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Introduction
- Statistics

� Approximately 0.4% of the U.S. population or some 1.3 million people reported being 
paralyzed due to a spinal cord injury (SCI). Every year, there is approximately an 
additional 11,000 spinal cord injuries.

� Many of these individuals are confined to power wheelchairs, have moderate to minimal 
function in their upper extremities, and require some amount of attendant care.
� Average yearly expenses can range from $230k to $780k in the first year.
� Estimated lifetime costs can range from $680k to over $3 million for a 25 year old.

� Two-thirds of mobility device users have limitations 
in one or more Instrumental Activities of Daily Living.
� grocery shopping, using the telephone, 

meal preparation, light housework, etc.

[REF] Christopher and Dana Reeve Foundation, 
http://www.christopherreeve.org, 2009.
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� Service Robot

� Functions of service robots are generally related to the ordinary 
human life like repair, transfer, cleaning, health care, and so forth.

Introduction
- Robotic Caregiver

Human Caregiver Robotic Caregiver: KARES II
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RWTH-ARM

Introduction
- Example of Wheelchair-based Robot

Weston Robot

KARES I
FRIEND

Raptor
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Desktop Vocational Robot

Introduction
- Example of Workstation-type Robot

AFMASTER
RAID workstation

ISAC
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Introduction
- MANUS Assistive Robotic Manipulator (ARM)

� Wheelchair Mounted Robotic Arms (WMRAs) such 
as MANUS and RAPTOR are capable of working 
in a variable workspace and an unstructured 
environment.

� They are capable of picking up miscellaneous 
objects from floor or shelves as well as carrying 
objects – tasks that have been identified by users 
as “high priority” in a collection of pre- and post-
development surveys for a multitude of robotic 
assist devices. Manus
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Introduction
- MANUS users are concerned…

� The downside to the flexibility and versatility afforded by the MANUS is 
that it comes with the need for masterful control of a large number of 
degrees of freedom.

�For many users (i.e., TBI), the cognitive load is excessive. 

�For other users, the entire process of shifting between layers of menus may 
be too tedious and frustrating.
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Introduction
- Related Work

� Vision based control and a variety of interfaces to simplify the
operation of the MANUS 
�New Jersey Institute of Technology - an infrared sensory box, a 
stylus with joints mimicking the robot arm, and a computer 
mouse

�TNO Science & Industry and the Delft University of Technology -
the WMRA has been augmented with cameras, force torque 
sensors, and infrared distance sensors. It is operated by a 
wheelchair joystick and a switch in “pilot mode” to share 
autonomy between the robot arm and the user. 

�INRIA - a “one click” computer vision approach
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Problem Statement
- Goal

� Design a motion control strategy for end-to-end 
automated object grasping 
� Joint angle feedback from the robot 
� Live video streams from an end-effector mounted stereo head

� We deal with everyday (ADL) objects in natural 
environments (i.e., variable illumination, background, 
etc.) that may be occluded by other objects in the vicinity 
or by virtue of their pose with respect to the end-effector. 
� Also, we work with natural features which may or may not be 

found/tracked in successive frames in the live view.
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Problem Statement
- Nomenclature

� : 3×1 position vector x in a coordinate 
frame

� denotes its          component 

� : x,yth element of 

� Rotation Transform Matrix
� From the coordinate frame a

to the coordinate frame b

World 

coordinate 

frame

Camera coordinate frame

End-effector

coordinate frame

[REF] Homepage of Manus, http://www.exactdynamics.nl/, Exact Dynamics, Netherlands, 2009.
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Approach
- Overview

“I want that”

Segmentation

Gross Motion

Start Fine MotionReady to Grab
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Approach
- Gross Motion (I)

� Computing 3D information using SIFT feature descriptors

� Least-squared optimization of error

� 3D depth information
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Approach
- Gross Motion (II)

� Initially, RANSAC is applied to 
cull outlier points.

� Constraints
1. Depth ratio is used to eliminate 

points on the stool. 

2. World cubic formed by user's 
selected point is used to eliminate 
points on the closest bottle and 
coke can. 

3. Statistics on the residual 3D point 
cloud is used to eliminate points on 
the remote.

Initial View

Constraint 1Constraint 2Final View  
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Approach
- Gross Motion (III)

� Finding a surface normal 
vector on the target object
� Laid down or upright

� Voting by Optimization
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Approach
- Gross Motion (IV)

� Motion Control

� Given the computed 3-D target position and the surface 
normal, one can compute the desired setpoints for 
position and orientation of the robot end-effector.
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Approach
- Gross Motion (V)

� Motion Control

� P-control is employed to 
generate translational 
and rotational velocity 
commands.
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Approach
- Object Recognition (I)

� Object Recognition using SIFT 
descriptors 
� Computationally intractable 

especially when the database 
grows extremely large

� Vocabulary tree that provides 
for scalable recognition (SRVT) 
� A multi-level decision tree and 

visual keywords as leaf nodes 

� Easily extendible and scalable to 
deal with lots of different natural 
scenes

[REF] D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary Tree", CVPR 2006.
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Approach
- Object Recognition (II)

STEP 1

STEP 2
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Approach
- Fine Motion (I)

� A 2-1/2D (or hybrid) visual servoing scheme is adopted to generate 
translation and rotation motion to align current eye-in-hand view with 
the pertinent template database image. 
� Homography computation using matched local features 
� Euclidean decomposition of homography

� Choice of one solution using auxiliary stereo frame

� For translation motion, one of the local descriptors is used as an anchor point 
m to track in x-y plane of the camera coordinate frame. 

� For approaching motion, the depth ratio is used to define an error signal.
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Approach
- Fine Motion (II)

� Three basic control laws are developed as
� 2D-IBVS (Image Based Visual Servoing)

� HVS (Hybrid Visual Servoing)

� HVS-T (Translation only)
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Approach
- Fine Motion (III)

� Phase I – Centering the Target Object
�2D-IBVS

� Phase II – Alignment with Target Object’s Template
�HVS or HVS-T
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Approach
- Fine Motion (IV)

Initial Pose Phase I: Centering

Phase II: Alignment Final Pose
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Approach
- Fine Motion (V)
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Approach
- Fine Motion (VI)

� More than 25 unique objects were tested.
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Grip 

Sensor

2nd Optical 

Gate

1st Optical 

Gate

Stereo Rig

Linear 

Position 

Sensor

Linear 

Position 

Sensor

Approach
- Robust Grabbing H/W Configuration
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Approach
- Finite State Machine

S0 S1

S2

S4

OG1 on
LPS on

OG2 on OG2 count > N

OG2 on � OG2 count++

S3

OG1 off

OG2 on

S0: Initial State
S4: Final State (Grab)
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Approach
- Grabbing Example I: Upright Object
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Approach
- Grabbing Example II: Laid-down Object
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Approach
- Grabbing Example III: Upright & Thin Object
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� Adaptive Grabbing vs. 
Non Adaptive Grabbing
� AG & NAG works for Filled 

Coke Can

� NAG fails for Empty Coke Can

� AG works for Empty Coke Can

� AG - Finding a ‘flatness’

Approach
- Force-Adaptive Grasping
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Results
- Setup

� Manus Robot + Multi-modal User Interfaces
� Sensors 

� Narrow baseline wide-angle stereo rig – Point Grey’s Dragonfly 2
� Smart Grabber – FSR, LPS, OG

� Software Architecture
� Distributed TCP/IP Server-Client
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Results
- Pick Up Multiple Objects
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Results
- Object/Template Management

� Able to capture the object in the cluttered scene

� Add multiple view of the target object

� Web based template sharing and expansion
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Results

- User Testing

� 2009.5.4-5.22 @ Orlando Health Rehabilitation Institute

� Ten individuals post SCI had participated in a three-week long study.

� Two H/W interfaces: Microphone & Trackball

� Two control methods: Auto vs. Cartesian (=Manual)

� Outcome measures
� Time to task completion & Number of Clicks

� Psychometrics & Baseline characteristics

� MMSE, FIM, MVPT-R, PIADS, ASIA

� Analysis – Non-parametric
� Wilcoxon Signed Rank Test

� Spearman Correlation Coefficient

[REF] Orlando Health study examines technology developed by UCF, OHRI Website, June 16, 2009.
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Results

- Lessons Learned

� The developed assist robotic device helps a lot to improve the user’s satisfaction in 
performing the given pick-and-place tasks while great positive responses are 
observed through psychometric assessment and exit survey.

� There exists a disparity between the quantitative metrics and the 
psychometrics, For example, while their performance was better with 
Auto mode, they were more satisfied with the Cartesian mode.

� Baseline characteristics of subjects affect quantitative metrics. (MVPT-R)

� Segmented actions in Cartesian mode enable us to see the difference 
between Healthy Subjects (GroupH) and SCI Subjects (GroupS).

� Compared with GroupH, cautiousness and improper scene understating 
of GroupS makes a big difference in their task performance.
� User’s cautiousness degree is under development.
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Concluding Remarks
- Summary

� For robust visual servoing tasks, gross-to-fine motion 
segmentation is used to control a WMRA in unstructured 
environments.
� Gross motion brings the end effector close to and properly aligned 

with an object of interest to get a better resolution.

� Fine motion moves the end effector to the best pose for grabbing an 
object with high precision.

� Developed system was tested with more than 25 unique 
objects in different height/background setup.

� User testing emerged that hybrid human-robot 
interaction is the most desirable way in the future.
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