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Introduction

- Statistics

1 Approximately 0.4% of the U.S. population or some 1.3 million people reported being
paralyzed due to a spinal cord injury (SCI). Every year, there is approximately an

additional 11,000 spinal cord injuries.

[0 Many of these individuals are confined to power wheelchairs, have moderate to minimal
function in their upper extremities, and require some amount of attendant care.

B Average yearly expenses can range from $230k to $780k in the first year.
M Estimated lifetime costs can range from $680k to over $3 million for a 25 year old.

[1 Two-thirds of mobility device users have limitations

in one or more Instrumental Activities of Daily Living.

B grocery shopping, using the telephone,
meal preparation, light housework, etc.

[REF] Christopher and Dana Reeve Foundation,
http://www.christopherreeve.org, 2009.
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Introduction
- Robotic Caregiver

Service Robot

B Functions of service robots are generally related to the ordinary
human life like repair, transfer, cleaning, health care, and so forth.

Human Caregiver Robotic Caregiver: KARES Il




Introduction
- Example of Wheelchair-based Robot

Weston Robot
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Introduction
- Example of Workstation-type Robot
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Introduction
- MANUS Assistive Robotic Manipulator (ARM)

B Wheelchair Mounted Robotic Arms (WMRASs) such
as MANUS and RAPTOR are capable of working
In a variable workspace and an unstructured i__]'
environment.

B They are capable of picking up miscellaneous
objects from floor or shelves as well as carrying
objects — tasks that have been identified by users
as “high priority” in a collection of pre- and post-
development surveys for a multitude of robotic T S
assist devices. Manus




Introduction
- MANUS users are concerned...

B The downside to the flexibility and versatility afforded by the MANUS is
that it comes with the need for masterful control of a large number of
degrees of freedom.

L1 For many users (i.e., TBI), the cognitive load is excessive.

L1 For other users, the entire process of shifting between layers of menus may
be too tedious and frustrating.
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Introduction
- Related Work

M \/ision based control and a variety of interfaces to simplify the
operation of the MANUS

New Jersey Institute of Technology - an infrared sensory box, a
stylus with joints mimicking the robot arm, and a computer
mouse

TNO Science & Industry and the Delft University of Technology -
the WMRA has been augmented with cameras, force torque
sensors, and infrared distance sensors. It is operated by a
wheelchair joystick and a switch in “pilot mode” to share
autonomy between the robot arm and the user.

INRIA - a “one click” computer vision approach




Problem Statement
- Goal

Design a motion control strategy for end-to-end
automated object grasping

B Joint angle feedback from the robot

B Live video streams from an end-effector mounted stereo head

We deal with everyday (ADL) objects in natural
environments (i.e., variable illumination, background,
etc.) that may be occluded by other objects in the vicinity
or by virtue of their pose with respect to the end-effector.

B Also, we work with natural features which may or may not be
found/tracked in successive frames in the live view.
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Problem Statement
- Nomenclature

Camera coordinate frame

[J X - :3X%1 position vector x in a coordinate
frame

O [x:], denotesits 3*"* component
O [R:]., :xythelementof R.

[0 Rotation Transform Matrix Haz2s

[ From the coordinate frame a
to the coordinate frame b

Rc?w — R-E'-E'E'll'_i 'Hcﬂee FEE -Fw
End-effector
coordinate frame World
coordinate
frame

[REF] Homepage of Manus, http://www.exactdynamics.nl/, Exact Dynamics, Netherlands, 2009. 11



Approach

- Overview

Gross Motion

“| want that”

Start Fine Md-t-ibn.
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Gross Motion
- Vision Processing

Stereo Analysis : POls
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Approach

- Gross Motion (l)

Computing 3D information using SIFT feature descriptors
B |east-squared optimization of error
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Approach

- Gross Motion (l1)

1 Initially, RANSAC is applied to
cull outlier points.

[0 Constraints

1. Depth ratio is used to eliminate
points on the stool.

2. World cubic formed by user's
selected point is used to eliminate
points on the closest bottle and
coke can.

3.  Statistics on the residual 3D point
cloud is used to eliminate points on
the remote.
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Approach
- Gross Motion (l1l)

Finding a surface normal
vector on the target object

B [aid down or upright
Ny={mn,, ..., nJ}

1 w

B \oting by Optimization

arg max J( X, ni,)
J

X, = [:{.}u Xqu

Xy, nl,) fo( (= -

i=1k=1

1 for a<<d

f(a;é'}:{

0 for a0




Gross Motion

- Control

Gross Motion
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Approach
- Gross Motion (1V)

1 Motion Control

B Given the computed 3-D target position and the surface
normal, one can compute the desired setpoints for
position and orientation of the robot end-effector.
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Approach
- Gross Motion (V)

1 Motion Control

B P-control is employed to
generate translational
and rotational velocity
commands. L
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Object Recognition
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ObJeCt <> Object Recognition
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Approach
- Object Recognition (l)

Object Recognition using SIFT
descriptors
B Computationally intractable

especially when the database
grows extremely large

Vocabulary tree that provides
for scalable recognition (SRVT)

B A multi-level decision tree and
visual keywords as leaf nodes

B Easily extendible and scalable to
deal with lots of different natural
scenes

[REF] D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary Tree", CVPR 2006.



Approach
- Object Recognition (l1)
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Fine Motion

Velocity
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Approach
- Fine Motion (l)

A 2-1/2D (or hybrid) visual servoing scheme is adopted to generate
translation and rotation motion to align current eye-in-hand view with
the pertinent template database image.
B Homography computation using matched local features
B Euclidean decomposition of homography

[J Choice of one solution using auxiliary stereo frame

B For translation motion, one of the local descriptors is used as an anchor point
m to track in x-y plane of the camera coordinate frame.

B For approaching motion, the depth ratio is used to define an error signal.
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Approach

- Fine Motion (l1)

L] Three basic control laws are developed as
BVS (Image Based Visual Servoing)

m 2D-

v = Ky -

w
R:-ec

B HVS (Hybrid Visual Servoing)

v = Ky -

v R:- ey

B HVS-T (Translation only)

1
vy = Ky -

. R:- ey

HP?'RW — [

0 — ["Reliz ["Relas

0 ["Relys ["Relys
l 0 “Rezs
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Approach
- Fine Motion (l1I)

[ Phase | — Centering the Target Object
m 2D-IBVS
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Approach
- Fine Motion (1V)

Phase II: Alignment Final Pose
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Approach

- Fine Motion (V)
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Approach
- Fine Motion (VI)
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Grab Motion

Grab Motion




Approach

- Robust Grabbing H/W Configuration

Grip
Sensor

Linear
Position
Sensor

Stereo Rig

2nd Optical
Gate

1st Optical
Gate

Linear
Position
Sensor
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Approach

- Finite State Machine

SO: Initial State
S4: Final State (Grab)
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Approach
- Grabbing Example I: Upright Object

52 =>4 GRAB
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Approach
- Grabbing Example lI: Laid-down Object

S0 S S4 GRAB
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Approach

- Grabbing Example lll: Upright & Thin Object

S1
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Approach

- Force-Adaptive Grasping

[1 Adaptive Grabbing vs.

Non Adaptive Grabbing

B AG & NAG works for Filled
Coke Can

B NAG fails for Empty Coke Can
B AG works for Empty Coke Can

[J AG - Finding a ‘flatness’

t
g(t) = /t @




Results
- Setup

Manus Robot + Multi-modal User Interfaces

Sensors

B Narrow baseline wide-angle stereo rig — Point Grey’s Dragonfly 2
B Smart Grabber — FSR, LPS, OG

Software Architecture
B Distributed TCP/IP Server-Client

Main Hardware

Frame Grabber API PCI CAN API
H Server
Vision .
GUI Information RO%’;J;;T;:OW
Processor
e L Lt

IH Speech Recognizer Jelly Switch

Head Tracker Touch Screen

Multimodal User Interface



Results
- Pick Up Multiple Objects

- —




Results
- Object/Template Management

B Able to capture the object in the cluttered scene
B Add multiple view of the target object
B Web based template sharing and expansion

oy Wy e )
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Z2.jpg 23.Jpg 24.jpg 23.3rg 26.jpg £7.jpg 28.7pg
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Results
- User Testing

2009.5.4-5.22 @ Orlando Health Rehabilitation Institute

Ten individuals post SCI had participated in a three-week long study.
Two H/W interfaces: Microphone & Trackball

Two control methods: Auto vs. Cartesian (=Manual)

Outcome measures

B Time to task completion & Number of Clicks

B Psychometrics & Baseline characteristics
O MMSE, FIM, MVPT-R, PIADS, ASIA

Analysis — Non-parametric
B Wilcoxon Signed Rank Test
B Spearman Correlation Coefficient

[REF] Orlando Health study examines technology developed by UCF, OHRI Website, June 16, 2009. a1



Results
- Lessons Learned

O

The developed assist robotic device helps a lot to improve the user’s satisfaction in
performing the given pick-and-place tasks while great positive responses are
observed through psychometric assessment and exit survey.

There exists a disparity between the quantitative metrics and the
psychometrics, For example, while their performance was better with
Auto mode, they were more satisfied with the Cartesian mode.

Baseline characteristics of subjects affect quantitative metrics. (MVPT-R)

Segmented actions in Cartesian mode enable us to see the difference
between Healthy Subjects (GroupH) and SCI Subjects (GroupS).

Compared with GroupH, cautiousness and improper scene understating
of GroupS makes a big difference in their task performance.

B User's cautiousness degree is under development.
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Concluding Remarks
- Summary

For robust visual servoing tasks, gross-to-fine motion
segmentation is used to control a WMRA in unstructured
environments.

B Gross motion brings the end effector close to and properly aligned
with an object of interest to get a better resolution.

B Fine motion moves the end effector to the best pose for grabbing an
object with high precision.

Developed system was tested with more than 25 unique
objects in different height/background setup.

User testing emerged that hybrid human-robot
interaction is the most desirable way in the future.
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