set and an interrupt would be generated. It must be noted
that ITERREN bit must be set to have the interrupt occur. Another error would be

78

an acknowledge failure, this happens when the system detects a
nonacknowledge bit, this is a good thing when you want to stop communication,
this will set the AF bit and throw an interrupt, if ITERREN is set. If a transmitter
receives a NACK then communication will need to be reset, if it’s a slave that
lines will be released by the hardware and if it is a master a stop/start condition
needs to be generated by the software.

The I2C interface does have a programmable noise filter, this is to ensure the
system will be within the correct protocol of the fast mode. Since the project will
use the normal speed for the I2C interface this feature will more than likely not be
used. If it turns out our I2C system doesn’t work as intended then we might need
to use some type of noise filter. Also our system will be on a PCB, which is to
ensure there shouldn’t be too much noise coming into the system.

The final component of the I2C system that needs to be designed will be what
bits will be changed in the registers during the different phases of
communication. The first register is the I2C controller register 1 (I2C_CR1). Bit
11 is the POS bit and will not be used for our project since it deals with 2 byte
reception. Bit 10 is the acknowledge enable, it will send an acknowledge
sequence after the next byte of data. Bit 8 and 9 are stop and start generations,
which were discussed in the paragraphs above. The only other bit in this register
that needs to be changed from a ‘0’ to a ‘1’ is the first bit, which is the peripheral
enable bit. Also this bit must not be changed before the end of communication
when we use it, since we will be using the microcontroller in master mode.

I2C control register 2 (I2C_CR2) also needs to be set during and for operation of
the I2C interface. Bit 12 is what is used in master mode to allow the system to
create a NACK on the last received data. Bit 10 enables the buffer interrupt
which will be enabled during the testing of the I2C system, also bit 9 and 8
enable the interrupts. The final 6 bits are used for the peripheral clock frequency
the range is 2Mhz to 42Mhz. For our system we will start with a smaller
frequency of 10 Mhz (0b000110). The I2C data register holds the data that will
be sent to the slave, the bits that are used to store the data are bits [7:0].

The last register of interest for our project in the I2C interface is the I2C status
register 1 (I2C_SR1). This register holds information that will be integral to
understanding problems that might occur in the system during testing. Bit 10 is
the acknowledge failure, bit 9 is arbitration lost, bit 8 is a bus error, bit 2 is the
byte transfer finished bit, and bit 1 is the address sent mode. All of these bits will
need to be tested during operation and testing to make sure the system is
working correctly and the communication is working as set up.

While the I2C interface is a very nice feature of this microcontroller there are a lot
of options that need to be correctly lined up with the navigation microcontroller to
ensure proper communication between the two systems. This part of the item
watcher subsystem will need to have high priority for the testing of the systems.

79

4.2.4.4 Pin out of Microcontroller

Many different considerations must be made when the final pin out is determined
for the microcontroller. Since the microcontroller has 100 pins to interface there
should be no overlap of inputs. While not all 100 pins are used for interfacing,
some are used for voltages and powering, a fair amount will be used by our
system. Figure 4.2.4.4-1 shows the initial pin out of the microcontroller.

Figure 4.2.4.4-1 by Jacob Stewart

80

4.3 Navigation

4.3.1 MSP430G225

The MSP430G2553 will be the brains of the navigation system. This

microcontroller will be in charge of the entire navigation operation, including

sending and receiving information from the arm processor about the status of the

navigation. It will need to be interfaced with 4 different sensors digital IR sensors

and with the ARM Processor, which will be using the I2C serial communication

protocol.

The microcontroller doesn’t have many pins, only 20, so a big consideration that

cannot be ignored is the amount of pins that will be used. This is why I2C will

used for communication, even though it is harder to implement with 2 different

microcontrollers. Some of GPIO ports might be used for Test LEDs that will help

with debugging problems, and also help during the testing phase of the prototype

cycle.

4.3.1.1 Operating Mode

During the navigation process the MSP430G2553 will be in Active mode, which

takes the most power but has all the clocks active. Other than the active mode

the microcontroller has five different low-power modes. All of them scale with the

fifth mode having the least amount of features. An interrupt event can wake up

the microcontroller from all of the different power modes, we will use this interrupt

to wake up the Navigation system. When not in use the microcontroller will be in

the lowest power state, low-power mode 4(LPM4).

In low power mode the microcontroller pulls around .1uA with a voltage of 3V,

this mode is perfect for when the system is not in use. These modes are

configured with the CPUOFF, OSCOFF, SCG0 and SCG1 bits that are in the

status register of the microcontroller. Once the mode-control bits are changed

then the operating mode immediately takes effect. In our code we will need to

keep this in mind, so that no operations go on after we go into the low power

mode.

To put the microcontroller in the fourth low power mode all of the bits that are

mentioned above need to be to set to a value of 1. Also we will use the service

interrupt to go out of the low power mode.

81

The microcontroller will be powered with a 3.3 V source on its DVCC pin that is

shown in figure 4.3.1.1-1 below.

Figure 4.3.1.1-1 with permission pending

The microcontroller only has 20 pins, therefore a lot of consideration will need to

be made to ensure that we won’t use too many pins.

4.3.1.2 I2C

The msp430G2553 has a universal serial communication interface that can run in

I2C mode. This interface will be used to communicate with the arm

microcontroller that is in control of the entire system. This communication line

will only send a 8 bit message, that will tell the MSP430 a couple of different

operations. One of these operations is to tell it where to navigate to, also it will

tell the MSP430 to go into sleep mode. Finally the MSP430 will tell the arm

microcontroller when it has finished it job going to its destination.

To use the universal serial communication interface in I2C mode the USCI_Bx

module will need to be used. The MSP430 will act as a slave in the system and

will be using the 7 bit addressing mode. The system can support fast mode up to

400 kbps but we will use the 100 kbps standard mode for this communication. A

nice feature of this interface is that it has slave operation in the LPM4, which is

perfect for our implementation.

Figure 4.3.1.2-1 shows how the bus needs to be connected for the I2C setup.

82

Figure 4.3.1.2-1 Permission pending.

This is the same setup that needs to be done with the ARM microcontroller,

which is great! The USCI can be reset by a PUC or setting the UCSWRST bit.

The mode is selected using the UCMODEx bits, for I2C mode these bits need to

be set to 11. To stop using the USCI all you have to do is clear the UCSWRST

bit. It should be noted that configuring the interface should be done when the

UCSWRST is set. When this bit is set 6 different things happen:

 I2C communication stops

 SDA and SCL go to high impedance

 UCBxI2CSTAT[0:6] is cleared

 UCBxTXIE and UCBxRXIE are cleared

 UCBxTXIFG and UCBxRXIFG are cleared

 Everything else stays the same

For the 7 bit addressing, the first 7 bits are the slave address while the last bit is

a R/W bit. To get the USCI module into slave mode the UCMODEx needs to be

set to 11, UCSYNC =1, and the UCMST bit needs to be cleared. The module

initially needs to be configured in the receiver mode, this is done by clearing the

UCTR bit to receive the I2C address. Luckily the transmit and receive operations

are done automatically depending on the R/W bit.

The slave address can be programmed into the MSP430. To determine the

slave address we will flip a coin 7 times, with heads a 1 and tails 0. We have

performed this operation and the slave address has been determined to be 0x90

for a read and 0x91 for a write. To program the address that number will be put

in the UCBxI2COA register with the UCA10 bit 0.

83

After receiving a transfer call the UCBxTXBUF will be sent in the data section of

the I2C. For a receive call the UCBxTXBUF will hold what is transferred. This

register will hold what the arm microcontroller sends to the MSP430.

4.3.1.3 Motor Control

The motors will be controlled using a wheel encoder that is made specifically for
the electric motors we are using. The encoder can increment the drive shaft by a
set amount of degrees whenever a pulse is sent to in on the signal line. The
encoder takes 3.3 V to power, and only has 3 pins. To have total control of the
robot we will be using 4 motor encoders, one for each of the wheels. Each motor
will be controlled using a different pin of the MSP430 microcontroller.

If we run into a problem of using too many pins then we could just use only two
pins, one pin for the right wheels and the other pin would control the left wheels,
this might actually simplify our project and will need less calibration, but would
ultimately give us less overall control of the system.

4.3.1.4 PINOUT

Figure 4.3.1.3-1 shows the pinout that will be used for the MSP430

microcontroller. The Vdd will be at 3.3V while the Vss pin will be at the ground

potential.

Figure 4.3.1.3-1

In figure 4.3.1.3-1 pins 1 and 20 are Vcc and Vss respectively.

4.3.2 Interfacing with the IR sensors

The MSP430 will be used to check the sensors during the movement of the

robot. These sensors will be checked once every other second. During this time

84

it will sample a 10th of a second or less to see if it will run into anything. Overall

the implementation will use 5 different pins of the microcontroller.

To sample the data that is coming in an interrupt will be used to sample the GPIO

output pin that we will need to look at. The pseudo code below will be used

during the sampling of the sensors.

Enable sampling interrupt

While checking sensor{

If(counter>800){stop_motion=1;}

Else stop_motion=0;

}

Sampling interrupt{

If(Sensor1OUT == 1){counter++;}

Figure 4.3.2-1

This code will run during the time that the robot needs to sample the sensors. It

will throw an interrupt 1000 times, when this interrupt happens it will check the

sensor in increment the counter variable. While the sensor is checked the

counter number will be looked at, and if it is over a certain threshold, for this

example 800, it will stop operation.

4.3.3 Algorithm and Interrupts

The algorithm will be implemented on the microprocessor by creating a two
dimensional array that will represent the library, with the dimensions being scaled
down to two yards for the “length” of each segment in the array. After it is
created, it will have specific locations in it marked to represent the different
sections the library will be broken into. This scaling down will allow the
microcontroller to better handle the program, as it will require less memory, and
there will be a limited amount.

The infrared sensors will have a range of output voltages, depending on the
amount of infrared light on the transistor components of them. When the values
are converted to digital, as done by the microprocessor, they will be tested
against some designated threshold value. Because the infrared values will vary
for different colored surfaces, testing will be done to determine the threshold
value needed for the correct detection. There will be an array of length four that
will be used to represent the status of each of the four sensors. By taking the

85

read values and apply a threshold to them, we can then just check whether each
sensor is on or off. Some situations will require that two sensors be turned on,
such as the first two, and if this happens, when the robot is turning, the sensor on
the side will need to be turned on. If one of the sensors on the side turns on, it
will basically be meant that a turn can’t be made in that direction. These will also
be used to signify that the object that was being detected stays in view of the
robot, just not in front of it.

As the robot travels from the initial location to the final destination, he will
frequently check the states of the sensors, if there is ever something in front of
him; he will try to turn in the direction that will keep him traveling towards
destination. If he can’t turn in that direction, he will turn in the opposite direction
and try to turn back to the direction he was heading as soon as possible; this will
be when the sensor on the correct side falls below the threshold. It should also
be noted that the sensors on the sides and the front will have different threshold
values, because of their need to detect objects from different lengths. To show
what is meant by what the code is intended to do, Figure 4.3.5-1 displays the
pseudo code which shall be used in writing the final code and helping to follow
what will happen.

Set up front IR sensors to check status every 2 seconds
Set up side IR sensors to check when called

Main{
If(front sensors > threshold)
Call Directional_decision
If(the distance to end in x and y ==0)
END and stop moving
If (traveling in x){
If(Distance_traveled==(destination.x-position.x))
Call Directional_decision
}
If (traveling in y){
If(Distance_traveled==(destination.y-position.y))
Call Direction_decision
}

Directional_decision{
If(traveling in y){
If(destination.x>=position.x){
If(right_sensor<threshold)
Turn right
Else if (left_sensor < threshold)
Turn left
Else
Call Go_backwards
}

86

If(destination.x<position.x){
If(left_sensor<threshold)
Turn left
Else if (right_sensor < threshold)
Turn right
Else
Call Go_backwards
}

If(traveling in x){
If(destination.y>=position.y){
If(right_sensor<threshold)
Turn right
Else if (left_sensor < threshold)
Turn left
Else
Call Go_backwards
}

If(destination.y<position.y){
If(left_sensor<threshold)
Turn left
Else if (right_sensor < threshold)
Turn right
Else
Call Go_backwards
}
}

Go_backwards{
If(traveling in y){
If(destination.x>position.x){
While(right_sensor>threshold and left>sensor>threshold){
Reverse BroBot
}
Turn direction of off sensor
}
}
If(traveling in x){
If(destination.y>position.y){
While(right_sensor>threshold and left>sensor>threshold){
Reverse BroBot
}
Turn direction of off sensor
}
}
}

Distance_traveled{
Distance=speed*time_from_last_turn
}

87

Figure 4.3.3-1: Pseudo code for motion

4.3.4 Communication with the ARM processor

The chosen microprocessor, the msp430, is entirely in charge of the navigation
of the robot. It should take care of the decision making, sensor reading, as well
as controlling the motors to steer. While it will do all of this, it will also need to
communicate with the ARM processor that is in control of the system. To do so, it
will use the communication I2C.

One of things that will need to be relayed to the ARM processor is the final status
for navigation. If for some reason the robot can’t find a path the user’s location,
he will need to communicate an error code that will represent “Error in reaching
destination”. If this is communicated, ARM processor will need to relay this
information on to say that the destination couldn’t be reached and that the user’s
items will not be able to be watched. The other option would be that the robot has
reached the destination; this will have another code that it will send to represent
this. When this is sent, the ARM processor will need to prepare to begin the item
watching portion of the algorithm.

Another thing that could be communicated is an error within the system. By this,
it is meant that if something goes wrong with the program it will also be relayed to
the ARM processor. One such error is if the sensors aren’t working properly; if
this happens, the navigation system won’t be able to work. In this case, the
msp430 should send another specified error code. Another possible error that
could occur is an overflow of memory from the program being too big and
overflowing the allowed memory on the processor. This particular error code will
be needed during the testing period. If for some reason the code isn’t working,
there will be another error code that will be transmitted to let the tester know
which element of the system isn’t working.

4.4 Wireless System

We have decided to go with a Bluetooth module onboard the microprocessor,
linking it to the Bluetooth that comes on every Android phone. Although it is
slower and has a shorter range than Wi-Fi, this option is cheaper, and most
importantly, easily implementable. Although range is important, most of BroBot’s
features, including the item watching software, continue to function if the user is
outside of Bluetooth range.

The Android device hosting the app will serve as the host of the connection. The
microprocessor, using an onboard module, will connect to the host and establish
a permanent connection. Nothing will be sent continuously through this
connection, but it will be kept open in case the alarm is tripped. In this case, the
user will be sent an updated picture of BroBot’s field of vision. The user can

88

choose to cancel the alarm if it has been a false alarm, or can immediately rush
back to their things.

BluetoothAdapter mBluetoothAdapter=

BluetoothAdapter.getDefaultAdapter(); (1)

Intent enableBtIntent = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE); (2)

startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT); (3)

Set<BluetoothDevice> pairedDevices =

mBluetoothAdapter.getBondedDevices(); (4)

if (pairedDevices.size() > 0) {

for (BluetoothDevice device : pairedDevices) {

mArrayAdapter.add(device.getName() + "\n" + device.getAddress());

} (5)

startDiscovery(); (6)

These steps show the preliminary commands in Java needed to establish a

Bluetooth connection. First, (1) returns the Bluetooth radio embedded in the

phone's hardware. (2) tells the Bluetooth that we are going to enable it. (3)

enables Bluetooth. (2) and (3) are only called if Bluetooth is not currently enabled

on the phone. These commands create a pop-up box that confirm this to the

user. (4) creates a set of devices that are already known to the phone, called

paired devices. If paired devices exist, (5) iterates through them and adds them

to the array adapter. If the device we are looking for, the Bluetooth module, is not

paired yet on the user's phone, (6) is called to find nearby discoverable devices.

Once the module is found, a connection is established, and we can begin

transmitting data.

private final BluetoothSocket Socket;

private final InputStream mmInStream;

private final OutputStream mmOutStream; (1)

mmInStream = socket.getInputStream(); (2)

mmOutStream = socket.getOutputStream(); (3)

bytes = mmInStream.read(buffer); (4)

mHandler.obtainMessage(MESSAGE_READ, bytes, -1,

buffer).sendToTarget(); (5)

mmOutStream.write(bytes); (6)

(1) Declares the objects we are using to transmit data. The socket was created

earlier when the connection was established. (2) Creates the inputstream object

89

that we will do our read operations with. (3) Creates the outputstream that we will

send out data with. (4) Is the command we use when we read in data from the

connected device. Here, bytes is an int representing the number of bytes read in,

and buffer is an array of bytes to hold the data received. After reading in the data,

(5) is called to signal the app that data has been read in. Finally, to send data out

to the item watching software, just call (6).

If the user goes out of range of the connection, the connection breaks and
continuously tries to reconnect. If the user powers down BroBot or the app, the
connection will be ended.

4.5 Pololu 38 kHz IR proximity Sensor

This IR sensor will be used by the navigation system to ensure that the robot will

not run into anything or anyone during its travelling to the user. There will be four

different sensors, 1 on each side and 2 on the front of the robot. These modules

are quite small at .4” x .6” and need to be situated on the robot so that the

modules are parallel with the ground and the sensors are pointing outward.

We are using the 24 inch range IR sensor, though how well the sensors work is

dependent on many different things, including the object size, reflectivity and the

lighting conditions. The IR sensor uses a 555 timer to drive the IR LED, with this

555 timer comes the ability to change the frequency of the module, which will be

set to default for the first implementation.

The Pololu proximity sensor has 4 different connections on the board, these

connections are ground, Vdd, out, and enable. Figure 4.5-1 shows the numbers

of the sensors that will be on the robot’s body. The logic power lines needs 3.3V

to 5V, which is perfect for our system since we will have a 3.3V line. It should be

noted that using less than 5V can decrease the brightness of the IR LED, which

in turn will decrease the sensing range. If we run into problems we can change

our power system to give a 5V line.

90

Figure 4.5-1

The out pin normally operates at high, will be pulled low if the TSSP77038

receiver has a sufficient signal. This will be the line that will be needed to go to a

GPIO pin on the microcontroller. Since there will be two sensors that will pointing

towards the same thing they will share a GPIO pin of the MSP430. Figure 4.5-2

shows the circuit that will be implemented.

Figure 4.5-2

The potentiometer on the receiver side of the module can be used to change the

frequency of the IR emitter LED. This will be tweaked during the testing of the

navigation system to ensure that the sensor outputs properly. Changing the

frequency can increase the quality of sensing.

91

Since the side modules will not be used while the front module is used we will

need to use the enable pin on the module. This pin is to ensure that other IR

sensors will not interfere with each other when using multiple sensors. 2 GPIO

pins will used for this operation, one for the front sensor enables, and one for the

side sensors enables, though an inverter could be used for this implementation if

we run into the problem of using too many pins.

The outputs of sensor 3 and 4 will need to be looked at individually, which means

that two more pins will need to be used for this implementation. In total 5

different GPIOs will need to be used in the MSP430 microcontroller. Though we

can drop down to 4, if an inverter is used for the enable line.

Since the sensor will not just give a 1 or 0, it will oscillate whenever the sample

sense the pulse, we will need to implement a sampling feature in the MSP430.

This will be done using an internal clock on the microcontroller, also this will need

to be tested during the navigation testing.

4.6 Android Application

4.6.1 Programming Language

The app will be coded in Java. It is the language native to Android, and will
provide the smoothest implementation possible. Java comes with many libraries
that make GUI frameworks and backend technology alike easier to implement.
Libraries such as the Canvas class can be used to create simple buttons and
icons to interface with the application. The GUI will be very minimalist.

Java also contains very nice APIs to help interface different components.
Detailed in the API section, the Bluetooth API is irreplaceable for our requirement
to connect the Android app to the item watching software. Although the members
of our team are not experienced in Android development, Java is our most
proficient language, so it will be the smoothest learning curve to learn how to
implement it on Android.

4.6.2 IDE

The app will be coded in Netbeans, as it gives the greatest support for Java
applications. It provides several advantages over Eclipse, allowing Javadocs to
be viewed in-console and offering the user much better warning and error
detection, along with possible fixes. Netbeans is compatible with the Android
SDK libraries that need to be imported to code for Android.

Netbeans' project format is also helpful for the organization of the software. While
Eclipse is just a glorified text editor that treats each java file the same, Netbeans

92

allows code to be sorted into projects. These projects will correspond to the
different sections of the code, for example a GUI project, Bluetooth functionality
project, and logic project. These projects will interface with each other but work
as stand-alone modules as well, providing a robust, modular approach to writing
clean code.

4.6.3 Libraries and Tools

We will be using a third party tool called NBAndroid as an attachment to Android.
This tool allows for development and testing of Android applications using
Netbeans as the IDE. It allows code to be written, debugged, and simulated on
an emulator of Android. It also supports directly putting the application on a real
Android device.

A second, necessary library that will be included is the Android SDK. The SDK
contains all the tools necessary to make a project an Android application instead
of simply a Windows application. Once installed, the main libraries will need to be
imported in order to properly include necessary functions.

4.6.4 Compatibility

Although this app should run on other platforms, it is being designed for use on
more recent versions of Android. The target version will be 4.2 or 4.3 Jelly Bean,
depending on which is the current version when coding begins.

Because the app uses external communication with BroBot, it relies on a
Bluetooth connection. To use this app, the phone must have this feature, and it
must be enabled. If it is not enabled, the app will request the user to enable it.

4.6.5 Communication with hardware

In order to exchange information with the item watching software, the app
requires constant (within range) communication with the microprocessor. To
achieve this, we are implementing a Bluetooth connection to connect the
devices. A Bluetooth connection requires both a host and a device to pair to. The
phone running the app will be the host of this connection.

The app will be coded with the Android Bluetooth libraries imported and
implemented. This library contains the functions needed to set up Bluetooth for
use, find a local device to connect to, and exchange data with it. To do this, the
app first needs to create an object representing the phone’s Bluetooth adapter.
This is done with the function getDefaultAdapter(). Following this, isEnabled() will
be called to see if Bluetooth is enabled on the phone. If it is not, the function to
ask the user to enable it will be called. After these steps, Bluetooth will be set up
on and app and ready to connect.

93

A set of devices that are known to the app are stored by the phone. This list must
then be looped through to see if the device we are trying to connect to, BroBot, is
on it. If it is, the connection can be initiated. If not, it will need to be discovered by
calling startDiscovery().

4.6.6 Permissions

The Android app must have several permissions to do its job. Both BLUETOOTH
and BLUETOOTH_PRIVILEDGED must be set in order to connect to paired
devices and pair devices without the user’s input respectively. VIBRATE must be
enabled in order to allow the app to vibrate the phone if the alarm is triggered.
READ_EXTERNAL_STORAGE may be necessary, depending how we decide to
handle pictures incoming from the Bluetooth link. If they are stored externally, we
will need this to view them and show them on the screen.

4.7 Bluetooth module

The module we have chosen is the RN41 Bluetooth radio. This module is low

power and easy to integrate into projects. It uses a UART connection to

communicate with the Android app. It runs in low power mode with 250µA used

while still being discoverable and connectable. After being connected, it uses

30mA. The module uses a 3.3V power supply, just like many of the other

subsystems.

The RN41 has a total of 35 pins. Of these, we will only need a few to connect to

the STM ARM processor where this module will be housed. Table 4.7-1 contains

a list of pins that we will use on the Bluetooth module.

Pin Number Use

1 Ground. Will be connected to ground on

the microcontroller.

3 Bluetooth master control. We will set this

to ground since the Bluetooth module will

be the slave.

13 UART_RX. Receive input. Will be

connected to the ARM processor’s UART

output port.

14 UART_TX. Transmit output. Will be

connected to the ARM processor’s UART

input port.

19 GPIO status pin. Reads high when

properly connected, low when not. We will

read this port to ensure the Bluetooth

module is functioning correctly.

94

20 GPIO auto-discovery pin. Will be set low

to disable auto-discovery since the app

will connect to it.

21 GPIO status pin. Reads low when

connected. We will read this port to

ensure the Bluetooth module is

functioning correctly.

Table 4.7-1

Pins being read off of the Bluetooth module will be read from GPIO pins on the

ARM processor. All pins not talked about are either not connected or not needed

for us and will be set to ground.

By default, the Bluetooth module is in slave mode, which we do not need to

change. The initial Bluetooth pin code is 1234. It defaults to an 115,200 Kbps

baud rate, 8 bits, no parity, with 1 stop bit. Since the module has a USB port, it

can be physically connected to the computer to change any of these settings via

the terminal. The RN41 can be set to command mode by entering $$$ into the

console. This allows commands to be entered to configure the RN41. For our

purposes, the default settings of the RN41 are exactly what we are going to use,

so no configuration will be necessary.

As long as the module is in slave mode (default), it broadcasts its MAC address

and waits for a device to pair to it. The Android app will seek out the address and

pair with it. During this time, the Bluetooth master verifies the module’s pin code.

If it is successful, they exchange a security key. After the pairing is successful

and the keys are exchanged, the devices instantiate a connection and they are

connected.

The RN41 is a black box. This means we do not need to jump through hoops to

use its Bluetooth link. In order to send data from the microcontroller to the app,

all we have to do is send the data to the microcontroller’s UART output pin. This

data is received via the RN41’s UART input pin and immediately transmitted via

Bluetooth to the app. Conversely, any information received from the app is

immediately and automatically transmitted to the ARM processor via the RN41’s

UART output port to the ARM’s UART input port. This makes transmitting data

wirelessly as simple as possible.

Figure 4.7-2 gives an example of pseudocode from the item watching software

running on the ARM processor. First it checks if the Bluetooth connection is

good. If not, it does nothing. It then waits one second so it does not overwhelm

any of the data buffers. It sends an updated picture over the Bluetooth link to the

app. It then runs the item watching algorithm to determine whether or not to

trigger the alarm. If it does, it sends the alarm to the app, which vibrates the

95

phone and alerts the user to the theft. If the app is out of range of Bluetooth, it

has no way of using the connection, but will still set off the audible alarm in a

different code segment.

while(true){

 if connected{

 delay 1 second;

 UART TX Buffer = currPic;

 if initialpic differs from currPic{

 UART TX Buffer = ALARM;

 }

 }

}

Figure 4.7-2

4.8 Power Protection

We would like to give our circuit some protection in the case of a power surge or

unintended current. Supply voltage can vary, and PCB components can create a

back current. We do not want these currents to destroy our PCB. We can get a

fuse to protect our circuit in the event that this happens.

We are implementing a voltage regulator as part of our circuit. This will limit the

amount of voltage supplied to the components, but not necessarily the current for

reasons described above. If we insert a fuse after the voltage regulator, we can

protect the circuit from being destroyed. Since the motors are run by separate AA

batteries, they are not a part of the power system and their power requirements

can be ignored. The rest of our components are very low-power, with an

operating current of less than 100mA. Therefore, we can insert a 100mA fuse

between the voltage regulator and the rest of the components.

96

5.0 Design Summary of Hardware and Software

5.1 Item Watcher Subsystem

5.1.1 Hardware Configuration

While the item watching subsystem does use the microcontroller for all of it
computation the ARM microcontroller is really the heart of the project. It will take
all of the communication from the user and act accordingly. Because of this a
powerful microcontroller with a good amount of functionality was chosen. The
ability to take in 8 bit parallel data was a huge reason why the STM32F407VGT6
was picked, also it had a cheap development board.

The camera module that was chosen is very flexible to meet the requirements of
the microcontroller. The only thing that isn’t easily changed in the camera module
is the serial control line which has its own specific protocol, which will make
testing more important. But the big thing, the data coming out, has a lot of
different transfer options and is easily configured, which is great since the
microcontroller only has on specific way to take in JPEG data due to the way it
store the data.

The module also has a lot of options when it comes to the compression of the
image, which is very important to keeping the size of the pictures small, since
initially no external memory will be interfaced. The module can change the
quality, the chroma setting, the resolution; basically any feature that one would
want to have control over the module lets you have control over. Though these
features do come at a price, that price being how difficult it will be to properly
interface the camera module with the microcontroller module. The list below
shows the overall settings for the camera module, most of these settings can and
might be changed from the results of testing this subsystem:

 4:2:0 Chroma sampling

 800 x 600 Resolution

 Spoof mode for data interfacing

 JPEG compression

 Quality setting at 20

The spoof mode for data interfacing

To control the camera module there is a two wire serial communication protocol
built into the module. This protocol doesn’t meet any normal standards built into
the ARM microcontroller so the communication will need to be setup using
software. The software will use fast switching GPIO pins on the arm
microcontroller to ensure a fast enough connection. The microcontroller will act

97

as the master while the camera module will act as the slave. Since most of the
pins on the microcontroller can act as GPIO pins any pins can be used. Because
of this a GPIO pin set will be used that isn’t being used by any other part of the
subsystem.

The camera will be mounted onto an arm coming from the body of BroBot. This
is so that the camera will be able to be positioned properly for what space or
items it will be watching. The lens will be pointed toward the items that the user
wants watched.

Some type of communication has to be made to the navigation subsystem. This
communication will include where the subsystem needs to go, and when the
subsystem has done its job. Since most microcontrollers on the market have
some type of I2C hardware interface built in, I2C communications where decided
upon. This decision was to ensure easier interfacing, though the ARM
microcontroller has a lot of control and a lot of decisions to make when it comes
to the I2C system. The list below shows the overall settings for the I2C
communication system between the two subsystems:

 Normal speed mode (100kHz)

 ARM Microcontroller will be the master

 Navigation Microcontroller will act as the slave

 Only one byte of data will be sent during transmissions

 Interrupts will be used to ensure proper communication

For normal operation the ARM microcontroller will be in run mode. In this mode
all of the clocks run at full speed and nothing is held back. When the navigation
subsystem is on the microcontroller will be in sleep mode. This is so I2C can
work but not all of the microcontroller will be on, to conserve power from the
battery. The subsystem will wake up the microcontroller and then wait until there
is communications via I2C from the ARM processor.

5.2 Navigation

5.2.1 Hardware Configuration

For navigation there are three different types of components that need to
interface with the MSP430 microcontroller. The IR sensors will be implemented
using GPIO pins from the microcontroller. The output will be sampled using
software since it comes in as a continuous digital signal. To communicate with
the arm microcontroller I2C serial protocol will be used. This line of
communication will be used to tell the MSP430 where the location is, and also
will wake up the system after it has been in a low power state.

98

The last component that is going to be interfaced with the microcontroller are the
motor drivers. The motor drivers will be used to have complete control over the
rotation of the shaft of the motors. This functionality will be used to easily control
how far the robot will go and will be used to keep track of where the robot is.

5.2.2 Steering Mechanics

The chassis that was selected uses four wheel drive. So the four wheels are
each controlled independently. This model of steering was chosen because it
allows for greater control on ground that could be difficult to travel over. Since the
wheels on the chassis are just hard plastic wheels, they wouldn’t get as much
traction on some surfaces. Seeing that when the robot will be used it may have to
travel over different floorings, such as carpet or tile, it should have the ability to
still travel just as well on these various surface textures. We also don’t want our
BroBot to slow down when the surface texture is encountered; we would like for
him to maintain a fairly high speed throughout all of his travels.

5.2.3 Algorithms and Interrupts

The algorithm that was decided on for this project uses passive infrared sensor
signals as interrupts to detect obstacles, has the ability to turn ninety degrees
when it detects an object directly in front of it at too close of a distance, and
regularly calculates the distance that has been traveled and how much farther he
needs to go until his destination is reached.

Using an algorithm that simply makes turns at ninety degrees angles, rather than
slight turns around an object seemed more useful because then BroBot would be
completely avoiding the obstacle, rather than slowly trying to move around it.
This also allows him to change direction and begin to minimize the distance in
the other direction that needs to be traveled. Because the chosen algorithm will
regularly track the distances he has traveled and still needs to travel, we could
map how much still needs to travel in the two needed cardinal directions. When
an obstacle is encountered, he simply needs to decide whether a left or right turn
will help minimize the distances to the final point.

5.3 Android Application

Upon start, the user will be faced with a screen allowing them to enter their table
number. After receiving the user’s location, the app sends a request to BroBot to
come. After navigating to the table and being put on it, BroBot will take a picture.
This picture will be displayed to the user on the app. If, at any time, the item
watching program determines something has been stolen, it will send an updated
picture to the user. The user will then have the ability to toggle the alarm off if it
was a false alarm.

99

6.0 Project Prototype Construction and Coding

6.1 Navigation

6.1.1 Sensors

It was decided that four passive infrared sensors with mid-range detection would
be used for our project. The next step is to determine where they should be
placed on the chassis. Their purpose will be to detect objects which could cause
our robot to crash. Our main idea for the movement will be along straight lines,
with ninety degree turns when a change in direction is needed. This means that
we’ll need to be able to detect objects which are directly in front of BroBot, along
with things which are to the sides of his movement. The vision of the sides is
needed so that he doesn’t accidently turn into an object.

To accurately place them, it was needed to know how far away an infrared
sensor can detect objects, as well as the lateral range on a sensor. As the typical
range for one of these sensors is up to ten meters, but usually closer to five, we
will be able to detect from far away. We want to receive a true reading when
there is an object one meter in front of him. This will allow ample time to slow
down and change direction. The lateral range for an infrared sensor is
approximately fifteen degrees in each direction away from the center line. To
determine the angle which the sensors should be places at, we need to use
simple geometry, given the size of the selected chassis for our project. To detect
an object that is one meter away, we can line up the sensors to find the extreme
case where the cross sensing areas cross at exactly one meter in front of the
chassis. If this were the case, we would need to put two sensors on the front of
the robot, on the corners, facing ten degrees out from the centerline. When an
object was further than one meter away, both sensors would be on, when it
crossed that line though, they would both shut off. This means that nothing would
be able to be detected within the range that is less than one meter from directly
in front of him. This could work though, because we don’t foresee him starting his
travels with something directly in front of him.

The next two sensors will need to be able to check for objects located on the
sides. The sensors which have already been placed on the front of the chassis
will also be detecting on the sides, we need to figure out how far back we can
place the last two sensors from the front. We will need to be able to detect things
at a closer distance on the sides. We would want to make that we minimize the
amount of unreadable area near the front of the chassis. This is because this is
where the robot will be turning. While we don’t want to line up the sensors
exactly, because we would then be sacrificing a lot of distance towards the back,
we don’t want to place them too close to the back either. If they were placed in
the center, they would be able to “see” everything within around fifteen inches of
the chassis, and that is the extremes at the corners. If we placed them 0.05

100

meters back from the front it would be able to make up for some of the vision
lost, and it wouldn’t hurt the range much for the back either. We mainly need to
be able to recognize objects that are towards the front, because we don’t want to
hit something when it turns.

Figure 6.1.1-1 Sensor Organization

6.1.2 Movement

To program the movement of our robot, we will begin by finding all the usable
functions and code that is readily available for similar projects. These codes will
then be tested with certain values to see how they change as different inputs are
given. Different sections of the code will be completed separately; first will be the
part of the coded needed simply for using the infrared sensors. We will need to
be able to read the signal coming from the sensors a certain number of times
each minute. The program should regularly ask for the status of the sensors to
determine whether it needs to react to the environment. While composing the
part of the code, we would create a variable that would be linked to the sensors’
output. This will be used in the code as a function that causes an interrupt if the
infrared sensor returns a value higher than some determined threshold; which
will mean an object is at a specific distance in front of BroBot.

After this portion of the code has been completed, the motion algorithm will need
to be created. The next portion is the actual motion algorithm that was discussed
in the research section of the paper. There will need to be two other functions

101

within our algorithm which need to be coded. The first would keep track of the
amount of time which has passed, by using an internal clock. As it keeps track of
the time, it will also calculate the distance traveled, based on the average speed
of the robot, which we will determine through testing. There will be two variables
that keep track of the distance; one that tracks the distance of the straight line,
and the other that tracks the overall distance. These will be used so that BroBot
can keep track of his location on the map. The final function will use these
acquired distances, along with the directions of the turns, to help determine what
directions should be traveled until the final goal is reached.

Combining all three of these functions, we should have a complete navigation
system. We will have our code running, and just continuing the forward motion if
nothing in the system has changed. When an obstacle is visible, as the infrared
sensors will signal, then the vehicle should change direction, away from the
obstacle. When it changes direction, the new direction should be passed on to
the function tracking the location. At this time the direction values will also be
updated. So, the direction, distance, and object detection aspects of the
movement have been satisfied.

6.2 App Integration

To install the app on a smart phone, Unknown Sources must be checked in
Android's settings. Under Settings → Security, check the box called “Unknown
sources.” Setting this allows the phone to install apps that were not downloaded
from the official app store. Once this setting is selected, simply add the .apk file
to the phone and run the Android application manager to install the app.

In order to successfully run the prototype, the app must be installed on the
phone. When ran, the Bluetooth module will be activated and begin searching for
a possible connection. This connection must be successful for the app to
function. Upon connection, it must be verified that data is able to flow from the
app to BroBot and from BroBot to the app. To verify the connection, simply
summon BroBot. An initial picture of BroBot’s field of vision should appear on the
phone. If it does, the connection has succeeded and the app is successfully
linked to BroBot.

6.3 Camera

The goal for the camera in this project is to have it be able to view the users
items located on some random table. Seeing that the tables in a library vary in
heights, raising the camera to the appropriate height is the first task for this
aspect of BroBot. Another issue is the orientation of camera, rather than
awkwardly placing him somewhere that could cause him to fall and break, he
should be able to have his camera adjusted to pointing towards the objects. This

102

will allow for greater satisfaction for the user to obtain maximum security for their
items being watched.

First off, we planned on having the user pick up BroBot from the location he
traveled to and placing him on their chair facing the table. This will allow him to
be closer to the items, but the chassis is only 105 millimeters high, so it will need
to still raise the camera further. To compensate for the lack of height of the
chassis, a lightweight tube will be attached to the top of the chassis. Since it
needs to be mounted upright, we will use two strong-tie angles, one on each
opposite side of the tube. The tube will be located in the center of the chassis.
When securing it, screws will be put into the tube, as well as into the appropriate
mounting locations on the chassis. The length of the tube will be determined by
the length of the camera wires; we will want to leave a few inches so that it won’t
accidentally pull anything loose.

The next portion of getting the camera correctly lined up with the items is the
rotational aspect of the view. The user will need to rotate the camera to direct its
line of site to the items. For this we will use a ball and socket joint. On the end of
the lightweight tube we will attach a flat plate on a ball and socket joint. To
assemble it, there will be the three pieces, the lightweight rod, the connecting
piece, and the piece that will hold the camera, which will have the ball and socket
joint. There will be a hole in the camera’s direct support that will line up with the
hole down the tube; this will be used to keep the cords out of the user’s sight.
Connecting the three components will need to be done before the apparatus is
attached to the chassis.

103

6.3.1 Communication with Camera module

Figure 6.3.1-1 made by Jacob Stewart

Figure 6.3.1-1 shows the flow chart the program will abide by when
communicating with the camera module. Since the communication will have to
be bit banged a simple program will be written for the communication line. The
program will be able to send 8 bit information to write or to read to specific

104

registers within the microcontroller on the camera module. The program will be
written in such a way that registers that will be accessed will have their own
variable values; this is to streamline the program so the value won’t have to be
looked up whenever some type of communication will happen between the two
chips.

6.3.2 Data extraction by ARM Processor

Figure 6.3.2-1 Made by Jacob Stewart

105

Figure 6.3.2-1 shows the flow chart for the microcontroller when taking in data
from the camera module. The chart shows what can happen and when errors
are checked, a fatal error can be many things but mostly means that a picture
could not be taken in. If the camera module itself never sent anything then the
program will stop running, but if there was an overflow due to compression or
something else then the program will try to take another picture, after 5 tries of
this the program will stop.

Both of these flow charts represent functions within the main ARM
microcontroller program. They are going to manipulate data coming in and
coming out. They will be implemented along with the item watcher program and
will work alongside it to control the data flow.

6.4 PCB

When every system is tested, code written, schematics designed, and everything
is working properly, it is time to get our printed circuit boards. This will be used
for the final prototype. Our PCB will need to include all the circuitry and
processors onto one simple board.

To make the PCB as modular and fail-safe as we can, we will be using a socket
to house the MSP430. By putting a socket on the board, we can snap the
MSP430 into position, allowing it to be replaced if it breaks or needs to be
replaced with another module.

We will be designing our PCB using a program called Eagle. This software allows
us to create a visual layout of our PCB based on our schematic and export it to a
gerber file that can be sent to a PCB company to physically create. The free
edition of Eagle, called Eagle Light, has a few restrictions that we will have to
work around.

The maximum size for a PCB is 100x80 mm (4x3.2 inches). Also, only two signal
layers can be used, and only one sheet can be created by the schematic editor.
Apart from these restrictions, it functions exactly the same as the paid version.
Eagle gives permission for anyone using the free version for non-profit,
educational purposes to use it, so we will not have any licensing issues.

The core of our PCB revolves around the STM processor used to host the item
watching software. Figure 6.4-1 shows the pins used in this processor. These
pins will connect to other elements in our PCB and will be the focal point of our
design in Eagle. We cannot use a socket for the STM because it is a surface
mounted processor.

We plan to order our PCB from www.4pcb.com. Because we are using the free
version of Eagle, only two signal layers, the top and bottom layer, can be

106

designed. Therefore, we have no choice but to create a 2-layer PCB. Normally
4pcb has a minimum of 4 for an order of full-spec 2-layer PCBs, but if you type
“Student” in the comments they waive the minimum requirement, allowing us to
order only one.

Figure 6.4-1

6.5 Integrating Vision Software

The vision software will be coded on a Windows PC and ported to the processor
afterwards. It will be thoroughly tested on the computer using images taken with
a webcam. When it is time for prototyping, the microprocessor will be connected
via USB cable to the computer. The code will be transferred to a tool called STM
Studio, a program designed by the makers of the microcontroller to allow easy

107

debugging of the software. This software can be used to view all the variables
and ensure the program works correctly on the microcontroller.

Further integration will be needed to interface the vision software with the
components that need it. First, the Bluetooth connection will need to be
configured and the item watching software must be connected to the Android
app. This connection must be set up such that the Bluetooth module on the STM
processor automatically connects to any users attempting a connection with it,
since there is no way to confirm a connection from the processor side. Once this
connection is set up, the vision software and the Android app will be able to
communicate freely.

On the other end, the vision software needs a connection to the MSP430. We will
connect a port from the STM processor to the MSP430 in order to facilitate the
transfer of information. We do not need to use too many lines, because the only
information that will be passed this direction is the user's location to be used in
pathing.

Finally, the item watching software must be interfaced with the camera. The
camera will save jpegs taken to the processor's memory. The software must have
a pointer to this memory in order to retrieve these pictures. Since we only need to
save two pictures at a time, we can hard code the size and starting address of
these two memory locations. In this manner, we can point the software to retrieve
the pictures from these same two locations every time.

7.0 Project Prototype Testing

7.1 Item Watcher Subsystem Hardware

7.1.1 Camera communication and data flow

Communication between the camera and the microcontroller is essential to the
final product working as planned. Therefor a lot of testing time will have to go
into this system to ensure that everything is working properly. The first part of
this system that needs to be in working order will be the serial communication.
Also during this phase of testing a lot of information will be learned about the size
of the files coming in, since one of the registers on the camera module will tell
you the size of the last picture taken.

The serial communication will control and check different registers in the camera
module. The first action that will be done after initializing the module will be
telling the camera to take a picture. Once the camera tells the system that this
action is finished then the microcontroller will check to see how big the picture is.
From there we will change first the resolution from the highest point (1600x1200)

108

to the small resolution of 200 x 200. Once all that data is tabulated then the
quality factors will be checked, this is to see how well the DSP on the camera
module can compress the picture image coming into the microcontroller.

All of this picture size data will correspond to JPEG images, which are harder to
dissect then raw picture files. If we can find a range of quality around 20-50
where the sizes of the pictures are around 10KB then that would be ideal. But
the resolution also needs to be high enough so the picture will not be too hard to
grab images from. Once the initial JPEG image data is figured out we will then
look at monotone color scheme for jpeg, to see if the difference in color will
drastically change the size of the file coming in. Raw image files will also be
looked at, this is because they are much easier to perform computations on.

The raw images will go through the same process as the JPEG images, except
for the quality factor since there is no compression. All the resolutions will be
messed with to see how well the sizes scale with the different settings, the color
settings will also be changed to see the different in sizes.

Luckily all of this testing can be done without interfacing the data lines to the
camera, which would make the process much more complex. Once all this sizing
data is done then we will need to get the data transfer done as quickly as
possible. To ensure that the images are correctly transferring we will need to
transfer the pictures from the microcontroller to a computer. This can be done
through a couple different methods. The microcontroller has a connection to
USB through the development board which will be used for this part of the
testing.

All the pictures coming in will be looked at to make sure all of the images look
how they should.

7.1.2 Communication between subsystems

The I2C system will need to be tested using an oscilloscope and having some
way of seeing that the two microcontrollers are talking to each other. This will be
done with different LEDs on the two microcontrollers which will show when that
microcontroller is sending data and when it has taken the data that it needed.
I2C could be tricky to interface correctly since timing is really important in the
system, therefore another way to communicate between the two microcontrollers
might be needed.

SPI is another interface that works well for this, the only problem is the amount of
pins it takes is double the amount I2C needs. This would not be a problem with
the ARM microcontroller but might be a problem for the low power microcontroller
which will have significantly lower amount of pins. Other than that it would be a
good idea to keep this in our back pocket in case we run into problems with using
the I2C protocol.

109

7.1.3 Test LEDs

The test LEDs will be used on the system when BroBot runs into a problem it
cannot fix on its own. This would be something like if the picture taken doesn’t
come in properly into the microcontroller. Or if there is an overflow of data cause
by the size of the image, things like this will be shown on the Test LEDs.

7.2 App Stand Alone Testing

Many functions of the app require communication with the microprocessor and
input from it, so these functions will be impossible to unit test and will need to be
tested with the rest of the components during the prototyping phase.

The main part that can be unit tested is the graphical user interface. When the
icon is clicked from the Android main page, the app should open, load properly,
and not crash. Displayed should be either a box to enter the table number. When
a table number is inputted, a message should be displayed to the user stating
that it is unable to establish connection to the item watching software.

When the ARM processor, along with its Bluetooth module, is successfully set up
and running, continued testing of the app can begin. Clicking on the app icon on
the phone should bring up the app with a field to enter the table number. When
this is entered, a button saying “Activate BroBot” should appear. This button is
meant to be pressed when BroBot has arrived at its final location and is ready to
begin monitoring. When this button is pressed, it should be replaced with an
image of BroBot’s field of vision, along with a button that says “Stop monitoring.”
If this is displayed, the test has succeeded. The app should never crash, and if
something is not set up properly or ready for use, the user should be presented
with a message telling them this.

The deeper link between the app to the MSP430 must also be tested. Although
this is not a direct link, information still needs to be able to flow from the app
through the item watching software and successfully reach the movement
software. This phase of testing cannot be done until near prototyping phase,
since we need the Bluetooth link, hard link, and chassis all operating together.
Since the MSP430 has no screen or console to display output, we can test this
functionality by sending any movement command to BroBot from the app. If
BroBot moves, we know the connection is successful. If not, we need to debug
the data path and find out where the data is getting lost.

110

7.3 Image Tracking Testing

The image tracking software can be tested by itself much more easily than the
app. While debugging on the computer, an image will be taken by webcam and
fed to the software. After this, a second image will be added, very similar to the
first image. If the app does nothing, it passes the test. Finally, a different image
will be inserted. The app should recognize that this is not the same picture, and
activate the alarm. Pictures of increasing similarity can be used to find an
appropriate threshold to use as the alarm trigger point. Ideally, changes smaller
than an entire object appearing or disappearing should not trigger the alarm,
whereas such changes as removing a book or laptop from the scene should. It
will take some experimentation to find the exact value to use in order to make
this binary decision.

It is harder to test the connection part of the code, and cannot be done until the
connections are implemented. The item watching software has two connections –
one via Bluetooth with the app, and one via a hard link to the MSP430 and the
movement software. To test the Bluetooth connection, simply be in Bluetooth
range, open the app, and choose a location for BroBot to go. The app should
immediately display a picture of BroBot’s vision. If this picture appears, the link
works.

To test the connection to the MSP430, both connections from the item watching
software must be in place. Again, from the app, select a location for BroBot to go.
If he starts moving in any direction, the connection is working. If he does not
move, either the connection or the movement software may be bugged, and must
be troubleshooted.

7.4 Navigation Testing

7.4.1 Sensors

Infrared sensors don’t have guaranteed distance they can detect objects from, so
there will be time spent just turning them on and placing objects in front of them,
then slowly moving it towards the sensors. We will attach the output pin of the
sensor to a multi-meter. Moving the object back and forth from the sensors will
change the readings on the meter at some rate. As we will test from the distance
directly in front, we will also measure the horizontal range of the view by the
same method. Various types of objects will be used for these tests; both dark and
light to see how the changes in the color affect how well it detects it.

We will then connect the sensors to the microcontroller and record the different
distances it gives for the objects it detects and compare these values with the
measured values we find. After we complete the testing for objects we place
directly in the line of sight, we will repeat the steps for different angles from the

111

centerline of the sensors. We will increment the angles by a few degrees each
time until we find the boundaries of the horizontal scope of the view. These
tested distances will be used to slightly adjust where the sensors are located.

After we determine the information about each of the sensors, we will need to
attach them to the chassis and make sure everything still works as designed. We
want to ensure that there is no interference between the sensors, as well as with
other components of the robot. We will do this by setting up the system and see
how the signal is read with no objects in front of any of the sensors. After, we will
set up an object in front of one of the sensors and make sure that only the one
sensor is picking it up. We will then test it for the rest of the sensors, and follow
by placing an object in the range of two sensors at the same time.

7.4.2 Software for Movement

Testing the software for movement will require a few different levels of testing.
While going through all the sub-functions of our program, we will test that each
piece works alone. The first function will be just one that reads and interprets the
signals from the infrared sensors. We will first test the sensors, as mentioned
above, and then when we know they’re working correctly, we would test them
with the code segment. Since we know the sensors are working with the
microcontroller, we could verify the code is correctly interacting with the
controller, and once verified read the infrared signal and make sure that the code
has the correct response to the signals.

The next component of the code is the tracking of time and calculating the
distance traveled, based on the speeds of the motors and chassis. We will have
to first create some speed to be called the speed of the chassis, and then allow
the program to run for some measured amount of time. At the end of this time
period it will need to output the distance it calculated. Since we know how to
calculate speed from the basic physics’ equation, we will know what it should
output as the distance. This test will test that the timers are working correctly.

The final piece of the code that should be tested singly is the calculation of the
final destination and distance to it. We can track what the output should be by
drawing the diagram of the library, or testing environment, and input fake signals
that an object has been detected. As we do this we’ll have to provide obstacles
and distances so that the code will have all the necessary inputs. Once we verify
that it can correctly know how far the destination is and the correct turns to make,
we can begin the next part of the software testing.

The next thing we’ll have to do to test the motion software is a combination of the
three pieces of the code. We can do this by just connecting the sensors and
simulating obstacles being in the way. At this point BroBot should be able to track
the time between interrupts, the distances between interrupts, and the directions
that should be turned when an obstacle does appear in the way. We will simulate

112

all this and make sure everything works as intended, and then only after, we will
connect it to BroBot and let him actually make turns and find paths. He should
make the correct directional turns at obstacles, as well as do this with ample
space before reaching the object, and be able to stop when he reaches his
destination.

7.5 Prototype Testing

Although unit tests are important for testing module functionality, when BroBot is
complete we will enter the prototype testing phase, at which point we must test
the overall functionality of BroBot. Although many of BroBot's subsystems work in
a modular fashion, the interconnectedness of each of the subsystems make it
very hard to know if the overall system is working properly, regardless of whether
or not the unit tests pass.

If the unit tests pass, we can assume the algorithms within each subsystem are
working properly. However, we need to test the links and connections between
the systems. Powering on BroBot and opening the app allows the test to begin.
When the table number is entered, the link between the item watching software
and the app will be opened, as well as the link between the item watching
software and the app. If the connection fails, the user will be notified by the app.
If the test passes, the app will begin to display pictures showing BroBot's vision
as it moves.

The unit test for the motion algorithm is very limited in scope as it does not test
the data pathways to pass the intended destination from the app to the software.
This global test will determine whether or not the data is flowing properly, and
also whether or not the motion algorithm succeeds. If BroBot gets stuck on a
wall, or does not find his way to an area near the user's location, the motion
algorithm has failed. If BroBot does not move at all, the data pathway is not
working properly and pathway specific testing must commence.

Once BroBot has arrived near the user, we know that the data pathways are
working, as well as the motion software. If the user can see BroBot's view as it
travels, we know that the camera interface is working as well. At this point, all
that remains to be seen is whether or not the item watching software is working.
As this is easily unit-testable, this portion of the test is not that important, but the
important part to test is whether or not the item watching software maintains an
open Bluetooth link with the app. While in range, the app should receive regular
pictures of the items. If the alarm is triggered, whether or not the app is pulled up,
the phone should vibrate and give the user warning as well as an updated
picture. If these events happen, we know the link is working properly. If they do
not, we need to examine the Bluetooth connection for problems.

113

7.6 Battery Life Testing

To complete our spec, we need to know how long BroBot can continuously

operate for. This operating time will vary based on what mode BroBot is

operating in. We need to determine how long BroBot can operate in each of his

operating modes.

BroBot will use the most battery when he is traveling. All of his systems are

active in this mode. The camera is taking pictures, the ARM processor is sending

them via Bluetooth, the MSP430 is computing routes, the IR sensors are

collecting data, and especially, the motors are consuming incredible amounts of

power to move BroBot. Due to these drains, we expect BroBot’s battery to drain

very quickly in this operating mode. Luckily, BroBot will spend very little time in

this mode, since most of the time he will be stationary watching items.

We still want to determine an average running time if he is constantly in motion.

We can achieve this by starting a stopwatch at the same time we send BroBot an

area to travel to via the app. Before he reaches his destination, we send him a

new one, forcing him to keep moving. We repeat this until his battery runs out

and he stops functioning. This recorded running time will be considered his

average battery life while in motion.

BroBot will consume far less battery when he is in watching mode. In this mode,

the camera receives power to take regular pictures, and the STM processor

analyzes them and sends pictures and information over the Bluetooth link.

However, the motors, easily the most power-hungry component on BroBot, are

not operational in this mode. Neither are the IR sensors, or the MSP430

processor. Without these drains, we expect BroBot’s battery life in this mode to

be several times greater than his battery life while in motion.

To determine his average watching battery life, simply start BroBot with a full

battery, and start his item watching functionality from the app. The app will

receive regular picture updates of BroBot’s field of vision. Leave him running until

these pictures stop coming. When this happens, stop the stopwatch. This time is

BroBot’s average running time when watching.

To determine BroBot’s average running time over the course of a day, simply

multiply the weighted sums of the two values calculated above using this formula:

114

For example, if BroBot is moving 5% of the time and watching 95% of the time,

the equation becomes:

7.7 IR Sensor Testing

An important part of the movement software on the MSP430 are the IR sensors.

These sensors are used to avoid obstacles. If the sensors read high, that means

they have detected an object in front of BroBot. This can be a person or

immovable object. If the IR sensors are not working properly, BroBot can collide

into this object, leading to damage to BroBot or worse, personal injury and a

potential lawsuit. To mitigate these risks we plan to test the IR sensors to make

sure they are working properly before putting BroBot into action.

When a sensor detects an object in the way, its pin reads high. When it does not,

the pin reads low. To test the sensors, we must power VCC and set enable to

ground. We must then hook up an oscilloscope to the output pin. Because

signals get lost, the output will not be 1 constantly while the IR sensor is blocked.

Leaving the sensor uncovered, we will view the output of the oscilloscope. It

should read low. The sensor should then be covered. For the duration of the time

the sensor is covered, the oscilloscope should read high for at least the majority

of the time, with quick dips to low. If this output is observed, the sensor is

working.

When reading the output of the sensor into the motion control software, we must

sample it at a particular frequency to gather the data. Because the wave is

emitted from the sensor at 35KHz, we must sample it at twice that, or 70KHz,

according to Nyquist’s sampling theorem. Once we have the output, we can

check if there are more than some threshold value of high readings per unit time.

If this is the case, we treat it as a high reading, and avoid the obstacle

accordingly.

115

8.0 Administrative Content

8.1 Administrative Content Management

Our team consists of four members: Richard and Sarah are Computer Engineers,
while Jacob and Anson are Electrical Engineers. The Computer Engineers are
focusing more on the software aspects of BroBot, while the Electricals are
focused on the embedded aspect, including low-level programming, as well as
the power system.

Richard and Sarah together are in charge of the item watching software. As the
group members with some computer vision experience, we will take our
knowledge of C programming in conjunction with image concepts to complete
this segment of the software. Since neither of us have ever designed an image
system from scratch, nor do we have much experience writing code from scratch
for an embedded environment, we foresee this being one of the harder tasks to
accomplish.

Richard alone is in charge of programming the Android app. He has the most
experience programming in Java, and is knowledgeable about the tools needed
to make a project able to run in an Android environment and use a Bluetooth
connection. Although he has never created an Android application before, he is
confident in his ability to learn via the resources provided in the Android
documentation.

Sarah is in charge of the movement software. She will be interfacing the software
with the motors attached to the chassis, and do the location logic involved in the
algorithm. Her part of the software will receive the desired location from the app,
and will figure out what direction to go in and how to avoid obstacles on the way.

Anson is in charge of the power system. His electrical knowledge will be
imperative in supplying each of the subsystems the power they need to operate.
He will set up the circuit we’re going to use in our final design to print later onto
printed circuit boards.

Jacob is in charge of the embedded aspect of the project. He will be writing code
to use the Bluetooth module in order to connect the STM processor to the
Bluetooth radio on the Android app. He will also be in charge of writing code for
the embedded processors to talk to one another, set their clock speeds, and do
all of the interfacing required on our two microcontrollers.

116

8.2 Administrative Content Milestone

The beginning stages of this project has thus far consisted of research. Many
interconnected systems are required for BroBot to function, and it is imperative
we chose parts in such a way that they interface properly with each other. The
movement software on the low-power microcontroller must be compatible with
the motors we chose, as well as the high power microcontroller in order to
receive direction instructions.

The item watching software must properly be able to connect to the app and the
camera. To this end, we had to do extensive research to carefully select our parts
and make sure that each was compatible with each other. This also applies to
our software. Research had to be done to ensure that our method of
communication, Bluetooth, was available for use to connect the item watching
software and the app. Research had to be done to find the correct API and make
sure it had no restrictions that would make it unavailable for us to use.

Many of BroBot's subsystems can be designed in parallel and implemented at
the end of the development phase. However, some components rely on others
working properly to be designable. Determining the ones that should be started
early requires an analysis of both the time required to design the subsystem and
how many components depend on the subsystem functioning properly.
Additionally, each member of the group should have a priority item to work on so
that the work of other members is not impeded.

Figure 8.2-1

A few of the subsystems are required to be in place before others can be added,
or we foresee will take more time than other subsystems. These we are calling
priority 1 subsystems. Subsystems that do not impede the progress and testing
of other systems or will be simple to implement are called priority 2 subsystems.

117

Figure 8.2-1 shows the breakdown of priority subsystems, as well as who is
assigned to work on each. Each member of the group should be responsible for
one priority 1 system. The first priority 1 subsystem is the power system.
Although this can be designed independently of the other systems, it is
imperative to have it functional before any other subsystem can be tested. Anson
will be in charge of getting this working as early as possible, and it will be the
backbone behind the entire project.

The Android application's side of the Bluetooth connection is priority 1 as well.
Although the item watching algorithm to determine whether or not two pictures
differ is not required to be implemented immediately, the rest of the software,
such as opening the Bluetooth link to and exchanging data with the app is priority
1. We foresee having the most issues with the communication between systems,
and the sooner we can implement these connections, the better. For this reason,
one of Jacob's priorities will be to install the Bluetooth module and write the code
to get it to accept incoming connections and correctly transfer data with the app.
Additionally, since it is impossible to unit test most of the subsystems, they will
not be testable until the communication between the modules is implemented.
Also important in the item watching software is the ability to transfer data to the
motion control software. Although this connection is not as important between
item watching software and motion software, it is still high priority as the motion
software cannot be properly tested without being able to receive the desired
location from the item watching software.

The Android application is important because of two reasons. First of all, it will
take a very long time to code. GUIs are time consuming to set up, and we need
to integrate communication along with it to interface with the Bluetooth module.
Second, it is the only part of BroBot where the user can control the system.
Without a place to enter the user's location, the motion software cannot be
tested. Additionally, no feedback from the status of the connection or item
watching software can be received. Apart from the audible alarm, which is a low
priority item, the app is the only way the user can know if the app is working
properly. It also houses the phone's side of the communication software, which is
very complex and very important to both testing and implementing BroBot's
functionality. Because of this, the sooner the app is in a working form, the better.
This will be Richard's high priority item for the beginning of the project. However,
the important part of this task is giving the user a place to enter their location and
establishing communication with the other subsystems. Therefore, even though
the connectivity is priority 1, the user interface itself will be done after as a priority
2 item.

The motion control software will be Sarah's first high priority item. Although no
other subsystems depend directly on this software, it will take a very long time to
get into a working state. Motion control software is very temperamental and none
of us have much experience with it. Although this subsystem receives destination
location from the app, it is still important to get a working skeleton completed

118

early while the communication systems are being designed. This gives us more
time to debug and work on what is potentially the most difficult subsystem to
implement.

Much of the underlying embedded hardware is necessary to establish
communication and functionality across all of the software. Jacob will be in
charge of the embedded components. Of these, the communication between
hardware is the priority 1 item. Although the app's communication with BroBot is
hosted by the app, code must be written for the embedded platform to work with
the Bluetooth module on the microprocessor. Additionally, the two
microcontrollers, the STM and MSP430, must have a data link between them to
share information.

Getting each piece talking to another will be a challenge that must be tackled
early in order to test the subsystems, since most of them depend on each other.
Although each subsystem of BroBot has its own functionality, it is more important
to implement the code allowing these subsystems to communicate with each
other before worrying about the subsystem's individual functionality.

Because the app user interface is so paramount to the success of the project,
and does not heavily depend on other subsystems, we plan to begin work on that
toward the end of winter break. Once the app appears good on the computer, it
will be tested on an Android phone to ensure it looks correct. Functionality and
connectivity will have to wait until the microcontroller is ready to be connected.
Similarly, since the item watching software is the most critical part of BroBot, we
will try to begin coding before the semester starts while we do not have other
classes in the way.

Since the item watching program can be written and tested independently of the
hardware it will be run on, we plan to try to have it working on our computers as
early in the semester as possible. Additionally, the movement software is a
priority, as it is a topic that we have very little experience with and can potentially
take a long time. Once we have the logic set up, the chassis and the motors will
need to be connected with the microcontroller to allow this subsystem to be
tested as early in the semester as possible.

The item watching software is the most central piece of software in this project. It
is important to get communication working between the STM processor to the
app and MSP430 as early as possible. However, since the algorithm itself is not
very complex, and depends entirely on physical aspects such as how the camera
is integrated and where the pictures are stored, it is better to wait until the other
subsystems are implemented before writing the majority of this code. For this
reason the algorithm itself is priority 2, although the code to communicate with
the other systems is priority 1.

119

We plan to order the parts we need immediately after finals week. Since these
parts can take a few weeks to arrive, they will be available to us the moment
Spring semester starts, giving us time to do as much as we can before the
workload becomes heavy. The priority for the hardware is to get the low-power
microcontroller connected to the motor and chassis to test movement software.
However, this can wait until the motion software is ready to be tested.

The table below shows our intended milestone chart for this project. The planning
phase is based on our effort over the past semester, while the section for the
Spring semester is merely a guideline of milestones for us to meet. This table is
divided by group member, giving each member of the group a task to focus on.
Each subsystem will be designed and coded (where applicable) independently,
while keeping in mind interfacing restraints. Multiple unit tests will be performed
at this stage to ensure that each stand-alone subsystem works as intended. The
final few weeks will be devoted to interfacing all the components together, and
extensive system-wide testing.

SEPTEMBER ANSON RICHARD SARAH JACOB
16-22 RESEARCH: Look

for power needs of
proposed devices.

RESEARCH: App
design; image tech

RESEARCH: Image
tech; vehicle control
software

RESEARCH:
Processor;
cameras; hardware

23-30 See above See above See above See above

October Anson Richard Sarah Jacob

1-6 Continue research Continue research Continue research Continue research

7-13 Update
requirements;
change focus of
research if
necessary

Update
requirements;
change focus of
research if
necessary

Update
requirements;
change focus of
research if
necessary

Update
requirements;
change focus of
research if
necessary

14-20 RESEARCH RESEARCH:
Programming the
app

RESEARCH:
Programming
vehicle control
software

RESEARCH

21-27 Simulations Continue research Continue research Simulations

28-31 Simulations Continue research Continue research Simulations

November Anson Richard Sarah Jacob

1-10 Research;
simulations

Research Research Research;
simulations

11-17 Decide on parts Decide on parts Decide on parts Decide on parts

18-26 Finalize paper;
order parts

Finalize paper;
order parts

Finalize paper;
order parts

Finalize paper;
order parts

27-30 Study for exams Study for exams Study for exams Study for exams

December Anson Richard Sarah Jacob

1-8 FINALS FINALS FINALS FINALS

9-15 Wait for parts Programming Programming Wait for parts

16-22 Wait for parts Programming Programming Wait for parts

23-31 Wait for parts Programming Programming Wait for parts

January Anson Richard Sarah Jacob

1-5 Wait for parts Programming Programming Wait for parts

6-12 Test parts Programming Programming Test parts

13-19 Test parts Programming Programming Test parts

20-26 Assemble Programming Programming Assemble

27-31 Assemble Programming Programming Assemble

February Anson Richard Sarah Jacob

1-9 Testing Testing Testing Testing

10-16 Debug Debug Debug Debug

120

17-23 Debug Debug Debug Debug

24-28 Interface Interface Interface Interface

March Anson Richard Sarah Jacob

1-9 SPRING BREAK SPRING BREAK SPRING BREAK SPRING BREAK

10-16 Interface Interface Interface Interface

17-23 Interface Interface Interface Interface

24-31 Testing Testing Testing Testing

April Anson Richard Sarah Jacob

1-5 Testing Testing Testing Testing

6-13 Final touches Final touches Final touches Final touches

14-20 Presentation Presentation Presentation Presentation

21-30 FINALS FINALS FINALS FINALS

Figure 8.2-1

8.3 Budget

From the onset of this project, we knew we were not going to look for a sponsor.
Since the primary use for BroBot is in a library, we knew companies would have
very little use for it, and since it is used indoors, we could not use a solar panel to
power it. Since we knew we were on our own, we decided to make budget one of
our concerns. Many expensive parts can be replaced for cheaper parts with very
little if any decrease in performance.

In addition to the parts that we need for BroBot itself, we need to make use of
equipment such as oscilloscopes, multimeters, and a power supply for individual
component testing. The senior design lab, accessible by keys given to senior
design students, contains these amenities for us to use. Because of this, we do
not need to spend money on this equipment.

Additionally, free samples of the STM Discovery microprocessor are available
upon request from the company. We plan to utilize this to get the parts we need
to complete the working prototype. For our testing purposes, we will need the
development board which is not free, so that has been included in the budget.

The chassis we have chosen, a Pirate 4WD mobile platform, it pricier than some.
However, it comes with the motors we need for movement, saving us both the
expense of purchasing them as well as the potential for incompatibility introduced
by trying to put foreign parts together.

Our power system consists of a 4-cell Lithium Ion battery pack, along with the

charger recommended by the manufacturer. The battery costs $32.49 at www.all-

battery.com, while the charging pack costs $21.95. Although other batteries and

chargers can be found for less, this battery is preferred because it has a very

high energy density and small size. Additionally, it eliminates one of the major

risks of lithium-ion batteries by smart charging. This charger can detect when the

battery is fully charged, and will stop the current from reaching the battery. This

greatly reduces the risk of explosion inherent in lithium-ion batteries.

121

The MSP430 gives out free samples of its processor as well. However, we will
need a development board to do our testing on. The MSP430x4xx development
board costs a ridiculous $175. We will suffice with the MSP430 LaunchPad,
which only costs $16.95 on Amazon and $9.99 when ordered directly from Texas
Instruments. This board comes with two flashing devices to allow us to load our
test software onto the board.

To mount the camera, we need something solid erected on BroBot. We are
solving this problem by using a piece of PVC pipe. This requires some supplies
such as glue, something to cut it with, a drill, and the ball and socket swivel head.
We are using this flexible solution at the end of the pipe to allow the camera to be
moved. This gives us the ability to point the camera at the target items regardless
of what level they are at compared to BroBot. All these items are easily acquired
at Home Depot and we have estimated their price in the budget.

Motor encoders are used to control the rotation of the motors. When given full
power, the motor may turn faster than we want it to go and we will not have any
control over it. When implementing the motor encoder, we can control to the
rotation per minute how fast the motor turns the wheel. This gives us the highest
amount of control over our vehicle. The same company that makes our chassis,
dfrobot, makes this encoder specifically for our chassis. We will be able to order it
online with the chassis and save on shipping.

This budget is just the baseline of our prototype. It does not account for hardware
failure of any kind. With a battery as powerful as ours, it is easy to blow out parts
and have component failure. This budget can easily grow as the project goes on
from these failures and any other kinds of unforeseen difficulties. The budget
listed in figure 8.3-1 is only the minimum of the total cost of BroBot.

Item Price

Pirate 4WD Mobile Platform $49.90

STM Discovery Development Board $14.90

MSP430 Launchpad $9.99

RN-41 Bluetooth Module $21.70

2 Megapixel camera $18.99

Printed Circuit Boards $75.00

Report Binding $15.00

Tenergy Lithium Ion 7.4V Battery $32.49

Tenergy TLP-2000 Smart Charger $21.95

IR Sensors $16.60

PVC supplies $20.00

Motor Encoders $20.57

 Total $317.09

Figure 8.3-1

122

Appendix A

123

124

Appendix B

Micron Technology technical staff, MT9D111 Datasheet, Micron Technology,
2004.

Pololu Robotics and Electronics technical staff, Pololu 38kHz IR Proximity
Sensor, Fixed Gain, High Brightness, Pololu Robotics and Electronics, 2013.

Roving Networks technical staff, RN41/RN41N Class 1 Bluetooth Module, Roving
Networks, 2013.

STMicroelectronics technical staff, STM32F407VG Datasheet,
STMicroelectronics, 2013.

Texas Instruments technical staff, MSP430x2xx Family User’s Guide, Texas
Instruments, 2013.

Texas Instruments technical staff, MSP430G2x53 MSP430G2x13 Mixed Signal
Microcontroller, Texas Instruments, 2013.

125

Appendix C

Eagle

Microsoft Visio

Microsoft Paint

