

PROJECT HELI S

(GREEK GOD OF SUN)

Group 29 Pablo Pozo, E.E. Esteban Ossa, E.E. Cory Bianchi, Cp.E Patrick O'Connor, E.E.

Motivation

- To acquire international engineering experience
- To design a solar power system
- To experience new cultures and explore new international horizons
- To promote the use of new, clean, and sustainable energy sources for humanitarian efforts

Speaker: Cory Bianchi

Pomolong Township

Speaker: Cory Bianchi

South Africa Demographics

- Rural population: 38% (2010)
- Population: 48,600,000
- Internet users: 4.4 million (2009)
- Life Expectancy: 50 years
- Unemployment rate age 15–24: 48.2% (2009)
- Literacy: 86.4% (4 out of 5)
- Population Growth Rate: -0.412%
- Poverty Rate: 50% (2000)
- HIV/AIDS: 17.8% (2009) (1 out of 5)

Goals & Objectives

- To generate, store, and distribute power
- Self-sustaining reliable system
- To improve the quality of life of the Pomolong Township
- To deliver AC power

System Specifications and Requirements

- Produce 1000W
- Input up to 30V and up to 32A
- Output 220V at 50Hz
- 7.5 hours at 10A without charging
- Work at temperatures from 0 125°F

Solar Panel

4 Solar Panels in parallel

Charge Controller

- Specifications & Requirements
 - 5-30V input
 - Max 32A input
 - Constant output 20V
- Functionality
 - Manages the power from the solar panel, and stores energy to the battery bank

Battery Bank

- Specifications
 - Three 6V batteries to be able to store 1000W
 - Lead Acid and Deep Cycle batteries
- Functionality
 - Storages DC energy produced by the panels for later use

Inverter

Specification & Requirements

- Input voltage 18VDC
- Pure sine wave output
- Output 220VAC at 50Hz
- Deliver 1000W
- Functionality
 - Converts DC power (stored) to AC power (usable) for distribution

Challenges

- Technical
 - Driving the gate of the DC-DC converter
 - Creating a high power LC filter
 - Installing system abroad
- Administrative
 - Getting funding to travel to South Africa
 - Collaboration with the other groups and the Honors College

Inverter Efficiency

- Voltage Input: 18.36V
- Current Input: 6.5A
- Power Input: 119.34W
- Voltage Output: 223.2V
- Current Output: 0.406A
- Power Output: 90.62W

76% Efficiency (efficiency range of 50% to 97%)

Testing & Results

- System Efficiency
 - The System Efficiency is 76%
- Battery Life
 - The Battery life time is 7.5 hours

Speaker: Esteban Ossa

Speaker: Pablo Pozo

Community Impact & Applications

- Extension of night time activities
 - Movies
 - Music
- Communication expansion
 - Television
 - Radio
- Education
 - Internet Access

Scaling and Uses

- Case 1
 - 1 Projector, 1 computer, 1 light bulb for a period of 2.5 hours
- Case 2
 - 5 Cellphone chargers, 2 computers, 1 light bulb for a period of 2.5 hours

Cost Breakdown

ITEM	COST
SOLAR PANELS	\$733.20
CHARGE CONTROLLER	\$200.00
BATTERIES	\$370.59
INVERTER	\$860.00
MISCELLANEOUS	\$356.71
TOTAL COST	\$2,536.71

Stepping Stone

This project will potentially open the doors for continuity on new projects dedicated to humanitarian work in South Africa or other parts of the world.

Sponsors

Progress Energy

College of Engineering & Computer Science

Special Thanks:

- Dr. Richie
- CECS & EECS
- Mike Tullbane
- Honors College