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a b s t r a c t

In this paper, an integrated control and optimization problem is studied in the context of formation and
coverage of a cluster of nonholonomic mobile robots. In particular, each communication channel is mod-
eled by its outage probability, and hence, connectivity is maintained if the outage probability is less than a
certain threshold. The objective of the communication network is to not only maintain resilient commu-
nication quality but also extend the network coverage. An information theory based performance index
is defined to quantify this control objective. Unlike most of the existing results, the proposed coopera-
tive control design does not assume the knowledge of any gradient (of the performance index). Rather,
a distributed extremum seeking algorithm is designed to optimize the connectivity and coverage of the
mobile network. The proposed approach retains all the advantages of cooperative control, and it can not
only perform extremum seeking individually, but also ensures a consensus of estimates between any pair
of connected systems. Simulation results demonstrate effectiveness of the proposed methodology.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Formation control of multi-agent systems, a distributive strat-
egy dedicated to driving a group of networked systems to the de-
sired position or distances [1], has received significant amount of
interests from researchersworldwide in the past decade, leading to
breakthroughs in various fields of applications. However, it should
be pointed out that existing results on this topic do not address
or fully exploit the implications of communication quality to for-
mation control strategies. In this paper, we propose a distributive
strategy that integrates formation control with a communication
performance metric (which captures the trade off between net-
work coverage and communication quality). As iswell known, such
integration leads to an inherent dilemma. Specifically, communi-
cation quality and network connectivity favor agents/vehicles that
are close and are moving closer, while network coverage demands
them to stay separated and even further apart. In otherwords, each
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agent needs to make its decision, preferably distributively, to bal-
ance communication quality, connectivity, and network coverage
such that overall performance can be optimized.

In general, formation control can be categorized further into
position based formation and distance based formation [2], the for-
mer is devoted to maintaining a specific relative geometric config-
uration [1,3], while the later considers only the relative distance
and bearing information [4] and is studied in the context of graph
rigidity [5]. In this regard, coverage control [6] or flocking [7,8] can
also be treated as special cases of distance-based formation con-
trol, and the majority of existing results use either a potential field
function or its variations to achieve a desired formation as well as
to avoid collision [9]. However, singular configuration (i.e., local
minimum) is inevitable in any application of these approaches [8],
and common solutions to this problem employ somemild assump-
tions on either velocity [10] or explicit knowledge of the leader [7].
In addition, formation control of nonholonomic systems has also
received considerable attentions. Specifically, I/O linearization for
formation control of nonholonomic robots under a digraph is in-
troduced in [4], and a synchronization approach is proposed in [3]
to study time varying formation control of mobile robots. Other
notable contributions include [11–13], where a hierarchical (three
layer) control conjecture is presented in [11] for coordination of
mobile robots, and formation control and trajectory following of
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unicycles using saturated control scheme is studied in [12], while
a distributed virtual structure approach is proposed in [13], all of
which show global stability.

Mobile platforms are often equippedwithwireless communica-
tion capabilities to provide and maintain connectivity of the com-
munication network. To analyze this, modeling of communication
channel quality is expected. For instance, metrics of communica-
tion quality such as SNR (i.e., signal-to-noise ratio) or Shannon ca-
pacity [14] are used for online measurements so that the current
formation configuration (or relative distances) can be evaluated.
As such, formation control can be accomplished by using commu-
nication quality as feedback instead of position information. More-
over, as shown in [15], the quality of awireless communication link
in a vehicular ad hoc network can be estimated by examining re-
ceived data packets. In [16], motion control of networked robotic
routers is investigated to maintain connectivity of a single user
to a base station, which could be either stationary or adversarial.
Recent advances on this topic include motion planning and
gradient-based control of a robotic sensing network [17] to im-
prove communication quality, optimization of SISO (i.e., single-
input–single-output) communication chain under the assumption
that gradient of SNR field is known [18], an online planing method
is introduced in [19] to find a navigation path tomeet network con-
nectivity and bandwidth requirement, and an opportunistic com-
munication strategy with energy constraint can be found in [20].
One closely related result can be found in [21], where formation
control of single-integrator system is investigated with the help of
classical extremum seeking scheme. However, there are the fol-
lowing key shortcomings inmost of the existing studies: absence of
an analytical investigation of integrating communication and con-
trol issues in nonholonomicmobile network, requirement of online
extremum seeking algorithmwith the knowledge of gradients, and
possible inconsistency of an extremum seeking scheme in multi-
agent scenario.

In this paper, a distance based formation control scheme is in-
troduced to separate each pair of connected vehicles with a spec-
ified/optimized distance, which represents the aforementioned
tradeoff between communication quality and network coverage.
The optimal distance can be estimated using a model-free and
distributed extremum seeking scheme. Note that the classical ex-
tremum seeking scheme needs to be enhanced when applied to
networked control systems, where estimates between any pair of
connected systems are expected to be consistent. If consistency is
not ensured, no stable formation can be achieved. The contribu-
tion of this paper is twofold: (i) a new distance based formation
strategy is proposed for nonholonomic robots that admits a com-
munication performance metric; (ii) a new distributive extremum
seeking scheme is designed to not only estimate the desired sepa-
rationwith acceptable accuracy but also ensure a consensus among
estimates.

2. Preliminaries

2.1. Graph theory

In this paper, we consider an undirected graph G = (V , E),
where V = {1, 2, . . . , n} and E denote the sets of vertices/nodes
and edges, respectively. Unless otherwise specified, vertex j is said
to be adjacent/connected to vertex i if (j, i) ∈ E, or equivalently
(i, j) ∈ E. Analogously, neighborhood set Ni ⊆ V of vertex i is
{k ∈ V | (k, i) ∈ E}, the set of all vertices that are adjacent to
vertex i. If j ∈ Ni, then i ∈ Nj holds as well.

Without loss of any generality, adjacency matrix A(G ) consid-
ered in this paper is weighted and normalized as

[A(G )]ik =


aik > 0 if (k, i) ∈ E
1 −


k≠i

aik > 0 if k = i

0 otherwise.

(1)
That is, A(G ) is designed to be nonnegative, row-stochastic, and
positive semi-definite. Furthermore, all its nonzero and hence
positive weighting factors are both uniformly lower and upper
bounded, i.e., aij ∈ [a 1], where 0 < a < 1, ∀ j ∈ Ni. Moreover, G
is connected if its corresponding A(G ) is irreducible [1]. In addition,
matrix S(G ) is defined as the connectivity matrix for graph G , that
is

[S(G )]ij =


1 if (i, j) ∈ E
0 otherwise. (2)

In order to accommodate the switching topologies, we define the
time sequences {tk : k ∈ ℵ} for ℵ = {0, 1, . . . ,∞}, and G is as-
sumed to be time invariant during each of the intervals in the form
of [tk, tk+1), and its corresponding adjacencymatrixA is piecewise
continuous as a result. That is, G (tk) = G (t−k+1). Before proceeding
further, the following assumption is stated regarding the connec-
tivity and switching of the underlying network.

Assumption 1. G is initially connected at time t0 in the sense that
there is an undirected link between nodes i and j for all i ≠ j in G .

2.2. Outage probability of SISO communication

In a mobile ad hoc network, communication quality of service
(measured at the physical layer by packet error rate, or outage rate
between a transmitter and a receiver) depends on many unknown
parameters beyond their relative position such as multipath
fading, shadowing, noise, and interfering. In particular, the
Shannon–Hartley law provides the relationship between distance
and communication quality when combined with the empirical
radio propagation model [14]. In what follows, outage probability
is introduced to quantitatively characterize the implications of
distance rij to data rate δ, whose value is commonly used as the
criterion to determine whether a viable communication channel is
plausible between any given pair of mobile nodes. Specifically, for
a SISO communication link [22],

P [CSISO < δ] = 1 − exp


−(2δ − 1)
σ 2

P0


rij
r0

ν
, (3)

where CSISO is the Shannon capacity, P0 is the transmitting power,σ
is the noise variance, P0/σ 2 denotes SNR (i.e., signal–noise-ratio) at
a reference distance, ν is the path loss exponent, r0 is the reference
distance from the transmitter to the receiver, and rij is the effective
distance.

The outage probability in (3) has the intuitive behavior that, as
rij grows, P [CSISO < δ] → 1 and, as rij → 0, P[CSISO < δ] → 0,
which is shown in Fig. 1. As such, in order to establish a viable com-
munication channel, outage probability should always be less than
a certain threshold ζ . That is,

1 − exp


−(2δ − 1)
σ 2

P0


rij
r0

ν
≤

ζ

100
. (4)

Solving (4) for rij yields the maximum distance between
transmitter and receiver thatwill give theworst outage probability
of ζ%,which is referred to as rx. In otherwords, any communication
attempt beyond distance rx will be too corrupted to be considered
effective, due to the signal drop rate and data outage. Taking Fig. 1
for instance, rx = 68, rx = 105, and rx = 150 correspond to outage
probability being 9% (point A), 30% (point B), and 60% (point C),
respectively.

3. Problem formulation

Consider a group of n nonholonomic mobile robots performing
formation mission in a plane. For each robot i ∈ {1, 2, . . . , n}, we
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Fig. 1. Outage probability P[CSISO < δ] with δ = 2, ν = 3, r0 = 1, P0/σ 2
= 107 .

Fig. 2. Nonholonomic robots.

denote pi = [xi yi]T as its position in the X–Y frame and θi as its
current heading angle with respect to the x-axis, as illustrated in
Fig. 2. Thus, the kinematic equations of robot i are:ẋi

ẏi
θ̇i

 =

0
0
1


ωi +

cos θi
sin θi
0


vi, (5)

where νi and ωi are the control inputs to be designed, detailed
stability and control analysis of nonholonomic systems can be
found in [23].

In this paper, a distributed formation control scheme is pro-
posed to drive all n robots to a formation in which the robots are
separated by the optimized distance for both neighboring commu-
nication quality and network coverage. In other words, distance
based formation control is studied with consideration of commu-
nication quality and network coverage. The technical problems to
be investigated are summarized as follows:

Problem 1 (Distance Based Formation). Design a distributed con-
trol scheme such that, for any j ≠ i and aij > 0

lim
t→∞

∥pi(t)− pj(t)∥ = r∗

ij , ∀j ∈ Ni,

where r∗

ij is the desired separation between robots i and j, to be
specified later.

Problem 2 (Distributed Estimation of the Desired Separation). De-
velop a distributed estimation scheme to estimate the desired sep-
aration r∗

ij between robots i and j for any i ≠ j and sij = 1 in the
sense that r∗

ij captures the tradeoff between communication qual-
ity and broadcasting coverage.
In essence, Problem 1 is similar to the flocking problem but
without the requirements of velocity alignments and cohesion
[7,8,10]. A common approach is to employ a potential field func-
tion designed to be a convex function of distance, to be continu-
ously differentiable (e.g., a σ -norm potential function is proposed
in [7] to ensure a smooth differentiation), and to attain the desired
separation as its unique minimum/maximum [2]. Despite of its ef-
fectiveness, a potential field function applied to nonholonomic sys-
tem often has singular configuration (i.e., local minimum), which
occurs if the nonholonomic systems initially coincide with each
other (rij , ∥pi − pj∥ = 0, ∀i ≠ j) or νi = 0 for some i.

Inspired by the potential function approach, we propose the
following distance based formation control scheme which utilizes
only the local relative measurements of position and bearing
information. Specifically, for robot i, the controls are chosen as

vi = µ

j∈Ni

aij

rij − r∗

ij


cos(ψij − θi), (6)

ωi = µ′

j∈Ni

aij

rij − r∗

ij


sin(ψij − θi), (7)

where µ′
≥ µ > 0 are control gains to be selected, ψij is the

line-of-sight (i.e., LOS) angle between robots i and j with ψij =

atan2(yj − yi, xj − xi) andψji = π +ψij. Note that (ψij − θi) is the
angle from the velocity vector of the ith vehicle to the line segment
connecting the centers of the ith and jth vehicles, as seen in Fig. 2.

It should be noted that control (6) can be expressed as

νi = µ

j∈Ni

aij


xj +

r∗

ij

2
cosψji


−


xi +

r∗

ij

2
cosψij


cos θi

+


yj +

r∗

ij

2
sinψji


−


yi +

r∗

ij

2
sinψij


sin θi


. (8)

It follows from (8) that the proposed protocol converts the dis-
tance based formation to rendezvous of a group of circular objects

with a radius of
r∗ij
2 . Moreover, it is clear that term (rij − r∗

ij ) in
control (6) behaves like a time varying gain whose sign is deter-
mined dynamically by comparing the current and desired separa-
tions. Furthermore, the term acts as an attractive force if rij > r∗

ij ,
and robot i moves to reduce separation rij if sij = 1; the term be-
comes repulsive once rij < r∗

ij , and it drives robot i away from
vehicle j. Intuitively, the desired separation r∗

ij for all j ∈ Ni is
ensured distributively provided that the network is connected.
Moreover, using ψij in formation control (6) and (7) is advanta-
geous in the sense that it effectively eliminates the aforementioned
singular configuration, since sinψij and cosψij cannot be zero
simultaneously. Nonetheless, it should be pointed out that local
minimum problem may still persist due to communication shad-
owing, where the short-term average received power is not strictly
inversely proportional to distance. For the sake of brevity, commu-
nication shadowing will not be addressed further in this paper. In
addition, ωi is designed to be perpendicular to νi (i.e., ωi⊥νi) such
that both inputs constitute a moving frame and, as a result, the re-
sulted trajectory is smooth. Performance of the proposed inputs (6)
and (7) is summarized into the following theorem. Choice (9) is not
unique, and all choices of aij are acceptable as long as aij∗ are row
dominant.

Theorem 1. Consider a group of n robots described by (5) and graph
G satisfying Assumption 1. Then, for any choice of r∗

ij that ensures
communication connectivity (for r∗

ij < rij), Problem 1 is solved in an
asymptotical manner and graph G stays connected for any t > t0 pro-
vided that vi and ωi are chosen according to (6) and (7), respectively,



30 C. Li et al. / Systems & Control Letters 75 (2015) 27–34
and that weights aij are chosen according to (1) and the following:

aij =


1/2 if i ≠ j, j = j∗, where j∗ ∈ Ni is

chosen such that |rij∗ − r∗

ij∗ | = max
k∈Ni

|rik − r∗

ik|

1
2(n∗ − 1)

if i ≠ j, j ≠ j∗, and j ∈ Ni,

(9)

where n∗ is the cardinality of neighboring set Ni.

Proof. Consider the following Lyapunov function candidate:

V =
1
2µ

n
i,j=1


rij − r∗

ij

2
.

It follows that time derivative of V along (5) is

V̇ =
1
µ

n
i,j=1


1 −

r∗

ij

rij

 
(xi − xj)(ẋi − ẋj)

+ (yi − yj)(ẏi − ẏj)

. (10)

Substituting (6) into (10) and using the facts that

xj − xi = rij cosψij, yj − yi = rij sinψij, and
aij = aji,

and that

1
µ

d(rij − r∗

ij )

dt
= −aij


rij − r∗

ij

 
cos2(θj − ψij)+ cos2(θi − ψij)


+

 
k≠j,k∈Ni

aik(rik − r∗

ik) cos(θi − ψik) cos(θi − ψij)

−


ℓ≠i,ℓ∈Nj

ajℓ(rjℓ − r∗

jℓ) cos(θj − ψjℓ) cos(θj − ψij)

 . (11)

Therefore, after rearranging all the terms in (11), we have

V̇ = −

n
i,j=1

aij

rij − r∗

ij

2 
cos2(θj − ψij)+ cos2(θi − ψij)


. (12)

Therefore, V̇ ≤ 0 is ensured, and since there exists at least one
gain aij > 0 should G be connected, therefore, by invoking LaSalle
principle [24], it is clear that (θi −ψij) = π/2 is not an equilibrium
and hence V̇ < 0 is ensured for any rij ≠ r∗

ij . As such, the desired
separation can be achieved asymptotically.

To study the network connectivity, we propose the following
Lyapunov function candidate,

V ′
=

1
2µ
(ri⋆j⋆ − r∗

i⋆j⋆)
2,

where systems i⋆ and j⋆ satisfy

(i⋆, j⋆) =


(i, j) : max

i,j
|rij − r∗

ij |


.

Analogously, we have

V̇ ′
= −ai⋆j⋆


ri⋆j⋆ − r∗

i⋆j⋆
2 

cos2(θj⋆ − ψi⋆j⋆)+ cos2(θi⋆ − ψi⋆j⋆)


+

ri⋆j⋆ − r∗

i⋆j⋆
  

k≠j⋆,k∈Ni

ai⋆k(ri⋆k − r∗

i⋆k) cos(θi⋆ − ψi⋆k)

× cos(θi⋆ − ψi⋆j⋆)−


ℓ≠i⋆,ℓ∈Nj

aj⋆ℓ(rj⋆ℓ − r∗

j⋆ℓ)

× cos(θj⋆ − ψj⋆ℓ) cos(θj⋆ − ψi⋆j⋆)


. (13)
It follows from (9) that ai⋆j⋆ is the dominant gain and ai⋆j⋆ =
k=1, k≠j⋆ aik. Hence, V̇

′
≤ 0 is ensured if

|cos(θj⋆ − ψi⋆j⋆)| ≥ |cos(θj⋆ − ψi⋆k)|. (14)

Note that condition (14) may not hold all the time, e.g., the worst
case is (θj⋆ − ψi⋆j⋆) = π/2. Nonetheless, it follows from (7) that

θ̇j⋆ = µ′

n
k=1

aj⋆k(rj⋆k − r∗

j⋆k) sin(ψj⋆k − θj⋆),

that its right hand side is dominated by the term of (rj⋆i⋆ −

rj⋆ i⋆) sin(ψj⋆i⋆ − θj⋆) and hence

θj⋆ → ψi⋆j⋆ . (15)

By simply increasing µ′, condition (14) can be made valid very
quickly. Combining the above arguments completes the proof. �

Remark 1.1 It is well known that either a time-varying control or a
discontinuous control is needed to ensure asymptotic stability for
nonholonomic system (5). Controls (6) and (7) are discontinuous in
nature due to the state-dependent gains aij defined by (9). Eq. (12)
reveals that the configuration θi = θj = ψij + π/2 renders vi = 0
for vehicle (5) under control (6). Whenever this occurs, the choices
of aij and control (7) ensure that θi and θj are steered away from
ψij+π/2 and towardψij, as evidenced by (15). Accordingly, vi = 0
can only hold instantaneously unless rij = r∗

ij . In essence, with the
inclusion of line-of-sight angle (i.e., ψij), controls (6) and (7) are
reduced to control a projection of the heading angle θi, instead of
dealing with nonholonomic restrictions directly. As a result, the
proposed controller is well adapted to nonholonomic constraints
and the resulted trajectory is feasible.

It follows from Theorem 1 that, should r∗

ij be known or deter-
mined for any j ∈ Ni, the proposed formation control scheme en-
sures an asymptotic coverage with the desired separation. Hence,
it is imperative to formulate a performance index, whose solution
is r∗

ij , as the goal of Problem 2. To this end, the following index is
proposed, whose effectiveness has been verified in [21]:

J(rij) =


1 − exp


−


rij
rmin

υ
· exp


−


rij
rx

υ
· exp


−(2δ − 1)

σ 2

P0


rij
r0

ν
, ∀j ∈ Ni, (16)

where rmin is the minimum spacing preferred, rx is the (maximum)
spacing that renders the worst tolerable outage probability, and υ
is a tuning parameter.

Note that the choice of performance index could vary due to
different design objectives, provided that the resulted index is
a convex function of the optimal solution r∗

ij and has a unique
minimum/maximum. Moreover, it is worth stressing that the
exact value of J(rij) is not known locally since outage probability
can only be measured by estimating/measuring the data packets
received [14]. Considering the cases in Fig. 1, performance index
J(rij) and its maximum corresponding to {rx = 150, rmin = 50}
and {rx = 150, rmin = 100} are shown in Fig. 3, and their
corresponding outage probabilities are the same asA and B in Fig. 1.
It is clear the case with rmin = 50 corresponds to a better quality of
service (i.e., outage probability 9%), while the case with rmin = 100
achieves better network coverage (i.e., r∗

ij = 105). Accordingly,
cooperative control (6) and (7) shall be integratedwith and assisted
by an algorithm of searching for maximum r∗

ij with respect to
unknown J(rij), their combination drives the separation of robots to

1 The authors owe this observation to an anonymous reviewer.
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Fig. 3. Performance index J with rx = 150, υ = 4.

the desired value of r∗

ij . Accordingly, the tradeoff between network
coverage and communication quality is ensured.

4. Distributed extremum seeking for formation control

In this section, Problem 2 will be solved by using the approach
of distributed extremum seeking, and, compared to the classic ex-
tremum seeking algorithm, the proposed scheme can perform in-
dividual estimation with acceptable accuracy, as well as reach a
consensus between any pair of connected robots, at the aforemen-
tioned topological requirement. In what follows, consensus is said
to be reached between x and y if |x−y| ≤ ε, with ε > 0 being a pre-
defined constant, and in this case we denote x−→∼ y or y−→∼ x. Hence,
the intuition of distributed extremum seeking is that, shall there
exist an undirected link between robots i and j (i.e., sij = sji = 1),
consensus among r̂ij−→∼ r∗

ij and r̂ij−→∼ r̂ji should be ensured asymptot-
ically.

As has been discussed, neither the exact value of outage prob-
ability (3) nor its gradient is known locally, and the only informa-
tion available about communication quality is the measurement
of outage probability. As such, no analytical solution is available
nor it is possible to derive the maximum of performance index
J(rij), which calls for a model-free scheme to search for maximum
of J(r∗

ij ). Therefore, extremum seeking control would be a natural
framework for the underlying problem [25]. However, it should
be pointed out that extremum seeking scheme must be enhanced
when applied to multi-agent formation control problems, where
not only the desired separation should be estimated accurately,
but more importantly, formation stability among any pair of con-
nected systems should also be ensured. In other words, consensus
between estimates should be guaranteed in order to render a stable
formation.

In addition, extremum seeking shall be implemented using only
existing communication channels such that the desired separation
r∗

ij can be determined distributively for all j ∈ Ni. As shown in Fig. 3,
there exists rij = r∗

ij such that J(r∗

ij ) = maxj∈Ni J(rij), which implies

J ′

r∗

ij


= 0, J ′′(r∗

ij ) < 0. (17)

In order to estimate r∗

ij and ensure a consensus among estimates,
we propose the following distributed extremum seeking scheme,
as illustrated in Fig. 4:

˙̂r ij = ξij + κsij

r̂ji − r̂ij


ξ̇ij = βl


−ξij +


J(r̂ij + a sinβ0t)− ηij


a sinβ0t

+ κsij

r̂ij − r̂ji


,

η̇ij = βh

−ηij + J(r̂ij + a sinβ0t)

 (18)
Fig. 4. Diagram of extremum seeking.

where r̂ij is the current estimate of r∗

ij , sij is the (i, j)th entry of ma-
trix S(t) as defined in (2), ξij and ηij are intermediate variables used
in extremum seeking, and a, β0, κ are the gains to be specified.

It follows from (18) that the proposed distributed scheme
reduces to the existing individual extremum seeking scheme if
sij = 0, in which case extremum seeking can still be performed,
but there is no information exchange among neighbors and any
inconsistency between r̂ij and r̂ji (i.e.,∀i ≠ j)would be accumulated
and eventually prevent a stable formation. In the event of sij(t) =

1, a cooperative control algorithm is integrated with extremum
seeking control in the sense that robots i and j can exchange
information of current estimation (i.e., r̂ij), which leads to a
consensus of their estimates. Performance of the proposed scheme
is summarized into the following theorem.

Theorem 2. Consider a group of n robots described by (5), and each
of the robots performs their formation control according to (6) and (7).
Let J(rij) be the performance index defined in (16), and it is assumed
that the value of J(rij) can be measured and reaches its maximum
at r∗

ij . Then, under Assumption 1, the proposed distributive extremum
seeking scheme (18) solves Problem 2 in the sense that, as t → ∞
r̂ij(t)−→∼ r∗

ij (t) ∀i ≠ j
r̂ij(t)−→∼ r̂ji(t) ∀sij(t) = 1, (19)

provided β0 ≫ 1, βh > βl > 0, κ =
β2l
4 and 0 < a ≪ 1 being a

sufficiently small constant. Specifically, estimation error (i.e., (r̂ij−r∗

ij ))
can be ensured to a neighborhood of size O( 1

β0
+a3) around the origin.

Proof. The first part of the proof is to show that r∗

ij can be individ-
ually estimated. Define the estimation errors as

r̃ij = r̂ij − r∗

ij , η̃ij = ηij − J(r∗

ij ). (20)

Then, averaging the trajectory of system (18) over the period of 2π
in the time scale of τ = β0t yields

d
dτ

 r̃aij
ξ aij

η̃aij

 =
1
β0

×



ξ aij + κsij(r̃aji − r̃aij)

−βlξ
a
ij +

βl

2π
a
 2π

0
ρ(r̃aij + a sinϑ) sinϑdϑ

+ κβlsij(r̃aij − r̃aji)

−βhη̃
a
ij +

βh

2π

 2π

0
ρ(r̃aij + a sinϑ)dϑ

 , (21)

where ρ(x) = J(r∗

ij + x) − J(r∗

ij ), and variables with superscript a
denote the state variables of the averaged system.

It follows from (17) that,

ρ(0) = 0, ρ ′(0) = J ′(r∗

ij ) = 0, ρ ′′(0) = J ′′(r∗

ij ) < 0,
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where ρ ′(x) =
∂ρ(x)
∂x , ρ ′′(x) and ρ ′′′(x) can be defined accordingly.

Then, the average system equilibrium (r̃a,eij , ξ
a,e
ij , η̃

a,e
ij ) should sat-

isfy the following relations:

ξ
a,e
ij = −κsij(r̃

a,e
ji − r̃a,eij ), 2π

0
ρ(r̃a,eij + a sinϑ) sinϑdϑ = 0,

η̃
a,e
ij =

1
2π

 2π

0
ρ(r̃a,eij + a sinϑ)dϑ.

(22)

Assume that r̃a,eij be parameterized as

r̃a,eij = b(1)ij a + b(2)ij a2 + O(a3), (23)

where b(1)ij and b(2)ij are the constants to be determined. Substituting

(23) into (22), we have b(1)ij = 0, b(2)ij = −
ρ′′′(0)
8ρ′′(0) and ξ

a,e
ij ≤ O(a3).

After several algebraic manipulations, equilibrium (r̃a,eij , ξ
a,e
ij , η̃

a,e
ij )

of system (21) is found to satisfy:


r̃a,eij

ξ
a,e
ij

η̃
a,e
ij

 ≈


−
ρ ′′′(0)
8ρ ′′(0)

a2 + O(a3)

O(a3)
ρ ′′(0)

4
a2 + O(a3)

 . (24)

This implies that estimation errors converges as r̃a,eij , η̃
a,e
ij

−→∼ 0 for a
sufficiently small choice of a. In addition, it has been established
in [25] that the Jacobian of average system (21) is Hurwitz if and
only if

 2π
0 ρ(r̃aij + a sinϑ) sinϑdϑ < 0, and consequently the

unique exponentially stable solution (r̃2πij , ξ
2π
ij , η̃

2π
ij ) satisfies the

relationship


r̃2πij +

ρ ′′′(0)
8ρ ′′(0)

a2

ξ 2πij

η̃2πij −
ρ ′′(0)

4
a2



≈ O


1
β0

+ a3

, (25)

which implies all solutions (r̃ij, ξij, η̃ij) converge to a size-O( 1
β0

+a3)
neighborhood around the origin. That is, the estimation errors can
be made arbitrarily small provided that β0 is sufficiently large and
a is sufficiently small. That is, r̂ij−→∼ r∗

ij is ensured as t → ∞.
The next step is to prove that consensus between estimates for

any pair of connected robots can be ensured asymptotically in the
sense that r̂aij → r̂aji provided that Assumption 1 be satisfied. First,
averaging motion dynamics of robot i using the same time scale as
that of (21) yields

ẋai =
µ

β0


j∈Ni

aij

raij − r∗

ij − r̃aij


×

cosψa

ij cos
2 θ ai + sinψa

ij cos θ
a
i sin θ ai


,

ẏai =
µ

β0


j∈Ni

aij

raij − r∗

ij − r̃aij


×

cosψa

ij sin θ
a
i cos θ ai + sinψa

ij sin
2 θ ai


.

(26)

It is apparent that, although the above averaged and networked
control system is coupled to extremum seeking system (21) at the
time scale of τ = β0t , it is approximately equivalent to system
(5) under inputs (6) and (7) since estimation error (i.e., r̃aij ) is suffi-
ciently small. In otherwords, large value of perturbation frequency
β0 have insignificant impact on networked control system, and the
convergence and control can be achieved bymaking proper choices
of design parameters, as to be specified later. Consequently, the
averaged closed-loop control and estimation system at robot i be-
comes

d
dτ


xai
yai
r̃aij
ξ aij

η̃aij

 =
1
β0

×



µ

j∈Ni

aij

raij − r∗

ij − r̃aij



cosψa

ij cos
2 θ ai + sinψa

ij cos θ
a
i sin θ ai


µ


j∈Ni

aij

raij − r∗

ij − r̃aij



cosψa

ij sin θ
a
i cos θ ai + sinψij sin2 θ ai


ξ aij + κsij(r̃aji − r̃aij)

βl


−ξ aij +

a
2π

 2π

0
ρ(r̃aij + a sinϑ) sinϑdϑ

+ κsij

r̃aij − r̃aji

 
βh


−η̃aij +

1
2π

 2π

0
ρ(r̃aij + a sinϑ)dϑ





. (27)

To study the performance of the integrated cooperative estima-
tion/control and extremum seeking system of (27), we propose the
following Lyapunov function candidate,

Vc =
β0

2

n
i,j=1

sij(t)

β2
l

2


r̃aij − r̃aji

2
+

1
βl


ξ aij − ξ aji

2
+

a
βh


η̃aij − η̃aji

2
. (28)

It is clear that Vc is positive semi-definite and radially unbounded,
and sij(t) is included to deterministically capture the contribution
of connectivity between robots i and j. Taking time derivative of Vc
along the trajectory of (27) yields

V̇c =

n
i,j=1

sij(t)

β2
l

2


r̃aij − r̃aji

 
˙̃r
a
ij −

˙̃r
a
ji


+


ξ aij − ξ aji


×


ξ̇ aij − ξ̇ aji


+

a
βh


η̃aij − η̃aji

 
˙̃η
a
ij −

˙̃η
a
ji


. (29)

Consequently,

V̇c =

n
i,j=1

sij(t)

−
κβ2

l

2
(sij + sji)


r̃aij − r̃aji

2
−


ξ aij − ξ aji

2
− a


η̃aij − η̃aji

2
+ [κ(sij + sji)+ β2

l /2]

ξ aij − ξ aji


×


r̃aij − r̃aji


+

a
2π
(ξ aij − ξ aji )

 2π

0
ρ(r̃aij + a sinϑ)

× sinϑdϑ −

 2π

0
ρ(r̃aji + a sinϑ) sinϑdϑ


+

a
2π


η̃aij − η̃aji

  2π

0
ρ(r̃aij + a sinϑ)dϑ

−

 2π

0
ρ(r̃aji + a sinϑ)dϑ


. (30)
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Recalling that, if a is sufficiently small, 2π

0
ρ(r̃aij + a sinϑ) sinϑdϑ = 0, 2π

0
ρ(r̃aij + a sinϑ)dϑ =

ρ ′′(0)
4

a2 + O(a3).

Hence, Eq. (30) becomes

V̇c =

n
i,j=1

sij(t)

−
κβ2

l

2
(sij + sji)


r̃aij − r̃aji

2
−


ξ aij − ξ aji

2
− a


η̃aij − η̃aji

2
+


κ(sij + sji)+

β2
l

2

 
ξ aij − ξ aji


×


r̃aij − r̃aji


+

a
2π


η̃aij − η̃aji


O(a3)


. (31)

It follows that, if graph is completely isolated (i.e., sij = 0 for all
i ≠ j), Vc = V̇c = 0, and no consensus among estimates can be
achieved. However, extremum seeking is individually performed
under the proposed scheme, and rij−→∼ r∗

ij is achieved as a result.
Shall robots i and j are connected (i.e., sij = sji = 1), a is suffi-

ciently small and κ =
β2l
4 , Eq. (31) becomes

V̇c = −

n
i,j=1

sij(t)

×



β2
l

2


r̃aij − r̃aji


−


ξ aij − ξ aji

2

  
Λ

+ a

η̃aij − η̃aji

2
 . (32)

Therefore, V̇c < 0 is ensured if sij ≠ 0. As such, Λ → 0 and
η̃aij

−→∼ η̃aji is ensured. However, Λ−→∼ 0 does not translate to r̃aij
−→∼ r̃aji

and ξ aij
−→∼ ξ aji , and in this worst case scenario, it could mean β2l

2 |r̃aij −
r̃aji |

−→∼ |ξ aij − ξ aji |. In this event, |r̃aij − r̃aji |
−→∼ 2

β2l
|ξ aij − ξ aji |. Therefore,

r̃aij
−→∼ r̃aji can be ensured for any j ∈ Ni provided that βl is chosen to

be a fairly large value. Since r∗

ij = r∗

ji in practice and r̂ij−→∼ r∗

ij , r̂ji
−→∼ r∗

ji ,
r̂aij

−→∼ r̂aji is subsequently concluded. That is, consensus among esti-
mates can be ensured between robots i and j as long as sij = 1. This
concludes the proof of Theorem 2. �

Remark 2. For implementation, both the cut-off frequencies of
the low-pass or high-pass filters (i.e., βl and βh) shall be smaller
than perturbation signal β0, and the overall estimation and control
system shall have two time scales: a faster time scale for formation
control system (5), and a slower time scale for distributed
extremum seeking scheme. In particular, the convergence rate of
system (21) is proportional to 1

β0
, while convergence of system (26)

is in general determined by µ

β0
. Hence, a simple way to achieve

separation is letting µ > 1. In addition, it follows from (24) that
a3 ≤ ε should also be enforced in order to ensure a consensus with
acceptable accuracy.

5. Simulation results

To illustrate performance of the proposed distributed ex-
tremum seeking scheme, consider a group of 10 robots whose ini-
tial conditions (in meters and radius) are: denoting xi = [xi yi ωi]

T ,
x1 = [0 0 0.26]T , x2 = [25 25 0.17]T ,
x3 = [50 0 0.35]T , x4 = [25 −25 −0.17]T

x5 = [25 0 0.52]T , x6 = [150 0 0.17]T ,
x7 = [225 0 1.05]T , x8 = [188 63 0.79]T

x9 = [188 −63 0.56]T , x10 = [188 0 0.87]T .
In simulations, cooperative control is implemented by utilizing
only the motion information received from neighboring robots2
if rij ≤ rx = 150 (its corresponding outage probability is shown
at point C as of Fig. 1). It is straightforward to see that the initial
graph is barely connected and that the coverage is not well spread,
and that the communication quality among two separated groups
is poor.

In the simulation, simulated value of performance index J(rij) is
calculated as

J(r̂ij + a sinβ0t) =


1 − exp


−


r̂ij + a sinβ0t

rmin

υ
· exp


−


r̂ij + a sinβ0t

rx

υ

× exp


−(2δ − 1)
σ 2

P0


r̂ij + a sinβ0t

r0

ν
, (33)

with rmin = 50. The parameters characterizing communication
quality in simulations are assumed to be the same for all the
communication channels, and their values used in the formation
control and extremum seeking are chosen as

µ = 1, β0 = 100, µ = 10, βl = 4,

βh = 25, a = 0.2, κ = 4, ζ = 1,

υ = 2, ν = 3, ε = 0.01.

Evolution of the mobile communication network is shown in
Fig. 5 (in which the presence of a link between any pair of
robots means their communication channels are considered to be
of good quality). Clearly, the final configuration provides much
improved performance, the separations among the neighboring
robots automatically converge to the optimal value of r∗

ij = 68,
and the trajectories are smooth over time. Moreover, performance
of the proposed distributed extremum seeking is quantitatively
illustrated in Fig. 6. Specifically, Fig. 6(a) shows that consensus
among estimates between any pair of connected robots can
be achieved promptly, while Fig. 6(b) verifies that the desired
separation can be estimated effectively and promptly. That is,n

i,j=1 |r̂ij−r̂ji|−→∼ 0 and
n

i,j=1 |r̂ij−r∗

ij |
−→∼ 0 are achievedwithin 10 s.

6. Conclusion

In this paper, the integrated control and communication prob-
lem is investigated for a group of dynamical systems under
undirected graph. The proposed control/estimation/optimization
solution is based on two novel ideas: a performance metric cap-
turing the trade off between communication quality and network
coverage, and a distributed extremum seeking algorithm that also
incorporates cooperative control.

In addition, the proposed cooperative formation control scheme
uses only local measurements and line-of-sight (i.e., LOS) bearing
and separations to avoid any local minimal problem and to achieve
the desired separation. The proposed control/estimation algorithm
renders the optimal separation for the defined performance index
and subsequently formation control, but the final configuration
may not be optimal or unique (i.e., the final configuration is deter-
mined by both the initial condition and the graph) because it uses
only the measurement of relative distance/LOS. A distributive es-
timation/control scheme that ensures the optimal final configura-
tion should be of interest for the future development on this topic.

2 In order to simplify the graph, only the two most closest neighbors are
considered in the simulation.
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Fig. 5. Evolution of formation movement and connectivity.
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