Lab2 (Modeling of DC servo-motor SRV02):

Pre-Lab: Read section 1.1 of the SRV02 Workbook and answer all the questions in section 1.2 before coming to the lab. The specifications that are needed for the questions can be found in the SRV02 User Manual in Table 3.1-3.3 on pages 11 and 12 or in the tables at the end of this document.

Lab Experiment:

- 1. Open the document "SRV02 Quick Setup guide" located in the "Getting Started" folder and follow the instructions to connect the SRV02, VoltPaq, and Q2_USB data acquisition board.
 - a. Use the black RCA to RCA connector instead of the 2xRCA to 2xRCA cable.
 - b. Connect the disk load to the load shaft by aligning the holes on the load to the ones on the gear and using the thumb screws to hold it in place.
- 2. In MATLAB, browse to the following directory:

 $C: \label{eq:student} C: \label{eq:student} C: \label{eq:student} SRV02 \controllers \01 - Modeling$

- 3. Open the model "**q_srv02_mdl.mdl**". This model file will be used for modeling the actual SRV02 setup. Read section 1.3 (page 9) for details. You need to go to section 1.4.2 and follow the steps to configure the model for use. You essentially need to run the script file "setup_srv02_exp01_mdl.m" first and ensure that you see the default parameter values as given in step 10 of section 1.4.2.
 - a. Before running the setup file, edit the MODELING_TYPE to MANUAL. Everything else should be set correctly.
- 4. We will first perform the **frequency response** experiment, detailed in section 1.3.1 of the student workbook **SRV02 Workbook QUARC** (Student).pdf located in

C:\Users\Student\Documents\Matlab \SRV02\Documentation

- 5. In running the experiment, follow the instructions in the workbook closely, with the following additional comments:
 - a. In step 1 of section 1.3.1.1 you can keep the frequency unchanged. Simulink will not accept 0.0 as a valid frequency. We will anyway keep the amplitude of the sine wave to be zero for the steady-state test, so its frequency will be immaterial.
 - b. Also, when you execute in real-time, the acquired load shaft speed data will look like the plot below, which shows a different steady-state value than the one given in Fig.1.7. *Which one is correct and why?*

- c. Next we find gains at varying frequencies, following the steps in section 1.3.1.2. Follow the instructions in this section to complete the experiment.
 - i. The inputs to the scope may be reversed.

<u>Note:</u> Here you do not need to rebuild the code. Just connect to target and start the realtime code. Then change the offset slider to zero, the amplitude of sinusoid to 2 and then you can keep changing the frequency on-the-fly and for each frequency record the amplitude of the tachometer signal. Alternately, you could set a frequency on-the-fly, acquire data for some time, stop the real-time execution, zoom-in the plot to get the amplitude accurately and then re-connect to the target and change the frequency.

- 6. Next perform the **bump test** experiment, detailed in section 1.3.2. In running the experiment, follow the instructions in the workbook closely, with the following additional comments:
 - a. The steps for calculating the steady-state gain and time-constant from the acquired data are explained in the pre-lab material.
- 7. Next perform the model validation experiment as detailed in section 1.3.3. Answer all questions in section 1.3.3 and fill out your results in section 1.3.4.
- 8. Important: Before closing the model, select "QUARC → Clean all …" and click "Yes" on the prompt to delete all generated code.

Post-Lab: Write a lab report detailing the procedure and results of the experiments run. Guidelines for writing the lab report can be found in section 1.5 of the SRV02 Workbook.

Edited: (01/03/2013), Tuhin Das and Sigitas Rimkus. Last Edited: (01/22/2013), Nicholas Paperno

3 SRV02 SPECIFICATIONS

Table 3.1 lists and characterizes the main parameters associated with the SRV02. Some of these are used in the mathematical model. More detailed information about the gears is given in Table 3.2 and the calibration gains for the various sensors on the SRV02 are summarized in Table 3.3.

Symbol	Description	Matlab Variable	Value	Variation
Vnom	Motor nominal input voltage		6.0 V	
R_m	Motor armature resistance	Rm	2.6 Ω	± 12%
L_m	Motor armature inductance	Lm	0.18 mH	
k _t	Motor current-torque constant	kt	7.68×10^{-3} N m/A	± 12%
k_m	Motor back-emf constant	km	7.68×10^{-3} V/(rad/s)	± 12%
K _a	High-gear total gear ratio	Kg	70	
	Low-gear total gear ratio	Kg	14	
η_m	Motor efficiency	eta_m	0.69	± 5%
η_q	Geabox efficiency	eta_g	0.90	± 10%
$J_{m,rotor}$	Rotor moment of inertia	Jm_rotor	3.90×10^{-7} kg \cdot m ²	± 10%
J_{tach}	Tachometer moment of inertia	Jtach	$\begin{array}{c} 7.06\times10^{-8} \ \mathrm{kg} \cdot \\ \mathrm{m}^2 \end{array}$	± 10%
J_{eq}	High-gear equivalent moment of inerta without external load	Jeq	9.76×10^{-5} kg \cdot m ²	
	Low-gear equivalent moment of inerta without external load	Jeq	2.08×10^{-5} N · m / (rad/s)	
B_{eq}	High-gear Equivalent viscous damping coefficient	Beq	0.015 N · m / (rad/s)	
	Low-Gear Equivalent viscous damping coefficient	Beq	$\begin{array}{c} 1.50\times10^{-4} \ \text{kg} \cdot \\ \text{m}^2 \end{array}$	
m _b	Mass of bar load	m_b	0.038 kg	
L _b	Length of bar load	L_b	0.1525 m	
m_d	Mass of disc load	m_d	0.04 kg	
r_d	Radius of disc load	r_d	0.05 m	
m _{max}	Maximum load mass		5 kg	
f _{max}	Maximum input voltage fre- quency		50 Hz	
Imax	Maximum input current		1 A	
ω_{\max}	Maximum motor speed		628.3 rad/s	

Table 3.1: Main SRV02 Specifications

Symbol	Description	Matlab Variable	Value	
K _{gi}	Internal gearbox ratio	Kgi	14	
K _{ge,low}	Internal gearbox ratio (low-gear)	Kge	1	
Kge,high	Internal gearbox ratio (high-gear)	Kge	5	
m ₂₄	Mass of 24-tooth gear	m24	0.005 kg	
m ₇₂	Mass of 72-tooth gear	m72	0.030 kg	
m_{120}	Mass of 120-tooth gear	m120	0.083 kg	
r_{24}	Radius of 24-tooth gear	r24	$6.35 \times 10^{-3} \text{ m}$	
r ₇₂	Radius of 72-tooth gear	r72	0.019 m	
r_{120}	Radius of 120-tooth gear	r120	0.032 m	

Table 3.2: SRV02 Gearhead Specifications

Symbol	Description	Matlab Variable	Value	Variation
Kpot	Potentiometer sensitivity	K_POT	35.2 deg/V	± 2 %
Kenc	SRV02-E encoder sensitivity	K_ENC	4096 counts/rev	
Kenc	SRV02-EHR encoder sensitivity	K_ENC	8192 counts/rev	
K _{tach}	Tachometer sensitivity	K_TACH	1.50 V/k _{RPM}	± 2 %

Table 3.3: SRV02 Sensor Specifications